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1 Introduction

Let Q be a bounded convex polygon domain of R? or R? and I' its boundary. We
consider the unsteady Navier-Stokes equations for a viscous incompressible fluid in
Qx[0,T7:

u—vAuU+u-Vu+Vp= fors, (1.1a)
divu=0, (1.1b)
ulr=0, wu(x,0)=uy(x). (1.1c)

Here u(ax,t) is the velocity of the fluid, p the pressure acting on the fluid, f..; the
external force, ug the initial velocity and v the dynamic viscosity. The Egs. (1.1a)-
(1.1c) can be written as the equivalent system below:

w—vAu+ B(u,u)+Vp= feu,
divu=0,

ulr=0, wu(x,0)=uq(x),

where

B(u,u)= u-Vu+%(divu)u.

Egs. (1.1a)-(1.1c) present a long-recognized difficulty for numerical solution due
to the coupling of w and p by the incompressible equation, where the pressure p
does not explicitly appear. This results in an index-2 differential algebraic system
(cf. [5,11]) and may cause temporal instability in maintaining the algebraic con-
straint (or the incompressible equation in the Navier-Stokes context). Hence, direct
discretization is not recommended. To overcome this difficulty, several methods
have been proposed, such as the projection method (cf. [8,15]), penalty method
(cf. [4,14]), iterative penalty method for steady problems (cf. [7]), Baumgarte sta-
bilization (cf. [3]), and sequential regularization method (SRM) [11]. The SRM is
based on methods for solving differential algebraic equations (cf. [1,2]) and can be
understood as a combination of the penalty method and Baumgarte stabilization
(see [13]). It reads as follows: given po(x,t) the initial guess, for s=1,2,..., solve

(us)t_VAus+B(usaus)+Vps:fexta (12&)
div(aq (us)i+aous) =€(ps—1—Ds), (1.2b)
us|F:07 us<$70):u0(w)v (12C)

where a; and «s are nonnegative constants and e¢ a small penalty parameter. It
has been showed that u—us and p—ps=0O(€e®). In other words, unlike the penalty
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method € is not necessarily chosen to be very small so as to have a better-posed
system to solve at each iterate s. It is easy to see that the SRM formulation scheme
decouples u and p. At the s-th step, we need to solve an equation of the form

1

(us)i——V(adiv((us);+agdivus) —vAug+ B(ug,us) = fs, (1.3a)
€

us|r=0, wug(x,0)=1uo, (1.3b)

where fs= fert—Vps_1. The existence theorem for solution of above equation is
shown in [13]. Moreover, a time discretization scheme of {u?}¥

s Jn=0
’U,n—’u,nil ,uln_,ulnfl )
% —ZV <a1divﬁ+a2divug> _yAuZ+B(ug_ 7'u,7;) = ‘f:7 (]_4a)
u?|F:07 n:1727"’7N; USZ’U,O, (14b)

is studied in [13]. Here N=2, f(x):=f,(x,nAt), n=0,---,N, and B(-,-) is a bilinear
form which is defined later. In [17], an error estimate for a space discretization
scheme is also given. The scheme reads

1
((ush)t,'vh) +E(Oéldivh<’u,sh>t+062dth’ush,dth’Uh)

+ (Vvhush7vhvh) +b(ush7ush7’vh) - (f87vh) ) vvh S ‘/hm
up|r=0, wup(x,0)=Puy,

where V}, is Py conforming finite element spaces, P is a projection from HE(Q) to
V,, and b(+,-,-) is a trilinear form defined later. Unfortunately, the error bound of the
SRM method is inversely proportional to the chosen penalty parameter e. This can
be problematic if one wants to decrease € to reduce the number of SRM iterations
s while still achieving a high degree of accuracy in approximating equations (1.1a)-
(1.1c). In this paper, we propose using the nonconforming P; finite element space
for spatial discretization, which provides an error bound that does not depend on e.
Specifically, we study a full discretization scheme, given by Eq. (1.5),

n—1 n—1
n o __ 1 no__
(%,’U}L) —i—Z(aldivh%—i—ozgdivhugh,divhvh) + (ythZh,thh)
+bp(utul, o) = (f" o), Yo, €V, n=1,2,-- N, (1.5a)
u) = 1,u, (1.5b)

where Vj, refers to the nonconforming P; finite element space and ¢, is the associated
interpolation operator. We note that error estimates for the nonconforming P;
element approximation have been previously provided in [6] and [12] for the planar
linear elasticity and penalized Navier-Stokes equations, respectively.
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The remainder of the paper is structured as follows. In Section 2, we introduce
the notations and briefly review the nonconforming P, finite element method. In
Section 3, we discuss issues related to our assumptions and provide error estimates
for the time discretization scheme. In Section 4, we present error estimates for the
full discretization scheme. In the final section, we present some numerical exper-
iments and discuss their implications. Without loss of generality, we assume that
ar=1, as=a, and v=1. It is important to note that the constant C' appearing in
our estimates may vary depending on «, €2, and T', but it does not depend on € or
the discretization parameters.

2 Preliminaries

2.1 Notations

Let D be the standard Sobolev weak derivative operator and C§°(€2) be the space of
infinitely differentiable functions with compact support in 2. For any integer m >0,
we denote by H™() and HJ () the standard Sobolev spaces of order m, with the
norm given by

||U||Hm(Q): ( Z ||DO‘U||2) , VUEHW(Q).

loe|<m
We usually rewrite the space L*(Q):= H°(Q) if m=0. Denote the L?(2) inner
product by (-,-), and the corresponding L?*(2) norm is given by ||-||=+/(,-). For

the multi-dimensional product space in R¢ (d=2,3), we define H™(Q)=(H™(Q))¢,
where the superscript d indicates the standard Cartesian product. The spaces L?(2)
and H}(Q) are defined similarly.

