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Abstract. In this paper, we propose a novel Lagrange multiplier approach, named
zero-factor (ZF) approach to solve a series of gradient flow problems. The numerical
schemes based on the new algorithm are unconditionally energy stable with the orig-
inal energy and do not require any extra assumption conditions. We also prove that
the ZF schemes with specific zero factors lead to the popular SAV-type method. To
reduce the computation cost and improve the accuracy and consistency, we propose
a zero-factor approach with relaxation, which we named the relaxed zero-factor (RZF)
method, to design unconditional energy stable schemes for gradient flows. The RZF
schemes can be proved to be unconditionally energy stable with respect to a modi-
fied energy that is closer to the original energy, and provide a very simple calculation
process. The variation of the introduced zero factor is highly consistent with the non-
linear free energy which implies that the introduced ZF method is a very efficient way
to capture the sharp dissipation of nonlinear free energy. Several numerical examples
are provided to demonstrate the improved efficiency and accuracy of the proposed
method.
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1 Introduction

Gradient flows are a kind of important models to simulate many physical problems such
as the interface behavior of multi-phase materials, the interface problems of fluid me-
chanics, environmental science and material mechanics. In general, as the highly com-

plex high-order nonlinear dissipative systems, it is a great challenge to construct effective
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and accurate numerical schemes with physical constraints such as energy dissipation and
mass conservation. Many experts and scholars considered some unconditionally energy
stable schemes. These numerical schemes preserve the energy dissipation law which
does not depend on the time step. Some popular and widely used methods include
convex splitting approach [7, 14, 18], linear stabilized approach [17,24], exponential time
differencing approach [5,6,20], invariant energy quadratization approach [8,21,23,24,27],
scalar auxiliary variable (SAV) approach [11,15,16], Lagrange multiplier approach [2] and
SO on.

Gradient flow models are generally derived from the functional variation of free en-
ergy. In general, the free energy E(¢) contains the sum of an integral phase of a nonlinear
functional and a quadratic term

E(0)=53(9.L0)+Erlg)= [ 20(L)+F(g)ix, .y

where £ is a symmetric non-negative linear operator, and E;(¢) = [, F(¢)dx is nonlinear
free energy. F(x) is the energy density function. The gradient flow from the energetic
variation of the above energy functional E(¢) in Eq. (1.1) can be obtained as follows:

d

=G u=Lo+F (), (12
where y=J6E/é¢ is the chemical potential. G is a positive operator. For example, G =1
for the L2 gradient flow and G = —A for the H -1 gradient flow. It is not difficult to find

that the above phase field system satisfies the following energy dissipation law:

d_ (JE d¢ o
aE—<%,§>— (g]/l/]/l)gol

which is a very important property for gradient flows in physics and mathematics.
Recently, many SAV-type methods are developed to optimize the traditional SAV
method (detailed introduction, please see Section 2.2). For example, in [25], the au-
thors introduced the generalized auxiliary variable method for devising energy stable
schemes for general dissipative systems. An exponential SAV approach in [13] is devel-
oped to modify the traditional method to construct energy stable schemes by introducing
an exponential SAV. In [9], the authors consider a new SAV approach to construct high-
order energy stable schemes. In [2], the authors introduce a new Lagrange multiplier
approach which is unconditionally energy stable with the original energy. However, the
new approach requires solving a nonlinear algebraic equation for the Lagrange multi-
plier which brings some additional costs and theoretical difficulties for its analysis. Some
other related work dealing with Lagrange multiplier approaches in flow problems, please
see [1,19]. Recently, Jiang et al. [10] present a relaxation technique to construct a relaxed
SAV (RSAV) approach to improve the accuracy and consistency noticeably. Some other
efficient methods for preserving the original energy dissipation laws, please see [26].
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In this paper, inspired by the new Lagrange multiplier approach [2] and RSAV ap-
proach [10], we propose a novel technique to construct the unconditional energy stable
schemes for gradient flows by introducing a zero factor. Compared with the recently pro-
posed SAV-type approach, the numerical schemes based on the new zero-factor method
dissipate the original energy and do not require the explicitly treated part of the free en-
ergy to be bounded from below. The core idea of the zero-factor approach is to introduce

a zero factor to modify the solution 5”“ of the baseline semi-implicit method at each
time step. The value of the introduced zero factor P (1) is controlled by energy stability.
To reduce the computation cost and improve the accuracy and consistency, we propose
a zero-factor approach with relaxation, which we named the relaxed zero-factor method,
to design unconditional energy stable schemes for gradient flows. The RZF approach al-
most preserves all the advantages of the new zero-factor approach. It is unconditionally
energy stable with respect to a modified energy that is closer to the original energy com-
pared with the new zero-factor approach, and provides a very simple calculation process.
Our main contributions of this paper are:

(i) The newly-introduced RZF method can keep the original energy in most cases
and provides a very simple calculation process.

(ii) We prove that the zero factor schemes with specific P () lead to the popular SAV-
type and Lagrange multiplier methods.

(iii) The variation of the introduced zero factor is highly consistent with the nonlinear
free energy which implies that the introduced zero factor is very efficient to capture the
sharp dissipation of the nonlinear free energy.

The paper is organized as follows. In Section 2, we introduce a zero factor to con-
struct a new zero-factor approach to simulate a series of gradient flows. In Section 3, by
using a relaxation technique, we propose a relaxed ZF approach. Then the second-order
Crank-Nicolson and BDF2 schemes based on RZF method are constructed. In Section 4,
we briefly illustrate that the RZF approach can be easily applied to simulate the gradi-
ent flow with several disparate nonlinear terms. Finally, in Section 5, various 2D and
3D numerical simulations are demonstrated to verify the accuracy and efficiency of our
proposed schemes.

2 The zero-factor approach

Introduce a scalar auxiliary function #(t) to construct a linear function P (1), and rewrite
the gradient flow (1.2) with a zero factor P () as follows:

9¢ _
g __g,u/

p=Lo+F (p)+P(n)F(¢).
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Here the zero factor P(#) is a linear zero function which can be chosen flexibly, such as
the following P; and P»:

Pi(n) =k,  Pa(nn)=kamp, 2.1)
where kj and k, are any non-zero constants.
In order to ensure the existence and uniqueness of the solution, we need to add a new
equation of P (7). Noting that P(#) is a zero factor, we let

d
PO = [(Fp)1) - (F@)1)] = 5, [ F@)x— [ F(p)pux. 22
In order to keep the energy dissipative law of the equivalent system, we let
) [ F(¢)gux

to obtain the following equation:

dt/ dX /P (Pth—FP /Pl (Pth

Therefore, we can easily obtain the following equivalent system of the original mo-
del (1.2):

J
a—f:—gy, (2.3a)
pu=Lo+F (p)+P(n)F(¢), (2.3b)
;t / Yix— / F'(¢)dedx+P (1 / F'(¢)rdx. (2.30)

Set the initial condition for #(t) to be 17(0) =0 for P; (1) or 1(0) =co for P, (1) where ¢ is
an arbitrary constant, then it is easy to see that the new system (2.3) is equivalent to the
original system (1.2), i.e. P(1)=01n (2.3).

