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Abstract. In this paper, we consider signal recovery in both noiseless and noisy cases
via weighted ℓp (0< p≤ 1) minimization when some partial support information on
the signals is available. The uniform sufficient condition based on restricted isometry
property (RIP) of order tk for any given constant t>d (d≥1 is determined by the prior
support information) guarantees the recovery of all k-sparse signals with partial sup-
port information. The new uniform RIP conditions extend the state-of-the-art results
for weighted ℓp-minimization in the literature to a complete regime, which fill the gap
for any given constant t> 2d on the RIP parameter, and include the existing optimal
conditions for the ℓp-minimization and the weighted ℓ1-minimization as special cases.
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1 Introduction

In compressed sensing, a central goal is to efficiently recover sparse signals x∈R
n from

a relatively small number of linear measurements, i.e.

y=Ax+e, (1.1)

where y∈R
m, A∈R

m×n(m≪n) is a sensing matrix and e∈R
m denotes a vector of measure-

ment errors. It has been a research focus in applied mathematics, statistics, and machine
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learning, with abundant applications ranging from medical imaging to speech recogni-
tion and video coding. A series of fast algorithms have been developed to recover the sig-
nal x from a relatively small number of linear measurements (1.1). The ℓp-minimization
with 0 < p ≤ 1 is among the most well-known algorithms for the reconstruction of the
signal x

min
x∈Rn

‖x‖
p
p

s.t. Ax−y∈B,
(1.2)

where B is a set determined by the noise structure and ‖x‖p = (∑n
i=1 |xi|

p)1/p. For the
noiseless case, B={0}.

In this paper, we consider the weighted ℓp-minimization (0< p ≤ 1) [7–9, 11–15, 17,
18, 20] to recover the signal x from (1.1), when some prior information is included in the
estimates of the support of x or some estimates of largest coefficients of x. For instance,
video and audio signals exhibit strong correlation over temporal frames, which can be
used to estimate a portion of the support based on previously decoded frames. The main
idea inherited in the weighted ℓp-minimization is to make the entries of x, which are
expected to be large, be penalized less in the weighted objective function by introducing
a weight vector w∈ [0,1]n . The weighted ℓp-minimization is formulated as follows:

min
x∈Rn

‖x‖
p
p,w

s.t. Ax−y∈B,
(1.3)

where

‖x‖p,w=

( n

∑
i=1

wi|xi|
p

) 1
p

.

In particular, the weighted ℓp-minimization (1.3) reduces to the well-known weighted
ℓ1-minimization used for the signal recovery when p=1, i.e.

min
x∈Rn

‖x‖1,w

s.t. Ax−y∈B.
(1.4)

Let T̃ ⊆ [n] = {1,2,.. . ,n} be a known support estimate of x. The weight vector w in this
paper is taken by

wi=

{
ω, i∈ T̃,

1, i∈ T̃c
(1.5)

for some fixed ω∈ [0,1].
The signal recovery based on partially known support is introduced in [2, 15, 20].

In [2, 14, 16, 19, 20], the known support information is incorporated using weighted ℓ1-
minimization with zero weights on the known support T̃, i.e. ω = 0 in (1.5). Friedlan-
der et al. [9] extended the weighted ℓ1-minimization to nonzero weights, i.e. ω ∈ [0,1]
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in (1.5), and derived its stable and robust recovery guarantees based on restricted isom-
etry property, which is one of the most widely used frameworks in compressed sensing
proposed in [5]. RIP based signal recovery has been extensively studied via the weighted
ℓp-minimization (1.3) in the literature, see [7–10, 14, 15, 17, 20].

Definition 1.1. For a matrix A∈R
m×n and an integer 1≤ k≤n, A is said to satisfy the RIP of

order k if there exists a constant δk∈ [0,1) such that

(1−δk)‖x‖2
2 ≤‖Ax‖2

2 ≤ (1+δk)‖x‖2
2 (1.6)

holds for all k-sparse signals x∈R
n. A signal x∈R

n is called k-sparse if the number of its nonzero
entries is k at most. The smallest constant δk is called the restricted isometry constant (RIC) of
order k for A.

