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Abstract. In the previous paper [CSIAM Trans. Appl. Math. 2 (2021), 1–55], the
authors proposed a theoretical framework for the analysis of RNA velocity, which
is a promising concept in scRNA-seq data analysis to reveal the cell state-transition
dynamical processes underlying snapshot data. The current paper is devoted to the
algorithmic study of some key components in RNA velocity workflow. Four impor-
tant points are addressed in this paper: (1) We construct a rational time-scale fixa-
tion method which can determine the global gene-shared latent time for cells. (2) We
present an uncertainty quantification strategy for the inferred parameters obtained
through the EM algorithm. (3) We establish the optimal criterion for the choice of
velocity kernel bandwidth with respect to the sample size in the downstream analysis
and discuss its implications. (4) We propose a temporal distance estimation approach
between two cell clusters along the cellular development path. Some illustrative nu-
merical tests are also carried out to verify our analysis. These results are intended to
provide tools and insights in further development of RNA velocity type methods in
the future.

AMS subject classifications: 92B05, 92-08, 92-10

Key words: Time-scale fixation, uncertainty quantification, optimal kernel bandwidth, temporal
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1 Introduction

The development of single-cell RNA sequencing (scRNA-seq) technology has revolution-
ized the resolution and capability to dissect the cell-fate determination process [42]. How-
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Figure 1: The computational workflow of RNA velocity analysis and under-addressed issues.

ever, traditional scRNA-seq datasets only provide static snapshots of gene expression
among cells at a certain time point, which lack the direct temporal information to infer
the dynamics of cell state transitions [47]. To address this limitation, the RNA velocity
method [21] utilizes both unspliced and spliced counts in scRNA-seq data to model and
infer the dynamics of mRNA expression and splicing process, allowing the prediction of
gene expression changes over time, and the specification of directionality during devel-
opment. The method has been applied widely in different biological systems [1, 9, 12],
and the computational workflow of RNA velocity analysis has been established and un-
dergone rapid development [3, 21, 23, 50] (Fig. 1).

To improve the effectiveness and robustness of RNA velocity analysis, various algo-
rithmic modifications have been proposed throughout the computational workflow. For
the parameter inference step, scVelo utilizes an Expectation-Maximization (EM) proce-
dure between latent time specification and kinetic parameter update to generalize the
steady-state assumption to the transient dynamical process [3]. In addition, κ-velo pro-
poses to calculate a gene-shared latent time for each cell by approximating the traveling
time with the number of cells in-between [29], and UniTvelo calculates the unified latent
time by aggregating the gene-specific time quantiles [10]. Recently, VeloVAE utilizes vari-
ational Bayesian inference and autoencoder to compute the gene-shared latent time and
cell latent state [15]. To account for the uncertainty of inferred parameters incurred by
noise and sparsity in spliced or unspliced counts, CellRank adopts the multivariate nor-
mal model to quantify the velocity distribution [23], while VeloVI employs the bootstrap
strategy [11]. Recently, pyro-Velo proposes a Bayesian approach to model the posterior
distribution of parameters [35].

Based on the inferred RNA velocity, downstream dynamical analysis tools such as
low-dimensional embedding [1, 34] and trajectory inference [10, 27, 50] are developed
by leveraging the cell-cell neighbor graph directed by the velocities. Pertinent to such
methods is the construction of a cellular random walk transition probability (or weight)
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matrix, which is induced by the velocity-based data kernels. Our previous theoretical
work [26] has elucidated that different choices of velocity kernels can result in various
forms of differential equations as the continuum limit. The resulting Markov chain of
cell-state transitions can provide further insights into the underlying dynamics, includ-
ing the transition paths to quantify development routes [26,52], and the absorption prob-
abilities to quantify cell-fate commitment likelihood [23, 37].

Despite the success of algorithm developments, deeper analysis is still necessary to
understand the rationales of the algorithm design and address the unresolved issues. For
instance, in parameter estimation, the optimal choice of re-scaling parameter and there-
fore the determination of gene-shared latent time beyond heuristic strategies have yet to
be determined. In fact, extracting the hidden time information from the snapshot data
is still a central issue in scRNA-seq data analysis. Meanwhile, the uncertainty quantifi-
cation of parameters could benefit from a rigorous confidence level analysis of the EM
algorithm. In the construction of random walks, the appropriate choice of kernel band-
width relies on the numerical analysis of convergence order to continuum limit. In addi-
tion, simulations and benchmarks are important to validate the statistical and numerical
analysis results.

As a continuation of our previous work [26], in this paper we will study the mathe-
matics of RNA velocity analysis from the perspective of algorithms. The main contribu-
tions of this paper toward the current computation workflow could be summarized as
follows:

• Parameter Inference. To determine the gene-latent time [3], we formulate an opti-
mization framework to determine the gene-specific rescaling parameters and pro-
pose the numerical scheme to efficiently tackle the considered problem.

• Uncertainty Quantification. Employing the asymptotic theory for EM algorithm
[32], we rigorously derive the confidence level for the kinetic parameters in the
dynamical RNA velocity model.

• Random Walk Construction. Addressing the finite sample-size issue in computa-
tion, we analyze the variance and bias of the approximation to continuum equation,
and find an optimal criterion to determine kernel bandwidth and sample size for
the velocity kernel which induces the cellular random walk dynamics.

• Downstream Analysis. To perform lineage inference that is consistent with RNA
velocity dynamics, we propose the first hitting time analysis to quantify the transi-
tion time.

The rest of this paper is organized as follows. According to the contents stated above,
we have studied them in Sections 2, 3, 4 and 5, respectively, and given corresponding
numerical illustrations in each section. Finally, we make the conclusion. Some proof
details are left in the Appendices A and B.
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2 Fixation of time rescaling constants

The current RNA velocity models [3, 21] assume that the genes are independent, thus
in dynamical parameter inference [3], the latent times of the cells are obtained for each
gene independently, and we lack a determination step of time-rescaling factors to form
a globally consistent gene-shared time. To rationally infer the global cell hidden times
as well as determine the rescaling factors, we propose an optimization framework to
address this issue. It could be served as a good starting point for more delicate inference
on the latent time by taking into account more technical details.

2.1 Problem setup

Suppose that in a considered scRNA-seq measurement, we have d genes with the label
g=1,2,.. . ,d and n cells with the label c=1,2,.. . ,n. Similar to the previous work, we utilize
the deterministic dynamical model

du

dt
=αon/off(t)−βu(t),

ds

dt
=βu(t)−γs(t)

(2.1)

to describe the transcriptional process of each gene, and the individual genes are inde-
pendent of each other. Here t≥0, (u(t),s(t))|t=0 =(u0,s0), and

αon/off(t)=

{

αon, t≤ ts,

αoff=0, t> ts,

where ts is the switching time of the transcriptional process at which transcription rate α
turns to 0. The variables u(t) and s(t) are the abundance of unspliced and spliced mRNA
in the cell measured at time t, respectively. In general, the resulting data are not time-
resolved and t is a latent variable. Likewise, the transcriptional state of the cell (on/off)
is an unknown variable, and the rates αon, β and γ cannot be directly measured experi-
mentally.

In the inference process, we need to solve the equation and infer the kinetics of splic-
ing controlled by parameters: transcription rate αon, splicing rate β and degradation
rate γ, latent variable time t. We usually infer the parameters for each gene separately
under the independent gene assumption, which leaves the relative size of the parame-
ters of genes as an unsolved problem. As the system has the following scale invariance
property [26], i.e. if we define the parameter θ =(θr,ts), in which θr =(α,β,γ), then the
following equation holds:

(

u(t;θr,ts),s(t;θr ,ts)
)

=
(

u(κt;θr/κ,κts),s(κt;θr/κ,κts)
)

, (2.2)

where κ > 0 is the scaling parameter. In the inference we usually keep βg = 1 at first
while optimizing other parameters for each specific gene g, which essentially infers αg/βg
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and γg/βg due to the scale invariance. When considering the high-dimensional velocity
and the corresponding low-dimensional projection, the scale needs to be adjusted among
all genes, that is, the scaling parameters (βg)g need to be determined for each gene. As
this parameter appears in the final RNA velocity, its choice will highly affect the lineage
inference in downstream analysis. Also, computing the gene-latent time required us to
find out the scaling parameters. Indeed, this is an important under-addressed issue in
scRNA-seq data analysis.

Assume that we have already inferred the unscaled parameters αg, βg =1,γg for each

gene, with the gene-specific cell time matrix T=(tcg)∈(R+∪{0})n×d. Our goal is to infer
the gene-shared latent time tc for each cell as well as determine the rescaling parame-
ters βg for different genes. Below we will propose two optimization approaches to tackle
this issue.

2.2 Gene-shared time through optimization

To obtain the gene-shared latent time in any given cell, we reason it to be as consistent as
possible with the respective rescaled time for each gene within the cell. Denote by β=(βg)

or x=(xg)=(β−1
g )∈R

d the time re-scaling parameters for the genes, and t=(tc)∈R
n the

gene-shared latent time for cells to be optimized. We formulate the above consistency
intuition through two proposals.

Our first proposal is based on the model

tcgβ−1
g = tc+ǫcg, ǫcg ∼N(0,σ2), c=1,.. . ,n, g=1,.. . ,d. (2.3)

Here tcg is the inferred gene-specific time with βg = 1, and tcgβ−1
g is the rescaled time

with βg, and (2.3) means that the rescaled time should be consistent with a global gene-
shared common time tc upon removing some noise. With this setup, we can determine x
and t with the following formulation.

Proposal 2.1 (Inference with Multiplicative Noise). The gene-shared latent time t and re-
scaling parameters x can be determined through the minimization problem

(x∗,t∗)= argmin
‖t‖=1;x≻0,t�0

‖TX−t1⊤‖2
F, (2.4)

where x ≻ 0, t � 0 means that x, t have positive or non-negative components, respectively,
1 = (1,1,.. . ,1)⊤ ∈ R

d, X = diag(x1,. . .,xd) ∈ R
d×d is the diagonal matrix formed by the com-

ponents of x, and

‖A‖F :=

(

∑
ij

a2
ij

)
1
2

=
(

tr(AA⊤)
)

1
2 , A=(aij)

denotes the Frobenius norm (F-norm) of a matrix.
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Theorem 2.1. Assume that the inferred gene-specific cell time matrix T satisfies the condition

T∈T =
{

T∈(R+∪{0})n×d ∣
∣T⊤T is irreducible

}

. (2.5)

Then the optimization problem (2.4) has the unique solution x∗ = dλ−1/2
1 Wv1, where v1 is the

ℓ2-unit eigenvector corresponding to the maximal eigenvalue λ1 of

H=W⊤T⊤TW, W :=diag(w1,. . .,wd), wg=
1

‖t•g‖
, g=1,.. . ,d, (2.6)

and it has positive components. The global gene-shared common time

t∗=
TWv1

‖TWv1‖
.

