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Abstract. Body attitude coordination plays an important role in multi-airplane syn-
chronization. In this paper, we study the flocking dynamics of a modified model for
body attitude coordination. In contrast to the original body attitude alignment mod-
els in Degond et al. (Math. Models Methods Appl. Sci., 27(6):1005–1049, 2017) and
Ha et al. (Discrete Contin. Dyn. Syst., 40(4):2037–2060, 2020), we introduce the veloc-
ity alignment term and assume the velocity of each agent is variable. More precisely,
the adjoint coefficient will vary with the linked individual changes. In this case, syn-
chronization would include the body attitude alignment and velocity alignment. It
will generate a new collective behaviour which is called body attitude flocking. As
results, we present two sufficient frameworks leading to the body attitude flocking by
technique estimates. Also, we show the finite-in-time stability of the system which is
valid on any finite time interval. In addition, we formally derive a kinetic model of
the model for body attitude coordination using the BBGKY hierarchy. We prove the
well-posedness of the kinetic equation and show a rigorous justification for the mean-
field limit of our model. Moreover, we present a sufficient condition for asymptotic
flocking in the kinetic model. Finally, we also give the numerical simulations to verify
our analysis results.

AMS subject classifications: 34D06, 70F45, 70G60, 82C22

Key words: Body attitude coordination, flocking, stability, measure valued solutions, mean-field
limit.

1 Introduction

Collective behavior is ubiquitous in the nature world: schools of fish, flocks of birds,
herds of animals, colonies, pedestrian dynamics, etc. Explaining the emergence of these
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collective behaviors in terms of microscopic decisions of each member is a hot topic of
research in the natural sciences. Recently, many mathematical models on the phenomena
of flocking have appeared, such as the Vicsek model [29], the Cucker-Smale model [6], the
Kromoto model [21], the Lohe model [24], etc, and these models have been extensively
studied in literature [3–5,10,11,14,16–20,23,26,31], more literature can be found in [1,25].

These models presented above are built with mass point particles as objects, when
collective behavior requires body attitude synchronization, such as synchronization of
satellite attitudes [22] and camera pose averaging [28], the mass point models fall short.
In this paper we are mainly interested in the model of self-propelled particles with body
attitude coordination.

Degond et al. [9] proposed an agent-based model for alignment of body attitudes
where the states of agents are described by the positions of their center of mass and
body attitudes. Specifically, agents move with the same speed and the direction of mo-
tions are determined by body attitudes and agents try to adjust their body attitudes with
their neighboring agents toward average orientation. For simplicity of modeling, other
detailed internal structures are ignored at the level of modeling. The body attitude model
is as follows:



























dxi =v0 Aie1dt,

dAi=νPTAi
◦
[

(

PD(Mi)·Ai

)

PD(Mi)dt+2
√

DdWk
t

]

,

Mi :=
1

N

N

∑
k=1

K(|xi−xk|)Ak,
(

xi(0),Ai(0)
)

∈R
3×SO(3),

(1.1)

where ν is a constant, K(x) is the communication function, xi ∈ R
3 is the position of

the i-th agent and Ai ∈SO(3) is the body attitude of the i-th agent, PD(Mi) denotes the
orthogonal matrix which comes from the polar decomposition of Mi,W

k
t is a noise term

and PTAi
is the projection operator on the tangent space TAi

SO(3),

PTA
(B)=

1

2
(B−ABT A), A∈SO(3), B∈M(R,3).

The term Aie1 describes the direction of movement for the i-th agent where v0 denotes
a constant common speed of the agents and (e1,e2,e3) denotes the canonical basis. The
authors of [9] formally derived system (1.1) corresponding kinetic and hydrodynamic
model, and studied the hydrodynamic limit for body attitude coordination. Based on [9],
Ha et al. [15] studied the following orientation flocking model (OFM):










ẋi=v0 Aie1, t>0, i=1,.. . ,N,

Ȧi A
−1
i =Hi+

κ

N

N

∑
k=1

ψ(|xi−xk|)
(

Ak A−1
i −Ai A

−1
k

)

,
(

xi(0),Ai(0)
)

=
(

x0
i ,A0

i

)

,
(1.2)

where (xi,Ai)∈R
d×SO(d), the skew-symmetric matrix Hi is a generalized frequency-like

matrix, κ denotes the coupling strength between the agents. ψ(r) is the communication
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function and satisfies
0≤ψm ≤ψ(r)≤ψM, r≥0, (1.3)

where ψm and ψM are positive constants. In the system (1.2), the dynamics of Ai obey the
Lohe matrix model in SO(d). The authors of [15] presented orientation flocking estimates
and showed the system (1.2) is stable with respect to the initial data in any finite time
interval. For more studies of body attitude coordination models, refer to [7, 8, 12, 13].

The models (1.1) and (1.2) are regarded as the Vicsek-type flocking model, i.e. all
agents travel at a constant speed in given directions. The states of agents are described
by the positions and body attitudes. However, in many collective phenomena, each agent
has a different speed and is constantly changing. Therefore, we would like to address the
following question:

• Can we design a body attitude coordination model with velocity alignment? Such
as every agent adjusts its velocity by the velocity of the other agents. If so, under
what conditions on system parameters and initial data can the proposed system
exhibit asymptotic flocking and body attitude alignment?

We obtained the following body attitude coordination model by considering the addition
of velocities in the rotating coordinate system (modeling details see Section 2). The model
is as follows:



































ẋi=vi, t>0, 1≤ i≤N,

v̇i =
k1

N

N

∑
j=1

ϕik

(

(vk−vi)+ ȦiA
−1
i (xk−xi)

)

,

ȦiA
−1
i =

k2

N

N

∑
j=1

ψik

(

Ak A−1
i −Ai A

−1
k

)

,
(

xi(0),vi(0),Ai(0)
)

=
(

x0
i ,v0

i ,A0
i

)

,

(1.4)

where k1,k2 >0 are the coupling strength, (x0
i ,v0

i ,A0
i )∈R

2d×SO(d). The communication
weight ϕ and ψ are bounded, positive, non increasing and Lipschitz continuous on R,

ψik =ψ(|xi−xk|), ϕik = ϕ(|xi−xk|).

We consider the channel capacity in the Cucker-Smale model whose form

ϕ(r)=(1+r2)−β.

And ψ(r) follows the form in [15] to satisfy (1.3), i.e.

ψm ≤ψ(r)≤ψM.

But we consider the case of ψ(r) without a positive lower bound in Theorem 3.2. Com-
paring models (1.1) and (1.2), the speed of every agent in our model is variable and the
direction of velocity is not determined by body attitude.
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The model (1.4) is a particle description to collective behaviors. When the number
of agents is sufficiently large N →∞, we are forced to study the mean field limit of the
system (1.4). Hence, we present the kinetic model of (1.4). Let f = f (t,x,v,A) be the
one-particle distribution function of the system (1.4) infinite ensemble at the phase space
point (x,v,A) at time t. By the BBGKY hierarchy, we formally derive the following kinetic
equation (see Appendix B):

∂t f +v·∇x f +∇v·(L[ f ] f )+∇A ·(Q[ f ] f )=0,

L[ f ](t,x,v,A)= k1

∫

Ω
ϕ(|x−y|)

[

(v∗−v)+k2ψ(|x−y|)K(A,A∗)(x−y)
]

× f (t,y,v∗,A∗)dydv∗dA∗,

Q[ f ](t,x,v,A)= k2

∫

Ω
ψ(|x−y|)(A∗−AA−1

∗ A) f (t,y,v∗,A∗)dydv∗dA∗,

(1.5)

where K(A,A∗)= A∗A−1−AA−1
∗ and Ω=R

2d×SO(d), ∇A is divergence in SO(d). For
a detailed calculation of ∇A and integration with respect to A can refer to [9].

In this paper, our main results can be summarized as follows. The first result is that
we present two sufficient frameworks leading to the body attitude flocking (see Defini-
tion 2.1). In the first sufficient framework, we require the communication function ψ(r)
to satisfy (1.3) and obtain a body attitude flocking estimate that is independent of the
number of agents N. In the second framework, we remove the requirement for a positive
lower bound on ψ(r) but place a restriction on its growth rate, and we present a body
attitude flocking estimate associated with N. In addition, we present the finite-in-time
stability estimate which is valid on any finite time interval.

The second result of this paper is that we prove the well-posedness of the kinetic
equation based on the framework of [3] and we show also the convergence of particle
systems (1.4) to their corresponding kinetic equations (1.5), i.e. convergence of the par-
ticle method towards a measure solution of the kinetic equation (1.5). Moreover, we
present a sufficient condition for asymptotic flocking in the kinetic system (1.5).

The rest of the paper is organized as follows. In Section 2, we discuss physical deriva-
tion of our model and present definitions and lemmas needed in the later section. In
Section 3, we give two sufficient frameworks leading to the body attitude flocking and
show that the system (1.4) is stable with respect to the initial data in any finite time in-
terval. In Section 4, we prove the existence and uniqueness of measure solutions to the
kinetic equation (1.5) and present the stability estimate of the measure-valued solutions
in W1-distance. In Section 5, we provide several numerical simulations consistent with
the theoretical analysis obtained in Section 3.

Notation. For xi =(x
(1)
i ,··· ,x(d)i ) and a matrix A=(aij)∈SO(d)

‖xi‖p=

(

d

∑
j=1

∣

∣x
j
i

∣

∣

p

)
1
p

, ‖A‖=
(

tr(AAT)
)

1
2 ,

and |xi| denotes ℓ2 norm ‖xi‖2.
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2 Model formulation and preliminaries

In this section, we present physical derivation of our system, the definition of the body
attitude flocking and review some background on Wasserstein distances.

2.1 Model formulation

The Cucker-Smale-type flocking model postulates every agent adjusts its velocity by
a weighted average of the differences of its velocity with those of the other agents. We
can design our model based on this postulate. Consider the following system:











ẋi(t)=vi(t), t>0, 1≤ i≤N,

v̇i(t)=
κ

N

N

∑
k=1

ϕ(|xj−xi|)Vji,
(2.1)

where Vji denotes the relative velocity of the j-th agent and the i-th agent.

In order to obtain the expression for Vji, we need to consider motions in moving coor-
dinate systems. The inertial system is denoted by L (laboratory system) and the moving
system by Mi (moving system). O is the origin of L,oi is the origin of Mi (oi can be re-
garded as the center of mass of the i-th agent). According to [2], a motion of Mi relative
to L is a map smoothly depending on t

Dt
i : Mi→ L,

and every motion Di
t can be uniquely written as the composition of a rotation At

i : Mi→L
and a translation Ct

i : Mi→ L, i.e.