Taking the inner products of Egs. (2.3a) and (2.3b) with y and —¢;, respectively, then
summing up the results together with Eq. (2.3c), we obtain the original energy dissipative
law

d
—E= <
G E=—(Gup) <0

It means that the linear functional P (1) here is to serve as a zero factor to enforce dissi-

pation of the original energy.

2.1 A second-order Crank-Nicolson ZF scheme

Before giving a detailed introduction, we let N >0 be a positive integer and set
At=T/N, t'=nAt, n<N.

In the following, we will consider a second-order Crank-Nicolson scheme for the sys-
tem (2.3). Discretize the nonlinear functional F'(¢) explicitly and the other items im-
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plicitly in (2.3), and give the initial values ¢ = ¢o(x),7(0) = co, then couple with Crank-
Nicolson formula, a second-order energy stable schemes can be constructed as follows:

n+l1__ gn
% — gy, (2.4a)
k= Lo e P ) P (P (), @)

(P(¢n+1)’1)_(P((Pn),l):(F/($n+%),¢n+l_¢n)_|_rp(17n+%)<P/((:5n+%),¢n+l_¢n>’ (2.4C)

where ¢"+1/2=3¢" /2—¢"~1 /2. Taking the inner products of Eqgs. (2.4a) and (2.4b) with
p"+1/2 and —(¢" 1 —¢")/ At respectively, and multiplying Eq. (2.4c) with At, then com-
bining these equations, we obtain the above Crank-Nicolson scheme satisfies the follow-
ing original energy dissipative law:

E(@"Y)—E(@")=—AH(Gu" 2, 2) <0, (2.5)
where E(¢") = (Ly",¢") /24 (F(¢"),1).

The Crank-Nicolson scheme (2.4) is nonlinear for the variables ¢"*! and 7"*!. We
now show how to solve it efficiently. Combining Egs. (2.4a) and (2.4b), we obtain the
following linear matrix equation:

<1+ %AtQﬁ) Pl = <1— %AtQﬁ) ¢"—AtGF (§"F2) =P (""" 2) AtGF (§"+2).

Noting that the coefficient matrix A= (I+AtGL/2) is a symmetric positive matrix, then
we obtain

prt=A"" Kz-%mgﬁ) ¢" — AtGF’ ($"+%.)} —P (") ALATIGF (§2)
=" P () g (2.6)

Here ¢" ' and ¢"*+! can be solved directly by ¢" and ¢"*1/2 as follows:

§=A"1 [(1— %AtQﬁ) ¢" — AtGF' (@H%)} ,

(2.7)
gt =—AtATIGF ($n+%)'
Combining Egs. (2.6) and (2.4c), we have
<F (an—l—l +77(77n+%)5]n+1> ,1> — (F(¢"),1)
— |:1_|_P(17n+%):| <F/ ($n+%),pn+l _|_P(17n+%)qn+l _(Pn) ) (28)

One can see that to solve above nonlinear numerical scheme (2.8), we need to solve 7" !

by the Newton iteration as the initial condition. The computational complexity depends
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on F(¢). The computational cost is equal to the Lagrange multiplier approach which was
proposed by Shen et al. [2].

Remark 2.1. In principle one can choose any linear function to be zero factor P(#) in
Eq. (2.3). A special case is P(n7) =#(t) —1, then the zero factor method leads to the new
Lagrange multiplier approach in [2].

Remark 2.2. From the Eq. (2.6), we notice that Enﬂ is the solution of the baseline semi-
implicit Crank-Nicolson scheme. Hence, the core idea of the zero factor approach is to
introduce a zero factor to modify the solution Enﬂ at each time step. The value of the
zero factor is controlled by energy stability.

2.2 Arevisit of the SAV-type approach

In this subsection, we will review the SAV-type approach and prove that the introduced
scalar auxiliary variables can be seen as the specific zero factors. Furthermore, we can
modify the SAV-type methods to construct new schemes which dissipate the original
energy.

The key for the SAV approach is to introduce a scalar variable r(t)=/E(¢) +C, where
Ei(¢) = (F(¢),1) is the nonlinear free energy and rewrite the gradient flows (1.2) as the
following equivalent system:

dp

o0 pig 2.9b
n=Lo+ E(0)7C (¢) (2.9b)
dr 1

(2.90)

i m(p@)/@-

A second-order Crank-Nicolson SAV scheme for above equivalent system is as follows:

n+1__ an
% — gy, (2.10a)
n+31
wd = Loty e (), @100)
Ei(¢"T2)+C
n+1__ ,n N n+l__ an
r re 1 <P1((Pn+%),%>, (2.10C)

AL o JE (g +C
Here r"1/2 = (#"*+144") /2. Combining Egs. (2.10a) and (2.10b), we can obtain

1
r?’l“rj

<I+%Atg£> P = (I—%AtQﬁ) ¢"— At gp@n%)

Eq (Zﬁn-i—%) +C
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rn+%

- [(1—%&9’5) —AtgF’(¢?”+%)] - ( — 1) MGF ($"7).  (211)
Ei(¢"t2)+C

Using the same definitions of Enﬂ and ¢"*!in (2.7), we can obtain ¢"*! as follows:

P =A""1 [(1— %AtQﬁ) ¢" —AtGF’ (43ﬂ+%)}

B s 1 AtA_lgF’($”+%)
Ei(¢"+2)+C

n—+
"y e (2.12)
Ei(¢"*2)+C

Compared above Eq. (2.12) with (2.7), we can obviously obtain that the key for the SAV
approach is to introduce a zero factor

P(r)=—2t 1. (2.13)

It means that the core idea of the SAV scheme (2.10) is also to introduce a special zero
factor to modify the solution Enﬂ which is the solution of the baseline semi-implicit
Crank-Nicolson scheme at each time step. The value of the zero factor P(r) is controlled
by energy stability.

Inspired by the introduced ZF method, we can obtain a new SAV approach which is
unconditionally energy stable with the original energy by changing Eq. (2.9¢)

op
a9
:E r<t) Pl i
Z ¢+7E1(¢)+C (¢) (2.14)

d

) [p

A second-order Crank-Nicolson SAV scheme for above equivalent system (2.14) is as
follows:

(Pth.

4)1’1-1-1_4)7’1__ n+l
g, (2.15a)

n+1
LS Ly P (@), (2:15b)
Ei(¢"F2)+C

Nl—

T
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n—&-% o
(F(¢"™),1) = (F(¢"),1) = - 1 (F’ (¢”+f),¢”“—¢"). (2.15¢)
Ei(¢"T2)+C

Taking the inner products of Eqgs. (2.15a) and (2.15b) with u"*1/2 and —(¢"*!1—¢") /At
respectively, and multiplying Eq. (2.15c) with At, then combining these equations, we
obtain the above Crank-Nicolson scheme satisfies the following original energy dissipa-
tive law:

E(@MT)—E(p") =—AH(Gu" 2" 2) <0, (2.16)
where E(¢") = (Lp",¢") /24 (F(¢"),1).