Proof. To solve the problem (2.4), we note that when x is fixed, the optimization

min
t�0

‖TX−t1⊤‖2
F

turns out to be a least squares problem, and the minimum point is t=Tx/d. Substituting
it back to (2.4), we get

x∗= argmin
‖Tx‖=d,x≻0

∥

∥

∥

∥

TX− 1

d
TXE

∥

∥

∥

∥

2

F

,

where the matrix E := 11⊤ ∈R
d×d. Define C= Id−E, which satisfies C⊤=C and C2 =C.

We have
x∗= argmin

‖Tx‖=d,x≻0

‖TXC‖2
F.

By the definition of the F-norm, we have

x∗= argmin
‖Tx‖=d,x≻0

tr(TXCC⊤X⊤T⊤). (2.7)

Denote by A◦B the Hadamard product of matrices A and B defined as A◦B=(aijbij) for
A=(aij) and B=(bij). It is not difficult to find that (2.7) is equivalent to

x∗= argmin
‖Tx‖=d,x≻0

x⊤Mx, (2.8)

where M=(T⊤T)◦C.
Denote by t•g the vector formed by (tcg)c for a fixed gene g. By the irreducibility

condition (2.5), we have ‖t•g‖>0 for any g, thus W is well-defined. Further note that

M=(T⊤T)◦C=W−2− 1

d
T⊤T,
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the problem (2.8) is equivalent to

x∗= argmin
‖Tx‖=d,x≻0

x⊤W−2x. (2.9)

Suppose
H=Q⊤ΛQ, Q⊤=(v1,v2,. . .,vd),

where Q⊤Q= Id, Λ=diag(λ1,. . .,λd) and λ1 ≥λ2 ≥ ··· ≥λd ≥ 0. We have Hvk =λkvk for
k=1,.. . ,d. Ignoring the positivity constraint x≻0, we can find that the optimizer of (2.9)

x∗=dλ
− 1

2
1 Wv1

by taking the transformation z=QW−1x. Furthermore, the positivity of x can be guaran-
teed by the Perron-Frobenius theorem [19] for the non-negative and irreducible matrix H.

The optimal t∗ is obtained by the relation

t∗=
Tx∗

d
=λ

− 1
2

1 TWv1 =
TWv1

‖TWv1‖
.

The proof is done.

Remark 2.1. The formulation (2.4) realizes the inference of model (2.3) through maximum
likelihood estimation. The rescaling parameter xg corresponds to the inverse splicing
rate β−1

g , and the normalization ‖t‖= 1 is to fix the undetermined global time scale of

the whole system. The constant dλ−1/2
1 in x∗ is not important but the orientation Wv1 is

essential.

Our second proposal is slightly different from the first one, and it is based on the
model

tcg= tcβg+ǫcg, ǫcg ∼N(0,σ2), c=1,.. .,n, g=1,.. . ,d. (2.10)

With this setup, we can directly determine β and t through the following maximum like-
lihood formulation.

Proposal 2.2 (Inference with Additive Noise). The gene-shared latent time t and the splicing
rate β can be determined by solving the minimization problem

(β∗,t∗)= argmin
‖β‖=1;β≻0,t�0

‖T−tβ⊤‖2
F. (2.11)

Theorem 2.2. Assume that the inferred gene-specific cell time matrix T satisfies the condition
(2.5). Then the optimization problem (2.11) has the unique solution β∗ = v1, where v1 is the
ℓ2-unit eigenvector corresponding to the maximal eigenvalue λ1 of

H=T⊤T, (2.12)

and it has positive components. The global gene-shared common time

t∗=Tv1.
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Proof. Note that when β is fixed, the optimization

min
t∈Rd

‖T−tβ⊤‖2
F

is a least squares problem, and the minimum point is t=Tβ/‖β‖2 . Substituting it back
and ignoring the normalization and positivity constraints on β at first, we obtain

min
β∈Rd

∥

∥

∥

∥

T− Tββ⊤

‖β‖2

∥

∥

∥

∥

2

F

⇐⇒ max
β∈Rd

β⊤T⊤Tβ

‖β‖2
.

The rates β can be determined up to a multiplicative constant. So we naturally take the
normalization ‖β‖=1 and consider the equivalent problem

β∗= argmax
‖β‖=1,β≻0

β⊤T⊤Tβ. (2.13)

By the condition (2.5) and the Perron-Frobenius theorem applied to the matrix
H = T⊤T, the optimizer of (2.13) is unique and characterized by the unit eigenvector
v1 associated with the maximal eigenvalue λ1 of H, and it has positive components.

With the above proposals, we get the splicing rates β∗ and gene-shared latent time t∗.
We can make the rescaling

(αg,1,γg;tcg) −→ (αgβ∗
g,β∗

g,γgβ∗
g;tcg/β∗

g), g=1,.. . ,d

to get more reasonable parameters with the obtained β∗.

Remark 2.2. In this remark, we present the rationale of two proposed statistical models
through some mathematical reasoning. Assume that the observation xcg = x(tc;θg)+ξcg,
where x(t;θ) :=(u(t;θ),s(t;θ)) is the solution of the deterministic mRNA expression dy-
namics (2.1) at time t with parameter θ, the noise ξcg ∼N (0,σ2

x) and σx ≪ 1. Due to the
scale invariance, we know that x(tc;θg) = x(tcβg; θ̃g) with θ̃g := (αg/βg,1,γg/βg;ts,gβg),
which is also the working setup by setting βg = 1 at first in practical computations. The
parameters of RNA velocity model are derived from EM algorithm [3, 26], which is also
detailed in Section 3. From the E-step, we obtain

tcg =argmin
t≥0

∥

∥xcg−x(t; ˆ̃θg)
∥

∥

2
, (2.14)

where ˆ̃θg is the final estimator of θ̃g in EM iterations. From the large sample theory for
the point estimation [24], we have

ˆ̃θg ≈ θ̃g+
1√
n

ηg, ηg ∼N (0,Σg).
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For the optimization problem (2.14), let f (t)= ‖xcg−x(t; ˆ̃θg)‖2, then tcg is the solution of
the Euler-Lagrange equation

f ′(t)=
(

xcg−x
(

t; ˆ̃θg

)

)

·dx
(

t; ˆ̃θg

)

dt
=0.

Define

F
(

t;xcg, ˆ̃θg

)

=
(

xcg−x
(

t; ˆ̃θg

))

·dx
(

t; ˆ̃θg

)

dt

and note that
F
(

tcβg;x
(

tcβg; θ̃g

)

, θ̃g

)

=0,

since f (t) achieves the minimum 0 with such choice of parameters. Further assume that

∂tF
(

tcβg;x
(

tcβg; θ̃g

)

, θ̃g

)

6=0,

then by the implicit function theorem, there exists a function G(·,·) such that when
(ycg,µg) belongs to a small neighborhood of (x(tcβg; θ̃g), θ̃g), we have

t=G(ycg,µg), tcβg =G
(

x
(

tcβg; θ̃g

)

, θ̃g

)

. (2.15)

Thus, we obtain

tcg =G
(

xcg, ˆ̃θg

)

=G

(

x
(

tcβg; θ̃g

)

+ξcg, θ̃g+
1√
n

ηg

)

.

With Taylor expansion, we get

tcg =G
(

x
(

tcβg; θ̃g

)

, θ̃g

)

+∂xG ·ξcg+∂θ̃G · 1√
n

ηg+h.o.t.,

which shows
tcg = tcβg+Gaussian noise+h.o.t.

by (2.15) and the asymptotic independence between ξcg and ηg (note the Gaussianity of ηg

weakly depends on one specific sample xcg).
The above reasoning provides the rationale why we propose the two optimization

formulations in this paper. Since ∂xG and ∂θ̃G may depend on βg, it is difficult to judge
which one is more reasonable a priori. In addition, it should be noted that the above
analysis is based on the assumption that the observation noise is Gaussian. If the noise is
non-Gaussian and only has zero mean, our derivation still holds, but

tcg = tcβg+zero mean noise+h.o.t.

The constant Gaussian noise assumption utilized in the proposals can be considered
a simplified strategy for computational feasibility.
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Remark 2.3. In actual computations, when ‖t•g‖=0 for some g, this gene will be skipped
in the computation. The condition (2.5) is not stringent if the dropout effect is not signif-
icant. The normalization ‖t‖=1 in (2.4) is to ensure the existence of positive rates β and
avoid trivial solution as t, x→0. Another choice ‖x‖=1 may not guarantee such positive
solution. We also note that under such constraint, the obtained gene rescaling parame-
ters βg and gene-shared latent times tc are still relative quantities. They are different with
the absolute physical kinetic values or physical time up to an unknown global scaling fac-
tor, given that only the phase plot of unspliced versus spliced counts are available within
scRNA-seq snapshot data. The absolute physical values could be further determined by
incorporating experimental measurements such as the metabolic labelling technique [36].
In addition, the key difference between Proposals 2.1 and 2.2 is that they have the follow-
ing comparative forms:

tcg = tcβg+βgǫcg (Proposal 2.1), tcg= tcβg+ǫcg (Proposal 2.2).

That is why we call Proposal 2.1 the multiplicative noise case, while Proposal 2.2 the
additive noise case. As stated in Remark 2.2, it is not clear a priori which choice is more
reasonable in practical situations. If the variances of noise are heterogeneous for different
genes, the weights should be introduced to take into account the importance of genes
in the optimization. However, it is generally infeasible to know this information from
the data. In any case, βg can still be inferred from our proposals to achieve a better
consistency of gene-shared latent time tc.

Both of the above two proposals assume that all of the gene expressions start from
a common initial time, which is defined as 0. This assumption may be too strong since the
expression for different genes may start from different instants. An extension of this point
and general consideration of dropout effect for the gene-shared latent time are studied
in [45].