Di
t=Ci

t◦Ai
t.

Let xi(t) be the displacement vector of oi relative to O, xj(t) be the displacement vector
of oj relative to O and Qji(t) be the displacement vector of oj relative to oi in the moving
system Mi. Then we have

xj(t)=DtQji(t)=Ai
tQji(t)+xi(t).

Taking the derivative of the above equation with respect to t we can obtain

ẋj(t)= Ȧi
tQji(t)+Ai

tQ̇ji(t)+ ẋi(t).

We set vi(t)= ẋj(t) is the absolute velocity of oi,Vji(t)=Ai
tQ̇ji(t)∈L is the relative velocity.

Note that Vji(t)∈L and Q̇ji(t)∈Mi are different. Q̇ji(t) is the velocity of oj relative to oi in
the Mi reference system, while Vji(t) is the velocity of oj relative to xi in the L reference
system. Since

Qji(t)=(Ai
t)
−1
(

xj(t)−xi(t)
)

.



78 Z. Qiao, Y. Liu and X. Wang / CSIAM Trans. Appl. Math., 5 (2024), pp. 73-109

We can obtain the following expression in the inertial system L:

vj(t)=vi(t)+Vji(t)+ Ȧi
t

(

Ai
t

)−1(
xj(t)−xi(t)

)

=vi(t)+Vji(t)+ωi(t)×
(

xj(t)−xi(t)
)

,

where ωi(t) is the angular velocity of the i-th agent, ωi(t)×(xj(t)−xi(t)) is the trans-

ferred velocity of rotation. Let Ai
t = Ai(t)∈ SO(3) denote the rotation of the i-th agent,

Ai(t)(e1,e2,e3)=(e
′
1,e

′
2,e

′
3) (see Fig. 1). Hence, we can obtain

Vji(t)=vj(t)−vi(t)+ Ȧi(t)A−1
i (t)

(

xi(t)−xj(t)
)

.

The above equation also holds in the d-dimension. Clearly, the system (2.1) degenerates
to the Cucker-Smale model when agents are not rotating, i.e. Ȧi=0.

Next, we need to give the dynamic system of Ai. Similar to [9,15], we set the dynamics
of Ai is the gradient flow of the weighted average Mi

Ȧi(t)=2k2∇A(Mi·A)|A=Ai
=PTAi

(Mi)

=
k2

N

N

∑
j=1

ψ(|xj−xi|)
(

Aj−Ai A
−1
j Ai

)

. (2.2)

The Eq. (2.2) means that agents try to coordinate their body attitude with other agents. In
summary, we obtain the following body attitude coordination model:



































ẋi =vi, t>0, 1≤ i≤N,

v̇i =
k1

N

N

∑
j=1

ϕik

(

(vk−vi)+ Ȧi A
−1
i (xk−xi)

)

,

Ȧi A
−1
i =

k2

N

N

∑
j=1

ψik

(

Ak A−1
i −Ai A

−1
k

)

,
(

xi(0),vi(0),Ai(0)
)

=
(

x0
i ,v0

i ,A0
i

)

.

e1

e2

e3

O

oi
oj

AiQji

xi xj

Qji

e
′
1

e
′
2

e
′
3

oi

oj

Figure 1: Addition of velocities.
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2.2 Definitions and lemmas

We introduce the definition of the body attitude flocking and the finite-in-time stability
in the following. Before we proceed further, we give the following notation:

X=(x1,··· ,xN), V=(v1,··· ,vN), A=(A1,··· ,AN),

and

D
(

X(t)
)

= max
1≤i,j≤N

|xi−xj|,

D
(

V(t)
)

= max
1≤i,j≤N

|vi−vj|,

D
(

A(t)
)

= max
1≤i,j≤N

‖Ai−Aj‖.

We set Z=(X,V,A) and define the ℓ2,∞-norm as follow:

‖Z‖2,∞ = max
1≤i≤N

|xi|+ max
1≤i≤N

|vi|+ max
1≤i≤N

‖Ai‖. (2.3)

Definition 2.1. Let (X,V,A) be a global solution to (1.4). We say that system (1.4) exhibits
body attitude flocking if and only if the solution {xi,vi,Ai}N

i=1 to (1.4) satisfies the following three
conditions:

1. (Group formation). The position fluctuation is uniformly bounded in time t

sup
0≤t<∞

max
1≤i,j≤N

|xi−xj|<∞.

2. (Velocity alignment). The velocity fluctuation goes to zero time-asymptotically

lim
t→∞

max
1≤i,j≤N

|vi−vj|=0.

3. (Body attitude alignment). The body attitude fluctuation converges to zero as time goes to
infinity

lim
t→∞

max
1≤i,j≤N

‖Ai−Aj‖=0.

Definition 2.2 ([15]). For any two global solutions Z and Z̃ , there exists a positive constant
G=G(T), T ∈ (0,∞), which is depending on the initial data and independent of time t and the
number of agents N. If the following estimate holds, then we say the system (1.4) is finite-in-time
stable with respect to the initial data:

sup
t∈[0,T)

‖Z−Z̃‖2,∞ ≤G(T)‖Z0−Z̃0‖2,∞. (2.4)

In what follows, we present a selection of lemmas devoid of accompanying proofs.
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Lemma 2.1. Let A, B be d×d matrices and x be a d-dimensional vector. Then the following
relations hold:

‖AB‖≤‖A‖‖B‖, |Ae|≤‖A‖, |Ax|≤
√

d‖A‖|x|,

where e is an any unit vector in R
d. If A, B∈SO(d), the following equation holds:

‖A−B‖=2d−2tr(ATB).

Remark 2.1. In Lemma 2.1, the third inequality can be easily obtained. In fact, for any
x=(x1,··· ,xd)∈R

d,

|Ax|= |x1 Ae1+···+xd Aed|≤‖A‖
d

∑
i=1

|xi|≤
√

d‖A‖|x|.

Lemma 2.2 ([15]). Let (X,A) be a global solution to (1.2). Then the following estimate holds for
all t>0:

d

dt
D(A)≤−k2(3ψm−ψM)D(A)+2k2ψMD(A)2.

Proof. The details of the proof are similar to [15, Lemma 2.4].

Lemma 2.3 ([15]). Let y=y(t) denote a nonnegative function in the class of C1, which satisfies
the following differential inequality:

{

ẏ≤−py+qy2, t>0,

y(0)=y0,

where p,q are positive constants. Then we have

y(t)≤
((

1

y(0)
− q

p

)

ept+
q

p

)−1

, t>0.

2.3 Wasserstein distances

In this subsection, let us recall some notations and known results about mass transporta-
tion that we will use in the Section 4. For a more detailed approach, the reader can refer
to [30]. We set Ω=R

2d×SO(d). Let Ω equip with the norm ‖·‖Ω,

‖z‖Ω = |x|+|v|+‖A‖, z=(x,v,A)∈Ω.

The Frobenius norm of SO(d)⊂R
d2

corresponds to the ℓ2-norm of R
d2

. A∈SO(d) is con-

sidered as a vector in R
d2

. Thus, (Ω,‖·‖Ω) is a Polish space. We denote by P1(Ω) the
set of Borel probability measures with finite first moment. Let f , g ∈ P1(Ω), then the
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Wasserstein metric W1 (or Monge-Kantorovich-Rubinstein distance) between f and g is
given by

W1( f ,g)=sup

{∥

∥

∥

∥

∫

Ω
ϕ(z)

(

f (z)−g(z)
)

dz

∥

∥

∥

∥

Ω

, ϕ∈Lip(Ω), Lip(ϕ)≤1

}

,

where Lip(Ω) denotes the set of Lipschitz functions on Ω and Lip(ϕ) is the Lipschitz
constant of the function ϕ. Let Π( f ,g) is the set of transport plans between f and g, i.e.
the set of elements in P1(Ω×Ω) with first and second marginals f and g, respectively.
By Kantorovich duality we have

W1( f ,g)= inf
π∈Π( f ,g)

{

∫

Ω×Ω
|z1−z2|dπ(z1,z2)

}

.

(P1(Ω),W1) is a Polish space. In the following proposition, we recall some of its proper-
ties.

Proposition 2.1. The following properties of the distance W1 hold:

(i) The infimum in the definition of the distance W1 can be achieved. If the probability measure
π∗ satisfying

W1( f ,g)=
∫

Ω×Ω
|z1−z2|dπ∗ (z1,z2),

then π∗ is called an optimal transference plan.

(ii) Given { fk}k≥1 and f in P1(Ω), the following assertions are equivalent:

(a) W1( fk, f ) tends to 0 as k goes to infinity.

(b) fk tends to f weakly-* as measures and
∫

Ω
‖z‖Ω fk(z)dz →

∫

Ω
‖z‖Ω f (z)dz as k → +∞.

For T > 0 and a function f : [0,T]×R
n →R

m, we set LipR( f ) to denote the Lipschitz
constant of f in the closed ball BR⊂R

n with center 0 and radius R>0. That is

| f (t,x1)− f (t,x2)|≤LipR( f )|x1−x2|
for all x1, x2∈BR, t∈ [0,T).

3 Emergence of body attitude flocking

In this section, we present two body attitude flocking estimates for (1.4) using different
methods. In the first estimate, it is required that ψ(r) satisfies (1.3), and we use Lem-
mas 2.2 and 2.3 to obtain an estimate that is independent of the number of agents N. In
the second estimate, we remove the requirement for a positive lower bound on ψ(r) and
we obtain a body attitude flocking estimate associated with N. In addition, we show that
the system (1.4) is finite-in-time stable.
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3.1 The body attitude flocking estimates

3.1.1 Flocking estimates independent of the number of agents N

Compared to the model (1.2), the body attitude evolution equation in our model (1.4) is
a special case of model (1.2), i.e. Hi≡0. Therefore, we directly quote the conclusion about
the diameter functional D(A) in Lemma 2.2. By Lemmas 2.2 and 2.3, if ψ satisfies (1.3),
we can obtain

D(A)≤
((

1

D(A0)
− 2ψM

3ψm−ψM

)

ek2(3ψm−ψM)t+
2ψM

3ψm−ψM

)−1

≤ c0e−at, (3.1)

where

c0=

(

1

D(A0)
− 2ψM

3ψm−ψM

)−1

, a= k2(3ψm−ψM).

Next, we show our first result on the emergence of body attitude flocking of system (1.4).