Remark 2.3. For other SAV-type approaches, the core idea is also to introduce a special
zero factor to modify the solution Enﬂ. For example, the zero factor

N
PO e Elp)

for ESAV approach in [13].

3 The relaxed zero-factor approach

From above analysis, we notice that the scheme based on the zero-factor approach dissi-
pates the original energy but needs to solve a nonlinear algebraic equation which brings
some additional costs and theoretical difficulties for its analysis. In general, compared
with the baseline SAV scheme, the new algorithm brings some additional costs because
it requires solving a nonlinear algebraic equation for 7"*!. To reduce the computation
cost and improve the efficiency, inspired by the R-SAV approach described in [10], we
consider a zero-factor approach with relaxation, which we named the relaxed zero-factor
method, to design unconditional energy stable schemes for gradient flows. It can be
proved that the RZF approach not only determines 77" ! explicitly, but also dissipates an
almost original energy.

Firstly, we introduce a new scalar auxiliary function R(t) = (F(¢),1), and rewrite the
equivalent gradient flow (2.3) as follows:

%—f:—g% (3.1a)
u=LP+F(¢)+P(n)F (¢), (3.1b)
" L E@pax+Pln) [ Fg)pa (3.10)

R(t)=(F(¢),1). (3.1d)
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Taking the inner products of Egs. (3.1a) and (3.1b) with y and —¢; respectively, then
summing up the results together with Egs. (3.1c) and (3.1d), we obtain the original energy
dissipative law

d 1 ' 1
GE=3(0.L0)+ | F@)ix=3(p,L0)+R()=—(Gum) <0. 62)

For the equivalent system (3.1), a Crank-Nicolson scheme based on above zero-factor
(ZF-CN) approach can be given as follows:

¢n+1_¢n__ il
= gu'tz,

W= FL S L () PO F (),

(3.3)
R _Rr— [1_‘_73(17;1%)} (F' ($n+%),4)n+l _(l)n) )
Ri’l+l — (F((Pn+l),1) )
Similar as (2.7), introduce Enﬂ and ¢"*! as follows:
—ntl 41 1 n 1(Tn+d
=A I——AtQE) —AtGF 2 ],
¢ [( > ¢ (9"72) ad)

g =—AtAIGF' ($n+%),

where A is the coefficient matrix to satisfy A= (I+AtGL/2). The baseline ZF-CN scheme
(3.3) can be rewritten as follows:

—n+1
i AP
AL 9T

n+% n+1

1 — 1 ~
pR =S S LT (),
(Pn-l—l :5”“4—7?(;7”*%)(1”“,
R _Ri— [1+7)(77n+%)] (F’($n+%),¢n+l—(])”),

Rn+1 — (P((Pn+1),1).

(3.5)

Itis not difficult to obtain that the above ZF-CN scheme (3.5) is nonlinear for the variables
(PnJrl and ;,ln+1'

3.1 A second-order RZF-CN scheme

To reduce the computation cost and improve the efficiency, we consider the following
second-order Crank-Nicolson scheme based on the relaxed zero-factor approach (RZF-
CN): Set R = (F(¢(0,x)),1), and compute ¢" 1, R**! via the following two steps:
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Step I. Compute ¢"*! and Rm+1 by the following semi-implicit Crank-Nicolson
scheme:

-n+l

‘PTW =Gz, (3.6a)
= %£$n+l+%£¢n+ljl($n+%), (3.6b)
¢n+1:$n+1+p(nn+%)qn+l, (3.6¢)
R+ _Rr— |:1_|_1P(1,ln+%)] (P’ ($n+%)’¢n+l_(‘bn) ) (3.6d)
R+l — (P@”H),l), (3.6e)

where ¢"+1/2=3¢" /2—-1¢""1/2.
Step II. Update the scalar auxiliary variable R"*! via a relaxation step as
R™I=AgR"™™ +(1—-Ag) (F(¢"™1),1), Ao€V. (3.7)
Here is V a set defined by
v={AIre[01] st R™I—R™T<Ab L (Gumts prth),
R = AR 4 (1—A) (F(¢"H1),1) } (3.8)
Here, x" 1 €[0,1] will be given below.
We first show how to solve the scheme (3.6). Substituting Eq. (3.6¢) in (3.6d) to obtain
RHI R = [14P (" 4| (F(§4) ¢ P )g  —g"). 39)

Note that P(#) is a linear functional of 7, hence, the above equation is a quadratic equa-
tion with one unknown for #"+1/2. Tt means we obtain determine ;"*+1/2 explicitly from

(3.9), namely,
wil  —bENDb2—4ac
N=—
2a

Here, if we set P (1) =P1(n) =ki7, then we have P ("*+1/2) =ky5"*1/2. The coefficients
a,b and c of above quadratic equation (3.10) will satisfy

0= <F/(q’5n+%),qn+l),
b=k <Pl((:5n+%)’$”+1_4)n> + <F/((:5n+%),qn+l>,
C:_Rn+l+Rn+ <FI($n+%),$n+l_¢n>‘

Nl—

(3.10)
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If we set P (1) = P2(1) = kan:, then we have P("+1/2) =k ("1 —4")/At. The coeffi-
cients a,b and c of above quadratic equation (3.10) will satisfy

K3 41
= S (P ).
ko / -+l .y ko n n+1 k2 _k_2 n 1(an+iy o+l
At<F(4> D =S )+ (1) (F @),

~ k —~
__pn+l n 2 n 1(on+3 ky n+1
R™I4R +<1 A )(F (¢"2)," 0" — 5" )

b=

Remark 3.1. We notice that if we choose P(7) to be a linear function of 7 or 7, a quadratic
equation with one unknown for 7"*1/2 needs to be solved out to obtain P (5"*1/2). In
most cases, we choose P (17) =17 to obtain P(5"+1/2) easily. Some other choices of P (1)
will be discussed in future.

Remark 3.2. The left side of the Eq. (3.9) is an approximation of the free energy difference
between two adjacent time steps. If this value is less than the round-off error of numer-
ical integration, it might cause the zero factor P(1"*1/2) tends to be —1. To avoid this
mistake, if |[R"*! — R"| < 1e(-15) or P(5"*+1/2) — —1, we solve the following equation by
the Newton iteration to update P (1" +1/2):

P 2 (R =R =P (") [1+ PO 3] (F (@), 8" +P (" 2) " —g").
The similar technique can be seen in [12].

Remark 3.3. Noting that the baseline SAV approach is a special ZF method with

oy
Plr)= Ei(¢)+C '

from Section 2.2. It means that if the zero factor

4

o
Pan= Ei(¢)+C

the proposed RZF scheme (3.6)-(3.7) will be the just so-called RSAV scheme developed
in [10].