To handle the nonlinear term, we define

1
B(u,v):u-Vv+§(divu)v, Vu,ve Hy (1),

b(u,v,w):(B(u,v),w):%/Q(U-Vv)-wdac—%/g(u-Vw)-vdx, Yu,v,we H ().

For trilinear form b(-,-,-), it is not hard to derive following inequalities from Sobolev
inequalities and Holder inequality, see e.g., [12,13]:

[b(w,v,w)[ <Cllully[[v]l[lwl:, (2.1a)
[b(u,v,w)| <Cllulli[lv]2[lwl, (2.1b)
[b(w,v,w)[ Cljulzflv]1[|lw]. (2.1¢)
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2.2 Nonconforming P, finite element

We briefly review the nonconforming P, finite element space proposed by Crouzeix
and Raviart [9]. Let .7, be a shape-regular triangulation in Q. Let h be the maximal
diameter over all elements in .7,. The nonconforming P; finite element space V}, is

defined as

Vi={ve L*(Q)|v|x € P(K), YK € %,
v is continuous at the midpoints of edges of each triangular,

v=0 at the midpoints of edges along I'}.

It is known that V}, is not a subspace of H{ (). The discrete gradient and divergence
operators are given by

Viv|lgk=V(|k), divpv|g=div(v|g), VK€D,
for v€V},. The inverse inequality holds:
1Vl < ol voeVi. 2.2
We also define the discrete Laplace operator Ay:
(Apu,v)=—(Vyu,Vyv), Yu,veV,

and the discrete analogue of b(-,-,-):

1 1
bh('u,,'v,'w):é/ﬂ(u-vhv)-wdaz—E/Q(u-vh'w)-'vdx, u,v,wEe V.

The following three terms appear from integration by parts.
X (u,v) —/ Vu:thdx—i—/Au'vdx, vue H*(Q)NH(Q), wveH,
Q Q
Xg(u,'u):/udivhvdm+/Vu-vdx, Yue Hg (Q)NLE(Q), veH,
Q Q

1
Xg(u,v,'w)—§Z/aK(u-n)('v-w)ds, Vuc H*(Q)NH, (), wvwcH,

Keg,

where H :=H}(Q)+V,, n refers to the outward pointing unit normal vector of OK.
The next lemma gives some useful inequalities for three terms {X;}?_,. The
proofs have been comprehensive discussions in [12, p. 269], and hence omit.
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Lemma 2.1. The following statements hold
| X1 (w,v)| SChlull2|[Vav,
| Xa(u,0)| SChlluli[[Violl,
[ Xs(u,v,w)| <Chllull2f|[Vivl||Viw]].
It is easy to check that
(B(u,v),w)—by(u,v,w)=X3(u,v,w), YuvcH; ), weV,.

Next we introduce the interpolation operator ¢y, : H} (Q) — 'V,

1
tpv(me) = el /'vds,

where m, represents the midpoint of edge e. We have following estimates:
Lemma 2.2. The following statements hold
lw—hul |+l Vi(u— )| <CR?|ull2, (2.3a)
||divy (w—pw)|| < Chl|divaulf; . (2.3b)

Proof. The first inequality is proved in [9] and the second is proved in [12, Lemma
3.1]. O

3 Assumptions and priori estimates

In this section we give some assumptions related to the external force fo..(x,t),
initial velocity wo(x) and initial guess of pressure po(x,t). We will assume that
(A1)-(A4) hold true in the remaining of this paper without explicitly noticing.

(A1) divuo=0, uo€ H2(Q)NHL(Q), Auge H'(Q).

(A2) The following Neumann problem is consistent and the initial pressure py(x,0)
to be the solution of it:

{ Aq:div(fezt(a:,O)—B(ug,uo)) in €,
Vq= fert(2,0)— B(ug,up)+Aug on T.

(AS) femtELoo(L2), (fext)tELQ(L2) VpOGLOO(Lz) V(po)tGLQ(L2), 1.e
s [fen -0+ / |(Fout (8|2 <C,

sup [ Vpo(-6)]|+ / Vo) (DIt <C
0<t<T 0
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(A4) fout(x,0)—Vpo(x,0) € H(Q).

Remark 3.1. The over-determined Neumann problem in (A2) is studied in [10] and
several sufficient conditions for the existence of solution are given.

Lemma 3.1. For s=1,2,..., we have

fs(m,O)—B(uo,uo)eHl(Q), div(fs(x,0)— B(ug,ug)) =0, (i)
s £+ / T e (i)
sup V(.0 + / |(Vpa)e(-DIPdE<C, (i)
0<t<

ps(x,0)=po(,0). (iv)

Proof. 1t suffices to show the case s=1. By definition and Assumption (Al), we

have
B(’U;o,’U;o) :’U,Q'VUO S HI(Q)

Since fi = fext— Vpo, Assumptions (A4) and (A2) imply that

fi(x,0) = B(ug,ug) = feut(x,0) — B(ug,up) — Vpo(x,0) € H' (), (3.1a)
div (f1(2,0) — B(uo,ug)) =div (feur(x,0) — B(uo,uo)) — Apo(x,0) =0. (3.1b)

This proves the assertion (i). By triangle inequality and Assumption (A3), we have

sup [[fi( IS sup [ fear (D) + sup [Vl )l <C, (3.2a)
0<t<T 0<t<T

/OH(fl)t(nt)sztS?(/o H(fext)t(-,t)HZJrHV(po)t(wt)H?dt)SC- (3.2b)

Next we turn to show (iii). Using the identity (1.2b), we have
L.
PlZPO—EdIV((Ul)t—l—(xw)-
Then the priori estimate (3.2), Assumption (A1) and [13, Lemma 4.2] lead to
1
—Vdiv((w)i+ou ) € L2(L?).
€

Let
g:=fi1(x,0)+Aug— B(ug,up).
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Then by the properties (3.1) and Assumption (A1), we derive that g€ H'(2) and
divg=0. Consequently, we have [13, Lemma 4.3]

%Vdiv((ul)tﬁo‘(ul)t) €L*(L?).