Theorem 3.1. Let (X,V,A) be a global solution to (1.4). If the system parameters and initial
data satisfy 0≤β<1/2,

D
(

A(0)
)

<
a

2k2ψM
, 0< a<

2k1
(

1+D
(

X(0)
)2)β

,

and ψ satisfies (1.3), i.e. 0<ψm≤ψ(r)≤ψM. Then, system (1.4) admits a body attitude flocking
in the sense of Definition 2.1. Furthermore, there exist positive constants C, M, c such that

D
(

X(t)
)

≤CD
(

X(0)
)

+D
(

V(0)
)

,

D
(

V(t)
)

≤Me−
c
2 tD
(

V(0)
)

,

D
(

A(t)
)

≤ c0e−at.

Proof. Note that there exist at most countable number of increasing times tk such that we
can choose indices i and j such that D(V(t))= |vi(t)−vj(t)| on any time interval (tk, tk+1)
since the number of agents is finite and continuity of the velocity trajectories. This allows
us to estimate the time evolution of D(V(t)) as

1

2

d

dt
D
(

V(t)
)2
=

1

2

d|vi−vj|2
dt

= 〈v̇i− v̇j,vi−vj〉

=

〈

k1

N

N

∑
k=1

ϕik(vk−vi)−
k1

N

N

∑
k=1

ϕjk(vk−vj),vi−vj

〉

+

〈

k1

N

N

∑
k=1

ϕik Ȧi A
−1
i (xi−xk)−

k1

N

N

∑
k=1

ϕjk Ȧj A
−1
j (xj−xk),vi−vj

〉

.

Because
〈vi(t)−vj(t),vk(t)−vi(t)〉≤0, 〈vi(t)−vj(t),vk(t)−vj(t)〉≥0,
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we can obtain
〈

k1

N

N

∑
k=1

ϕik(vk−vi)−
k1

N

N

∑
k=1

ϕik(vk−vj),vi−vj

〉

≤−k1 ϕm(t)|vi(t)−vj(t)|2,

where ϕm(t)= ϕ(D(X(t))). By Lemma 2.1,

d

dt
D
(

V(t)
)2≤−2k1 ϕm(t)D

(

V(t)
)2

+2

∣

∣

∣

∣

∣

k1

N

N

∑
k=1

ϕik ȦiA
−1
i (xi−xk)−

k1

N

N

∑
k=1

ϕjk Ȧj A
−1
j (xj−xk)

∣

∣

∣

∣

∣

D
(

V(t)
)

≤−2k1 ϕm(t)D
(

V(t)
)2
+4k1

√
d
∥

∥Ȧi A
−1
j

∥

∥D
(

X(t)
)

D
(

V(t)
)

.

According to (3.1), we know

D(A)=
∥

∥Ai A
−1
j − I

∥

∥≤ c0e−at.

Thus,

∥

∥Ȧi A
−1
j

∥

∥≤ k2

N

N

∑
k=1

ψM

∥

∥Ak A−1
j −Aj A

−1
k

∥

∥≤2k2ψMD(A)≤2k2ψMc0e−at.

We can get the following estimation:

d

dt
D
(

V(t)
)

≤−2k1 ϕm(t)D
(

V(t)
)

+4k1k2

√
dψMD

(

A(t)
)

D
(

X(t)
)

≤−2k1 ϕm(t)D
(

V(t)
)

+8k1k2

√
dψMc0e−atD

(

X(t)
)

≤−2k1 ϕm(t)D
(

V(t)
)

+c1e−atD
(

X(t)
)

, (3.2)

where c1 = 8k1k2

√
dψMc0. By (1.4) and the definitions of D(X(t)), D(V(t)) and D(X(t))

has a bound

D
(

X(t)
)

≤D
(

X(0)
)

+
∫ t

0
D
(

X(s)
)

ds.

We substitute this into (3.2) to get

d

dt
D
(

V(t)
)

≤ c1e−atD
(

X(t)
)

≤ c1e−at

(

D
(

X(0)
)

+
∫ t

0
D
(

V(s)
)

ds

)

.

Then we can obtain the following estimation for D(V):

D
(

V(t)
)

≤D
(

V(0)
)

+c1

∫ t

0
e−at

(

(

D(X(0)
)

+
∫ s

0
D
(

V(u)
)

du

)

.
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For all τ≤ t, we consider the maximum of D(V(τ)) in the interval [0,t]

max
τ∈[0,t]

D
(

V(τ)
)

≤D
(

V(0)
)

+c1

∫ t

0
e−at

(

D
(

X(0)
)

+
∫ s

0
D
(

V(u)
)

du

)

ds

≤D
(

V(0)
)

+c1

∫ t

0
e−at

(

D
(

X(0)
)

+ max
τ∈[0,s]

D
(

V(τ)
)

s

)

ds

≤D
(

V(0)
)

+
c1

a
D
(

X(0)
)

+c1

∫ t

0
e−at max

τ∈[0,s]
D
(

V(τ)
)

sds

≤
(

D
(

V(0)
)

+
c1

a
D
(

X(0)
)

)

e
c1
a2 .

The last inequality is obtained by Gronwall’s lemma. Because the above equation is in-
dependent of t. For all t>0, D(V(t)) has a bound

D
(

V(t)
)

≤
(

D
(

V(0)
)

+
c1

a
D
(

X(0)
)

)

e
c1
a2 = c2.

Thus,
D
(

X(t)
)

≤D
(

X(0)
)

+c2t≤ c3(1+t),

where c3=max{c2,D(X(0))}. We can get a estimation of ϕm(t)

ϕm(t)= ϕ
(

D
(

X(t)
))

≤ ϕ
(

c3(1+t)
)

=
1

(

1+c2
3(1+t)2

)β
.

We return to the estimation for D(V). We set 2k1/(1+c2
3(1+t)2)β = g(t), then

d

dt
D
(

V(t)
)

≤−g(t)D
(

V(t)
)

+c1e−atD
(

X(t)
)

.

The differential inequality can be integrated to get

D
(

V(t)
)

≤D
(

V(0)
)

exp

(

−
∫ t

0
g(s)ds

)

+c1exp

(

−
∫ t

0
g(s)ds

)

∫ t

0
e−asexp

(

∫ s

0
g(u)du

)

c3(1+s)ds

≤D
(

V(0)
)

exp

(

−
∫ t

0
g(s)ds

)

+c1exp

(

−
∫ t

0
g(s)ds

)

∫ t

0
e−asexp

(

k1

(1+c2
3)

β
s

)

c3(1+s)ds

≤D
(

V(0)
)

exp

(

−
∫ t

0
g(s)ds

)

+c1exp

(

−
∫ t

0
g(s)ds

)

∫ t

0
e−(a−c4)sc3(1+s)ds

≤exp

(

−
∫ t

0
g(s)ds

)(

D
(

V(0)
)

+
c1c3

a−c4
+

c1c3

(a−c4)2

)

, (3.3)
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where

c4=
2k1

(1+c2
3)

β
, a>

2k1
(

1+D
(

X(0)
)2)β

≥ c4.

When 0≤ β< 1/2, it is trivial to check that limt→∞(1+t)g(t) =∞. Thus, for any K > 0,
there exists T>0 such that if t>T, then (1+t)g(t)≥K, and

∫ t

0
g(s)ds≥

∫ T

0
g(s)ds+Kln(1+t)−Kln(1+T),

then

exp

(

−
∫ t

0
g(s)ds

)

≤exp

(

−
∫ T

0
g(s)ds+Kln(1+T)

)

(1+t)−K =F(T)(1+t)−K,

where

F(T)=exp

(

−
∫ T

0
g(s)ds+Kln(1+T)

)

.

We can derive the estimate

D
(

X(t)
)

≤D
(

X(0)
)

+
∫ t

0
D
(

V(s)
)

ds

≤D
(

X(0)
)

+F(T)

(

D
(

V(0)
)

+
c1c3

a−c4
+

c1c3

(a−c4)2

)

∫ t

0
(1+s)−Kds. (3.4)

Because the constant K can be chosen arbitrarily large by choosing T big enough, we can
know the integral is bounded, and that there exists x∞ such that D(X(t))≤ x∞. Hence,
(3.2) can be writed

d

dt
D
(

V(t)
)

≤−2k1 ϕ(x∞)D
(

V(t)
)

+c1e−atD
(

X(t)
)

.

Because a> c4, we can obtain that

D
(

V(t)
)

≤e−2k1 ϕ(x∞)tD
(

V(0)
)

+c1e−2k1ϕ(x∞)t
∫ t

0
e(2k1 ϕ(x∞)−a)sc3sds

≤e−c5tD
(

V(0)
)

+c1e−c5tD
(

V(0)
)

c3s2,

where c5=2k1 ϕ(x∞). We take the constants M1=8c1c3/c2
5. Then we have

D
(

V(t)
)

≤ (1+M1)e
− c5

2 tD
(

V(0)
)

=Me−
c5
2 tD

(

V(0)
)

,

D
(

X(t)
)

≤ 2M

c5
D
(

V(0)
)

+D
(

X(0)
)

,

where M=1+M1.
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3.1.2 Flocking estimates without positive lower bound of ψ

In Theorem 3.1, we require 0<ψm <ψ(r)<ψM. This assumption is reasonable, and we
obtain an estimate of the flocking convergence rate independent of N. This is crucial in
the later analysis of finite-time stability. Next, we give another body attitude flocking
estimate for (1.4), which removes the requirement for a positive lower bound on ψ(r).

Lemma 3.1. Let (X,V,A) be a global solution to (1.4). If D(A(0))<
√

2, then the following
estimate holds for all t>0:

D
(

A(t)
)

≤exp

(

−η
∫ t

0
ψm(s)ds

)

D
(

A(0)
)

,

where

η=
4

N

(

1− 1

2
D
(

A(0)
)2
)

.

Proof. See Appendix A.

We make the following assumptions on the communication function ψ(r):

(H): ϕ(r)=(1+r2)β, β<1/2 and ψ(r) is not increased, positive, Lipschitz continuous
on R and satisfies

eΦ1(t)−Ψ1(t)(ξ3+t)ξ4 ≤1, eΦ2(t)−Ψ2(t)(ξ3+t)ξ4 ≤1, ξ3>0, ξ4 >2, (3.5)

where Φi(s) and Ψi(s), i=1,2, denote that

Φ1(s)=2k1

∫ t

0
ϕ
(

ξ1(s+1)eξ2s2)

ds, Ψ1(s)=η
∫ t

0
ψ
(

ξ1(s+1)eξ2s2)

ds,

Φ2(s)=2k1

∫ t

0
ϕ
(

D
(

X(0)
)

+C4s
)

ds, Ψ2(s)=η
∫ t

0
ψ
(

D
(

X(0)
)

+C4s
)

ds,

C2=
∫ ∞

0

1

(ξ3+s)ξ4
, C3=4k1k2

√
dψMD

(

A(0)
)

D
(

x(0)
)

∫ t

0

s

(ξ3+s)ξ4
ds,

C4=
(

D
(

V(0)
)

+4k1k2

√
dψMD

(

A(0)
)

D
(

X(0)
)

C2

)

eC3 .