2.3 Numerical validation

To verify the effectiveness of the proposals considered in Section 2.2, we make an illus-
tration with a synthetic example. We simulated 1000 cells with 2000 genes in the on stage
by first sampling parameters (αg,βg,γg), whose distribution is set to be lognormal(µ,Σ),
in which µ= [5,0.2,0.05],Σ11 =Σ22 =Σ33 = 0.16,Σ12 =Σ21 = 0.128,Σ23 = 0.032 (Fig. 2(A)).
This results in a typical scale of 100 for the simulated mRNA counts. To avoid the case
that the system is almost at steady state and the majority of fluctuations are caused by

the observation noise, we sampled the physical real time t(r)= (t
(r)
c )c for the cells from

a uniform distribution U [0,T] with T determined as the median of τg := 2ln(10)/βg for
g= 1,.. . ,d, where the number 2ln(10) in τg is chosen such that u(τg)≈ 0.99αg/βg which
is close to the steady state. Then we computed the exact expression number by (2.1),
and added a Gaussian noise with mean 0 and standard deviation 30 to form the synthet-
ically measured data (Fig. 2(B)). In the inference stage, we first inferred the parameters
by setting the splicing rates βg = 1, then determined the time-scale parameters by the



192 T. Li et al. / CSIAM Trans. Appl. Math., 5 (2024), pp. 182-220

u
n

s
p

lic
e

d

time spliced time spliced time spliced

A

B

C

D E F

G H I

Figure 2: Resolving scaling parameters in simulation data. (A) Empirical distribution of simulated splicing rates
βg, in which the samples are generated from a log-normal distribution. (B) Dynamics of unspliced mRNA
and the simulated data with different splicing rates βg. (C) Comparison between gene-specific time and gene-
shared time. The blue curve denotes distribution of the Pearson correlation between each pair of gene-specific
time sequences, showing that correlation between direct inferred times is low. The orange and green curves
are distribution of correlation between t∗,1, t∗,2 and all the gene-specific times, respectively, revealing a more
compatible pattern. (D) Further comparison between gene-specific time and gene-shared time. Blue boxes
correspond to the distributions of five important statistics of each gene-specific time sequence’s correlations.
The distribution of correlation between gene-shared time and gene-specific time is drawn as the orange and
green boxes. The rescaled time is as consistent as the highest among genes. (E) Correlation of genes-specific

time with t(r) compared with correlation between gene-shared time and t(r) (red dashed line for t∗,1 and orange

one for t∗,2). Rescaled time is the most consistent time sequence to t(r), while some of the gene-specific times

highly differ from the ground truth. (F) Scatter plot of t(r) and the rescaled time t∗,1, the red line denotes the
fitted line. The rescaled time shows an obvious linear pattern in regard to the real time. (G) Cosine correlation

between t∗,1 and t∗,2. The gene-shared times rescaled by two proposals are very close to each other. (H) Cosine

correlation between β∗,1 and β∗,2, showing very similar rescaled parameters. (I) Visualization of simulated data
and the fitted streamlines based on UMAP [30]. The coloring is based on the rescaled time normalizing to the
interval [0,1], which is consistent with the embedded streamlines.
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proposed methods in previous subsection. We call the optimized gene-shared common

time t∗,1 =(t∗,1
c )c and t∗,2 =(t∗,2

c )c obtained from Proposals 2.1 and 2.2, respectively, and
the corresponding optimized splicing rate β∗,1 and β∗,2.

As we cannot recover the physical time t(r)of cells due to the scale invariance and
an undetermined global timescale, a good rescaling method should improve the linear
correlation between the inferred gene-shared time t∗ and the gene-specific time (t•g).
This point is shown in Figs. 2(C) and 2(D), in which we can find that the correlation coef-
ficient distribution and its statistics for the correlation between t∗ and (t•g) for different
g have significant improvements compared with those for the gene pairs (g1,g2) (i.e. the
correlations Corr(t•g1

,t•g2)= t•g1
·t•g2 /‖t•g1

‖‖t•g2‖).

It is also expected that the inferred gene-shared time t∗ has better correlation with the
real time t(r) than the gene-pair correlations. This is verified in Fig. 2(E), where we can
find that the (t∗,1,t(r)) correlation achieves a high value of 0.9894, which is far bigger than

the correlations between gene pairs. Furthermore, the scatter plot of (t
(r)
c ,t∗c ) for different

cells in Fig. 2(F) shows an evident linear relation, and this linear dependence is better
at early stage of the gene expression, and slightly deteriorates in later stage when the
expression reaches steady states. Similar pattern can be also observed in the off stage and
we omit it.

To understand the relation between the optimized time obtained from two proposals,
we perform 100 times of independent simulations by the same workflow, thus obtain
100 pairs of (t∗,1,t∗,2) and (β∗,1,β∗,2). In Figs. 2(G) and 2(H), we present the distribution
of correlation coefficients for the optimized gene-shared time t∗ and splicing rates β∗

from two proposals, respectively. It shows that the two proposals give very close results
in terms of the cosine correlations, which are around 0.999 for t∗ and 0.976 for β∗. This
suggests both options are acceptable choices. In Fig. 2(I), we present the streamline plot of
the inferred RNA velocity with the UMAP representation and the smoothed cell coloring
according to the gene-shared latent time t∗, which shows nice consistency between the
developing flow and time progression of cells.

The issue of being unable to fix the undetermined global time-scale by the proposed
approaches is due to the intrinsic drawback of the current experimental techniques. Res-
olution of this issue depends on further progress of the sequencing technology to extract
the temporal information, such as the recent metabolic labeling technique [36].

3 Uncertainty quantification of RNA velocity

In previous section, we proposed a method to unify the time scale between different
genes which is critical to the complete parameter inference of RNA velocity models. Af-
ter parameters are determined, it is also important to evaluate the quality as well as quan-
tify the uncertainty of the inferred parameters and computed RNA velocity. Therefore,
we will study the confidence interval construction of RNA velocity models through the
Fisher information approach and SEM (supplemented EM) algorithm [32].



194 T. Li et al. / CSIAM Trans. Appl. Math., 5 (2024), pp. 182-220

3.1 Problem setup

For the observed data xobs=(xcg)cg=(ucg,scg)cg, we want to maximize the log-likelihood

L(θ|xobs)= log p(xobs|θ)= log

[

∏
cg

∫

R

p(xcg,t|θ)dt

]

,

where θ=(αg,βg,γg)g, and p(x,t|θ) is the joint distribution of (x,t) when θ is fixed. The
marginal distribution

∫

R
p(x,t|θ)dt is also called the occupancy distribution of cells in

[12]. In general p(x,t|θ) has the form

p(x,t|θ)= p(x|t,θ)p(t|θ),

where p(t|θ) is the assumed distribution of the physical time of cells in the considered
snapshot data. A working assumption on p(t|θ) is the natural choice p(t|θ) ≡ p(t) =
χ[0,T](t)/T, i.e. the uniform distribution on [0,T], which is independent of the parame-
ter θ.

In the inference process, we assume the observation noise is Gaussian with mean 0
and variance σ2 for all cells and genes. Then, the log-likelihood is

L(θ|xobs)= log

[

∏
cg

∫ T

0

1

2πσ2
exp

(

−‖xcg−xcg(tcg;θg)‖2

2σ2

)

· 1

T
dtcg

]

upon taking the independent-t model discussed in [26]. From the analysis in [26], we
know that

log
(

p(xcg,tcg|θ)
)

=−‖xcg−xcg(tcg;θg)‖2+C, (3.1)

p(tcg|xcg,θ)∝ exp

(

−‖xcg−xcg(tcg;θg)‖2

2σ2

)

.

Considering t as the latent variable and utilizing the EM algorithm, we have

θ(k+1)=argmin
θ

∫ T

0
···
∫ T

0
∑
cg

‖xcg−xcg(tcg;θg)‖2exp

(

−
∥

∥xcg−xcg

(

tcg;θ
(k)
g

)∥

∥

2

2σ2

)

∏
cg

dtcg.

As σ→0, by Laplace asymptotics [2, 26], we obtain

E-Step: t
(k)
cg =argmin

t

∥

∥xcg−xcg

(

t;θ
(k)
g

)∥

∥

2
, (3.2)

M-Step: θ(k+1)=argmin
θ

∑
cg

∥

∥xcg−xcg

(

t
(k)
cg ;θg

)∥

∥

2
. (3.3)

The EM algorithm to infer the parameters is performed by iteratively estimating the
rates θ and latent time t through (3.2) and (3.3) until convergence. Our goal in this section
is to quantify the uncertainty of the inferred parameters.
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3.2 Confidence interval construction through Fisher information

The uncertainty of the maximum likelihood estimator (MLE) can be quantified based on
the classical theory of point estimation [24]. For independent and identically distributed
data, the MLE θ̂n obtained from n samples {xi}i=1:n converges to the true parameter θ∗

under suitable regularity conditions on P in the following sense:

√
n(θ̂n−θ∗) d→ N

(

0, I−1(θ∗)
)

as n → ∞, (3.4)

where

I(θ)=−
∫

∇2
θ log p(x|θ)p(x|θ)dx (3.5)

is the Fisher information matrix, and the convergence “
d→” holds in the sense of distribu-

tion. Hence, for large enough n, the error is approximately normally distributed

(θ̂n−θ∗)
d≈N

(

0,
I−1(θ∗)

n

)

,

which means that the θ̂n converges to θ∗ with the error of magnitude 1/
√

n and a constant
characterized by the inverse of the Fisher information matrix at the true value θ∗. In
practical computations, the uncertainty of the estimator θ̂n can be quantified based on
approximating the Fisher information matrix I(θ∗) by its empirical form

Î
(

θ∗|xobs

)≈ Î
(

θ̂n|xobs

)

:=− 1

n

n

∑
i=1

∇2
θ log p

(

xi|θ̂n

)

.

For the problem involving latent variables, the calculation of the Fisher information
matrix Î(θ̂n|xobs) is not straightforward since the computation of the probability p(x|θ)
involves the integral with respect to the latent time t. Fortunately, this issue has been
studied in [32], and the proposed approach can be utilized to approximate I−1(θ∗) di-
rectly.

Following [32], we define the empirical information matrix Îo with the observed data
xobs as

Îo (θ|xobs)=− 1

n
∇2

θ L(θ|xobs)=− 1

n

n

∑
i=1

∇2
θ logp(xi|θ),

and its inverse at θ= θ∗ (if the inverse exists)

V̂(θ∗)=
(

Îo(θ
∗|xobs)

)−1
.

As shown in (3.4), the matrix V̂∗ characterizes the uncertainty of the estimated parameter
θ̂n. We can further define the complete-data information matrix with partial observable

Îoc(θ|xobs,t)=− 1

n
∇2

θ L(θ | xobs,t)=− 1

n

n

∑
i=1

∇2
θ log p(xi,t|θ).
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It is usually a simple function (e.g. Eq. (3.1)), whose expectation about the conditional
distribution p(t|xobs,θ) evaluated at θ= θ∗ is

Îoc=Et|xobs,θ

[

Îoc(θ|xobs,t)
]∣

∣

θ=θ∗ =− 1

n

n

∑
i=1

∫

∇2
θ log p

(

xi,t|θ∗
)

p
(

t|xi,θ
∗)dt.

From [32], the EM algorithm (3.2)-(3.3) can be viewed as a mapping θ → M(θ) from
the parameter space to itself, which has the form

θ(k+1)=M(θ(k)), k=0,1,.. . .