These two priori regularities and Assumption (A3) show that Vp; € L>°(L?) and
V(p1): € L*(L?). Now it remains to prove the assertion (iv). Let h = (u;)(-,0).
Then by formulation (1.3a), it satisfies

1
h—-Vdivh=g in €. (3.3)
€
Now let we C§°(2) solve

1
w——Aw=v for any veC{ (),
€

then direct computation give

1 1
(divh,v)= (divh,w - —Aw) =—(h,Vw)+ (—Vdivh,Vw)
€ €
=(divg,w)=0, Yve(C;°(Q),

where the last step follows from the fact divg=0. This implies that divh=0 in the
distribution sense, and hence p;(x,0)=py(,0) follows from (1.2b) immediately.

Now for any integer s> 2, we only sketch the proof by mathematics induction.
Assume that the assertions hold for s=k—1, and we show they also hold for s=k.
Firstly by inductive hypothesis and Assumption (A4), there holds

fk(wao) :fext(wao)_vzjkfl(wao) :fext(wao)_vP()(w?O) EHI(Q)a

and
diV(fk(%O)_B(Uo,Uo)) =0

follows from Assumption (A2) immediately. Next by applying triangle inequality,
we obtain fj, € L*(L?) and (fi): € L*(L?). Now define by

9= fr(x,0)+Aug— B(ug,uy),

Assumption (A1) and direct computation show that g€ H'(Q) with divg=0. Then
identical argument derives that Vp, € L>°(L?) and V(py); € L*(L?). Now let h=
(ug):(+,0), then it also satisfies

~ 1 ~ ~
h—-Vdivh=g with divg=0.
€
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Hence we obtain divh =0 like the case s= 1, and inductive hypothesis proves that

pr(x,0) =pr_1(x,0) =po(x,0).
The proof is completed. O
Now we introduce u;! (s=1,2,...) by the equation below:

w—u-l 1 0 -1

Uu.—u
s s - : S s —A 0 B 0,0 — 0. 4

Clearly, the solution u;! is well-defined. Moreover we have the following Lemma.

Lemma 3.2. The following properties are true

ul—u! ul—u!
div—=—=5— = —5 5 _cHYQ =12,....
V= 0, Y eEH (), s=1,2,
Proof. Let
u®— !
h: S S
At

By Eq. (3.4) and Lemma 3.1, we have

h—EVdivh: F2—B(u?,ul)+Au’
€
=fext(x,0)—Vpo(x,0)— B(ug,ug) +Aug=:g, (3.5)

where we have used

st:fs<w>O) :fext(wyo)_vps—l<w70) :fext(%o)—vpo(l',o)-

As the proof in Lemma 3.1, direct computation gives g € H'(Q) and divg = 0.
Consequently, we also have divh =0 by the identical argument in [13, Lemma 4.3].
Using Eq. (3.5), we have h=g € H'(Q). The proof is completed. O

In the sequel, we omit index s of w and f for simplicity. Consider semi-
discretization scheme: find {u"})_, with u®=wg and the zero Dirichlet boundary
condition, such that

n__,,n—1 1 n__,n—1
L (o s adiva) -

+Bu" L ut)=f", n=12,---,N, (3.6)
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and full discretization scheme: find {w}}Y | C 'V}, with u) =1,ug such that

n—1 n—1
n__ 1 n—
() (g sada v )

+(vhu27vhvh)+bh(u2_1>uz7vh) = (fn7vh)7 V’Uh € ‘/ha (37)

for every n=1,2,--- N.
From Assumption (A2) and Lemma 3.1, we have

div(f°—B(ug,u0)) =0, f'eH'(Q),

T
&mHﬂ¢W+A\mbﬂWﬁ§G

0<t<T

From Lemma 3.2, we have

cH'(Q). (3.8)

At At

These relations will be frequently used through our analysis.

Lemma 3.3. Let {u"}Y_ and u™! be the solution of the semi-discretization scheme

(3.6) and Eq. (3.4), respectively. Then for sufficiently small €, we have

1 un_un—l 2
5 1v At

1
€ +€_2Hdivu”H%+Hu”H§§C, n=0,1,---,N.