Here ξ1,ξ2 satisfy

max
{

D
(

X(0)
)

,D
(

V(0)
)}

≤ ξ1, 4k1k2dψM ≤ ξ2.

Remark 3.1. The assumption (H) can be satisfied, we can choose

ψ(t)=
2k1

η
ϕ(t)+φ(t).

Then (3.5) holds is equivalent to the following inequality holds:

∫ t

0
ηφ
(

θ(s)
)

ds≥ ξ4 ln(ξ3+t), (3.6)
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where θ(t)= ξ1(t+1)eξ2t2
. We can choose

φ(t)=
ξ5

ξ3+ln
(

ln(t+e)
) .

We can compare the derivatives of both sides of the above inequality

d

dt

∫ t

0
ηφ
(

ξ1(s+1)eξ2s2)

ds=
ηξ5

ξ3+ln
(

ln
(

ξ1(t+1)eξ2 t2+e
)) ,

and

lim
t→∞

ηξ5

(

ξ3+ln
(

ln
(

ξ1(t+1)eξ2t2
+e
)))−1

ξ4(ξ3+t)−1
=+∞.

Therefore, the left side of inequality (3.6) grows faster than the right side. Therefore,
choosing the appropriate ξ5 can make (3.6) hold. Note that when θ(t)=D(X(0))+C4t, as
long as ξ5 is chosen large enough (3.6) still holds.

Theorem 3.2. Let (X,V,A) be a global solution to (1.4). If the system parameters and initial
data satisfy D(A(0))<

√
2 and the assumption (H) holds. Then, system (1.4) exhibits a body

attitude flocking in the sense of Definition 2.1.

Proof. Firstly, we roughly estimate the upper bound of D(X(t))

d

dt
D
(

X(t)
)

≤D
(

X(0)
)

+
∫ t

0
D
(

V(s)
)

ds.

Because

D
(

V(t)
)

≤D
(

V(0)
)

+
∫ t

0
4k1k2

√
dψMD

(

A(s)
)

D
(

X(s)
)

ds

and D(A(t))≤2
√

d,

d

dt
D
(

X(t)
)

≤D
(

X(0)
)

+D
(

V(0)
)

t+
∫ t

0

∫ s

0
8k1k2dψMD

(

X(u)
)

duds.

Similarly to the estimate in the proof of Theorem 3.1, we have

D
(

X(t)
)

≤
(

D
(

X(0)
)

+D
(

V(0)
)

t
)

e4k1k2dψMt2 ≤ ξ1(t+1)eξ2t2
.

By Lemma 3.1, we can obtain

d

dt
D
(

V(t)
)

≤−2k1 ϕm(t)D
(

V(t)
)

+4k1k2

√
dψMD

(

A(t)
)

D
(

X(t)
)

≤−2k1 ϕm(t)D
(

V(t)
)

+4k1k2

√
dψMexp

(

−η
∫ t

0
ψm(s)ds

)

D
(

A(0)
)

D
(

X(t)
)

.
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According to Gronwall’s lemma and the assumption (H), we can get

D
(

V(t)
)

≤e−Φ1(s)D
(

V(0)
)

+4k1k2

√
dψMe−Φ1(s)

∫ t

0
eΦ1(s)−Ψ1(s)D

(

A(0)
)

D
(

X(t)
)

ds.

Then we have

D
(

V(t)
)

≤D
(

V(0)
)

+4k1k2

√
dψMD

(

A(0)
)

∫ t

0
eΦ1(s)−Ψ1(s)

(

D
(

X(0)
)

+ max
τ∈[0,s]

D
(

V(τ)
)

s
)

ds

≤D
(

V(0)
)

+4k1k2

√
dψMD

(

A(0)
)

∫ t

0

(

1

(ξ3+s)ξ4
D
(

X(0)
)

+ max
τ∈[0,s]

D
(

V(τ)
)

s

)

ds

≤D
(

V(0)
)

+4k1k2

√
dψMD

(

A(0)
)

D
(

x(0)
)

C2

+4k1k2

√
dψMD

(

A(0)
)

D
(

x(0)
)

∫ t

0

s

(ξ3+s)ξ4
max
τ∈[0,s]

D
(

V(τ)
)

ds

≤
(

D
(

V(0)
)

+4k1k2

√
dψMD

(

A(0)
)

D
(

X(0)
)

C2

)

eC3 =C4. (3.7)

Thus, we can get D(X(t))≤D(X(0))+C4t. We set

g1(t)=2k1

(

1+
(

C4t+D
(

X(0)
))2
)−β

.

Obviously,

2k1 ϕm(t)≤2k1

(

1+
(

C4t+D
(

X(0)
))2
)−β

= g1(t).

Hence,

D
(

V(t)
)

≤D
(

V(0)
)

exp

(

−
∫ t

0
g1(s)ds

)

+4k1k2

√
dψMD

(

A(0)
)

exp

(

−
∫ t

0
g1(s)ds

)

×
∫ t

0
eΦ2(s)−Ψ2(s)

(

D
(

X(0)
)

+C4t
)

ds.

Because eΦ2(s)−Ψ2(s)(ξ3+t)ξ4 ≤1 and ξ4 >2, we know

∫ t

0
eΦ2(s)−Ψ2(s)

(

D
(

X(0)
)

+C4t
)

ds=C5<∞.

Then we can get a estimate similar to (3.3)

D
(

V(t)
)

≤
(

D
(

V(0)
)

+4k1k2

√
dψMD

(

A(0)
)

C5

)

exp

(

−
∫ t

0
g1(s)ds

)

.

We come back to the same situation as for (3.4). Therefore, the system (1.4) has a body
attitude flocking.
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Remark 3.2. If 0<ψm ≤ψ(r)≤ψM, then the assumption (H) is easily satisfied. But this
does not mean that Theorem 3.1 is a special case of Theorem 3.2. Both the conditions
and the conclusions in Theorem 3.1 are independent of the number of agents N. But in
Theorem 3.2, η is dependent on N. The number of agents become larger, then the flocking
converges rate will become smaller. Thus, the result of Theorem 3.2 is not extendable to
the macroscopic or kinetic case.

3.2 Finite-in-time stability

In this subsection, we study the finite-in-time stability of system (1.4) with respect to
initial data.

Theorem 3.3. Suppose Z and Z̃ are two global solutions to system (1.4), the system parameters
satisfy β<1/2,0< a= k2(3ψm−ψM), 0<ψm <ψ(r)<ψM,

max
{

D
(

A(0)
)

,D
(

Ã(0)
)}

<
a

2k2ψM
,

(

1+
(

max
{

D
(

X (0)
)

,D
(

X̃ (0)
)}

)2
)β

<
2k1

a
.

Then, for any T>0, there exists a positive constant G=G(T) such that

sup
t∈[0,T)

‖Z−Z̃‖2,∞ ≤G‖Z0−Z̃0‖2,∞.

Proof. We firstly define some symbols for concise representation. Let Z =(X,V,A) and
Z̃ =(X̃,Ṽ,Ã) are two solutions to (1.4). The initial data Z0, Z̃0 satisfy the conditions of
Theorem 3.1. We set

X = max
1≤i≤N

|xi− x̃i|, V= max
1≤i≤N

|vi− ṽi|, Λ= max
1≤i≤N

‖Ai− Ãi‖.

Step A. (Estimate of Λ(t)). For the estimate of Λ we directly use the following con-
clusion in [15]:

d

dt
Λ≤4k2(1+d)

(

ψM max
i,k

‖Ai−Ak‖+ψM

)

Λ. (3.8)

The proof of (3.8) can be referred to [15, Theorem 4.4]. Because

max
i,k

‖Ai−Ak‖≤2max
i

‖Ai‖=2
√

d,

we have
d

dt
Λ(t)≤δΛ(t), (3.9)

where δ=4k2(1+d)ψM(2
√

d+1). Thus, Λ≤eδtΛ(0).
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Step B. (Estimate of V(t)). There exist at most countable number of increasing times tk

such that we can choose index i such that V= |vi(t)− ṽi(t)| on any time interval (tk,tk+1)

d

dt
|vi− ṽi|2= 〈v̇i− ˙̃vi,vi− ṽi〉

=
k1

N

N

∑
k=1

〈

ϕik(vk−vi)− ϕ̃ik(ṽk− ṽi),vi− ṽi

〉

+
k1

N

N

∑
k=1

〈

ϕik ȦiA
−1
i (xi−xk)− ϕ̃ik

˙̃Ai Ã
−1
i (x̃i− x̃k),vi− ṽi

〉

= I1+ I2,

I1=
k1

N

N

∑
k

〈

ϕik(vk−vi)−ϕik(ṽk− ṽi)+ϕik(ṽk− ṽi)− ϕ̃ik(ṽk− ṽi),vi− ṽi

〉

=
k1

N

N

∑
k

〈

ϕik(vk−vi− ṽk+ ṽi),vi− ṽi

〉

+
k1

N

N

∑
k

〈

(ϕik− ϕ̃ik)(ṽk− ṽi),vi− ṽi

〉

= I11+ I12.

Because |vi− ṽi|=max
j

|vj− ṽj|,

〈(vk−vi− ṽk+ ṽi),vi− ṽi〉= 〈vk− ṽk,vi− ṽi〉−|vi− ṽi|≤0.