Next, we will show that how to obtain the optimal choice for the relaxation para-
meter Ag. The set V in (3.8) can be simplified as

={AAeo] st [R™1—(F(g"),1)|A

< [ﬁn+l _ (F(¢n+l),1)] —|—AtK”+l (g‘unJr%,‘unJr%) } (3'11)
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Noting that Atx"*1 (gﬁ”“/ Z,ﬁ”H/ 2) >0, we obtain 1 € V, which means the set V is non-
empty. We choose the optimal relaxation parameter Ay as follows: The optimal A can be
chosen as a solution of the following optimization problem:

Ap= min A
A€[0,1]
s.t. [R"“— (P(gb”“),l)] A (3.12)

1

< [ﬁn—&-l _ (F(¢n+l),1)} —I—AtK”'H (g"l/l”'i'%,"l/l”'i'?).

The next theorem summarizes the choice of Ag and «"t1.

Theorem 3.1. If R"+1 — (F(¢"*1),1) £0, setting

At(g‘un—i—%,yn—&-%)
o ‘ﬁn-l—l _ (F((])”+1),1) ¢

then we choose the optimal relaxation parameter Ag and k"1 as follows:

1) IFR™1 > (F(¢"*1),1), we set Ag=0 and x"+1 =0.
2) IR < (F(¢™1),1) and a >1, we set Ag=0and k"' =1/a.
3) If R" 1< (F(¢"™1),1) and a €[0,1), we set A\g=1—a and x" 1 =1.

Proof. 1) If R"*1 = (F(¢"*'),1), any arbitrary parameter A between 0 and 1 will satisfy
the inequality in (3.12). Thus, we have Ay =min, (g ;jA =0.

2) If R"1 > (F(¢"*1),1), the inequality in (3.12) will be simplified as
A<1+x" e,
Set k"1 =0, then A <1 is always true. Thus, we also have Ao =min refo,]A=0.
3) If R"1 < (F(¢"*1),1), the inequality in (3.12) will be simplified as
A>1— gt

Firstly, if «>1, we have 1/a€(0,1]. Then we set k" *1=1/a to obtain that A>1—x""la=0is
always true. It means Ag=min, ¢y ;jA=0. Secondly, if «€[0,1), we have (1 —x"Ha)e(0,1]
for any x"*1. Then we obtain Ag=min, ¢y A =1—x""'a. By setting x"*! =1, we obtain
the optimal solution Ag=1—u. O

Next, the following theorem will shown that the above RZF-CN scheme (3.6)-(3.7) is
unconditional energy stable with a modified energy that is directly linked to the original
free energy:.
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Theorem 3.2. The second-order Crank-Nicolson scheme (3.6)-(3.7) based on the RZF approach
with the above choice of Ao and k" is unconditionally energy stable in the sense that

E(P")—E(¢") < —AH(1—k"1) (G2, u"+3) <0, (3.13)
where E(¢"1) = (L™, +1) /2R and more importantly we have

E(@")<E(¢")

under the condition of R"+1> (F(¢"+1),1) or R"1 < (F(¢"*1),1) with a >1. Here £(¢™) is the
original energy, where

(£¢n+1,¢n+l) 4 (P(¢n+l)’1)‘

N[ =

(9" )=

Ifﬁn—&-l < (F<¢n+l),1) and a €[0,1), we have

g(¢n+l) §5(¢n+1).
Proof. The first three equations in the Step I of the RZF-CN scheme (3.6) can be rewritten
q p
as follows: ey 1
_—_—— —g]/[n+§
At ' (3.14)
Hn—&-% _ %E¢n+l+%£¢n+ [14_73(1711—&-%)} FI($n+%).

Taking the inner products of (3.14) with u"*1/2 and —(¢"*!1—¢")/At respectively, and
multiplying Eq. (3.6d) with At, then combining these equations, we obtain

%(£¢n+1,¢n+l)+ﬁn+1:| _ |:%(£¢n,¢n)+Rn:| — —At(gy”J’%,y”*%) <0. (3,15)

From the constraint condition in (3.8), we obtain
R+ R+l < At (gy”J’%,y”J’%). (3.16)
Substituting the inequality (3.16) into (3.15) and noting x"*! € [0,1], we could have
g(¢n+1)_5~(¢n) _ [%(£¢n+ll¢n+l)+Rn+l] _ [%(£¢n,¢n)+Rn:|
<[Leorsgren ] - [Liepnnn]

4 At (gyn+%,ﬂn+%)
= —AH(1—"T1) (Gu" 3,7 <0 (3.17)
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Noting that the original energy

8(¢n+1) _ % (£¢n+1,¢n+1) 4 (P((Pn+1),1)
and using the Step II of the RZF-CN scheme (3.7), we get

5(4)11—&-1) _5<¢n+1) :Rn—l—l _ (F((])”+l),1)
:/\Oﬁn+l+ (1_}\0) (F(¢n+l>,1) . (F(¢n+l>,1)
=M [R"— (F(¢"™™),1)]. (3.18)

From the choice of A in Theorem 3.1, if R"*! > (F(¢"*1),1) or R**! < (F(¢"*"),1) and
a>1, we have Ay =0. It means

g(¢n+l)_5<¢n+l) =\o [Kn+l_ (F(¢n+l),1)] —0.

If R* 1< (F(¢"*1),1) and a€[0,1), we have Ag[R"+! — (F(¢"*1),1)] <0, then the following
inequality holds:
g<¢n+l) §5(¢n+l)‘

From above analysis, we obtain that

E(¢")<E(¢"), Vn=0.

Combining above inequality with (3.14), when R"*1> (F(¢"*1),1) or R"*' < (F(¢"*1),1)
and « >1, we have

E(@)=E(gm) <E(9") <E(9"). (3.19)
The proof is complete. U

Remark 3.4. From Theorem 3.2, we observe that in most cases, we have &(¢"!) <
&(¢") which means the RZF-CN scheme (3.6)-(3.7) dissipates the original energy. Only
if R"*1 < (F(¢"*1),1) and « € [0,1), we can not obtain the original energy dissipative law.
Hence, by a relaxation technique, the original energy is proved to be dissipative in most
situations, which is a significant improvement over the modified ZF-CN scheme (3.6).
More importantly, the new proposed RZF-CN scheme (3.6)-(3.7) keeps the advantage of
the scheme (3.6) in calculation.

3.2 A second-order RZF-BDF2 scheme

In this subsection, we consider a second-order RZF scheme based on 2-step backward
difference formula (BDF2). For gradient flow models, it is usually better to use BDF
schemes. The second-order RZF-BDF2 scheme for the equivalent system (3.1) is as fol-
lows: Given R = (F(¢(0,x)),1),R"~1,R",¢"~1,¢", we update ¢" ! via the following two
steps:
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Step I. Compute ¢"*! and R"*! by the following second-order semi-implicit BDF2
scheme:

3(Pn+l _44)1’1 _}_(Pnfl B

o — gy, (3.20a)
U = Lo F (¢ + P (Y F (¢, (3.20b)
R 4R+ R = [14+P (") (F'(¢"1),3¢" " —4¢" +¢" ), (3.200)
R+l (P@”H),l), (3.20d)

where (f”“ =2¢" —¢p" 1.
Step II. Update the scalar auxiliary variable R"*! via a relaxation step as
R =A0R"™ (1= Ag) (F(¢"™1),1), AoeV. (3.21)

Here is V a set defined by
Y= {)\ |IA€[0,1] s.t. R"TT—R"™1 < Atk 1 (gy”H,y”H)

+ Kn+l(£(¢n+l_2¢n+¢n71),¢n+l_24)11_'_4)1171),

N

R™I= AR +(1-A) (F(¢"1),1) } (3.22)

Here, k"1 €[0,2/3] will be given below.