1

Proof. All the estimates are already contained in [13, Lemma 3.1 and Lemma 4.5],
and the range of € is given in [13, Lemma 3.1]. O

Lemma 3.4. Let {u"}\_, and u™" be the solution of the semi-discretization scheme

(3.6) and Eq. (3.4), respectively. Then for sufficiently small €, we have
N o/ 2

1 N
> (4 |

n=1
Proof. The Lemma is a discrete version of [13, Lemma 4.3]. Define by

2

T

n_un—l 2

d&i un_zun—1+un—2
1v —_—
At

At?

u— un—l

div A7

1 2

)Atgc.

n n—1

Au" = —lv (divw
€

At +adivu”)—Au” for n=0,1,---,N.
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u™

At — and integrate

Take the backward difference quotient in (1.4a), multiply A
over the domain €2 on both sides lead to

un_2unfl+un72’Aun_unfl N Aun_unfl
At? At At

B fn_fnfl ,uln_,ulnfl . ,u’n_unfl ,u’n_unfl
_( Y M v

2

u” 1_,ulnf2 u —um 1
_b(T’un_l’AT> ::Il+12+13. (39)

Then by Young’s inequality, we have

n n—1
1< Hf —f

2 2

u — ,ulnfl

4 At

r4

Next using Young’s inequality and the properties (2.1) of trilinear form b(-,-,-), we
also have

n _un—l

At
2
1
114

n _un—l

At

u™ _un—l

At
u"— ,un—l
At
ut—u" !

At

Au

Lo <Cllu" 2

‘ u

1

n__,,n—1 2

u"—u
- At

I

"2

n 2

1
ra

Y

1

where the last step is due to Lemma 3.3. Now by definition of the operator A and
direct computation, we have the following splitting

un_2un—l+un—2 Aun_un—l
At? ’ At
1 . ,u’n_2,u’nfl_|_,u’n72 2+ a d@ u— n—11|2 g unfl_uan 2
—— 1v WW—————|| — 1v
€ At 2e At At At
un_un—l um 1 —un 21|12 u —u" 1012
div———di
+‘ YA YA ) 2At<H
,u’nfl _un72 2 u’—u" 1 un— 21|12
—_— \Y v :
H At +H At At )
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Multiplying At on both sides of equation (3.9) and summing it over n from 1 to
ke{1,2,--- N} and using the property (3.8), together with three estimates above,
we obtain

2 k

1 uk — k1 2 uk — k1 u’ — 1 2
—||div——"— A———|| At
el A +’V At +; At

n__ £n—1 u’—u" 1012

= At

A 1
u’ 1012
At,

where the last line is due to Poincéare inequality and the elementary estimate

Z”fn i 1| At</ | £l ]2dt < C,
n=1

see [13, p. 1490]. This and discrete Gronwall’s inequality imply that for sufficiently
small At, there holds

N un_un—l 2
S [a¥ = ar<e
At
n=1
We complete the proof by [13, Lemma 3.1]. ]

4 FError estimates to the full discretization scheme

To get the error estimation, we first split error into the linear part and nonlinear
part, by introducing an auxiliary problem: find {u”}\_, CVj, with u%=1,uq such
that

n__pn—1 1 n_ !
(%)fu;) —l—g (divh%,di\’hvh) _{-%(divhuf,dth’Uh)

+(Vyu, Vyop)+by(u" ™ u” o) =(f"v), Yo, eV, n=1,2--- N. (4.1)

Next we define by e":=u"—u} =e]+ej for n=0,1,---,N, where e} :=u" —u and
ey :=u"—ul. Then by formulations (4.1) and (3.6), we know that {e}}’_, with
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el =uy—1ug satisfies

n—1 n—1
n__ 1 n__
<e1 € ,’Uh> 4= (divh%,divhvh) +g(divhe?,divhvh)-I—(Vhe?,vhvh)
E E

1 n—1
=X (u",vp)+-Xo (div—u,vh) + gX2(divu",'uh)
€ €

At
—Xs(u" tut ), Vv, €V, n=12,--- N. (4.2)

Moreover, by formulations (3.7) and (4.1), we also know that {e5}"_, C Vj, with
e) =0 satisfies

n—1 n—1
el —e 1 el —e o
(iﬂ)h) +E (divh%,divh’vh)+€(divh63,dthUh) —|—(Vhe§‘,thh)

+bn(u" L u vp) = by (u) o) =0, Yo, eV, n=12,--- N. (4.3)

The next two lemmas provides the error bounds of the term e} in H' and L?
respectively.

Lemma 4.1. Assume that € is small enough. Then we have

>

n=1

2 N

1
At+zz

n=1

2

At

n n—1

n—1
€1 —€

n
ef—ei™!

At divh

1
+ max —|divye}|*+ max ||V,el||*<Ch®.
n=1,,N € n=1,,N

Proof. Let zI'=u"—y,u", 25 =1,u™—ul, then e =27+25. Inputting

n n—1
zl—z
vy = 2 At2 27
into the weak formulation (4.2), we have

n n—11|2 n n—1 1|2

—— +-||d
At e A

n n—1 n n—1

« zl—z zh—z
— | div, 23, di Z2 72 V5,22V 27 72

+ c ( 1Vy 24 ,d1vy, AL )+( RZ9,Vh AL
n n—1 n n—1 n n—1 n n—1

=— , ——( div ,div
( At At ) ¢ ( MUAL MUAL )

n n—1 n n—1 n n—1
(e Z6 —Z Z5 —Z 25 —Z
——(divpz,div, 2—2— ) — ( V2", V, 22— )+ X [ u, 2222
e( WAL AT ) ( PEL R TTAL !
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56
1 u'—u"t ! a 2 pn=l
ZX, | di 2 72 =X, divee™. 22— 22
i 2(” At At >+e 2<Wu’ At
n n—1 8
zl—z
—Xs(u e, 22 ) =) T 4.4
3(“ U, At ) ;z ( )

Now we bound these terms separately. By Young’s inequality and the approximation

property (2.3) of ¢, there holds
2

O e e e e i I
2 At 2 At B AL = 2
i i 52 Lo 2
Si divhzg_th;_l 2+C?2 div'“’"_T":nl j
< Jasit g, v ZE < U, B2 oM