Note that when k is not an integer, δk is defined as δ⌈k⌉ in [4], where ⌈k⌉ denotes
an integer satisfying k<⌈k⌉< k+1.

This paper is devoted to developing a uniform RIP bound on δtk for the exact recov-
ery of signals with partial support information via the weighted ℓp-minimization (1.3)
with 0< p≤ 1 for all t> d where d≥ 1 is determined by the prior support information.
We provide the state-of-the-art results for weighted ℓp-minimization in the literature to
a complete regime, which fill the gap for t> 2d on δtk based signal recovery conditions,
and include the optimal results for the ℓ1-minimization in [4] and the ℓp-minimization
with 0<p<1 in [21,23] as special cases. Our main tool is to study a crucial sparse decom-
position technique adapted to the RIP analysis of the weighted ℓp(0<p≤1) minimization.

On the other hand, the stable recovery guarantees based on δtk for all t> d for noisy
observations or non-sparse signals with suitable assumptions are provided. Our results
for stable recovery of non-sparse signals are new for the weighted ℓp(0<p≤1) minimiza-
tion, compared to the recent work in [10]. Here we deduce an upper error bound using
some new transformations.

The rest of the paper is organized as follows. In Section 2, we recall some technical
lemmas for the (weighted) ℓp-minimization with 0< p≤1. In Section 3, we first present
uniform sufficient conditions for the recovery of sparse signals with prior support infor-
mation in the noiseless case. Then the error bounds of signal stable recovery are devel-
oped in ℓ2 bounded noise case or non-sparse signals. Finally, the conclusion of the paper
is presented in Section 5.

2 Preliminaries

In this section, we first recall some technical lemmas for the analysis of the weighted
ℓp-minimization (1.3) with 0< p≤1.

The following two lemmas have been used in [10]. The first one concerns elementary
ℓp inequality.
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Lemma 2.1 ([10, Lemma V.1]). Let p and q be two positive numbers. Then

(I) ‖x‖p ≤‖x‖2 |supp(x)|(2−p)/(2p), if 0< p<2,

(II) ‖x‖
p
p ≤ (‖x‖2

2)
1/q(‖x‖

p1
p1
)1−1/q, if pq>2 and q>1, where p1=(p−2/q)(q/(q−1)).

The second lemma states some properties on a function g(z)=pz2/p/2+z−(2−p)Λ/2.

Lemma 2.2 ( [10, Lemma V.2]). For 0< p≤ 1 and Λ> 0, the function g(z) = pz2/p/2+z−
(2−p)Λ/2 is monotonically increasing in (0,∞). In addition, the following statements hold:

(I) If 0<Λ≤2/(2−p), there exists a unique point z0∈((1−p)Λ,(1−p/2)Λ)⊆(0,1) such
that g(z0)=0.

(II) If 2/(2−p)<Λ< (2+p)/(2−p), there exists a unique point z0∈((1−p)Λ,1)⊆ (0,1)
such that g(z0)=0.

(III) If Λ≥ (2+p)/(2−p), there does not exist a point z0∈ (0,1) such that g(z0)=0.

The third lemma is an important lifting inequality established in [3].

Lemma 2.3 ([3]). Suppose n≥ r,τ≥0, a1 ≥ a2 ≥···≥ an ≥0, and ∑
r
i=1 ai+τ≥∑

n
i=r+1ai. Then

for all σ≥1,

n

∑
i=r+1

aσ
i ≤ r



(

1

r

r

∑
i=1

aσ
i

) 1
σ

+
τ

r




σ

.

The cone constraint inequality obtained in [11, Inequality (14)] is an essential exten-
sion of [9, Inequality (21)], which will play a key role for analyzing the weighted ℓp-
minimization (1.3). See the following lemma.