Firstly, we show how to solve the scheme (3.20) efficiently. Combining the Egs. (3.20a)
and (3.21) for the RZF-BDF2 scheme, we obtain the following linear matrix equation:

(BI+2MG L) = 41" — 19"~ —2A1GF (") —28tP (") GF' (9" ).
The coefficient matrix A = (3I+2AtGL) is a symmetric positive matrix, then we have

4)7’1+1 — A*1(4I¢n o Iqbnfl) _2AtAflgF/<(/ﬁ1’l+l)
—2MtP (") ATIGF (")
=" P (3.23)

Here 5”“ and " *! can be determined as follows:

$n+l :A—l (414)11_I¢n71_2AtgPI($n+l)),

qn+1 — —2AtA_1gF/<(/ﬁn+l). (324)
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Noting that ¢" ! =" 4P (") g+, then we compute 7"*! by the Egs. (3.20c) and
(3.20d)

BRI 4R+ R" ' = [1+P (" )] (F(§"+), 39" +3P (" 1)q" ' —4¢" +¢" ). (3.25)

Similar as the RZF-CN scheme, the above equation is a also quadratic equation with one
unknown for 71, It means we obtain determine 7" ! explicitly from (3.25), namely,

pr = —b++/b*>—4ac

5 (3.26)

Here, if we set P (17) = P1 () =k17, then we have P (7" *1) =k 5" *1. The coefficients a,b
and c of above quadratic equation (3.26) will satisfy

a:3k‘% (p({ﬁn—l—l)lqn—i—l),

b:kl (P/($n+1),3(:5n+1—4(Pn—|—(,bn_l)+3k1 (F/((:Bn—l—l)’qn—i—l),

C:_(3ﬁn+l_4Rn+Rn71)+(F/(q’gn+l),3$n+l_44)11_1_4)1171)‘
If we set P (1) ="P2(n) =ka1;, then we have

31,ln+1 _41711 _}_171171
2At

P (1711—&-1) — kz
The coefficients a,b and c of above quadratic equation (3.26) satisfies

27k% B+l 1
a=ap (F'@" 0",

_ 3ko 141y e+l n n—1 127//”_377”71 n+1
Ok (4" =" Gy gntl
oA (1 2At ko ) (F(@™).4"0),
(At Poanady gt gn a1 12003

—(BR"™ 1 —4R"+R" 1),

Next, we will show that how to obtain the optimal choice for the relaxation parame-
ter Ag. The set V in (3.22) can be simplified as

yo {me 01] st (R = (F(¢™),1))A < (R* = (F(¢" 1), 1))

+AtKn+l<gyn+l,‘un+l)+£11Kn+l (£(¢n+l_2¢n+¢nl),¢n+l_2¢n+¢nl)}‘ (3‘27)
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It is to obtain that 1 €V which means the set V' is non-empty because of the fact
AtK”+1 <gyn+l,‘un+l) >0,

iKnJrl (£<¢n+l _2¢n+¢n71)’¢n+1 _24)11 _i_qbnfl) >0.
The optimal parameter Ay can be chosen as a solution of the following optimization prob-
lem:
Ap= min A,
A€[0,1]
s.t. (R —(F(¢"™),1))A

< (R (E(¢"),1)) + Ak (G ) (3.28)

_|_iKn+l (£<(Pn+1 _24)11 +¢n—1),¢n+l _24)71 +4>n_1).

The next theorem summarizes the choice of A¢ and x"*1.

Theorem 3.3. Define

_ At(g;un-l-%,‘un-l-%)_|_(E(qbn—H_2¢n+¢n—l),¢n+l_24)11_'_4)71—1)/4

P |§n+1_ (F(()bn—&-l),l)‘

under the condition of R"™*1 — (F(¢"+1),1) #0, then we choose the optimal relaxation parameter
Ao and k"1 as follows:

1) If R"1 > (F(¢"1),1), we set A\g=0 and x"+1=0.
2) IF R < (F(¢™*),1) and B>3/2, we set Ag=0and k"1 =1/p.
3) IF R < (F(¢"*),1) and B€[0,3/2), we set A\g=1—2B/3 and k"1 =2/3.
Proof. 1) If R"*'=(F(¢"*1),1), the inequality (3.28) is always true for any A€[0,1]. Thus,

we have the optimal relaxation parameter Ao =min, ¢y ;A =0.

2) If R"' > (F(¢"*1),1), dividing by R"*'— (F(¢"*1),1) for both sides of the inequality
(3.28), we have
A<14x"T1B.

Setting "1 =0, then we have A <1 which means all parameters in [0,1] are satisfy above

inequality. Hence, we have A\g =min, c[g;jA =0.
3) If R"1 < (F(¢"*1),1), the optimization problem (3.28) will be simplified as
Ap= min A
A€[0,1]
st A>1—«"T1B.
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Noting that ¥"*! €[0,2/3], then if « >3/2, we have x" "1 €[0,1]. Then we set k"1 =1/
to obtain that A >1—«""18=0 is always true. It means Ao =min refo,1)A = 0. Secondly, if
B€[0,3/2), we have k"1 <1 to let (1—«x"*1B) € (0,1] for any x"*! €[0,2/3]. Then we
obtain Ag=min,c[1jA=1—pBmaxx"*!. Noting that maxx" ! =2/3, we obtain the optimal
solution Ag=1-28/3. O

Theorem 3.4. The second-order RZF-BDF2 scheme (3.20)-(3.21) with the above optimal choice
of Ao and x" 1 is unconditionally energy stable in the sense that

E(P"—E(¢p") < — (1_§Kn+l>

% [At<gyn+l’ yn+l)+i(£(¢n+l_2¢n+¢n71),¢n+1_24)11_’_4);171) SO, (3‘29)

where

i(ﬁ¢n+l,¢n+l)+i(£(2¢n+1—¢n),2¢n+1—(Pn)—|—%Rn+l—%Rn.