If θ(k) converges to θ∗ in the parameter space and M(θ) is continuous, then we have
θ∗=M(θ∗). By Taylor expansion in the neighborhood of θ∗, we get

θ(k+1)−θ∗≈ JM ·(θ(k)−θ∗), (JM)ij =

(

∂Mi(θ)

∂θj

)∣

∣

∣

∣

θ=θ∗
.

With the formula of total probability

p(xobs,t|θ)= p(xobs|θ)p(t|xobs ,θ),

we have
log p(xobs|θ)= log p(xobs,t|θ)−log p(t|xobs ,θ). (3.6)

Taking expectation to both sides of (3.6) with respect to p(t|xobs,θ), we get

Îo

(

θ∗|xobs

)

= Îoc− Îom= Îoc

(

I− Î−1
oc Îom

)

,

where

Îom :=
1

n
Et|xobs,θ

[

−∇2
θ log p(t|xobs,θ)

]∣

∣

θ=θ∗

is the missing information. The key observation in [32] is that JM = Î−1
oc Îom, which is

illustrated as below.
Implementation of the EM iterations from θ(k) to θ(k+1) is usually performed by taking

the maximization of

Q(θ̃|θ) :=
∫

L
(

θ̃|xobs,t
)

p(t|xobs,θ)dt

with respect to θ̃, i.e. we have

g(θ(k+1),θ(k)) :=
∫

∇θ L
(

θ(k+1)|xobs,t
)

p
(

t|xobs,θ(k)
)

dt=0. (3.7)

Generally denote (3.7) as g(θ̃,θ) = 0 where θ̃ = M(θ). We can further take derivative of
g(θ̃,θ) with respect to θ to obtain

∂g(θ̃,θ)

∂θ̃

∂M

∂θ
+

∂g(θ̃,θ)

∂θ
=0.
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This leads to
∂M

∂θ

∣

∣

∣

∣

θ∗
=−∂g(θ̃,θ)

∂θ̃

∣

∣

∣

∣

−1

(θ∗,θ∗)

∂g(θ̃,θ)

∂θ

∣

∣

∣

∣

(θ∗,θ∗)
. (3.8)

Some algebraic manipulations show that

∂g(θ̃,θ)

∂θ̃

∣

∣

∣

∣

(θ∗,θ∗)
=−nÎoc,

∂g(θ̃,θ)

∂θ

∣

∣

∣

∣

(θ∗,θ∗)
=nÎom.

Substitute these relations into (3.8), we get JM = Î−1
oc Îom, and the uncertainty covariance

matrix
V̂(θ∗)=(I− JM)−1 Î−1

oc .

In practical computations, θ∗ should be replaced with θ̂n, i.e. the convergence value
of EM iterations. The Jacobian JM at θ = θ̂n can be approximated by simple difference
quotient strategy with a prescribed suitable step size. As shown in [32], we first use
a Taylor series expansion to linearize L(θ|xobs,t) at t(0), then Îoc is obtained by substituting
the conditional expectation of S(xobs,t) found at the last E step of EM for the S(xobs,t) in
Î−1
oc (θ∗|S(xobs,t)), where S(xobs,t) is a vector of complete-data sufficient statistics. We

present the pseudocode of the overall algorithm in Appendix C.
In most cases, we only care about the diagonal components v̂∗ii of V̂(θ̂n) since they are

directly related to the variances of the components θ̂n,i for i= 1,.. . ,d. According to (3.4),
we have an approximately 95% confidence interval

(

θ̂n,i−1.96

√

v̂∗ii
n

, θ̂n,i+1.96

√

v̂∗ii
n

)

, i=1,.. . ,d

such that θ∗i falls in this interval. One important issue is that V̂∗ should be positive defi-
nite according to its probabilistic meaning. However, it is not guaranteed automatically.
Some discussions about this point can be referred to [31, 39].

3.3 Numerical validation

Next, we validate the constructed confidence interval for RNA velocity model using sim-
ulation data. We mainly test the accuracy of (α,γ) estimation with different parameter
settings under various stages. Steady states of active transcription and inactive silencing
can be reached when the induced and repressed transcriptional phases last long enough,
respectively. However, these steady states are often difficult to capture, and most pro-
cesses enter the next life process without reaching the steady state. Here we use models
that have not reached the steady state for parameter estimation.

For the on-stage, from [26], we know that the analytical solution of system (2.1) is

u(t)=u0e−βt+
α

β

(

1−e−βt
)

,

s(t)= s0e−βt+
α

β

(

1−e−βt
)

−(α−βu0)te
−βt

(3.9)
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for t < ts. In order to verify the sensitivity of different transcription stages to changes
in splicing kinetic parameters, we simulated n = 800 cells with d = 20 genes in the on-
stage. For convenience, we chose β= 1 to avoid scale invariance issue and generate 20
pairs of (αg,γg)g in which α=20:0.5 :29.5 and γ=1.5 :0.05:2.45 to test the construction of
confidence interval. The physical times of cells were sampled from a uniform distribution
U [0,T] with T=2ln(10) to avoid the case that the system reaches and stays at the steady
state.

For the off-stage, from [26], we know that the analytical solution of off-stage is

u(t)=use
−β(t−ts),

s(t)= sse−γ(t−ts)− βus

γ−β

(

e−γ(t−ts)−e−β(t−ts)
) (3.10)

for t > ts. We again simulated 800 cells with 20 genes. The parameters were set to be
the same with that in the on stage. The physical times of cells were also sampled from
a uniform distribution U [0,T] with T=2ln(10).

The observed data was generated by adding Gaussian noise to the dynamics, that is,
xobs = xtrue+ξ with ξ = normrnd(µ,σ,2,n). In the specific calculation process, uobs and
sobs are n×d matrices, where the observations ui

obs and si
obs are the elements representing

the i-th column in the corresponding matrix, i.e. the unspliced and spliced mRNA for
a particular gene, and the uobs and sobs produced have the same variance with µ=0 and
σ=0.2. Fig. 3(B) (left panel and middle panel) shows the inference results of parameters
α and γ at on-stage, respectively, together with the confidence interval of the parameters.
Fig. 3(B) (right panel) shows the inference results of parameter γ. It can be seen from
Fig. 3(B) that reasonable inference results can be obtained for Gaussian noise in both on-
stage and off-stage.

In order to further validate the constructed confidence interval, we show the distri-
bution of the inference parameters α and γ in Fig. 3(C). To better present the results, we
only use 10 genes here whose parameters are αg = 21 : 1 : 30, βg = 1 and γg = 1.6 : 0.1 : 2.5.
We added Gaussian noise and performed inference for each pair of parameters for 100
times to show the violin plot. As can be seen from these figures, the estimated parameters
closely match the true quantities which shows the reliability of the inference procedure.
Also, this result can validate the confidence interval as shown in Fig. 3(B).

In order to show the reliability of the inferred RNA velocity, we compared the norm
of the inferred RNA velocity with the norm of the actual velocity, and the cosine value
of the angle between the two velocities in Fig. 3(D). We randomly sampled 100 pairs of
log-normally distributed parameters (αg,γg), i.e. θ=(α,γ) with log(θ)=N(µ1,Σ), where
µ1=(3,0.15) and Σ=0.1I2. We assumed that the observation duration T=2 and cell times
were randomly sampled from U [0,T] with noise ξ, i.e. we used 100 genes and 800 cells
to infer the RNA velocity. It can be seen from Fig. 3(D) that the ratio of the norms and
the cosine value of the velocity angles are distributed around 1, which indicate that our
inferred velocity size and direction are reliable.



T. Li et al. / CSIAM Trans. Appl. Math., 5 (2024), pp. 182-220 199

Figure 3: Uncertainty quantification of RNA velocity using simulation data. (A) Simulation of transcriptional
process captures transcriptional induction and repression (“on” and “off” stages) of unspliced and spliced mRNA.
The top panel shows the abundance of spliced mRNA and the bottom panel shows unspliced and spliced mRNA
in phase space. To distinguish the results, we use blue plots for on-stage and orange for off-stage. (B) The
95%-prediction intervals are presented together with the inferred parameters (“on” and “off” stages). It can be
found that almost all of the parameters we infer re within the confidence interval. (C) The violin plots depict
the distribution of inferred parameters of on-stage (left panel and middle panel) and off-stage (right panel).
Fitted parameters mostly lie in a small range. (D) The norm of inferred RNA velocity is compared to the norm
of true velocity at on-stage (left panel) and off-stage (middle panel) which show high concentration near 1, also,
the cosine of the angle between inferred velocity and true velocity is shown for off-stage (right panel) which
also distributed near 1. (E) The bias of inferred velocity under different degradation rates γ at on-stage and
off-stage, which is close to normal distribution.

We denote our inferred velocity as v̂. Through the definition of RNA velocity v∗ =
u−γs when assuming βg =1 for all genes, we have

v̂≈u+ξ1−γ(s+ξ2)=v∗+(ξ1−γξ2),

which implies that the actual and inferred velocity are not only affected by noise but also
related to the selection of γ, thus the ratio of the norm of velocities is affected by γ. In
order to demonstrate this statement, we further studied the impact of γ and displayed the
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results in Fig. 3(E). Here we simulated 1600 cells with 1000 genes in which half the cells
were in the on-stage while others were in the off-stage. As we aim to test the influence
of γ, we sampled 100 values of α from a log-normally distribution with µ=3 and σ=0.1,
and constructed 1000 genes with γ=1.6:0.1:2.5 paired with sampled α. Then the inference
method was applied to the simulated data and we obtained the bias between the true
velocity and the inferred velocity. Note that we computed the bias gene-wise here, i.e.
for each γ, we tested the bias of inferred velocity under different stages, various cell
physical times and values of α. It can be seen from the figure that the error of each selected
component is close to normal distribution and the variance increases as γ increases.

4 Optimal choice of kernel bandwidth in random walk

construction

Assuming that the RNA velocity obtained accurately describes the actual dynamics lo-
cally, a key step in the downstream analysis is the construction of a cellular random walk,
i.e. the Markov model on data, which reflects more global and long-time information
about cell state-transition dynamics [23, 37, 52], and is also widely used to visualize the
streamlines of RNA velocity and the embedding of cells in current practice [1, 3, 21]. In
our previous work [26], we derived the continuum limits (i.e. differential equations) of
cellular random walk induced by various RNA velocity kernels. Empirically, when deal-
ing with single-cell data of finite or sometimes limited sample size, the hyper-parameters
(especially the bandwidth ǫ in Gaussian kernel or number of neighbors k in kNN kernel)
in random walk construction have a significant impact on the quantitative behavior of
dynamics and downstream analysis. We will study the effects of hyper-parameters and
sample size on the random walk convergence rate, elucidating their optimal choice in
practice and gaining insights for algorithm implementation. For simplicity, we will only
focus on the choice of the optimal kernel bandwidth ǫ for Gaussian-cosine scheme. The
other cases can be analyzed similarly.