Lemma 2.4. For any two vectors x, x̂∈R
n and h= x̂−x, if ‖x̂‖

p
p,w ≤‖x‖

p
p,w with the weight

vector w defined in (1.5), then

‖hΓc‖
p
p≤ω‖hΓ‖

p
p+(1−ω)

∥∥h(T̃∪Γ)\(T̃∩Γ)

∥∥p

p

+2
(

ω‖xΓc‖
p
p+(1−ω)

∥∥xT̃c∩Γc

∥∥p

p

)
(2.1)

for any index set Γ⊆ [n].

A well-known property on RICs with different orders (see for example [3,Lemma 4.1])
is stated as follows.

Lemma 2.5. Suppose A∈R
m×n,k≥2 is an integer, s>1 and sk is an integer. Then δsk≤(2s−1)δk.

A key tool established in [4,22], which represents points in a polytope by convex com-
binations of k-sparse signals, initiates a process of improving and sharping RIP bounds
for signal recovery via the (weighted) ℓ1-minimization. The sparse representation of
a polytope is extended in [23] to adapt lp (0< p≤1) case, see the following lemma.
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Lemma 2.6 ([23, Lemma 2.2]). For x ∈ R
n which satisfies |supp(x)|= K,‖x‖

p
p ≤ Lζp and

‖x‖∞ ≤ ζ with L≤K being a positive integer, ζ being a positive constant and 0< p≤ 1, then x
can be represented as the convex combination of L-sparse vectors, i.e.

x=
N

∑
i=1

λiui,

where λi >0,∑N
i=1λi =1 and ‖ui‖0≤ L. Furthermore,

N

∑
i=1

λi‖ui‖
2
2≤min

{
n

L
‖x‖2

2, ζp‖x‖
2−p
2−p

}
. (2.2)

We have used the key sparse representation tool with 0 < p ≤ 1 and obtained the
following state-of-the-art RIP condition for sparse signal recovery via the weighted ℓp-
minimization (1.3), which includes the existing optimal result in [6, Theorem 1].

Theorem 2.1 ([10, Theorem III.1]). For y= Ax, let x∈R
n be k-sparse with T= supp(x) and

the support estimate T̃ ⊆ [n]. Define ρ ≥ 0 and 0 ≤ α ≤ 1 with αρ ≤ 1 such that |T̃|= ρk and
|T̃∩T|=αρk. If A satisfies RIP with

δtk<





1√
p2+(2−p)2χ

2
2−p /(t−d)−(1−p)

, d< t≤d+
2−p

2+p
χ

2
2−p ,

z0

(2−p)χ
2

2−p /(t−d)−z0

, d+
2−p

2+p
χ

2
2−p < t≤2d,

(2.3)

where

d=

{
1, ω=1,

1+max{0,1−2α}ρ, 0≤ω<1,
(2.4)

χ=ω+(1−ω)(1+ρ−2αρ)
2−p

2 , (2.5)

and

z0∈

(
1−p

t−d
χ

2
2−p ,min

{
1,

2−p

2(t−d)
χ

2
2−p

})

is the only positive solution of the equation

p

2
z

2
p +z−

2−p

2(t−d)
χ

2
2−p =0, (2.6)

then the weighted ℓp-minimization (1.3) with the weight vector w defined in (1.5) and 0< p≤1
recovers x exactly.
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3 Main results

In this section, we present RIP bounds for the signal recovery via the weighted ℓp-mini-
mization (1.3) with 0< p≤1 in both noiseless and l2 bounded noise cases.

3.1 Noiseless case

In noiseless case, we obtain a uniform recovery condition based on δtk with t> d for the
exact recovery of the sparse signals x from y=Ax via the weighted ℓp-minimization (1.3)
with 0< p≤1 and B={0}.