Next we estimate the terms I, and I5. Using the summation by parts formula, the
approximation property (2.3) of ¢, and Young’s inequality, we arrive at

1 Zt—2n1
"= V2, Vi) — (Vi L Vizs )] + (vh%,vhz3—1>

__E[(
1 . . - - z?—z{“l 2 n—1)|2
S—E[(thl,VhZQ)—(thl V25 )}—l-c th +C|[Vazy ™|
1 n n n—1 n—1 2 u"—u! i n—1y2
<=5 (Va2 Vizg) = (Vizi ™ Vizg ™))+ Ch A +C|Vrzy™ %,
2

and together with Lemma 2.1, we also have

1
Ig:A_t [Xl('u,",z;‘)—Xl(u”_l,z;‘_l)] —Xi (T,z2

<L[X (u",25)— X1 (u" ", 25 )] +Ch un_—un—l Vhzy |
N 1 ’ <9 1 » <2 At ) h#2
1 n _n n—1 _n—1 2 u"—u" ! ? n—112
<—[Xi(u"20) =X (u" !, 257 )] +Ch Al +C||Vrzy "
2

At
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Similarly, there holds for the terms Ig and I

. 1 un _un—l " ) ,un—l _un—2 .
L P ) )|

1 L ut—2u"

1 un_un—l . ) un—l_un—Q .
EA |:X2 (leT,ZQ) _X2 (leT,Zz 1>:|

+Ch u" —2u" 2
€ At?

1 u — ,ulnfl ) unfl _,u’an B
e 1 (a2 ) ()

div

V23l
1

+Ch2 diy ¥ 2 ;t;“‘n : 2+C’||th 2,

I ﬁ :Xg(divu”,z’;)—Xg(divu 20 1): —zxg (divun_A—:fn_l,z;‘”)
g%:Xg(divu”,zg)—Xg(divu s 1): e - 194257
S%:Xg(divu”,zg)—Xﬂdivu ,Z5 1) Ch2 le# j+C’||th§L_1||2.

For the term Ig, the following splitting, Lemma 2.1 and Young’s inequality imply
Ig=— Alt {Xg(u u”,2y)— Xg(u" a2l 1)]

+X3('“’n_T’:”,u" zg) X u”l,“n_Tfl,zgl)
1

2

[Xg(u u” zl)— Xs(u" " 25 )]+ ChP x
) ,uln_,u,nfl

u—ur)? > (
v Y e thz“||+||vhz”||).
(H e SR

Summing up (4. 4) over n from 1 to k€{1,2,---,N} and noting 2 =0, then we get

>

n=1

" |13+ [l

2

2 k

1
At+gz

n=1

k 8
a, n
+zudwhz§y\2+1|vhz§u2 gC(ZZIi ) At

n=1 i=1

2

At

n—1
Zy— 2y

At

n n—1
Z9 —Z9

divy, A7
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By the prehmlnary estimates on the terms {I?}_,, we have

2 k

n—1 n—1112
—z 1 zZl—z
I" At< 2272 At div, Z2—22 || At
k n n—11|2 n n—1112
u"—u 1 u"—u 1
Ch? B —||div——— ~||diva™||?) At
- ;(' A, e A 1+€H iva"|?)
1 F 27— )2 1 b 20— |2
<= 272\ A+ — div, 222 || At+Ch?
—2; At +2€; VhTTAG TOn

where the last step is due to Lemma 3.3 and 3.4. Using the approximation property
(2.3) of ¢, and noting zJ =0 imply

k k n n—11|2
) At <—(Viek Vyzh) +on2 S || L= A n|2At
(3om)avswst sty romy | +02||vhz2||
LN PRE
k|2 2 B k n
<golmistiteont(( 32" At)+||u ||2)+cn§%||vhz2|| At

k
_TOIIVhZSII +Ch*+CD || Vazp|*At,
n=0

and similarly, we also have

k 8 4 k un un_l 2
n k2 2 _
(ZZIi)AtSEHthQH +Ch (Z — 2At
n=1 =5 n=1
k _ —_92112 k 2
1 un_2un 1+un 2 1 unJrl_un
—||di At —||——|| At
+Z€2 v At? 1 +;62 At 1
ur—u" 1012 ,uln_,ulnfl 2
+Z( o 2 | ) s
2 1

—I—C’Z||th;‘||2At
n=0

k
4
Sl—oIIth’§||2+Ch2+Oz%||th§||2At.
This shows that i
V252 <CR*+CD (| Vrzy P At

n=0
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for every k€ {1,2,---,N}. For sufficiently small A¢, discrete Gronwall’s inequality
implies max,—q 1.5 ||V425]|? <Ch?. Consequently,

N || zn— 2012 1 20— 1|2
2 2 )
—=——= | At+- di At
; Al e; VRTTAL

1
+- maxNHdlvhz2H2+ max |]th2|]2<0h2
En b k)

Meanwhile, by the approximation property (2.3) of ¢, we know that

N 2 N 12
20—zt 1 .22t
E —_— At—i——g div,———|| At
At € At
1 , 9
+— max_||div,z?|? + max INEEA
En_ly'zN 17'a
n+1 —u" 2 n+1 —u" 2

le At

<Ch?x (Z

=0

1

e

1
+— ma XNHdlvu”H1—|— max Hu”|]2)<0h2
€ e

=L

The desired estimate follows from the triangle inequality, and thus the proof is

completed. O
To derive L2 error bound on the term e}, we introduce the following dual prob-
lem: find {w"}?_, with w”™ =0 and the zero Dirichlet boundary condition, such
that
w' —w 1Vd' w' —w Vdivw - Aw" = e? N,---,1. (4.5)
—— — —Vdiv———————Vdiv — = n=N,---,1. :
At € At € v T

Then we have a crucial priori estimate on the solution {w™}Y_,. The proof is
lengthy but standard, and hence is postponed to the appendix.