4.1 Problem setup

Let (ui,si) ∈ R
2d be the unspliced and spliced gene expression vectors of cell i for i =

1,2,.. .,n. To define the probability of transition dynamics between different cells, the
randomness introduced by extrinsic or intrinsic noise [8, 18, 51] as well as directed state-
transition in relation to RNA velocity needs consideration [3,21]. The transition between
two cells usually involves both drift and diffusion effects. For the diffusion part, the
popular Gaussian diffusion kernel has the form

dǫ(si,sj)=h

(‖si−sj‖2

ǫ

)

,
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where the function h(x) is usually chosen as a smooth function with exponential decay.
For the drift part, we consider the velocity kernel v(si,sj)=g(cos〈δij,vi〉), where δij=sj−si,
vi = β◦ui−γ◦si is the RNA velocity, 〈δij,vi〉 represents the angle between δij and vi, and
g(·) is a bounded, positive, and non-decreasing function. The overall transition kernel is
then defined by

kǫ(si,sj)=dǫ(si,sj)·v(si,sj).

And the transition probability matrix Pǫ =(pij)i,j=1:n among cells through the Gaussian-
cosine scheme is defined by

pij =
kǫ(si,sj)

∑
n
j=1kǫ(si,sj)

, sj ∼q(y),

where ∑
n
j=1kǫ(si,sj) are row normalization factors.

The study of the continuum operator limit of Pǫ when the number of samples is as-
sumed as infinity has been investigated in [26] by considering the operator Gǫ acting on
a smooth function f defined as

Gǫ f (x)=
1

ǫd/2

∫

Rd
kǫ(x,y) f (y)dy.

From Lemma A.1 in Appendix A (i.e. [26, Lemma 4.1]), the operator Gǫ for Gaussian-
cosine scheme has the expansion

Gǫ f (x)=
1

ǫd/2

∫

kǫ(x,y) f (y)dy

=m0 f (x)+
√

ǫm1v̂(x)·∇ f (x)+O(ǫ), (4.1)

where m0,m1 are constants depending on functions g,h in the diffusion and velocity ker-
nels (see detailed connections in Appendix A), and v̂(x) :=v(x)/‖v(x)‖ where v(x) is the
RNA velocity in the continuum formulation.

Then given the sample probability density q(·), the continuous transition kernel has
the form

pǫ(x,y)=
kǫ(x,y)q(y)

dǫ(x)
, dǫ(x)=

∫

kǫ(x,y)q(y)dy.

Define the operator

Pǫ f (x)=
∫

pǫ(x,y) f (y)dy,

and the discrete generator

Lǫ =
Pǫ− I√

ǫ
. (4.2)

From [26, Theorem 4.1], we have the convergence of the generator for the Gaussian-cosine
scheme

lim
ǫ→0+

Lǫ f =L f :=
m1

m0
v̂(x)·∇ f (x), v̂(x) :=

v(x)

‖v(x)‖ . (4.3)
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Indeed, we can further identify the higher order expansion of Lǫ as

Lǫ f (x)=L f (x)+O(
√

ǫ), (4.4)

since

Pǫ f (x)=
Gǫ( f q)(x)

Gǫq(x)
=

m0 f (x)q(x)+
√

ǫm1v̂(x)·∇( f q)(x)+O(ǫ)

m0q(x)+
√

ǫm1v̂(x)·∇q(x)+O(ǫ)

= f (x)+
√

ǫL f (x)+O(ǫ).

In practical computation, we merely get a limited amount of samples. Beyond inves-
tigating the convergence result of the discrete operator to the continuous infinitesimal
generator in the limit ǫ → 0 when the sample size is assumed as infinity, it is also im-
portant to understand the optimal kernel bandwidth ǫ when the sample size n is finite.
This can be achieved by analyzing the bias and variance tradeoff of discrete models in
approximation to their continuum limit.

4.2 Estimation of operator convergence and algorithmic insight

When the sample size n is finite, the discrete generator Lǫ,n acting on a smooth function f
is defined as

Lǫ,n f (x)=
1√
ǫ

(

Pǫ,n f (x)− f (x)
)

=
1√
ǫ

(

n−1∑
n
j=1 kǫ(x,sj) f (sj)

n−1∑
n
j=1 kǫ(x,sj)

− f (x)

)

. (4.5)

Then, we have the following estimate.

Theorem 4.1 (Finite Sample Approximation of the Operator Lǫ). Let s1,s2,··· ,sn be n in-
dependent and identically distributed samples in R

d with probability density q(x). Suppose that
f ∈C∞

0 (Rd), which is a smooth function with compact support. Then, we have the error estimate

|Lǫ,n f (x)−Lǫ f (x)|=O
(

1√
nǫd/4

)

in the sense that both the probability

p(n,α) :=P
(

|Lǫ,n f (x)−Lǫ f (x)|>α
)

, 1−p(n,α)

have the O(1) magnitude in (0,1) only when α=O(1/(
√

nǫd/4)).

The proof of Theorem 4.1 will be deferred to Appendix B. Based on Theorem 4.1 and
Eq. (4.4), we obtain the estimate

|Lǫ,n f (x)−L f (x)|
= |Lǫ,n f (x)−Lǫ f (x)+Lǫ f (x)−L f (x)|
≤ |Lǫ f (x)−Lǫ,n f (x)|+|Lǫ f (x)−L f (x)|

=O
(

1√
nǫd/4

+
√

ǫ

)

. (4.6)
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Compared with the continuum limit result in [26], the O(1/(
√

nǫd/4)) term quantifies
the influence of finite sample size in cellular random walk.

The above estimation suggests that to achieve the optimal approximation of L by Lǫ,n,
the best choice of ǫ is

ǫ=O(n−2/(d+2)), (4.7)

when the sample size n is fixed. This is obtained when the two error terms in (4.6), the
variance and bias, are balanced. In this case, the optimal error of the operator approxi-
mation is O(n−1/(d+2)).

The result also shows the curse of dimensionality when using the velocity-induced
cellular random walk to approximate the dynamics of continuous ODEs. As the dimen-
sions of the input data d increases, the overall error O(n−1/(d+2)) deteriorates, which
suggests insufficient model accuracy. This analysis leads to several possible interpreta-
tions for the downstream RNA velocity analysis: The first insight is that to achieve a more
stable inference on the cellular development path, we should better use a relatively low
dimensional space for genes instead of a very high dimensional space. The second pos-
sible interpretation is that although the operator approximation is bad in a very high
dimensional space, the overall direction of developments, such as the streamline visual-
ization of the cells along the main backbone, can still be estimated in a relatively accurate
manner. The biological pathways and highly correlated gene functional modules un-
derlying real scRNA-seq data [7] could also further reduce the effective dimension of
the data manifold, and lead to larger convergence rate empirically than theoretical re-
sults [40]. Indeed, the following remark indicates that our analysis in this section can be
extended to the manifold case, which is also believed to be relevant for scRNA-seq data
points.

Remark 4.1. We can follow the analysis approach in [22] to build the Theorem 4.1 on
manifolds. Assume that M is a smooth manifold of dimension m embedded in R

d,m<d,
and µ is a probability measure on M, which has a density with respect to the Riemannian
measure dx on M (i.e. dµ(x) = q(x)dx). The function q(x) characterizes the density of
available sample points. Let {e1,. . .,em} be an orthonormal basis of the tangent space
Tx M⊂R

d at x. For any y∈ M in the neighborhood of x, we map y to u∈ Tx M through
an orthogonal projection, and denote u=(u1,. . .,um) the local coordinates of y in terms of
the basis {e1,. . .,em}. Let (s1,. . .,sm) be the normal coordinates of y.

We consider the integral (4.1) on manifold M with density function q(x)

Gǫ f (x)=
1

ǫm/2

∫

M
kǫ(x,y)q(y) f (y)dy.

Without loss of generality, we assume x= 0. Similar to the analysis in Euclidean space,
due to the exponential decay of function h, we can restrict the integration to a Euclidean
ball of radius C

√
ε on M, i.e.

∫

M
h

(‖y‖2

ε

)

g(cos〈y,v〉) f (y)q(y)dy≃
∫

‖y‖<C
√

ε
h

(‖y‖2

ε

)

g(cos〈y,v〉) f (y)q(y)dy.
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Generally, it is not convenient to calculate the integral in normal coordinates, and we
convert it to the tangent space Tx M. By the Taylor expansion of f q around x= 0 on M,
the variable transformation from s to u and its expansion around u=0, we have

ε
m
2 Gε f (0)=

∫

‖u‖<C
√

ε
h

(‖u‖2

ε

)

g(cos〈u,v〉)
(

f (0)q(0)+
m

∑
i=1

ui
∂( f q)

∂si
(0)

)

×
(

1+2
m

∑
i=1

a2
i u2

i

)

du+O(ε),

where ai is the curvature of the coordinate geodesic along ei at x= 0. Then, the analysis
and derivations will be conducted in R

m, and we can obtain similar conclusion to those
in R

d above.

4.3 Numerical validation

In this subsection, we present a toy example to show the convergence rate of Lǫ,n f .
We took d = 3 and chose a linear function f1(x) = x1+x2+x3 and a nonlinear function
f2(x) = x2

3 to perform the numerical simulations. We first generated n = 2000 samples

(u(k),s(k))k=1:n=(u(tk),s(tk))k=1:n according to the RNA velocity dynamics

dug

dt
=αg−βgug,

dsg

dt
=βgug(t)−γgsg(t), (ug,sg)|t=0=(0,0), g=1,.. . ,d

by choosing tk∼U [0,T] for k=1,.. . ,n where T=2ln10. Here we chose the parameters α=
(20,20.5,21)⊤ , β=(1,1,1)⊤, and γ=(1.5,1.55,1.6)⊤, where each component corresponds to
the index g=1,2,3, respectively. We then generated n=2000 samples {xk} with velocity
{vk} by setting

xk = s(k)+ǫk, ǫk ∼N(0,0.5I3),

and vk=β◦u(k)−γ◦xk for k=1,.. . ,n. In the downstream analysis, we chose g(x)=exp(x),
h(x)=exp(−x) and defined the root-mean-squared error as

error=

[

1

n

n

∑
k=1

(

Lǫ,n f (xk)−L f (xk)
)2

] 1
2

by averaging over n= 2000 samples. In the simulation, we chose ǫ= 0.002 : 0.002 : 0.082
and the results are shown in Fig. 4.