Theorem 3.1. Let y=Ax for a k-sparse vector x∈R
n with T=supp(x), and T̃⊆[n] be a support

estimate of x. Define ρ≥0 and 0≤α≤1 with αρ≤1 such that |T̃|=ρk and |T̃∩T|=αρk. Given
the weight vector w∈ [0,1]n as defined in (1.5) and 0< p≤1, if tk is an integer and

1−δ2
tk−pχ

2
p
(
2(t−d)

)− 2−p
p




√
p2δ2

2(t−d)k
+4(1−p)δ2

tk+(2−p)δ2(t−d)k

1+δ2(t−d)k




2−2p
p

×
(

2δ2
tk−pδ2

2(t−d)k+δ2(t−d)k

√
p2δ2

2(t−d)k
+4(1−p)δ2

tk

)
>0 (3.1)

for some t> d, where d and χ are defined in (2.4) and (2.5), respectively, then the weighted ℓp-
minimization (1.3) with B={0} recovers x exactly.

The proof of Theorem 3.1 can be found in Section 4.2. We first provide some remarks
for the case d< t≤2d.

For d< t≤2d,δ2(t−d)k ≤ δtk by the monotonicity of RICs. By some simple calculation,
it is easy to see that the quantity



(2−p)δ2(t−d)k+

√
p2δ2

2(t−d)k
+4(1−p)δ2

tk)

1+δ2(t−d)k




2−2p
p

×
(

2δ2
tk−pδ2

2(t−d)k+δ2(t−d)k

√
p2δ2

2(t−d)k
+4(1−p)δ2

tk

)

is monotonically increasing in δ2(t−d)k. Then

1−δ2
tk−pχ

2
p
(
2(t−d)

)− 2−p
p

(
2(2−p)δtk

1+δtk

) 2−2p
p (

2(2−p)δ2
tk

)
>0

guarantees the condition (3.1) holds. Therefore, we have the following corollary.

Corollary 3.1. Let y=Ax for a k-sparse vector x∈R
n with T=supp(x) and the support estimate

T̃⊆ [n]. Let α and ρ be the same as in Theorem 3.1. If A satisfies RIP with

δtk< δ̃(p,t,d,χ) (3.2)
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for d< t≤2d, where d and χ are respectively defined in (2.4) and (2.5), and

δ̃(p, t,d,χ)∈





1+2pχ

2
p

(
2−p

2−p

) 2−p
p




− 1
2

, 1




is the unique position solution of the equation

δ=

(
1+pχ

2
p

(
2−p

t−d

) 2−p
p
(

δ

1+δ

) 2−2p
p

)− 1
2

, (3.3)

then the weighted ℓp-minimization (1.3) with the weight vector w defined in (1.5) and 0< p≤1
recovers x exactly.

Remark 3.1. As pointed out before, the state-of-the-art result based on δtk with d< t≤2d
for the exact recovery of the sparse signal x from y = Ax has been developed in our
previous paper [10]. See Theorem 2.1. The following facts have a direct bearing on the
matter and deserve our careful discussion. When d< t≤ d+(2−p)χ2/(2−p)/(2+p), the
condition (2.3) is weaker than (3.2). When d+(2−p)χ2/(2−p)/(2+p)<t≤2d, the condition
(2.3) is equivalent to (3.2). In fact, the Eq. (3.3) can be written as

p

2

(
2−p

t−d

δ

1+δ
χ

2
2−p

) 2
p

+
2−p

t−d

δ

1+δ
χ

2
2−p −

2−p

2(t−d)
χ

2
2−p =0.

Then δ̃(p,t,d,χ) in (3.2) satisfies

δ̃(p,t,d,χ)=
z0

(2−p)χ
2

2−p /(t−d)−z0

for the unique positive solution

z0∈

(
1−p

t−d
χ

2
2−p ,min

{
1,

2−p

2(t−d)
χ

2
2−p

})

of (2.6), which infers that (3.2) is exactly the condition (2.3). When d<t≤ d+(2−p)/(2+p)
×χ2/(2−p), we will prove that

δ̃(p,t,d,χ)=
z0

(2−p)χ
2

2−p /(t−d)−z0

<
1√

p2+(2−p)2χ
2

2−p /(t−d)−(1−p)

.