Proof. Firstly, taking the inner product of Eq. (3.20a) in the RZF-BDF2 scheme (3.20) with
Atu"t1, we get

g((Pn—l—l) —

1
5(34)71—1—1 _44)11 —I—(])”_l,]/ln+l) — —At(gy”“, yn—kl)‘ (3‘30)

Secondly, by taking the inner products of the Eq. (3.20b) with (3¢" ! —4¢" +¢" 1) /2 and
using the identity

z(ak+1, 3ak+1 _4ak+ak71)

:]ak+1\2+\2ak+l—ak\zﬂak“—2ak+ak‘1\2—\ak\z—\zak—ak‘l 2,
one obtains

(3¢n+1 _4¢n _|_(Pn—1,‘un+l)

NI= DN =

(L9"T,3¢" " —dg"+¢")

+% (TP D] (F/(¢"), 3¢ —4g" +¢" )
= i(ﬁqbn“/ ¢+ i (L(2¢" —¢"), 29" — ")
L eg 4 L2 =), 207 )

+ (L@ 20" 49" ), 9" 29" 49" )

N

+% [P D] (F/("), 39" — 49" +¢" ). (3:31)
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We rewrite the Eq. (3.20c) as follows:

3,41 1 " 3_, 1 n_1
(SR -3r) - (GR-r)
:%[1+7)<;7n+1)] (F'($n+l),3¢”+l—44)”—1—(])”*1), (3'32)

Substituting the Eq. (3.32) into (3.31) and combining it with (3.30), we have

(£¢n+1’¢n+l) _|_i (£(2¢n+1 _¢n)’2¢n+1 _(Pn) + ;ﬁn—i—l o %Rn
1 1 3 1
— 1 (L") = (L(29" =9 1) 29" —¢" ) — SR SR

I,

-

- _ |:At(g‘un+1’yn+l)+_(£<¢n+1_2¢n+¢n1)’¢n+1_2¢n+¢nl):| <0. (3‘33)

From the constraint condition in (3.22), we could obtain

ER”‘H _ éﬁn—i—l < éKn—i—l

2 2 2
% [At(gyn+l,yn+l)+i(ﬁ<(])”+l—24>n+(])”_1),(])”+1—24)”—1—(])”_1)}. (3‘34)

Adding the two above equations to each other and noting that "1 €[0,2/3], we have

E(P"H—E(p") < — (1_%Kn+1>

% [At(gﬂn—l—l,‘un—l—l)_'_i(E((Pn—l—l_2¢n+¢n—l),¢n+l_2¢n+¢n—l):| SOI (3'35)

which completes the proof. O

4 The relaxed multiple zero-factor approach

The nonlinear free energy of many complex gradient flows contains disparate terms such
that schemes with a single zero-factor may require excessively small time steps to obtain
correct simulations. In this section, inspired by the multiple SAV (MSAV) approach in [3],
we give a relaxed multiple zero-factor (RMZF) approach to simulate the gradient flow
with two disparate nonlinear terms

9 _
g - _glfl/

p=Lp+F(9)+F(¢),

(4.1)
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where L is a linear operator, F{ (¢) and F}(¢) are nonlinear potential functions, G is a pos-
itive or semi-positive linear operator. The above system satisfies the following energy

dissipation law:

dE

E;Z—%g%ﬂ)éa (4.2)

where y=0E/J¢ and the free energy E(¢) is

E(9)=5(0.Lo)+ [ Filghix+ [ Ea(p)ix. 43)

Introducing two linear zero factors P(#),S (1) of a scalar auxiliary function #(¢) and two
SAVs

&:LH@W,&:AB@M,

we rewrite the system (4.1) as the following;:

o

gz—g%

H= Lo+ () +EN9)+P(1E () +S()E(9),

9R ,

o P (9) s
O S(IE(),

Ri=(Fi($),1),

Ry=(Fx(¢),1).

Here P(1) and S(#) are two linear zero factors. We choose the following linear function-
als with initial conditions:

Pi(n)=kin with 7(0)=0, Pa(n)=kayr with 75(0)=c,

4.5
S1(n)=ksn with 7(0)=0, Sx(y)=ksny with 7(0)=cy, (45)

where ky,ky, k3, k4 are arbitrary non-zero constants and cy, ¢, are any real numbers.

A second-order Crank-Nicolson scheme based on the relaxed multiple zero-factor ap-
proach (RMZF-CN): Set R? = (F; (¢(0,x)),1),RY = (F2(¢(0,x)),1) and compute ¢" 1, R"
via the following two steps:

Step I. Compute ¢" ', ﬁ'f“ and ﬁg“ by the following semi-implicit Crank-Nicolson
scheme:

—n-+1
R A
v ——Gu"ts, (4.6a)

= O L E () B | (4.60)

Nl—

H
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o= P (" ) g S () g, (460)
(RY™=RY)+ (R = Rg)
_ [1+73(17n+%)] (F{($n+%),¢n+1_¢n)
+ 148 ()| (B (@"2),¢" —9"), (4.6d)

REFI=(BE)1), Rp=(RE1), (4.6¢)

where ¢"t1/2=3¢"/2—¢""1/2, and
q¥+l:_AtAflgF1/($n+%), q3+1:_AtAflgF2/($n+%)
Here the coefficient matrix A= (I+AtGL/2).
Step II. Update the scalar auxiliary variable R? ™ and R} via a relaxation step as

R = ARy 4+ (1= Ao) (Fi (¢"11),1),

Rngl :/\0K§+l + (1 —)\0) (Fz (¢n+l),1)’ ApgEV.
Here is V a set defined by

(4.7)

V= {/\ |A€[0,1] s.t. (RIF 4 REFY) — (RIF4REHY) < At (G 2,17+ 2),
R’f“zAﬁT“Hl—A)(F1<4>”“),1),R3“=M?§“+<1—A>(Fz<4>”“),1)}- (48)

Here, «"*1 € [0,1] will be given below. Substituting the Eq. (4.6¢c) into the Eq. (4.6d) to
obtain

(RY™ = RY) + (Ry ™ = R3)
=[P )] (FE D8 PO S e - 7)
i {14—5(17“%)] (1:2/((:511+%)’$n+1+P(17n+%)q111+1+8(17n+%)qg+1_¢n>. 4.9)

Noting that both P (1) and S(#) are all linear functionals of 17, we immediately obtain
that the above equation is a quadratic equation with one unknown for #"+1/2. It means
we can obtain determine 1" +1/2 explicitly from (4.9), namely,

_ —bx/b>—4ac
- 2a ’

Here, the values of the coefficients a,b and ¢ depend on the choice of the zero factors P (1)
and S(77). For example, if we set P(17) =P1() =kin, and S(17) = S2(17) = ka1, then we

have

Nl—=

nt (4.10)

n+1_ n
p(nm—%):kwwr%, 5(17”+%):k417 Atn
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The coefficients a,b and ¢ can be given as follows:

~ k ~ k
4= (klp/l(¢n+%)+A_ﬁiF/2((Pn+%),qu;1+l_|_A_4tqg+1>’

h— (klpll ($n+%) +%F/2($n+%),$n+l _(Pn_%ﬂnqurl)