According to the estimate (4.6), we know that when ǫ.O(n−2/5), the “variance” term
is dominant with the order 1/(

√
nǫ3/4). Thus, as ǫ increases, the ln(error) versus ln(ǫ)

plot should present a linear relation with slope −3/4 theoretically. This is verified in
Figs. 4(A) and 4(B), in which the linear fitting gives the slope −0.74 for the linear case
shown in the left panel and −0.76 for the nonlinear case shown in the right panel. When
ǫ&O(n−2/5), the bias term is dominant and the error curve demonstrates a turn-over at
ln(ǫ)∼ ln(n−2/5)≈−3.04 theoretically, which is close to the computed minimum point
at ln(ǫ)≈−3.45 in linear case and ln(ǫ)≈−3.20 in nonlinear case.
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Figure 4: Effect of kernel bandwidth ǫ on operator approximation. The logarithmic plots of the operator
approximation error for the linear case f1(x) = x1+x2+x3 (left panel) and nonlinear case f2(x) = x2

3 (right
panel). The errors of both cases are averaged over n= 2000 samples. The minimal errors are obtained when

ln(ǫ)≈−3.45 (left panel) and ln(ǫ)≈−3.20 (right panel). When ǫ. n−2/5, the dominant term of the error

should be O(1/(
√

nǫ3/4)). This gives the slope −3/4 in theory, which is close to the estimated value −0.74
(left panel) or −0.76 (right panel) by linear regression.

5 Transition time estimation among cell states

After constructing the Markov chain among individual cells induced by RNA velocity,
the downstream analysis could be performed to reflect the long-term and global (i.e.
among multiple cell states) dynamics of cell-state transitions [23, 26, 36]. In our previ-
ous work [26, 52], we proposed the approach based on transition path theory to infer
coarse-grained cell lineage and quantify corresponding likelihoods from the cellular ran-
dom walk. Another practical task is to quantify the duration of the transition from one
cell to another along the transition paths, i.e. defining the pseudo-temporal distance [43]
between cells induced by RNA velocity, which could be realized by the first hitting time
analysis described below.

5.1 Problem setup

Suppose that the RNA velocity induces the cellular random walk with transition proba-
bility matrix P=(pij) which was defined in Section 4.1. Our goal is to define a pseudo-

temporal distance TA
i from cell i to the cell set A which reflects the state-transition time

based on the Markov chain model. When the cell set A={j}, TA
i gives the pseudo evolu-

tion time from cell i to cell j.
For Markov chain {Xn,n≥0}, the first hitting time of a set A is defined as

τA = inf{n≥0 : Xn ∈A},



206 T. Li et al. / CSIAM Trans. Appl. Math., 5 (2024), pp. 182-220

where A is a subset of the state space. The mean first hitting time for the process to
reach A starting from i is given by

kA
i =Ei(τ

A)= ∑
n<∞

nPi(τ
A =n)+∞Pi(τ

A =∞),

where Ei and Pi denotes the expectation and probability conditioned on X0 = i, respec-
tively. The quantity kA

i serves as the rational proposal for pseudo-temporal distance TA
i ,

and we will demonstrate the equations to calculate it below.
We will consider two types of hitting times to describe the evolution time from one

cell to another cell set A. Firstly, we show that it is straightforward to use the Eq. (5.1)
below to compute the mean first hitting time when there is no bifurcation. Secondly,
we use a simplified model to demonstrate the limitation of this approach when there is
the “bottleneck” state and cell-state differentiation in dataset. We then show how to get
a biologically meaningful time by utilizing the taboo set concept.

5.2 Transition time estimation through first hitting time analysis

The computation of kA
i is based on the following lemma (see, e.g. [33, Theorem 1.3.5]).

Lemma 5.1. The vector of mean first hitting times kA =(kA
i )i is the minimal non-negative solu-

tion to the system of linear equations







kA
i =0, i∈A,

kA
i =1+ ∑

j 6∈A

pijk
A
j , i 6∈A. (5.1)

To solve (5.1), we use the following iterations:

KA
n =1+QKA

n−1, KA
0 =1, (5.2)

where KA
n is the n-th iteration of kA, and Q = (qij) := (pij)i,j∈Ac , i.e. the matrix formed

by removing the row and column elements corresponding to i ∈ A from the transition
probability matrix P. Next we show that the iteration (5.2) is a contraction mapping, i.e.
the spectral radius ρ(Q)<1.

Theorem 5.1. Assume the velocity-induced cellular random walk with transition probability
matrix P is irreducible, then the iteration (5.2) is a contraction mapping, i.e. ρ(Q)<1.

Proof. Without loss of generality, assume

P=

[

Q R1

R2 B

]

,

where Q and B describe the transition probabilities among the states in Ac and A, respec-
tively. R1 and R2 describe the transition probabilities from the states in Ac to A and A
to Ac, respectively, which should not be zero since P is irreducible.
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We will first consider the case that Q is irreducible. In this case, if all of the row sums
of the matrix Q are strictly less than 1, then the conclusion holds simply by Gershgorin
circle theorem [19]. Otherwise, we have ρ(Q)≤1 and there is at least one row of Q such
that its sum is strictly less than 1. Below we show that the assumption ρ(Q)=1 will lead
to contradiction.

Utilizing the Perron-Frobenius theorem, we have the Perron vector x with positive
components such that

Qx=ρ(Q)x= x.

Suppose xl =max{xk}k∈Ac and define y= x/xl . We have Qy=y and

∑
k

qlkyk =yl =1.

Since yk≤1 and ∑k qlk≤1, the above identity requires that yk=1 for qlk>0, i.e. the neigh-
borhood states of l. We can apply similar arguments to these states k, which eventually
lead to y≡ 1. While this contracts with the condition that at least one row rum of Q is
strictly less than 1. So, we have ρ(Q)<1 when Q is irreducible.

In general cases, we can decompose Ac into several irreducible components and tran-
sient states. For each irreducible component, it has the transition probability sub-matrix
with similar structure as the above case. Thus, the spectral radius is strictly less than 1.
For the transient states, the transition probability sub-matrix has the property that all row
sums are less than 1, thus the spectral radius is also strictly less than 1. Overall, we have
ρ(Q)<1 in the general cases.

Remark 5.1. The result ρ(Q)<1 ensures that N=(I−Q)−1 is well-defined, which is called
the fundamental matrix in the literature [20]. Here we give a self-contained linear algebra
proof instead of probabilistic arguments. The above theorem also tells us that kA = N ·1
although it is not a feasible approach to compute kA due to the ill-conditioning of I−Q.

The above approach is only useful when there are no bifurcations, i.e. no differen-
tiations in cell development. This can be illustrated by a simplified model shown in
Fig. 5(A), in which we model the stem cell as state S, the developmental bottleneck as
state B, and two differentiated states as C and D, denoting different fates of cell differen-
tiation. The state S can only transit to B, while B is able to transit to C and D, or back to
S. We assume the transitions have some preferred directionality, i.e. it is nearly impos-
sible to transit back along the directed developmental pathway. The above assumption
amounts to set that pSB, pBC, pBD are O(1) and pBS, pCB, pDB are O(ǫ). Heuristically, we
can set the transition probability matrix P as

P=









0 1 0 0
ǫ 0 p q
0 ǫ 1−ǫ 0
0 ǫ 0 1−ǫ









,

in which p and q are probabilities of O(1) and p+q=1−ǫ.
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Figure 5: Estimating the pseudo-temporal distance via the first hitting times. (A) Schematics of the naive and
taboo set models. (B) The physical time of the synthetic model compared with the mean first hitting time to
the target set in the end. There is a linear pattern for the computed mean first hitting time and the red line is
obtained by linear regression. (C) The physical time compared with the mean first hitting time to a target set in
the middle. For cells before this target set A, there is still a linear pattern which is shown in the inset, in which
the red dashed line is obtained by linear regression. (D) In the bifurcation case, the physical time compared
with the mean first hitting time to one branch computed by iterative method. Cells in the other branch and
before bifurcation have very large mean first hitting times. (E) By setting the other branch as the taboo set,
the mean first hitting time shows a nearly linear pattern. (F) Streamline embedded UMAP plot of the synthetic
bifurcation data. The two expected termination sets are circled. (G) UMAP of the synthetic data. The left
panel is colored according to the mean first hitting time to the lower branch termination cells, and the right
panel is colored according to the absolute value of the difference between two computed mean first hitting times
to two circled branches in Fig. 5(F).

In this setup, the mean first hitting time of each state to the target set C can be obtained
according to (5.1) as















kC
S =1+kC

B ,

kC
B =1+qkC

D+ǫkC
S ,

kC
D =1+ǫkC

B+(1−ǫ)kC
D ,

(5.3)
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from which we get

kC
S =1+

q+ǫ+ǫ2

ǫp
, kC

B =
q+ǫ+ǫ2

ǫp
, kC

D =
1+ǫ2

ǫp
.

We have kC
S ,kC

B ,kC
D ∼O(ǫ−1), i.e. we need a prominent long transition time to reach C

from any other state, including S and B, which looks counter-intuitive. The reason is that
although the states S, B are in the upstream of C in the cell development, they have O(1)
probability to reach D in an O(1) timescale, while it is very difficult to transit back from D
to B once D is reached. This effect finally makes the overall transition time from any other
states to C are extremely large. However, this does not reflect the biological intuition
that the transition time from S and B to a specific differentiated state C or D is in O(1)
timescale.

Biologically, we are mainly interested in the transition time that the stem/bottleneck
cell differentiates to a specific cell type instead of letting it transit to another differenti-
ated state and then get back. In this case, the other differentiated cell states beyond the
interested states should be neglected and form a forbidden set. We call this set a taboo
set, and compute the mean first hitting time of state S or B to C conditional on not reach-
ing the taboo set H={D}. This is illustrated in the taboo set model in Fig. 5(A). Denote
the first hitting time with taboo set H by

HτA = inf{n≥0 : Xn ∈A, Xm 6∈H for m≤n},

and the mean first hitting time by HkA ,

HkA
i = ∑

n<∞

nPi(HτA =n)+∞Pi(HτA =∞).

Then HkA satisfies

HkA
i =1+ ∑

j 6∈A∪H

pij HkA
j , i 6∈A∪H. (5.4)

So we obtain
{

HkC
S =1+HkC

B ,

HkC
B =1+ǫHkC

S ,

from which we get

HkC
S =

2

1−ǫ
≈2, HkC

B =
1+ǫ

1−ǫ
≈1.