Lemma 4.2. Let {w"}°_y be the solution of problem (4.5). Then there holds

[

n=N

n—l_wn 2

di
V7

1
1 . n— n— n
—|—€—2Hdlvw I+ |w 1\|§>At§02|\e1|\2m. (4.6)
n=N

The next lemma provides an estimation for the term e} in L?.
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Lemma 4.3. For sufficiently small €, we have
N
> llerPAt<Cht.
n=1

Proof. We employ the standard duality argument. Multiplying e} and integrating
over the domain €2 on both sides of (4.5), we obtain
. wn—l_wn " 1 . wn—l_wn ) .
||€1 ||2 = (A—t,el) "‘E (leT,dIVhel)
+ S (divew™ divye?) + (V"™ Vye?) — X, (w™™" el

€
n—1

1 _ n
(@ e ) - 2 xadive e (4.7
€ At €
Meanwhile, inputting vy, =,w"™ ! in (4.2) leads to
n—1 n—1
n__ 1 n__
<%,Lhw”1) +E <divh%,divmhw”1)
+g(divhe?,divhahwnfl)—i-(Vhe’f,Vthw"’I)
€
1 ,u,n_,u,nfl
=X n n—1 X, di n—1
(u" w >+e 2< IV W >
+ 2 X (dive”, ™) — X (u Lt ). (4.8)
€
Then by formulations (4.7) and (4.8), we get
e ) =17+ 15 +15 +17 +17, (4.9)

where the five terms {I7}%_, are given by

w™ ! —w" en_en—l
1711:< At >e?>_< - Atl 7Lhwn1)7

N N WA o
5= - (leT,dlvhe1) e (dltht’dthhw )

I = ¢ (div(w”1 — Lhwnl),divhe?) + (V(w”1 — Lhwnl),vhe?) ,
€
n—1__

1 . w
I=—X; (w”l,e?) —EXQ <d1v A7

u” _,u’nfl

At

w ,e’f) —%Xg (divw”’l,e’f),
IgL :X1 (u”,ahwnfl) + %XQ (le ,Lhw"1> + %XQ (diV’U;n, Lhwnil)

— X3 (u”_l,u”,Lh'w”_l).
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It suffices to estimate these terms separately. By the summation by parts formula,
the approximation property (2.3) of ¢, Cauchy-Schwarz and Young’s inequality,
then there holds

n__ 1 n—1 n—1\ _(n n e?_e?_l n—1__ n—1
Iy __At[(el aw" ) —(ef,w")|+ AL , W LW
1 n—1 n—1 n ..n 4 6711_671171 ? n—1/2
< e )~ (e b I g

and similarly,

1 1 n__ n—1
Iy =% [(divhe?_l Jdivew™ 1) — (divhe?,divw”)] + - (divhel:;l (divy, (w1 — Lhw"1)>
2

+6- || dive™ 2.
€

1 h?
gﬁ [(divhe?_1 ,divew" ™) — (divje}, divw™)] —|—C§?

n__ n—1
e €

divy, L At

Next the approximation property (2.3) of ¢;,, Cauchy-Schwarz and Young’s inequality
give

1. 1, .. _ e
1 Cal ( Hivael 1+ 195t )+ ¢ v [+ ).

It remains to bound I} and I?. By Lemma 2.1 and Young’s inequality, we arrive at

n n n— 1 . w" ! —w" 2
I4 §C§h2HVhelH2+5<“w 1||§+€_2 leT

1. ..
+— || divw 1||%>
L€

n—1

Since w" ™" is continuous on all interior edges of the grid .7, we get

u"t— un—l

n—1 n—1
A M T )

o . _ _ _ _ _
—|—EX2(dlvun,Lhw” L_wm 1)—X3(u” Lau™ ™t —w" 1)

1
=X, (u”,Lhw"_l —w"_l) +-X5 (div
€

1 u—ur])?
4 n|l2 .
<Csh (Hu H2—|—€—2 div A7

1. _ _
+ g lldive” i+ w" 1H§HU"H?> +0]lw™ 3,
1

where the last line have used Lemma 2.1, the approximation property (2.3) of ¢,
and Young’s inequality.
By direct computation, we have

dthe(l] = dth(’u,O - LhuO) = (]I— Ph)diVUO = 0,

see [12, Lemma 3.1], where P, is piecewise-constant L?(f2) projection. Then sum-
ming up (4.9) over n from N to 1, meanwhile noticing w” =0 and the preliminary
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estimates on {I?}2_, above, together with Poincdre inequality, Cauchy Schwarz and
Young’s inequality, we have

21: 2 0.0 - |len—er 12 (1o en—en |2
» § : 1 Z . 1
HelH AtS(ebw )+Ch T At+C§h (6 ‘lehAt At)
n=N n=N =N
1 1 1
2 - s n|2 ni2 2 nn2
+Csh* Y (deell! +[Vhel >At+05h S 1 Vned|
n=N n=N
4 : 9, 1 wr—un 21 ) - )
I (o e e L e o T
n=N
1 112 1 wnfl_wn 2 1 Lo
0 "5+ || di At+— || divaw™ 1|3 ) At
DY (13 2| 2t )

1 1
<Csh'+6| VP +C5 Y [le}|PAt<Csh*+C5 ) |lef|*At,

n=N n=N
where we have used the estimate (A.2), Lemmas 4.1 and 3.3. By letting C<1, the
desired estimate follows. We complete the proof. O

Now we turn to derive the error bound on the error ef.
Lemma 4.4. For any v, €V, there holds
[allioe+ Vo]l <CIViwnl|= || Anonl .
Proof. See [10, Lemma 4.4]. O

Lemma 4.5. Let {u?}Y_; be the solution of problem (4.1). Then for sufficiently
small €, we have

pax [lulflpe+ max [[Viullls <C.