Hence, we can get I11≤0. According to Theorem 3.1, we can get

I12≤
k1

N

N

∑
k

∣

∣ϕ(|xi−xk|)− ϕ̃(|x̃i− x̃k|)
∣

∣|ṽk− ṽi||vi− ṽi|

≤ k1

N
Me−

c
2 tD
(

V(0)
)

N

∑
k

Lip(ϕ)
∣

∣|xi−xk|−|x̃i− x̃k|
∣

∣|vi− ṽi|

≤ k1

N
MD

(

V(0)
)

Lip(ϕ)e−
c
2 t

N

∑
k

(|xi− x̃i|+|xk− x̃k|)|vi− ṽi|

≤2k1 MLip(ϕ)D
(

V(0)
)

e−
c
2 tV(t)X (t),

where M and c are defined in Theorem 3.1. For I2, we have the following estimate:

I2=
k1

N

N

∑
k

〈

ϕik Ȧi A
−1
i (xi−xk)− ϕ̃ik

˙̃Ai Ã
−1
i (x̃i− x̃k),vi− ṽi

〉

=
k1

N

N

∑
k

〈

ϕik

(

Ȧi A
−1
i (xi−xk)− ˙̃AiÃ

−1
i (x̃i− x̃k)

)

,vi− ṽi

〉

+
k1

N

N

∑
k

〈

(ϕik− ϕ̃ik)
˙̃Ai Ã

−1
i (x̃i− x̃k),vi− ṽi

〉

= I21+ I22,
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I21=
k1

N

N

∑
k

〈

ϕik

[

˙̃Ai Ã
−1
i (xi− x̃i)− ˙̃Ai Ã

−1
i (xk− x̃k)

+
(

Ȧi A
−1
i − ˙̃Ai Ã

−1
i

)

(xi−xk)
]

,vi− ṽi

〉

.

Because

∥

∥Ȧi A
−1
i − ˙̃Ai Ã

−1
i

∥

∥≤ k2

N

N

∑
k=1

∥

∥

∥
ψik

(

Ak A−1
i −Ai A

−1
k

)

−ψ̃ik

(

Ãk Ã−1
i − Ãi Ã

−1
k

)

∥

∥

∥

≤ k2

N

N

∑
k=1

(

ψik

∥

∥Ak A−1
i − Ãk Ã−1

i −Ai A
−1
k + Ãi Ã

−1
k

∥

∥

+
∥

∥(ψik−ψ̃ik)
(

Ãk Ã−1
i − Ãi Ã

−1
k

)∥

∥

)

= I211+ I212.

Because ‖Ak‖=
√

d and max1≤i≤N‖Ai− Ãi‖=Λ(t),

I211=
k2

N

N

∑
k=1

ψik

∥

∥

∥

(

Ak

(

A−1
i − Ã−1

i

)

+(Ak− Ãk)Ã−1
i

−Ai

(

A−1
k − Ã−1

k

)

−(Ai− Ãi)Ã−1
k

)

∥

∥

∥

≤4
√

dk2ψMΛ(t).

The last inequality sign is due to
∥

∥A−1
i − Ã−1

i

∥

∥=
∥

∥Ai− Ãi

∥

∥

for A1, Ãi∈SO(d). And

I212≤
2k2

N
Lip(ψ)

N

∑
k=1

(

|xi− x̃i|+|xk− x̃k|
)

D
(

Ã(t)
)

≤4k2Lip(ψ)c̃0e−atX (t),

where

c̃0=

(

1

D(Ã0)
− 2ψM

3ψm−ψM

)−1

.

Hence,
∥

∥ȦiA
−1
i − ˙̃AiÃ

−1
i

∥

∥≤4
√

dk2ψMΛ(t)+4k2Lip(ψ)c̃0e−atX (t).

Then we can obtain that

I21≤
k1

√
dψM

N

N

∑
k

(

∥

∥

˙̃Ai Ã
−1
i

∥

∥|xi− x̃i|+
∥

∥

˙̃AiÃ
−1
i

∥

∥|xk− x̃k|
)

V(t)

+
k1

√
dψM

N

N

∑
k

∥

∥Ȧi A
−1
i − ˙̃Ai Ã

−1
i

∥

∥|xi−xk|V(t)
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≤
(

4k1k2

√
dψMD

(

Ã(t)
)

X (t)+k1ψM

√
d
∥

∥Ȧi A
−1
i − ˙̃Ai Ã

−1
i

∥

∥x∞

)

V(t)

≤
(

4k1k2

√
dψM c̃0e−αtX (t)+4k1dk2ψ2

Mx∞Λ(t)
)

V(t)

+4k1k2

√
dLip(ψ)c̃0x∞e−atX (t)V(t).

Similarly, we can obtain an estimate of I22

I22≤
k1

√
d

N

N

∑
k

Lip(ϕ)
(

|xi− x̃i|+|xk− x̃k|
)∥

∥

˙̃Ai Ã
−1
i

∥

∥|x̃i− x̃k||vi− ṽi|

≤4k1k2

√
dLip(ϕ)c̃0x̃∞e−αtX (t)V(t).

In summary, we can obtain

d

dt
V(t)2≤2k1 MLip(ϕ)e

−c
2 tD

(

V(0)
)

X (t)V(t)+4k1k2

√
dLip(ϕ)c̃0x̃∞e−αtX (t)V(t)

+4k1k2

√
dψM

(

c̃0e−αtX (t)+
√

dx∞Λ(t)+Lip(ψ)c̃0x∞e−atX (t)
)

V(t).

Hence,

d

dt
V(t)≤ k1 MLip(ϕ)e

−c
2 tD

(

V(0)
)

X (t)+2k1k2

√
dLip(ϕ)c̃0x̃∞e−αtX (t)

+2k1k2

√
dψM

(

c̃0e−αtX (t)+
√

dψMx∞Λ(t)+Lip(ψ)c̃0x∞e−atX (t)
)

=Ξ1e−γtX (t)+Ξ2Λ(t),

where Ξ1 and Ξ2 represent the coefficients and γ=min{c/2,a}. Note that Ξ1 and Ξ2 are
independent of t and N. Since Λ(t)≤eδtΛ(0),

d

dt
V(t)≤Ξ1e−γt

(

X (0)+
∫ t

0
V(s)ds

)

+Ξ2Λ(t).

Integrating this differential inequality yields

V(t)≤V(0)+Ξ1

∫ t

0
e−γs

(

X (0)+
∫ s

0
V(u)du

)

ds+
Ξ2

δ
eδtΛ(0),

max
τ∈[0,t]

V(τ)≤V(0)+Ξ1

∫ t

0
e−γs

(

X (0)+ max
τ∈[0,t]

V(τ)s
)

ds+
Ξ2

δ
eδtΛ(0)

≤
(

V(0)+Ξ1

γ
X (0)+

Ξ2

δ
eδtΛ(0)

)

e
Ξ1
γ2 .

Then, for t∈ [0,T),

V(t)≤
(

V(0)+Ξ1

γ
X (0)+

Ξ2

δ
eδTΛ(0)

)

e
Ξ1
γ2 .
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Step C. (Estimate of X (t)).

X (t)≤
(

V(0)+Ξ1

γ
X (0)+

Ξ2

δ
eδTΛ(0)

)

e
Ξ1
γ2 T.

To sum up, we can get

sup
t∈[0,T)

‖Z−Z̃‖2,∞ =X (t)+V(t)+Λ(t)

≤e
Ξ1
γ2 (T+1)V(0)+Ξ1

γ
e

Ξ1
γ2 (T+1)X (0)

+eδT

(

Ξ2

δ
e

Ξ1
γ2 (1+T)+1

)

Λ(0).

The positive constant G(T) is given by the following explicit form:

G(T)=max

{

e
Ξ1
γ2 (T+1),

Ξ1

γ
e

Ξ1
γ2 (T+1),eδT

(

Ξ2

δ
e

Ξ1
γ2 (1+T)+1

)}

.

The proof is complete.

4 The well-posedness of the kinetic equation and mean field

limit

In this section, we consider the well-posedness of the kinetic equation (1.5) and give
a rigorous proof for the mean-field limit. Firstly, we define some notations

E=C
(

[0,T];Pc(Ω)
)

,

where Ω=R
2d×SO(d),Pc(Ω) denotes the space of probability measures with compact

support in Ω and endowed with the 1-Wasserstein distance W1. BR is the closed ball with
center 0 and radius R>0 in R

2d.

Lemma 4.1. Take any R0>0 and f , g∈E such that

supp( ft)∪supp(gt)⊆BR0
×SO(d), ∀t∈ [0,T].

Then for any BR×SO(d)⊂Ω, there exist a constant C=C(R,R0) such that

max
t∈[0,T]

LipR(L[ f ])≤C, max
t∈[0,T]

LipR(Q[ f ])≤C, (4.1)

and
sup

t∈[0,T]

{

‖Q[ f ]−Q[g]‖L∞ (BR×SO(d))

}

≤CW1( f ,g),

sup
t∈[0,T]

{

‖L[ f ]−L[g]‖L∞ (BR×SO(d))

}

≤CW1( f ,g).
(4.2)
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Proof. We first prove that (4.1). Fixing v and A,
∣

∣L[ f ](t,x1,v,A)−L[ f ](t,x2,v,A)
∣

∣

≤ k1

∫

Ω

∣

∣ϕ(|x1−y|)(v∗−v)−ϕ(|x2−y|)(v∗−v)
∣

∣ f (t,y,v∗ ,A∗)dydv∗dA∗

+

∣

∣

∣

∣

k1k2

∫

Ω
ϕ(|x1−y|)ψ(|x1−y|)K(A,A∗)(x1−y) f (t,y,v∗ ,A∗)dydv∗dA∗

−k1k2

∫

Ω
ϕ(|x2−y|)ψ(|x2−y|)K(A,A∗)(x2−y) f (t,y,v∗ ,A∗)dydv∗dA∗

∣

∣

∣

∣

= I1+ I2.

Because the compactness of the rotation group and supp( ft)∪supp(gt)⊆BR0
×SO(d) and

|v|<R. This is equivalent to |v∗−v|≤R+R0= c(R,R0)

I1≤ k1

∫

Ω
Lip(ϕ)|x1−x2||v∗−v| f (t,y,v∗ ,A∗)dydv∗dA∗

≤ k1Lip(ϕ)c(R,R0)|x1−x2|.
We define h(r)= ϕ(r)ψ(r)r. We can get h(r) is locally Lipschitz. LipR(h) is the Lipschitz
constant in BR

I2≤
√

dk1k2

∫

Ω
LipR(h)|x1−x2|‖K(A,A∗)‖ f (t,y,v∗ ,A∗)dydv∗dA∗

≤2
√

dk1k2

∫

Ω
LipR(h)|x1−x2|‖A∗A−1‖ f (t,y,v∗ ,A∗)dydv∗dA∗

≤2dk1k2LipR(h)|x1−x2|.
The uniform Lipschitz continuity of L[ f ] with respect to v is obvious

∣

∣L[ f ](t,x,v1,A)−L[ f ](t,x,v2,A)
∣

∣≤|v1−v2|.
Fixing x and v,

∣

∣L[ f ](t,x,v,A1)−L[ f ](t,x,v,A2)
∣

∣

≤ k1k2

√
d
∫

Ω
ψM|x1−x2|

∥

∥A∗
(

A−1
1 −A−1

2

)

+
(

A1−A2)AT
∗
∥

∥ f (t,y,v∗,A∗)dydv∗dA∗

≤2dc(R,R0)ψM‖A1−A2‖.