This result reflects the intuition that the transition time from S to C and from B to C are
about 2 and 1, respectively, by simply counting the transition steps in the Markov chain.
By setting the taboo set, the behavior of the tabooed process is similar to the case when
there is no bifurcation, and the taboo set model acts as a pruning strategy.
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5.3 Numerical validation

To verify the applicability of our proposal on the evolution time estimation, for the non-
bifurcation situation, we simulated 1000 cells with 2000 genes at on-stage to generate the
synthetic data. The splicing rate βg was fixed to 1 to avoid considering the scale invari-
ance issue, and the transcription rates αg and degradation rates γg were sampled from
a log-normal distribution with mean µ= [5,0.05] and covariance matrix Σ= 0.16I2. The
physical time of cells were sampled from U [0,T] with T = 2ln(10). After inferring the
parameters, a Gaussian-cosine kernel was constructed. We chose the set A as the top 100
cells having the largest sampled real time, and compute the mean first hitting time from
any cell to this set by solving (5.1). From Fig. 5(B) we can find that the computed mean
first hitting time matches well with the real time of cells upon ignoring a scaling constant
and the R-squared of linear regression is 0.968, which validates our proposal in the con-
sidered simple synthetic example.

To compute the mean first hitting time of non-terminal states, we applied the itera-
tion (5.2), from which we can tell the relevant order of cells. We chose the cells with the
rank order 500∼800 as set A, by which the other cells were separated as two groups with
weak links. By iterating for a sufficiently long time, we can tell from the result the rele-
vant order of cells to set A. Shown in Fig. 5(C) is the iterated mean first hitting time after
1×105 iterations, as cells after set A are nearly impossible to transit back to cells prior to
set A, the mean first hitting time of cells posterior to A is very large and is the scale of
iteration time. Mean first hitting times of cells prior to set A still show a linear decay pat-
tern. However, for the cells that are close to A, the transition times show fluctuations and
an increasing trend since these cells have small probability to perform transitions to the
cells posterior to A due to the weak link between them. This phenomenon also partially
suggests the adoption of the taboo set model in this simple case.

To test the taboo set model, we first applied the iterative method directly to a synthetic
bifurcation data. Here to produce bifurcation, we sampled parameters (αg,βg,γg), whose
distribution was set to be lognormal(µ,Σ), in which µ=[5,0.2,0.05],Σ11=Σ22=Σ33=0.16,
Σ12=Σ21=0.128, and Σ23=0.032 which is the same as the setup in Section 2. Then we used
the true parameters in the computation of the mean first hitting time. The physical time of
cells were sampled from U [0,T] with T determined as the median of τg :=2ln(10)/βg for
g=1,.. . ,d. The bifurcation was produced by adding the switch of gene expression from
the on-stage to off-stage. For the first branch, we assigned 70% of the genes to switch
to off stage at 2ln(10)/βg and for the second branch, the rest 30% genes are assigned.
From Fig. 5(D) we can find that when setting the target set as the termination part of one
branch, the mean first hitting time from another branch rapidly grows to a huge number,
and the cells before the bifurcation point also have long mean first hitting times, which
is similar to our analysis of the simplified naive model in previous subsection. This re-
sult implicitly indicates that we can use the naive model to detect where the bifurcation
happens. As shown in Fig. 5(E), by setting the second branch to be the taboo set, the
mean first hitting time shows a nearly linear pattern both before and after the bifurcation
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point, showing the taboo set model can successfully give an estimation of transition time
without considering the other bifurcation branches.

The results above show that we can use the mean first hitting time as an estima-
tion of the physical time of cells. Such an approach for pseudo-time can be extended to
real-world data in which the ground truth (i.e. physical time, bifurcation lineage, and
especially taboo set) is not available. Here we will present a brief idea of the implementa-
tion in scRNA-seq data and leave further analysis and software development for future
work [45].

From low-dimensional visualization and velocity streamline embedding, we can
identify the main fates (or branches) of differentiation as shown in Fig. 5(F) using exist-
ing lineage inference methods. To identify the taboo set according to the computational
results, we first apply the iterative method to calculate the mean first hitting time to the
expected fates on different branches and then take a postprocessing step. As shown in
Fig. 5(G), the left panel is colored according to the mean first hitting time to the lower
branch termination cells, and the right panel is colored according to the absolute value of
the difference between two computed mean first hitting times to two circled branches in
Fig. 5(F), which is nearly the iteration number on the two branches while much smaller
for cells on the main trunk. Thus, the iterated mean first hitting time could distinguish
cells at the branches or at the main trunk. If the ground truth is unknown, cells with
large mean first hitting times as well as a significant gap between mean first hitting time
to different fates (see the upper branch in Fig. 5(G)) could provide a reasonable candi-
date of the taboo set. This strategy works for the current synthetic example, however, its
application to more practical examples needs more testing and deserves further study in
the future.

6 Discussion and conclusion

The RNA velocity analysis has provided useful tools to predict future cell states within
snapshot scRNA-seq data by modeling mRNA expression and splicing processes. De-
spite the established workflow and existing theoretical studies, several issues involved
in parameter inference and downstream dynamical analysis of the current RNA velocity
model remain elucidated, especially regarding the rationale and robust algorithm design
and implementation. In this paper, we proposed several strategies to address these chal-
lenges through mathematical or statistical models as well as numerical analysis.

To unify the timescale of RNA velocity dynamics across different genes, we formu-
lated the optimization framework based on either additive or multiplicative noise as-
sumption to optimally determine the gene-specific rescaling parameters and proposed
the numerical scheme to efficiently calculate the gene-shared latent time. Beyond the
current independent gene assumption, it is possible to extend the current framework to
RNA velocity models incorporating gene regulation or interactions [4, 25, 46, 49].

To estimate the uncertainty of the inferred parameters and corresponding RNA veloc-
ity, we performed the confidence interval analysis of RNA velocity utilizing Fisher infor-
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mation approach, and SEM method [32] was applied to obtain the asymptotic covariance
of kinetic parameters in the dynamical RNA velocity model where latent cell time was
involved in EM inference. In addition to the deterministic ODE model, our uncertainty
quantification analysis and confidence interval construction approach could also be ap-
plied to stochastic RNA velocity model based on chemical reactions [13, 14, 26, 46].

To determine the optimal hyper-parameters in the velocity-induced random walk,
we analyzed its convergence rate toward continuous ODE dynamics in the operator
sense, and assessed the dependence of convergence rate on sample size n and data ker-
nel bandwidth ǫ. The results suggest that choosing kernel bandwidth ǫ around the scale
of O(n−2/(d+2)) provides the best operator approximation. It also indicates that as the
dimensionality d of the system increases, the accuracy of approximation would be im-
paired. Consequently, feature selection or dimensionality reduction could improve the
cellular random walk construction. In parallel to the random walk approach, another
strategy for downstream RNA velocity analysis is to fit the continuous velocity field [36]
using vector-valued kernel methods [28] as proposed in Dynamo [36] or neural-ODE
methods [5, 6, 27], where similar convergence analysis could also be informative for the
algorithm implementation.

To perform lineage inference and assign pseudo-time that is consistent with RNA ve-
locity dynamics, we proposed to use the mean first hitting time of the velocity-induced
random walk. The hitting time has been proposed for single-cell lineage analysis by
defining lazy-teleporting random walk on cellular similarity graph [41]. In the scVelo
package, a velocity pseudotime is defined based on the diffusion-like distance [16, 48]
through the eigendecomposition of the weighted cellular velocity graph. In bifurcation
systems with strong directionality induced by RNA velocity, our analysis and numerical
examples suggest the introduction of taboo set for mean first hitting time analysis. The-
oretically, the hitting time has close relation with the commute distance for undirected

graph [44] C(xi,xj)= (T
j
i +Ti

j )
1/2 where T

j
i denotes the mean first hitting time from xi to

xj. It will be insightful to study the limit of mean first hitting time for the velocity-induced
random walk when the sample tends to infinity, as studied for random geometric graph
case [44] and unweighted directed graph case [17].

Overall, the numerical analysis and statistical models presented in the current work
could serve as a mathematical step towards more robust and effective algorithmic imple-
mentation of the RNA velocity model computation and analysis.

Appendix A. Proof of some lemmas

Lemma A.1 (Expansion of the Un-Normalized Kernel kǫ). The operator Gǫ for Gaussian-
cosine scheme has the expansion

Gǫ f (x)=
1

ǫd/2

∫

kǫ(x,y) f (y)dy

=m0 f (x)+
√

ǫm1A f (x)+O(ǫ),
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where

m0 :=Gǫ1=
1

ǫd/2

∫

kǫ(x,y)dy

=Cd

∫ ∞

0
rd−1h(r2)dr

∫ π

−π
|sinθ|d−2g(cosθ)dθ,

m1 :=Cd

∫ ∞

0
rdh(r2)dr

∫ π

−π
cosθ|sinθ|d−2g(cosθ)dθ,

and
A f (x)=‖∇ f (x)‖cos〈v(x),∇ f (x)〉= v̂(x)·∇ f (x), v̂(x) :=

v

‖v‖ .

Here, d>1,

Cd=Sd

(

∫ π

−π
|sinθ|d−2 dθ

)−1

,

and Sd is the surface area of the d-dimensional unit sphere.

The above lemma is in fact the [26, Lemma 4.1] except that the remainder term is ex-
plicitly characterized as O(ǫ) instead of o(

√
ǫ). The proof is by straightforward deriva-

tions, which is also shown in Lemma A.2 below.
To get the variance error, we first study the operator G̃ǫ defined by

G̃ǫ f 2(x)=
1

ǫd/2

∫

Rd

(

kǫ(x,y) f (y)
)2

q(y)dy.

The following lemma can be obtained.

Lemma A.2 (Expansion of the Kernel k2
ǫ). The operator G̃ǫ for Gaussian-cosine scheme has the

expansion

G̃ǫ f 2(x)=
1

ǫd/2

∫

k2
ǫ(x,y) f 2(y)q(y)dy

= m̃0 f 2(x)q(x)+
√

ǫm̂1A
(

f 2(x)q(x)
)

+O(ǫ),

where

m̃0=Cd

∫ ∞

0
rd−1h2(r2)dr

∫ π

−π
|sinθ|d−2g2(cosθ)dθ,

m̃1=Cd

∫ ∞

0
rdh2(r2)dr

∫ π

−π
cosθ|sinθ|d−2g2(cosθ)dθ.

Here, d>1,

Cd=Sd

(

∫ π

−π
|sinθ|d−2 dθ

)−1

,

and Sd is the surface area of the d-dimensional unit sphere.
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Proof. For convenience, let v(x)= ‖v‖(1,0,··· ,0)⊤ without loss of generality. Let us first
consider the case of d=2. Consider 2-dimensional polar coordinates transformation

{

y1= x1+rcosθ,

y2= x2+rsinθ,

where θ is the angle between y−x and v(x). Then we have

1

ǫ

∫

(

kǫ(x,y) f (y)
)2

q(y)dy

=
1

ǫ

∫ ∞

0

∫ π

−π
rh2

(

r2

ǫ

)

g2(cosθ) f 2(r,θ)q(r,θ)dθdr

=
∫ ∞

0
rh2(r2)

∫ π

−π
g2(cosθ) f 2(

√
ǫr,θ)q(

√
ǫr,θ)dθdr

=
∫ ∞

ǫγ− 1
2

+
∫ ǫγ− 1

2

0

(

rh(r2)
∫ π

−π
g2(cosθ) f 2(

√
ǫr,θ)q(

√
ǫr,θ)dθ

)

dr

=: Q1+Q2, (A.1)

where 0<γ<1/2. Here

Q1=
∫ ∞

ǫγ− 1
2

rh(r2)
∫ π

−π
g2(cosθ) f 2(

√
ǫr,θ)q(

√
ǫr,θ)dθdr

≤Cexp
(

−ǫ2γ−1
)

= o(ǫ).