Proof. We only need to prove that |V,ul|| and ||Apul|| are uniformly bounded for
every n€{0,1,---N} due to Lemma 4.4. From Lemmas 4.1 and 3.3, we know that

[Vaul|| <[ Viet||+[[Vu" || <C.
Next we consider ||Apu?||. By triangle inequality we have
[Apull| <[[Anet ||+ [ Auw]].

By definition of discrete Laplacian Ay, inverse property (2.2) of V}, and Lemma 4.1,
we have

C
|Anel||?=—(Viel, ViAney) <[[Vael|[[[ViArer || < Chx o IAner])

and hence ||Ape}||<C. This and Lemma 3.3 derive the desired estimate. [
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Lemma 4.6. The following properties hold

|br(w,v,w)| SClull2[Vawl[([o]+h][Vavl]),
Yue H*(Q)NH;(Q), vweH, (i)
[br(w,v,w)| <Clull[[Viwl|([[v]| e +[[Viv]Ls),  Vu,v,weH. (i)

Proof. See [12, Lemma 4.6] for the assertion (i). Using the definition of trilinear
form by,(-,-,-), meanwhile applying Holder’s inequality and Sobolev inequality could
derive the assertion (ii). O

The next lemma provides a main result on the error ej.
Lemma 4.7. For sufficiently small €, there holds

max_|le}||+h max |[V,es||<Ch?
n=1,,N n=1,N

Proof. To handle with the nonlinear part, we first split it into

bh(unilvumvh)_bh( Uh,’Uh)
=by(u"" el vp,) + by, (u” Jop) b ()t el o) — by (u) T ul op)
:bh(un_lae?avh)‘f‘bh( Lelv h) br(el ™" ul, vp)+by(ef "t ul,vp).
Let v, =e} in the weak formulation (4.3). Since by (u} ™', e5,e3) =0, then we have
1 . n
At(HeQHZ—H 1P o (Idivnes P~ divie; )

+;|Idlvhezll ([ Vhes |

S_bh(un_lve?’eg) _bh(e?_lauzveg) _bh(eg_lau:}?eg)
I T (4.10)

It suffices to bound {I?}2_, separately. From Lemmas 4.6 and 3.3, we get
I <Cllu" ol Vres |l (ller | +hl Vret]])
1
<Cllet[P*+Ch*[ Vel |+ Vares |,

where we have used Young’s inequality. Moreover, there also holds (due to Lemma
4.5)

n n— n n n n— 1 n
B <Cller I Vres (o +1Vaullles) <Cller™ |+ 7 1 Vares |,

n n— n n n n— 1 n
I <Clles I Vaes (el +1Vaullls) < Clles™ I+ 1 Vares |
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Summing up (4.10) over n from 1 to k€{1,2---N} and noting e€J=0 yield

1 . .
512+~ idivie} |+ - ZHdwheQH?AHZIIWez||2At

— n=1

k
SCZHe?HQAt—I—ChQZthe’fHQAt—i—CZHeSHzAt

n=1 n=0 n=0

k
<CR*+CD |les|PAt,

n=0

where the last step uses Lemmas 4.1 and 4.3. By discrete Gronwall’s inequality, we
obtain
max |le}|| < Ch?.

n=1,2,---,N

Since ey €V, for n=1,2,--- N, the inverse property (2.2) implies

n O n
IVihesll< —llex]| < Ch.

The proof of the lemma is completed. O
Now from Lemmas 4.1, 4.3 and 4.7, we have the following result immediately.

Theorem 4.1. Let {u"},_, be the solution of time discretization scheme (1.4a)-
(1.4b) and {up}_, the solutzon of full discretization scheme (1.5a)-(1.5b). Assume
that (A1)-(A4) holds. For sufficiently small €, we have

max h [V (u" —up)| +Z||u —ul||PAt<Ch*.

n=1,2,

In [13], time discretization scheme (1.4a)-(1.4b) is studied and an error estimate
between the scheme and Navier-Stokes equations (1.1a)-(1.1c) is given. Combining

them together, we have the error estimation to the full discretization scheme (1.5a)-
(1.5b).

Theorem 4.2. Let (u,p) be the solution of unsteady Navier-Stokes equations (1.1a)-
(1.1c) and {u™ }N_ the solution of full discretization scheme (1.5a)-(1.5b). Assume
that (A1)-(A4) holds. We further assume that

T T
/ Ipoll2dt <242 / oI,
0 0
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and € is small enough. Then for s=1,2,---, we have

ErllaXNth(u?h—u(-,nAt))HQ§C(h2+At2+623),
N
D Il —u(-nAL)[|PAt < C(h* + AL +€>).
n=1
Remark 4.1. The result provides an optimal error bounds in both H' and L2,
with respect to the chosen small penalty ¢ and discretization parameters. It has

essentially improved the estimation using the conforming P; element approximation,
which depends inversely on the penalty e.