Thus, we can obtain

LipR(L[ f ])≤max
{

k1Lip(ψ)c(R,R0)+2dk1k2LipR(h),1,2dc(R,R0)
}

=ω1(R,R0).

The uniform Lipschitz continuity of Q[ f ] with respect to v is obvious. Fixing v and A,

‖Q[ f ](t,x1 ,v,A)−Q[ f ](t,x2,v,A)‖

≤ k2

∫ t

0
|ψ(|x1−y|)−ψ(|x2−y|)|‖A∗−AA∗A−1‖dydv∗dA∗

≤2
√

dk2Lip(ψ)|x1−x2|.
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By
∥

∥A1A−1
∗ A1−A2A−1

∗ A2

∥

∥=
∥

∥(A1−A2)A−1
∗ A1+A2A−1

∗ (A1−A2)‖≤2
√

d‖A1−A2

∥

∥,

we have

‖Q[ f ](t,x,v,A1)−Q[ f ](t,x,v,A2)‖

= k2

∫

Ω
ψM

∥

∥A1A−1
∗ A1−A2A−1

∗ A2

∥

∥ f (t,y,v∗,A∗)dydv∗dA∗

≤2
√

dk2‖A1−A2‖.

Hence, Q[ f ] is uniform Lipschitz continuous

LipR(Q[ f ])≤max{2
√

dk2,2
√

dk2Lip(ψ)}=ω2(R,R0).

Next we prove that (4.2). By Proposition 2.1, let π be an optimal transportation plan
between the measures f and g. The π has marginals f and g and the support of π is
contained in (BR0

×SO(d))×(BR0
×SO(d))

‖Q[ f ](t,x,v,A)−Q[g](t,x,v,A)‖

= k2

∫

Ω
ψ(|x−y1|)

(

A1−AA−1
1 A

)

−ψ(|x−y2|)
(

A2−AA−1
2 A

)

dπ(y1,v1,A1,y2,v2,A2)

≤ k2

∫

Ω
ψM

∥

∥A1−AA−1
1 A−A2+AA−1

2 A
∥

∥dπ(y1,v1,A1,y2,v2,A2)

+k2

∫

Ω
Lip(ψ)|y1−y2|

∥

∥A2−AA−1
2 A

∥

∥dπ(y1,v1,A1,y2,v2,A2)

≤ k2

∫

Ω
ψM(

√
d+1)‖A1−A2‖dπ(y1,v1,A1,y2,v2,A2)+2

√
dk2Lip(ψ)W1( f ,g)

≤2k2

(

√
dLip(ψ)+(

√
d+1)ψM

)

W1( f ,g)=ω3(R,R0)W1( f ,g).

For L[ f ], we can obtain the following estimate:

‖L[ f ](t,x,v,A)−L[g](t,x,v,A)‖

= k1

∫

Ω

(

ϕ(|x−y1|)(v1−v)−ϕ(|x−y2|)(v2−v)
)

π(y1,v1,A1,y2,v2,A2)

+k1k2

∫

Ω
ϕ(|x−y1|)ψ(|x−y1|)K(A,A1)dπ(y1,v1,A1,y2,v2,A2)

−k1k2

∫

Ω
ϕ(|x−y2|)ψ(|x−y2|)K(A,A2)dπ(y1,v1,A1,y2,v2,A2)

= I3+ I4.

We can obtain that

I3= k1

∫

Ω
ϕ(|y1−x|)−ϕ(|y2−x|)(v1−v)π(y1,v1,A1,y2,v2,A2)

+k1

∫

Ω
ϕ(|x−y2|)(v1−v2)π(y1,v1,A1,y2,v2,A2)
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≤ k1

∫

Ω
Lip(ϕ)|y1−y2|(v1−v)+ϕ(|x−y2|)(v1−v2)π(y1,v1,A1,y2,v2,A2)

≤
(

k1Lip(ϕ)c(R0,R)+k1

)

W1( f ,g),

I4= k1k2

∫

Ω
ϕ(|x−y1|)ψ(|x−y1|)(x−y1)K(A,A1)dπ(y1,v1,A1,y2,v2,A2)

−k1k2

∫

Ω
ϕ(|x−y1|)ψ(|x−y1|)(x−y1)K(A,A2)dπ(y1,v1,A1,y2,v2,A2)

+k1k2

∫

Ω
ϕ(|x−y1|)ψ(|x−y1|)(x−y1)K(A,A2)dπ(y1,v1,A1,y2,v2,A2)

−k1k2

∫

Ω
ϕ(|x−y2|)ψ(|x−y2|)(x−y2)K(A,A2)dπ(y1,v1,A1,y2,v2,A2).

For I4,

I4≤ k1k2

∫

Ω
ψM

√
dc(R0,R)

∥

∥A1A−1−AA−1
1 −A2A−1+AA−1

2

∥

∥dπ(y1,v1,A1,y2,v2,A2)

+k1k2

∫

Ω
LipR(h)|y1−y2|‖K(A,A2)‖dπ(y1,v1,A1,y2,v2,A2)

≤ k1k2

∫

Ω
2dψMc(R0,R)‖A1−A2‖+2dLipR(h)|y1−y2|dπ(y1,v1,A1,y2,v2,A2)

≤ k1k2

(

2dψMc(R0,R)+2dLipR(h)
)

W1( f ,g).

Thus, we can obtain

‖L[ f ](t,x,v,A)−L[g](t,x,v,A)‖≤ω4(R,R0)W1( f ,g),

where

ω4(R,R0)= k1k2

(

2dψMc(R0,R)+2dLipR(h)
)

+k1Lip(ϕ)c(R0,R)+k1.

In summary we can set C(R,R0)=max{ωi(R,R0)}4
i=1.

The associated characteristic system of (1.5) is










ẋ=v,

v̇= L[ f ](t,x,v,A),

Ȧ=Q[ f ](t,x,v,A),

(4.3)

where (x,v,A)∈Ω. The system (4.3) can be conveniently written as

d

dt
Q=Ψf (t,Q),

where Q=(x,v,A) and Ψf : [0,T]×Ω→Ω is the right-hand side of (4.3). We denote a flow
at t∈ [0,T) of (4.3), i.e.

I t
f (x0,v0,A0)=

(

x(t),v(t),A(t)
)

, (x0,v0,A0)∈Ω.

Next, we give the definition of weak solution of system (1.5) (see [3]).
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Definition 4.1 (Weak Solution). Take a measure f0∈P1(Ω). We say that a function f : [0,T]→
P1(Ω) is a weak solution to (1.5) with initial condition f0, if it satisfies that

ft =I t
f # f0, ∀t∈ [0,T),

where I t# f0 is defined as

∫

Ω
ζ(x)d

(

I t
f # f0

)

(x)=
∫

Ω
ζ
(

I t
f (x)

)

d f0(x)

for every measurable function ζ : Ω→R.

We give some basic regularity results for the (4.3).

Lemma 4.2. Consider the closed ball BR⊆R
2d, R>0 and T>0

(1) Ψf is bounded in compact sets. For Q∈BR×SO(d) and t∈ [0,T]

‖Ψf (t,Q)‖Ω ≤CΨ,

where CΨf
which depends only on R.

(2) Ψf is locally Lipschitz with respect to x,v,A. For all Q1,Q2∈BR×SO(d) and t∈ [0,T],

‖Ψf (t,Q1)−Ψf (t,Q2)‖≤LipR(Ψf )‖Q1−Q2‖.

Proof. It is obvious for (1). And (2) can be obtained by Lemma 4.1.

Based on Lemmas 4.1, 4.2 and the framework developed in [3], we can provide ex-
istence and uniqueness of a compactly supported global weak solution to Eq. (1.5) in
a compactly supported measure initial condition, see [3, Theorem 4.11] for details. We
give the following results about existence, uniqueness and stability of weak solutions to
the kinetic equation (1.5).

Theorem 4.1. Let f0 be a measure on Ω with compact support. There exists a solution ft on
[0,+∞) to (1.5) with initial condition f0. Furthermore

ft∈C
(

[0,+∞);Pc(Ω)
)

, (4.4)

and there is an increasing function R=R(T) such that for all T>0,

supp ft⊆BR(T)×SO(d)⊆Ω, ∀t∈ [0,T]. (4.5)

This solution is unique among the family of solutions satisfying (4.4) and (4.5). Moreover, given
any other initial data g0 ∈Pc(Ω) and g its corresponding solution. Then there exists a strictly
increasing function r(t)>0 with r(0)=1 the size of the support of f0 and g0 such that

W1( ft,gt)≤ r(t)W1 ( f0,g0), t≥0. (4.6)
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Proof. According to Lemmas 4.1 and 4.2, the proof can be done using the framework
developed in [3]. We briefly state the main ideas here. Suppose f0 ∈ Pc(Ω) with the
support contained in BR0

. We define a set as follows:

F=
{

f ∈C
(

[0,T];Pc(Ω)
)

, supp f ⊆BR

}

,

where R=2R0. For f ∈F , we define

Γ[ f ](t)=I t
f # f0.

For any Q∈BR0
×SO(d), because ‖Ψ(t,Q)‖Ω ≤CΨf

we have

I t
f (Q)≤CΨf

T.

As long as T is small enough we can obtain supp(I t
f # f0)⊆BR×SO(d). The continuity of

I t
f # f0 can be referred to [3, Theorem 3.12]. Hence, we have Γ :F →F . For f ,g∈F and

Q0∈BR0
×SO(d), we set

Q1(t)=I t
f (Q0), Q2(t)=I t

g(Q0).

Then we have

‖Q1(t)−Q2(t)‖Ω ≤
∫ t

0

∥

∥Ψf

(

s,Q1(s)
)

−Ψg

(

s,Q2(s)
)∥

∥

Ω
ds

≤
∫ t

0

∥

∥Ψf

(

s,Q1(s)
)

−Ψf

(

s,Q2(s)
)
∥

∥

Ω
ds

+
∫ t

0

∥

∥Ψf

(

s,Q2(s)
)

−Ψg

(

s,Q2(s)
)
∥

∥

Ω
ds

≤LipR(Ψf )
∫ t

0
‖Q1−Q2‖Ωds

+
∫ t

0

(

‖Q[ f ]−Q[g]‖L∞ (BR×SO(d))+‖L[ f ]−L[g]‖L∞ (BR×SO(d))

)

ds.