For Q2, using Taylor expansion

f 2(
√

ǫr,θ)q(
√

ǫr,θ)= f 2q
∣

∣

(0,θ)
+
√

ǫr

(

2 f q
∂ f

∂r
+ f 2 ∂q

∂r

∣

∣

∣

(0,θ)

)

+O(ǫ),

we get

Q2=
∫ ǫγ− 1

2

0
rh2(r2)

∫ π

−π
g2(cosθ) f 2(

√
ǫr,θ)q(

√
ǫr,θ)dθdr

=
∫ ǫγ− 1

2

0
rh2(r2)

∫ π

−π
g2(cosθ)

(

f 2q
∣

∣

(0,θ)
+
√

ǫr

(

2 f q
∂ f

∂r
+ f 2 ∂q

∂r

∣

∣

∣

∣

(0,θ)

)

+O(ǫ)

)

dθdr

=
∫ ∞

0
rh(r2)

∫ π

−π
g2(cosθ)

(

f 2q
∣

∣

∣

(0,θ)
+
√

ǫr

(

2 f q
∂ f

∂r
+ f 2 ∂q

∂r

∣

∣

∣

∣

(0,θ)

))

dθdr+O(ǫ)

= m̃0 f 2(x)q(x)+
√

ǫm̃1A
(

f 2(x)q(x)
)

+O(ǫ). (A.2)

For the high-dimensional case, the derivation is similar, so we omit it.
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Appendix B. Proof of Theorem 4.1

Proof. Following [38], we consider using the Chernoff inequality to get an upper bound
for p(n,α) with an α-error. We will only estimate the term P(Lǫ,n f −Lǫ f > α) since the
other part can be made similarly.

Let α̃=
√

ǫα. We have

p(n,α)=P
(√

ǫ(Lǫ,n f −Lǫ f )> α̃
)

=P







∑
n
j=1kǫ(x,sj) f (sj)

∑
n
j=1kǫ(x,sj)

−

∫

kǫ(x,y) f (y)q(y)dy
∫

kǫ(x,y)q(y)dy
> α̃






.

Since kǫ(x,sj) is positive, we have

p(n,α)=P

(

n

∑
j=1

[

E
(

kǫ(x,y)
)

kǫ(x,sj) f (sj)−
(

E
(

kǫ(x,y) f (y)
)

+α̃E
(

kǫ(x,y)
))

kǫ(x,sj)
]

>0

)

,

which is equivalent to

p(n,α)=P

(

n

∑
j=1

Yj>nα̃
(

E
(

kǫ(x,y)
))2

)

,

where

Yj :=
[

E
(

kǫ(x,y)
)

kǫ(x,sj) f (sj)−E
(

kǫ(x,y) f (y)
)

kǫ(x,sj)
]

+ α̃E
(

kǫ(x,y)
)(

E
(

kǫ(x,y)
)

−kǫ(x,sj)
)

. (B.1)

We remark that the expectation E in the above and continued expressions are taken with
respect to the variable y or sj whose probability density function is q(y).

It is easy to find that Yj are i.i.d random variables with E(Yj)= 0. Next we calculate
the variance of Yj,

EY2
j =K1+K2+K3, (B.2)

where

K1=
(

E
(

kǫ(x,y)
))2

E
(

k2
ǫ(x,y) f 2(y)

)

−2E
(

kǫ(x,y)
)

E
(

kǫ(x,y) f (y)
)

E
(

k2
ǫ(x,y) f (y)

)

+
(

E
(

kǫ(x,y) f (y)
))2

E
(

k2
ǫ(x,y)

)

,

K2=2α̃E
(

kǫ(x,y)
)[

E
(

kǫ(x,y) f (y)
)

E
(

k2
ǫ(x,y)

)

−E
(

k2
ǫ(x,y) f (y)

)

E
(

kǫ(x,y)
)]

,

K3= α̃2
(

E
(

kǫ(x,y)
))2
[

E
(

k2
ǫ(x,y)

)

−
(

E
(

kǫ(x,y)
))2
]

.
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From Lemma A.1, the expectations of kǫ(x,y) and kǫ(x,y) f (y) can be obtained

E(kǫ(x,y))=ǫ
d
2
(

m0q(x)+
√

ǫm1v̂(x)·∇q(x)+O(ǫ)
)

,

E(kǫ(x,y) f (y))=ǫ
d
2
(

m0q(x) f (x)+
√

ǫm1v̂(x)·∇
(

q(x) f (x)
)

+O(ǫ)
)

.
(B.3)

From Lemma A.2, the second moments E(k2
ǫ(x,y)),E(k2

ǫ(x,y) f (y)) and E(k2
ǫ(x,y) f 2(y))

can be obtained

E
(

k2
ǫ(x,y)

)

=ǫ
d
2
(

m̃0q(x)+
√

ǫm̃1v̂(x)·∇q(x)+O(ǫ)
)

,

E
(

k2
ǫ(x,y) f (y)

)

=ǫ
d
2
(

m̃0q(x) f (x)+
√

ǫm̃1v̂(x)·∇
(

q(x) f (x)
)

+O(ǫ)
)

,

E
(

k2
ǫ(x,y) f 2(y)

)

=ǫ
d
2
(

m̃0q(x) f 2(x)+
√

ǫm̃1v̂(x)·∇
(

q(x) f 2(x)
)

+O(ǫ)
)

.

(B.4)

Substituting (B.3), (B.4) into (B.2), we get

EY2
j =2α̃E

(

kǫ(x,y)
)

[

E
(

kǫ(x,y) f (y)
)

E
(

k2
ǫ(x,y)

)

−E
(

k2
ǫ(x,y) f (y)

)

E
(

kǫ(x,y)
)

]

+ α̃2
(

E
(

kǫ(x,y)
))2
[

E
(

k2
ǫ(x,y)

)−(E(kǫ(x,y)
))2
]

+Cǫ
3d+2

2 , (B.5)

where C is a constant.
Note that our interested regime is α̃.O(ǫ) since we are estimating an O(

√
ǫ) quantity,

namely
√

ǫL f (x), so an error α̃ larger than the estimated quantity is meaningless. For the
α̃ term in (B.5), straightforward calculations based on (B.3)-(B.4) show

E
(

kǫ(x,y)
)

[

E
(

kǫ(x,y) f (y)
)

E
(

k2
ǫ(x,y)

)

−E
(

k2
ǫ(x,y) f (y)

)

E
(

kǫ(x,y)
)

]

=O
(

ǫ
3d+1

2
)

.

Thus, the α̃ and α̃2 terms of the variance (B.5) are negligible, and we obtain

EY2
j =C1ǫ

3d+2
2 ,

where C1 is a constant. By the Chernoff inequality, we obtain

p(n,α)≤2exp

(

− nα̃2ǫ
d
2

C1ǫ

)

=2exp

(

− nα2ǫ
d
2

C1

)

. (B.6)

The inequality (B.6) means that the correct magnitude of α should be made such that

nα2ǫ
d
2 =O(1), (B.7)

i.e. α∼O(n−1/2ǫ−d/4).

Appendix C. Pseudocode for the algorithms

In this appendix, we present the pseudocode of the algorithms introduced in this paper.
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Algorithm 1 Time Rescaling (Proposal 2.1).

Input: Latent time matrix T∈R
n×d.

1: Compute W=diag(w1,··· ,wd) in which wg =1/‖t•g‖, g=1,.. . ,d.

2: Get eigenvalues and eigenvectors [λ,V]=eig(W⊤T⊤TW).

3: λ1=λ[0] be the maximum eigenvalue.

4: v1=V[:,0] be the eigenvector corresponding to the maximum eigenvalue.

5: x=dλ−1/2
1 Wv1, β=1/x.

6: t=TWv1/‖TWv1‖.
Output: t,β,x.

Algorithm 2 Time Rescaling (Proposal 2.2).

Input: Latent time matrix T∈R
n×d.

1: Get eigenvalues and eigenvectors [λ,V]=eig(T⊤T).

2: v1=V[:,0] be the eigenvector corresponding to the maximum eigenvalue.

3: β=v1, x=1/β.

4: t=Tv1.

Output: t,β,x.

Algorithm 3 SEM Algorithm for Parameter Uncertainty Quantification.

Input: θ∗, i.e. θ̂n and the sequence θ(k),k=1,.. . ,n.
1: for i=1:g do

2: Let rij be the (i, j)-th element of Jacobian JM.

3: θ(k)(i)= (θ∗1 ,··· ,θ∗i−1,θ
(k)
i ,θ∗i+1,··· ,θ∗d) which means that we only iterate on the i-th

component θ
(k)
i , while the other components are fixed.

4: For given θ(k)(i), iterate the one-step EM algorithm to obtain θ̃(k+1)(i).
5: To get difference quotient

r
(k)
ij =

θ̃
(k+1)
j (i)−θ∗j

θ
(k)
i −θ∗i

, j=1,.. . ,g.

6: end for

7: Obtain rij using the least squares method when the sequence r
(k∗)
ij ,r

(k∗+1)
ij ,··· is stable

for some k∗.
8: Linearize L(θ | xobs,t) and get Îoc

Îoc= Î−1
oc

(

θ∗ |S(xobs,t)
)

,

where S(xobs,t) is obtained at the last E step.
Output: Îoc, JM.
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Algorithm 4 First Hitting Time to Set A.

Input: Transition probability matrix P∈R
n×n, stop criteria N, cell set A.

1: Construct matrix Q∈R
n×n, Q=(qij) :=(pij)i,j∈Ac .

2: Initialize K0=[0,0,··· ,0]⊤∈R
n.

3: for i=1:N do

4: Kn=1+QKn−1.
5: end for

Output: KN.

Algorithm 5 First Hitting Time to Set A (with taboo set H).

Input: Transition probability matrix P∈R
n×n, stop criteria N, cell set A, taboo set H.

1: Construct matrix Q∈R
(n−H)×(n−H), Q=(qij) :=(pij)i,j∈Ac∪Hc .

2: Initialize K0=[0,0,··· ,0]⊤∈R
n−|H|.

3: for i=1:N do

4: Kn=1+QKn−1.
5: end for

Output: KN.
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