That is to show that

z0<
2−p

(t−d)
(√

p2+(2−p)2χ
2

2−p /(t−d)+p
)χ

2
2−p ,
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which is obvious since z0<1 and

χ
2

2−p

t−d

2−p√
p2+(2−p)2χ

2
2−p /(t−d)+p

≥1

for d< t≤d+(2−p)χ2/(2−p)/(2+p).

When ω=1, we have χ=1 in (2.5) and d=1 in (2.4), then the condition (3.2) reduces to
a sufficient condition in [6, Theorem 1] for sparse signal recovery via the ℓp-minimization
(1.2), which includes the sharp sufficient condition [23, Theorem 1.2].

Corollary 3.2. Let y=Ax for a k-sparse vector x∈R
n with T=supp(x). If A satisfies RIP with

δtk< δ̃(p,t,1,1) (3.4)

for 1< t≤2, where

δ̃(p,t,1,1)∈





1+2p

(
2−p

2(t−1)

) 2−p
p




− 1
2

, 1




is the unique positive solution of the equation

δ=


1+p

(
2−p

t−1

) 2−p
p
(

δ

1+δ

) 2−2p
p




− 1
2

,

then the ℓp-minimization (1.2) with 0< p≤1 and B=0 recovers x exactly.

Remark 3.2. When ω = 1, the condition (3.2) reduces to (3.4), and the condition (2.3)
reduces to

δtk<





1√
p2+(2−p)2/(t−1)−(1−p)

, 1< t≤1+
2−p

2+p
,

z0

(2−p)/(t−d)−z0
, 1+

2−p

2+p
< t≤2

(3.5)

for the unique positive solution

z0∈

(
1−p

t−d
χ

2
2−p ,min

{
1,

2−p

2(t−d)
χ

2
2−p

})

of the equation

p

2
z

2
p +z−

2−p

2(t−1)
=0, (3.6)

which is sufficient for sparse signal recovery via the ℓp-minimization. By Remark 3.1,
the condition (3.5) in [10] is equivalent to (3.4), which is sharp for sparse signal recovery
via the ℓp-minimization (1.2) when 1+(2−p)/(2+p)< t≤ 2, see [6, Remark 10]. When
1< t≤1+(2−p)/(2+p), the condition (3.5) in [10] is weaker than (3.4).
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Remark 3.3. For t = 2, the condition (3.5) or (3.4) is the sharp sufficient condition [23,
Theorem 1.2]. That is,

δ2k <
η0

2−p−η0
,

where η0∈ (1−p,1−p/2) is the only positive solution of the equation

p

2
z

p
2 +z−1+

p

2
=0.

It is worth to point out that the uniform condition (3.1) in Theorem 3.1 involves both
δtk and δ2(t−d)k for 0< p≤1. It is a little surprise that the uniform condition (3.1) involves
only δtk for p= 1 and it reduces to the state-of-the-art condition in [8, Theorem 3.1, Re-
mark 3.1] for the exact recovery of x. See the following Corollary 3.3, which can be easily
inferred from Theorem 3.1.

Corollary 3.3. For y= Ax, let x∈R
n be k-sparse with T= supp(x) and the support estimate

T̃⊆ [n]. Let α and ρ be the same as in Theorem 3.1. If A satisfies RIP with

δtk <

√
t−d

t−d+χ2
(3.7)

for some t> d, where d is defined in (2.4) and χ is defined in (2.5) with p=1, then the weighted
ℓ1-minimization (1.4) with B={0} exactly recovers x.

Remark 3.4. Note that the sufficient condition (3.7) is tight under certain cases, see [8,
Theorem 3.2].

For the most classical case p = 1 and ω = 1, then χ = 1 in (2.5), d = 1 in (2.4) and
the uniform condition (3.1) in Theorem 3.1 reduces to the sharp sufficient condition [4,
Theorem 1.1].

Corollary 3.4. Let y=Ax for a k-sparse vector x∈R
n. If

δtk<

√
t−1

t
(3.8)

for some t>1, then x can be exactly recovered by the ℓp-minimization (1.2) with p=1 and B={0}.