By Gronwall’s lemma,

‖I t
f −I t

g‖Ω ≤C1 sup
t∈[0,T]

{

‖Q[ f ]−Q[g]‖L∞ (R×SO(d))

}

+C1 sup
t∈[0,T]

{

‖L[ f ]−L[g]‖L∞ (BR×SO(d))

}

,

where C1=(eLipR(Ψf )T−1)/LipR(Ψf ). By [3, Theorem 3.11] and Lemma 4.1,

W1

(

I t
f # f0,I t

g# f0

)

≤C1 sup
t∈[0,T]

{

‖Q[ f ]−Q[g]‖L∞ (R×SO(d))

}

+C1 sup
t∈[0,T]

{

‖L[ f ]−L[g]‖L∞ (BR×SO(d))

}

≤2CC1W1( f ,g).
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We can in addition choose T small enough so that 2CC1<1. Thus, Γ is contractive, and this
proves that there is a unique fixed point in F . We obtained local existence and uniqueness
of solutions. For initial value Q0, by (4.3) we can get

‖Q‖Ω ≤ eC2t, (4.7)

where C2 depending on ‖Q0‖Ω, T,k1,k2. According to (4.7), we can estimate the support
set BR×SO(d) for any T> 0. Hence, we can extend this solution as long as the support
of the solution remains compact. The stability result (4.6) is similar to the proof of [3,
Theorem 3.16].

Next we investigate the mean-field approximation, i.e. the approximation of a con-
tinuum measure by empirical measures. Firstly, we introduce the empirical measure

f N
0 =

N

∑
i=1

miδ(x0
i ,v0

i ,A0
i )

,
N

∑
i=1

mi=1, (4.8)

and denote f N
t is the weak solution to Eq. (1.5) with initial value f N

0 on t ∈ [0,T). By
[3, Lemma 5.1], we know f N

t is the empirical measure with trajectories (xi(t),vi(t),Ai(t))

f N
t =

N

∑
i=1

miδ(xi(t),vi(t),Ai(t)), t∈ [0,T),

where (xi(t),vi(t),Ai(t)) satisfies the following equation:































ẋi=vi,

v̇i =
N

∑
i=1

miL
[

f N
t

]

(t,xi,vi,Ai),

Ȧi=
N

∑
i=1

miQ
[

f N
t

]

(t,xi,vi,Ai), xi(0)= x0
i , vi(0)=v0

i , Ai(0)=A0
i .

(4.9)

When mi =1/N, 1≤ i≤N, obviously the above equation is system (1.4) by the properties
of Dirac measure. The mean-field limit of the system (1.4) is given by the following
corollary.

Corollary 4.1 (The Mean-Field Limit). Let f N
0 be a sequence of empirical measure with the

form (4.8) and f0 ∈Pc(Ω) with compact support. f N
0 and f0 satisfy

lim
N→∞

W1

(

f0, f N
0

)

=0.

For T>0, ft and f N
t are the unique weak solutions to the kinetic equation (1.5) with initial value

f0 and f N
0 , respectively. Then, there exists T∗∈ (0,T) such that

lim
N→∞

W1

(

ft, f N
t

)

=0, ∀t∈ (0,T∗]. (4.10)
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Proof. By (4.6), we can find a strictly increasing function r(t) such that

W1

(

ft, f N
t

)

≤ r(t)W f0 , f N
0

for all t∈ [0,T∗) and N∈N+. Because r(t) is bounded on [0,T∗), when N→∞, it is clear
that (4.10) holds.

Remark 4.1. By the stability result (4.6), we can extend the result of Theorem 3.1 to the
kinetic system (1.5). We define

Dx[ f ]=diam(suppx f ),

Dv[ f ]=diam(suppv f ),

DA[ f ]=diam(suppA f ),

where suppx f denotes the x-projection of supp f and similarly for suppv f and suppA f .
Suppose ft ∈C([0,T],Pc(Ω)) is a weak solution of (1.5) subject to a compactly supported
initial datum f0∈Pc(Ω). And we assume that 0≤β<1/2, ψ satisfies (1.3),

DA[ f0]<
a

2k2ψM
, 0< a<

2k1

(1+Dx[ f0]2)β
.

Because (Pc(Ω),W1) is a Polish space, we can find a N-particle approximations of f0 and
denoted as { f N

0 }N∈N, i.e.

f N
0 =

1

N

N

∑
i=1

δ
(

x−xi(0)
)

⊗δ
(

v−vi(0)
)

⊗δ
(

A−Ai(0)
)

, t∈ [0,T),

and
lim

N→∞
W1

(

f N
0 , f0

)

=0.

By Theorem 3.1, we have

Dv

[

f N
t

]

≤MDv

[

f N
0

]

e−
c
2 t, DA

[

f N
t

]

≤ c0e−at, t∈ [0,T),

where f N
t is a weak solution of (1.5) subject to the initial datum f N

0 and

c0=

(

1

DA[ f N
0 ]

− 2ψM

3ψm−ψM

)−1

.

According to (4.6),
W1

(

ft, f N
t

)

≤ r(T)W1

(

f0, f N
0

)

, t∈ [0,T].

Because r(T), M, c, c0, a is independent of N. Fixing T> 0, letting N→∞, then Dv[ f N
t ]=

Dv[ ft] and DA[ f
N
t ]=DA[ ft], i.e.

Dv[ ft]≤MDv[ f0]e
− c

2 t, DA[ ft]≤ c0e−at, t∈ [0,T).

And supt∈[0,T]Dx[ ft] is obvious.
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5 Numerical simulations

In this section, we show the numerical simulations for the emergent dynamics of the
system (1.4). Let (e1,e2,e3) denote the canonical basic, where {ei}3

i=1 are standard unit
vectors. We use (ei

1,ei
2,ei

3) to denote the body attitude of the i-th agent

(

ei
1,ei

2,ei
3

)

=(Aie1,Aie2,Aie3).

Display ei
1,ei

2,ei
3 axes in colors red, green, blue, respectively as in Fig. 2.

Figure 2: Illustration of the body attitude.

In Figs. 3(a)-3(b), we can find the asymptotic synchronization of the body attitude
of agents. And in Figs. 4(a) and 4(b) illustrate the asymptotic alignment of the velocity
fluctuation and the body attitude fluctuation, the position fluctuation is bounded. This
implies the existence of asymptotic body attitude flocking for the system (1.4).

(a) (b)

Figure 3: (a): Agents with no coordinated body attitude at the initial moment. (b): Alignment of body-
orientations at the final moment.
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(a) (b)

Figure 4: (a): Velocity fluctuation and body attitude fluctuation. (b): Position fluctuation.

6 Conclusion

In this paper, we have studied body attitude flocking behaviors of a new model for body
attitude coordination. Unlike the body attitude alignment models in [9, 15], the veloc-
ity of each agent is constantly adjusted according to the velocity of other agents. In this
case, flocking would include the body attitude alignment and velocity alignment. It will
generate a new collective behaviour which is called body attitude flocking (see Defini-
tion 2.1). We present two sufficient frameworks leading to the body attitude flocking.
The first framework requires a positive lower bound on communication function ψ(r),
which yields flocking estimates that are independent of the number of agents N. The
second framework removes the assumption that the communication function ψ(r) has
a positive lower bound, but obtains flocking estimates related to the number of agents.
Based on the sufficient framework, we present the finite-in-time stability estimate which
is valid on any finite time interval. In addition, we formally derive a kinetic model of
the model for body attitude coordination using the BBGKY hierarchy. We prove the well-
posedness of the kinetic equation based on the framework of [3] and give a rigorous proof
for the mean-field limit of the system (1.4). We extend the result of Theorem 3.1 to the
kinetic system (1.5) and present a sufficient condition for asymptotic flocking in the ki-
netic system (1.5). Of course, there are still lots of interesting open questions such as the
extension of stability estimate to the whole time interval and uniform-in-time asymptotic
flocking dynamics of the kinetic model. These issues will be addressed in future works.

Appendix A. Proof for Lemma 3.1

In this appendix, we provide the proof of Lemma 3.1.

Proof. Firstly we estimate d(AT
i Aj)/dt. Although the estimate is similar to [12, Theo-

rem 5.11], we provide the details here for the readers’ convenience
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d

dt

(

AT
i Aj

)

= ȦT
i Aj+AT

i Aj

=
1

N

N

∑
k=1

(

ψik

(

AT
k Aj−AT

i Ak AT
i Aj

)

+ψjk

(

AT
i Ak−AT

i Aj A
T
k Aj

)

)

.

We make the following transformations:

AT
k Aj−AT

i Ak AT
i Aj=2AT

k Aj−
(

I+AT
i Ak AT

i Ak

)

AT
k Aj

=2AT
k Aj−2AT

i Aj−
(

I−2AT
i Ak+AT

i Ai A
T
i Ak

)

AT
k Aj

=2(Ak−Ai)
T Aj−

(

I−AT
i Ak

)2
AT

k Aj.

Taking the trace of the above equation yields

tr
(

AT
k Aj−AT

i Ak AT
i Aj

)

=2tr
(

(Ak−Ai)
T Aj

)

−tr
(

(I−AT
i Ak)

2AT
k Aj

)

=2tr
(

(Ak−Ai)
T Aj

)

−tr
(

AT
i (Ai−Ak)

(

AT
k −AT

i

)

Aj

)

=2tr
(

(Ak−Ai)
T Aj

)

−tr
(

(Ai−Ak)
(

AT
k −AT

i

)

Aj A
T
i

)

=2tr
(

(Ak−Ai)
T Aj

)

− 1

2
tr
(

(Ai−Ak)
(

AT
k −AT

i

)(

Aj A
T
i +AiA

T
j

))

=2tr
(

(Ak−Ai)
T Aj

)

− 1

2
tr
(

(Ai−Ak)
(

AT
k −AT

i

)(

2I−(Ai−Aj)(Ai−Aj)
T
))

=2tr
(

(Ak−Ai)
T Aj

)

+tr
(

(Ai−Ak)(Ai−Ak)
T
)

− 1

2
tr
(

(Ai−Ak)(Ai−Ak)
T(Ai−Aj)(Ai−Aj)

T
)

=2tr
(

(Ak−Ai)
T Aj

)

+‖Ai−Ak‖2− 1

2

∥

∥(Ai−Ak)
T(Ai−Aj)

∥

∥

2
.

Then we can get

tr
(

AT
k Aj−AT

i Ai A
T
i Aj

)

≥2
(

tr
(

AT
k Aj

)

+tr
(

AT
i Aj

)

)

+‖Ai−Ak‖2

(

1− 1

2
‖Ai−Aj‖2

)

≥2
(

tr
(

AT
k Aj

)

+tr
(

AT
i Aj

)

)

+‖Ai−Ak‖2
(

tr
(

RT
i Rj

)

−d+1
)

.