5 Numerical experiments

In this section we present numerical experiments of the sequential regularization
method for two dimensional Navier-Stokes equations using nonconforming P; finite
element discretization. We choose ay; =1, as =1, v=1 in all examples.

Example 5.1. Let Q2=(0,1)%, T=1, e=1.00e-2, s=5 and initial guess py(x,t)=0 in
Q2x(0,T). The forcing term f.,; is chosen such that the exact velocity and pressure
are given by, respectively,

1
w (@) = 5o (1—2)*(4y° —6y° +2y)e,
1
ug(x,t) = —Eyz(l—y)2(4x3—6x2+2x)et,
pla.t) = (20—1)(2y—1)¢'.

To investigate the convergence behavior of the discrete approximation u?, in H'
and L? norms, we define two different metrics as follows:

N N
et =Y _[[Va(ul,—u(-nAt)|PAt and e, =Y |lul,—u(-,nAt)|At,
n=1 n=1
respectively. The corresponding grids, velocity fields, and numerical results are
presented in Fig. 1 and Table 1. Steady convergence of both e,y and e, can be
observed from the last column of Table 1, and their convergence rates confirm to
theoretical results.

Example 5.2. Let Q=(0,7)?, T=1, e=1.00e-2, s=5. Set initial guess

1
po(x,t)=0 and g:§sin2(x)sin2(y)et
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Figure 1: A sequence of grids and their corresponding fields of the velocity at time T'=1 for Example
5.1.
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Figure 2: The fields of the velocity at time T'=1 for Example 5.2.

in Qx(0,7). The forcing term f.,; is chosen such that the exact velocity wu(x,t)=
curl g and the pressure p(x,t) =zye’.

The computational grids are generated by the same strategy as in the aforemen-
tioned Example 5.1. The velocity fields and numerical results for Example 5.2 are
presented in Fig. 2 and Table 2. Clearly, the convergence behavior of both cases
confirms the main results.

Table 1: Numerical results for Example 5.1.

# Sdofs 170 640 2480 9760  rate
€sH 1.46e-1 8.30e-2 4.29e-2 2.14e-2 1.00
€sl, 1.18e-2  3.79e-3 1.06e-3 2.76e-4 1.94

Table 2: Numerical results for Example 5.2.

# Sdofs 170 640 2480 9760  rate
€sH 3.14e0  1.66e0 8.29e-1 4.10e-1 0.98
esl, 8.96e-1 2.43e-1 6.35e-2 1.62e-2 1.97
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Appendix A: A crucial priori regularity on duality
problem

In this appendix, we collect the proof of Lemma 4.2.

Proof. Define by

B 1. wl—w" o B _
Aw" 1:——dlvT——dlvw" L_Aw™
€ €
B 1. wl—w" o B
Pl =—Zdiv———— — —divw"™ .
€ At €

Let ¢" ' =divw"!. Then the second identity could be rewritten as

1 eAt

n—1 n n—1

T Tharart)? T (1rann?

which implies that
lg" Ml < [lg" [l +eAt ™"l

Applying mathematics induction for the inequality and noting
¢~ =divw™ =0,

then there holds for any ke {N,N—1,--- 1}

N 2 k
Hg’f—lnﬁSe%t?(ann—lnl) <7y [ RAt, (A1)
n==k n=N

where the last step uses Cauchy-Schwarz inequality.

Now upon the standard result of Stokes equations (cf. [16]), we have the a priori
regularity

[ HE+p" R <O (1 Aw™ P+l ).

Multiplying At on both sides and summing up the estimate over n from N to 1
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above, together with the elementary estimate (A.1), lead to
1 1
D llw A [l Ae
n=N n=N

1 1
<CY Aw" PALHC Y |lg" T At

n=N n=N

<(JZ||Aw" 1||2At+oe2TZZ||pk HI2A¢

n=Nk=N

g(JZ |Aw"™ |2 At+Ce*T? Z P 2 At

Let € be small enough such that Ce2T?<1. Then we have

wl

1 1
D lw Ay |t A< CZ [ Aw" |2 At.
n=N n=N n=N

Consequently, there holds for the function divew™ !

—ZHdlvw" 12 At<TZ|ypk 12 At<C’Z]|Aw” Y12At,

k=N n=N
and further the definition of p"~! and triangle inequality imply

2 1

At=>"

1 n=N

2
At

1

n—1

. W —
le

1

o
P —divew™”
€

<CZHp” 1H2At+C ZHdlvw" 1H2At<CZ]|Aw” Y12At.

n=N n=N

It suffices to prove
1 1
Sl AwPar <Y flef A
n=N n=N

Multiplying %t_“’n and integrating over the domain €2 on both sides of (4.5) derive

2 2

n—1 —w" N a
2e At

w
—1ldi
1v Al

H wn—l —w"

At

(||diveo”™H|* — [ divew™||*)

n—1 n
n—12 n w —w
2At(uvfw v < (e 2 )
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Summing up from n= N to 1 and noticing that w” =0, meanwhile using Cauchy-
Schwarz and Young’s inequality, we could arrive at

wnfl —w™
n=12,- N At

k
max _||[Vw" H]*+ Z
n=N

2 1
At<CY " |let|PAt. (A.2)
n=N

Next we input the test function Aw™! into (4.5) and get

n— n n— w' ! —w" n—
2= A=) (M )
? 1 n—11|2

wnfl_wn
suem%H—

and hence we obtain

1 1
D Aw™PAL<CD ler|PAt.
n=N n=N

Combining with all estimates above, the desire estimates follows. We complete the
proof. n
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