+ <F/1 (‘Pn+2) + (1_ A_‘ltnn> Pl2(¢n+2)'qu¥+l+ﬁqg+l> ,
c—— (RII-RY) — (Y- RY)
T (Pq (§"2)+ ( - A—in“) Fa(¢" )" —g"— A—in”qﬁ“) -
Next, we will show that how to obtain the optimal choice for the relaxation parame-
ter Ap. Setting
R+l — R?il-l—l +K£l+l Rl — R111+1 _|_R121+1
(") = (F(¢" ) +R(¢"),1),

we observe that the optimal relaxation parameter A is the solution of the following opti-
mization problem:

Ap= min A
A€[0,1] (4.11)
st [ﬁn—&-l o El ((Pn+1)] A < [ﬁn—l—l o El ((Pn—l—l)] —}—AtKn+1 (Qy’”%,y”*% )
The next theorem summarizes the choice of Ag and «"t1.
Theorem 4.1. If R"*1 —E;(¢p"+1) #0, setting

AH(Gp" )
== ,
{Ri’l‘l’l —E <¢n+1){

then we can choose the optimal relaxation parameter Ao and k"1 as follows:
1) If "1 > Ey(¢" ), we set Ag=0 and k"1 =0.
2) If R™ < Eq(¢™*1) and a > 1, we set A\g=0 and k"' =1/a.
3) IF R*™1 < Ei(¢"*) and a €[0,1), we set Ag=1—w and k"1 =1.

Theorem 4.2. The second-order Crank-Nicolson scheme (4.6)-(4.7) based on the RMZF approach
with the above choice of Ag and k"1 is unconditionally energy stable in the sense that

E(g) —E(¢") < —AHL—K™1) (Gu" 2,1 2) <0, 4.12)
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where

g<¢n+l) — (£¢n+1,¢n+l) +R111+1 +Rg+1’

N~

and we further have
(") <E(9"),

under the condition of R"*' > E;(¢™*) or R"™1 < Ey(¢" ") with a > 1. Here £(¢") is the
original energy, where

€(¢n+1) — %(E(PnJrl’(PnJrl)_'_ (Fl ((Pn+1),1) + (F2(¢n+1),1).

If R"1 < Ey(¢" ) and a € [0,1), we have

g<¢n+l) §5(¢n+l)‘

5 Examples and discussion

In this section, we implement the proposed Crank-Nicolson scheme based on the relaxed
zero-factor approach and BDF2 scheme based on the zero-factor approach with relax-
ation (RZF-BDF2) and apply them to several classical gradient flow models include the
Allen-Cahn model, the Cahn-Hilliard model, and the phase-field crystal model. In all
considered examples, we consider the periodic boundary conditions and use a Fourier
spectral method in space.

5.1 Allen-Cahn model

Consider the following Lyapunov energy functional:

[ (Yol L 21y
E@)= [ (31V0P+ g e -1? ) dx 6.
Given G = I, then the gradient flow model in (1.2) reduces to the corresponding Allen-
Cahn equation

%_f:M<A¢_€1_2<¢3_¢)>, (xt) € [0,T]. (5.2)

For above Allen-Cahn model, given the following initial condition:
¢(x,y,0) =0.001cos(x)cos(y)

in domain Q)= [0,27]?. We use 1282 Fourier-spectral modes in space and set model pa-
rameters T=1, e =0.4, M =1. We consider Crank-Nicolson SAV (SAV-CN) scheme, the
RSAV-CN scheme in [10], the proposed second-order RZF-CN and RZF-BDF2 schemes
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Table 1: The L errors, convergence rates at T=1 for the SAV-CN, RSAV-CN, RZF-CN and RZF-BDF2
schemes.

At SAV-CN RSAV-CN RZF-CN RZEF-BDF2
Error Rate Error Rate Error Rate Error Rate
1/20 | 2.1972e-2 — 2.1984e-2 — 1.2748e-2 — 3.0129¢-2 —

1/40 | 6.3229¢-3 | 1.7970 | 6.3322e-3 | 1.7956 | 3.5123e-3 | 1.8597 | 9.7308e-3 | 1.6305
1/80 | 1.6715e-3 | 1.9194 | 1.6768e-3 | 1.9169 | 9.1399e-4 | 1.9421 | 2.7363e-3 | 1.8303
1/160 | 4.2834e-4 | 1.9643 | 4.3109e-4 | 1.9596 | 2.3249e-4 | 1.9750 | 7.2166e-4 | 1.9228
1/320 | 1.0859e-4 | 1.9798 | 1.0997e-4 | 1.9708 | 5.8549e-5 | 1.9894 | 1.8486e-4 | 1.9649

to obtain the numerical error and convergence rates for above example. We set the zero
factor P (1) =1n; in the RZF method. The results are shown in Table 1 which indicate that
all convergence rates are consistent with the theoretical results. We also observe that the
RZF-CN method is more accurate than the baseline SAV-CN and RSAV-CN schemes. The
energy curves are plotted for both SAV-CN and RZF-CN schemes with At=0.01 in Fig. 1.
It can be observed from this figure that the computed energy for both schemes decays
with time. Fig. 1 also indicates that our proposed RZF method is a very efficient way
for preserving the consistency between the modified energy and the original energy. In
the following, we also give the detailed results of the energy error and the introduced
zero factor P(#). From Fig. 2, we observe that the RZF-CN scheme provides less error
between £ and E(¢) than the RZF-BDF2 schemes. The values of the zero factor P (1) are
very close to zero for both RZF-CN and RZF-BDF2 schemes. We also choose two differ-

70 ! T = RZF-CN 0.6 -——RZF-CN error
——SAV-CN ——SAV-CN error
60T - - - Accurate Energy 051 1
50
0.4
40 F
0.31
30
0.2r
201
AT
10 0
0 Ly 0
10 -0.1 1
0 2 4 6 8 10 0 2 4 6 8 10
(a) (b)

Figure 1: A comparison of the SAV-CN, and RZF-CN methods in solving the Allen-Cahn equation. (a) The
numerical energies using the SAV-CN and the RZF-CN schemes with At =0.01. (b) Numerical results of

E(¢)—E(¢) using the SAV-CN and the RZF-CN schemes with At=0.01.
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ent P (1) with P1(17) =kin and P2 (17) =k to check the influence on the accuracy. From
Fig. 3, one can see that different choices of P(7) have little effect on accuracy. Mean-
while, we choose k1 =1, 0.5 and 0.1 to compare the effect on the accuracy of the proposed
algorithm. It seems that smaller parameters k; give better accuracy.