Repeating the above estimation for (AT
i Ak−AT

i Aj A
T
k Aj) yields

d

dt
AT

i Aj≥
2

N

N

∑
k=1

(

ψik

(

tr
(

AT
k Aj

)

−tr
(

AT
i Aj

)

)

+ψjk

(

tr
(

AT
k Ai

)

−tr
(

AT
i Aj

)

))

+
1

N

(

tr
(

AT
i Aj

)

−d+1
) N

∑
k=1

(

ψik‖Ai−Ak‖2+ψjk‖Aj−Ak‖2
)

. (A.1)
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There exist at most countable number of increasing times tm such that we can choose
indices 1 ≤ i, j ≤ N such that ‖Ai−Aj‖= D(A) for t ∈ (tm,tm+1). Because ‖Ai−Aj‖2 =

2d−2tr(AT
i Aj),

tr
(

AT
i Aj

)

= min
1≤k,l≤N

tr
(

AT
k Al

)

.

By (A.1), we can obtain

d

dt
tr
(

AT
i Aj

)

≥ 1

N

(

tr
(

AT
i Aj

)

−d+1
)

N

∑
k=1

(

ψik‖Ai−Ak‖2+ψjk‖Aj−Ak‖2
)

≥ 1

N

(

tr
(

AT
i Aj

)

−d+1
)(

ψij‖Ai−Aj‖2+ψji‖Aj−Ai‖2
)

≥ 2

N
ψm(t)

(

tr
(

AT
i Aj

)

−d+1
)(

2d−2tr
(

AT
i Aj

))

≥ 4

N
ψm(t)

(

tr
(

AT
i Aj

)

−d+1
)(

d−tr
(

AT
i Aj

))

, (A.2)

where ψm(t)=ψ(D(X)(t)). Since D(A(0))<
√

2 and AT
i Aj≤d, we have

d−1< tr
(

(

A0
i

)T
A0

j

)

≤d.

Hence,

d− 1

2
D
(

A(0)
)2
< tr

(

AT
i Aj

)

≤d, ∀t∈ [0,∞),

d

dt

(

d−tr
(

AT
i Aj

))

≤ 4

N
ψm(t)

(

tr
(

AT
i Aj)−d+1

)(

tr
(

AT
i Aj

)

−d
)

.

Then we can obtain

1

2

d

dt
‖Ai−Aj‖2≤− 4

N
ψm(t)

(

1− 1

2
D
(

A(0)
)2
)

‖Ai−Aj‖2,

d

dt
D
(

A(t)
)

≤− 4

N
ψm(t)

(

1− 1

2
D
(

A(0)
)2
)

D
(

A(t)
)

≤−ηψm(t)D
(

A(t)
)

,

where

η=
4

N

(

1− 1

2
D
(

A(0)
)2
)

.

The above differential inequality can be integrated to get

D
(

A(t)
)

≤exp

(

−η
∫ t

0
ψm(s)ds

)

D
(

A(0)
)

.

The proof is complete.
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Appendix B. Derivation of a mean-field model

In this appendix, we use the standard BBGKY hierarchy to derive the mean-field kinetic
model of the system (1.4) formally (see [14, 20, 27] for related results). Let

f N = f N(t,x1,v1,A1,x2,v2,A2,··· ,xN ,vN ,AN)

be the N-particle distribution function. Since particles are indistinguishable, f N is sym-
metric

f N(t,··· ,xi,vi,Ai,··· ,xj,vj,Aj,···)= f N(t,··· ,xj,vj,Aj,··· ,xi,vi,Ai,···).
Based on the Liouville equation, we have

∂t f N+
N

∑
i=1

divxi

(

ẋi f N
)

+
N

∑
i=1

divvi

(

v̇i f N
)

+
N

∑
i=1

divAi

(

Ȧi f N
)

=0. (B.1)

Let f N:1(x1,v1,A1,t) denote the marginal distribution

f N:1(t,x1,v1,A1)=
∫

ΩN−1
f N(t,x1,v1,A1,x2,v2,A2,··· ,xN ,vN ,AN)dx−dv−dA−,

where
Ω=R

2d×SO(d), (x−,v−,A−)=(x2,v2,A2,··· ,xN ,vN .AN).

We integrate (B.1) with respect to variables x−,v−, A− to get

∂t f N:1+ I1+ I2+ I3=0,

I1=
N

∑
i=1

∫

ΩN−1
divxi

(

vi f N
)

dx−dv−dA−=v1·∇xi
f N:1,

I2=
k1

N

N

∑
i=1

∫

ΩN−1
divvi

((

N

∑
j=1

ϕij(vj−vi)−
N

∑
j=1

ϕij Ȧi A
−1
i (xj−xi)

)

f N

)

dx−dv−dA−

= I21− I22.

By the symmetry of f N

I21=
k1

N

N

∑
i=1

∫

ΩN−1
divvi

((

N

∑
j=1

ϕij(vj−vi) f N

))

dx−dv−dA−

=
k1

N

∫

ΩN−1
divv1

((

N

∑
j=1

ϕij(vj−v1) f N

))

dx−dv−dA−

=
k1(N−1)

N

∫

ΩN−1
divvi

(

(

ϕ12(v2−v1) f N
)

)

dx−dv−dA−

=
k1(N−1)

N
divvi

(

∫

Ω
ϕ12(v2−v1) f N:2dx2dv2dA2

)

,
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where

f N:2(t,x1,v1,A1,x2,v2,A2)=
∫

ΩN−2
f Ndx3dv3dA3 ···dxNdvN dAN ,

and

I22=
k1

N

N

∑
i=1

∫

ΩN−1
divvi

((

N

∑
j=1

ϕij Ȧi A
−1
i (xj−xi)

)

f N

)

dx−dv−dA−

=
k1

N

∫

ΩN−1
divv1

(

N

∑
j=1

ϕ1j Ȧ1A−1
1 (xj−x1) f N

)

dx−dv−dA−

=
k1(N−1)

N

∫

ΩN−1
divv1

(

ϕ12Ȧ1A−1
1 (x2−x1) f N

)

dx−dv−dA−

=
k1(N−1)

N
∇v1

·
(

∫

Ω
ϕ12Ȧ1A−1

1 (x2−x1) f N:2dx2dv2dA2

)

.

Because

Ȧ1A−1
1 =

k2

N

N

∑
j=1

ψ1j

(

Aj A
−1
1 −A1A−1

j

)

,

by the symmetry of f N , we have

I22=
k1k2(N−1)

N2
divv1

(

∫

Ω
ϕ12

N

∑
j=1

ψ1j

(

Aj A
−1
1 −A1A−1

j

)

(x2−x1) f N:2dx2dv2dA2

)

=
k1k2(N−1)2

N2
divv1

(

∫

Ω
ϕ12ψ12

(

A2A−1
1 −A1A−1

2

)

(x2−x1) f N:2dx2dv2dA2

)

.

Then we have

I2=

(

k1−
k1

N

)

∇v1
·
(

∫

Ω
ϕ12(v2−v1) f N:2dx2dv2dA2

)

−
(

k1−
k1

N

)

∇v1
·
(

∫

Ω

(

k2−
k2

N

)

ϕ12ψ12

(

A2A−1
1 −A1A−1

2

)

(x2−x1) f N:2dx2dv2dA2

)

.

By divergence theorem on SO(d), we have

∫

SO(d)
div
(

Ȧi f N
)

dAi=0,
∫

ΩN−1
div
(

Ȧi f N
)

dx−dv−dA−=0, i=2,.. . ,N.

Hence,

I3=
N

∑
i=1

∫

ΩN−1
divAi

(

Ȧi f N
)

dx−dv−dA−

=
∫

ΩN−1
divA1

(

Ȧ1 f N
)

dx−dv−dA−
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=
k2

N

∫

ΩN−1
divA1

(

N

∑
j=1

ψ1j

(

Aj A
−1
1 −A1A−1

j

)

A1 f N

)

dx−dv−dA−

=
k2(N−1)

N

∫

ΩN−1
divA1

(

ψ12

(

A2−A1A−1
2 A1

)

f N
)

dx−dv−dA−

=
k2(N−1)

N

∫

Ω
divA1

(

ψ12

(

A2−A1A−1
2 A1

)

f N/2
)

dx2dv2dA2.

Then we have

0=∂t f N:1+v1·∇xi
f N:1+

(

k1−
k1

N

)

∇v1
·
(

∫

Ω
ϕ12(v2−v1) f N:2dx2dv2dA2

)

−
(

k1−
k1

N

)

∇v1
·
(

∫

Ω

(

k2−
k2

N

)

ϕ12ψ12

(

A2A−1
1 −A1A−1

2

)

(x2−x1) f N:2dx2dv2dA2

)

+
k2(N−1)

N
∇A1

·
(

∫

Ω
ψ12

(

A2−A1A−1
2 A1

)

f N:2dx2dv2dA2

)

.

Now we take the mean-field limit N →∞ and obtain the one- and two-particle limiting
densities

f 1= lim
N→∞

f N:1(t,x1,v1,A1),

f 2= lim
N→∞

f N:2(t,x1,v1,A1,x2,v2,A2),

which satisfy

0=∂t f 1+v1·∇xi
f 1

+k1∇v1
·
(

∫

Ω

[

ϕ12(v2−v1)−k2 ϕ12ψ12

(

A2A−1
1 −A1A−1

2

)

(x2−x1)
]

f 2dx2dv2dA2

)

+k2∇A1
·
(

∫

Ω
ψ12(A2−A1A−1

2 A1) f 2dx2dv2dA2

)

.

We make the molecular chaos assumption that

f 2(t,x1,v1,A1,x2,v2,A2)= f 1(t,x1,v1,A1) f 1(t,x2,v2,A2)

to close the above equation. Then we can obtain one-particle distribution function f
satisfies the following equation:

∂t f +v1 ·∇xi
f +∇v·(L[ f ] f )+∇A ·(Q[ f ] f )=0,

L[ f ](t,x,v,A)= k1

∫

Ω
ϕ(|x−y|)

[

(v∗−v)−k2ψ(|x−y|)(A∗A−1−AA−1
∗ )(y−x)

]

× f (t,y,v∗ ,A∗)dydv∗dA∗,

Q[ f ](t,x,v,A)= k2

∫

Ω
ψ(|x−y|)

(

A∗−AA−1
∗ A

)

f (t,y,v∗,A∗)dydv∗dA∗.
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