We perform the numerical test to the Allen-Cahn equation (5.2) with the following
initial conditions in 2D and 3D:

2P 2P
y,0)=tanh {10 —4+="—=—-1| —+=—+-—-1 |, 5.3
Pxy,0)=ta < (0.04 0.36 ) <0.36+0.04 >> (5:3)
x10
Bk ' ' ey # ' "[--—RzF-CN
---RzZFBDF2 | T % ——RZF-BDF2
0 - : - !
0.1} l‘~_ /
02t "\‘
03}
0.4 : A : - !
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(@)

Figure 2: A comparison of SAV-CN and RZF-CN methods in solving the Allen-Cahn equation. (a) Numerical

results of £(¢p) —E(¢) using the RZF-CN and the MZF-BDF2 schemes with At=0.01. (b) Numerical results of
the zero factor P (1) using the RZF-CN and RZF-BDF2 schemes with At=0.01.
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Figure 3: A comparison of different P(17) and coefficient k for Py (1) =kin and Pa(17) =katj;.
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V(x—05)2+ (y—05)2+ (2—0'5)2_R0> : (5.4)

$(x,y,2,0) =tanh < e

For the initial condition (5.3), we set (x,y) € [—1,1] x [-1,1], M=0.01 and e =0.02. We
choose 256 x 256 Fourier modes to discretize the space and use the time step At =103,
Fig. 4 shows the numerical test results at t=0,0.4,1,2 to the Allen-Cahn model using the
RZF-CN method. In Fig. 5, we present a comparison of energy in Fig. 5(a), the nonlinear
free energy (F(¢),1) and R"*! in Fig. 5(b) and the zero factor P () =7 in Fig. 5(c) of
RZF-CN scheme. It is obvious to see that the proposed RZF method dissipates the almost
original energy. From Figs. 5(b) and 5(c), we observe that the values of the zero factor
are essentially zero except at a few time steps for this example. The trend of the value of
zero factor P(#) is highly consistent with the variation of the nonlinear free energy which
implies that the introduced zero factor P(7) is essential and very efficient to capture the
sharp dissipation of the nonlinear free energy.

For the initial condition (5.4), we set Q = [0,1]> with Ry=0.3,=0.02, T=3.5, M=0.01
and give At =0.01. We discretize the space by the Fourier spectral method with 128 x
128 x 128 modes. The snapshots of zero level set to the numerical solutions using the
RZF-CN method are shown in Fig. 6. The simulation results depict the motion by mean
curvature property and non-conservation of mass very well.

Figure 4: Snapshots of zero level set to the numerical solutions of Allen-Cahn model with the initial condition
(5.3) at t=0,04,1,2.
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Figure 5: (a) The comparisons of numerical energies between g((j)) and the original energy E(¢). (b) The

numerical results of R"*! and (F(¢"*1),1). (c) The evolution of 7(t) of Allen-Cahn model with the initial
condition (5.3).
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Figure 6: Snapshots of zero level set to the numerical solutions of Allen-Cahn model with the initial condi-
tion (5.4) at t=0,2,3,3.5.

5.2 Cahn-Hilliard model

Consider the following well-known Cahn-Hilliard model:

aa_‘f =MA(—€*Ap+¢°—p), (xt)€Qx[0,T] (5.5)

with the free energy
2
_ [ & 2,1 o 1
E(g)= [ SIVgP+7(4* 1) 56)

To give a more efficient simulation, we specify F(¢) = (¢*—1—p)%/4. Then the above
Cahn-Hilliard equation is obtained as

W —MA(-CDp0+F (9), F(@)=9(0*1-6), (x))eQx0T].  (57)

Next, we investigated the numerical tests by the proposed RZF method to the Cahn-
Hilliard model with the following initial conditions:

¢(x,y,0)=0.01cos(27x)cos(2my), (5.8)

2 )2 — )2 — )2y
Qb(x,y,z,O):l—;tanh(\/(x %)y \/iye) *zz) ) (59)

¢(x,y,2,0)=0.05rand (x,y,2), (5.10)

where “rand” implies a random number generating function ranged from —1 to 1.

We set the initial condition as in (5.8) to check the convergence rates of our proposed
schemes. We adopt uniform meshes Ny =N, =128, and set T=1,6=0.4, M=0.5, =2 and
P(n)=rn. Fig. 7 shows the results of the errors and convergence rates for the RZF-CN
and RZF-BDF2 schemes. Numerical results demonstrate the accuracy and efficiency of
our proposed scheme.

Next, we investigate the coarsening dynamics driven by the Cahn-Hilliard equa-
tion with the initial conditions (5.9) and (5.10). We set Q=[0,1]3,P()=#;,€=0.01, M=1,
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Figure 7: Convergence test for Cahn-Hilliard equation using RZF-CN and RZF-BDF2 schemes.

Figure 8: Snapshots of zero level set to the numerical solutions of Cahn-Hilliard model with the initial condition
(5.9) using RZF-CN scheme at £=0,0.01,0.1,0.2.

r=0.14, (x1,y1,21)=(0.5,0.4,0.5), (x2,y2,22) = (0.5,0.7,0.5). Here, we use N,=N,=N,=128,
h =1/128, and At = le-3. Fig. 8 shows the numerical investigation results at
t=10,0.01,0.1,0.2 to the 3D Cahn-Hilliard model with the initial condition (5.9). One
can see that the initially separated spheres connect with each other gradually and finally
merge into a big vesicle. The results are also consistent with those presented in [4]. Fig. 9
shows the numerical investigation results at t =0,0.01,0.1,0.2 to the 3D Cahn-Hilliard
model with the initial condition (5.10). The above results represent well the coarsening
dynamics of the Cahn-Hilliard equation.

5.3 Phase filed crystal model

Consider the following Swift-Hohenberg free energy:
(el 2
E(<p)—/0<4<p +5¢(—e+(1+4) )¢>dx,

where x € Q CRY, ¢ is the density field, g >0 and € > 0 are constants with physical
significance, A is the Laplacian operator.



138 Z.Liuand X. Li / CSIAM Trans. Appl. Math., 5 (2024), pp. 110-141

Figure 9: Snapshots of zero level set to the numerical solutions of Cahn-Hilliard model with the initial condition
(5.10) using RZF-CN scheme at +=0.02,0.1,0.5,2.

Considering a gradient flow in H™!, one can obtain the following phase field crystal

(PFC) model:

%—‘f =Apu=A(P°—ep+(1+A)%¢), (xt)€QXQ,
which is a sixth-order nonlinear parabolic equation and can be applied to simulate var-
ious phenomena such as crystal growth, material hardness and phase transition. Here
Q=(0,T],u=0E/d¢ is called the chemical potential.

In the following, we simulate the benchmark simulation for the PFC model. We
choose the initial condition ¢o(x,y) = Po-+0.01 x rand(x,y), where the rand(x,y) is the
random number in [—1,1] with zero mean. In this test, set e =0.325 and adopt uniform
meshes N, = N, =128 in the Fourier spectral method.

We show the phase transition behavior of the density field for different values at var-
ious times in Fig. 10 with different ¢y and Q). We observe that for different ¢y, the shape
and rate of crystallization of crystals are different. In all cases, the process of the phase
transition is qualitative agreement of the density fields. Similar computation results for
phase field crystal model can be found in many articles such as in [22]. The energy curves
are plotted for PFC model with different initial conditions in Fig. 11. It is observed that
the computed energy for all cases decays with time.
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Figure 11: (a) Energy of £(¢) and E(¢) with Q=10,100]2 and ¢ =0.1. (b) Energy of £(¢) and E(¢) with
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Figure 10: Crystal growth pattern formation with different initial conditions governed by the PFC model.
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