Now we consider the general case t> d. When ω= 1 or α= 1/2, it is clear that χ= 1
in (2.5) and d= 1 in (2.4). And the uniform RIP conditions (3.1) reduces to the uniform
result for the ℓp-minimization [21, Theorem 1].

Corollary 3.5. Assume that y=Ax where x∈R
n is a k-sparse signal. If tk is an integer and

1−δ2
tk−p

(
2(t−1)

)− 2−p
p



(2−p)δ2(t−1)k+

√
p2δ2

2(t−1)k
+4(1−p)δ2

tk

1+δ2(t−1)k




2−2p
p

×
(

2δ2
tk−pδ2

2(t−1)k+δ2(t−1)k

√
p2δ2

2(t−1)k
+4(1−p)δ2

tk

)
>0 (3.9)

for some t>1, then the ℓp-minimization (1.2) with B={0} and 0< p≤1 exactly recovers x.



H. Ge, W. Chen and M. K. Ng / CSIAM Trans. Appl. Math., 5 (2024), pp. 18-57 27

When α>1/2 and ω∈ [0,1), it is clear that χ<1 from (2.5) and d=1 in (2.4). If χ<1
and d = 1, then the sufficient condition (3.9) implies the condition (3.1). Therefore, we
have the following proposition.

Proposition 3.1. If α> 1/2 and ω ∈ [0,1), then the sufficient condition (3.1) of the weighted
ℓp-minimization (1.3) is weaker than the condition (3.9) of the ℓp-minimization (1.2) for exact
sparse recovery.

Here, we provide a frame diagram (Fig. 1) to summarize the remarks and corollar-
ies following Theorem 3.1. And the conditions on δtk contain several quantities in the
remarks and corollaries. Baraniuk et al. [1] provide a bound on RICs for a set of ran-
dom matrices from concentration of measure. For these random measurement matrices,
[1, Theorem 5.2] shows that

P(δk<λ)≥1−2

(
12en

kλ

)k

exp

(
−m

(
λ2

16
−

λ3

48

))

holds for positive integer k<m and 0< λ< 1. Then, for any known bound δk < δ0 < 1,
δk<δ0 hold in high probability when

m≥
klog(n/k)

δ2
0/16−δ3

0/48
.

Figure 1: The whole structure of bounds on δtk follows from Theorem 3.1.
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For example, the lower bound of m to ensure δtk < δ̃(p,t,d,χ) in (3.2) to hold in high
probability is

m≥
klog(n/k)

δ̃2(p,t,d,χ)/16− δ̃3(p,t,d,χ)/48
.

Next, we devote to developing a general RIP condition on δtk for t≥2d to achieve the
recovery of sparse signals via the weighted ℓp minimization, which will fill the gap on δtk

based signal recovery condition for t>2d, compared with the work in [10].

Theorem 3.2. Let y = Ax where x ∈ R
n is a k-sparse vector with T = supp(x), and T̃ ⊆ [n]

be a support estimate of x. Let α and ρ be the same as in Theorem 3.1. Given the weight vector
w∈ [0,1]n defined in (1.5) and 0< p≤1, if

δtk<δ(p,t,d,χ) (3.10)

for some t≥2d, where d and χ are respectively defined in (2.4) and (2.5) and δ(p,t,d,χ) satisfying

1+p

(
χ

2
2−p

2(t−d)

) 2−p
p
(

s(2−p)+
√

s2 p2+4(1−p)

4(t−d)
t

) 2−2p
p

×

(
2−ps2+s

√
s2 p2+4(1−p)

)



− 1
2

≤δ(p,t,d,χ)<1,

where s=(3t−4d)/t, is the unique positive solution of the following equation:

z=


1+p

(
χ

2
2−p

2(t−d)

) 2−p
p
(

s(2−p)+
√

s2 p2+4(1−p)

1+sz
z

) 2−2p
p

×

(
2−ps2+s

√
s2 p2+4(1−p)

)



− 1
2

, (3.11)

then the weighted ℓp-minimization (1.3) with B={0} recovers x exactly.

The proof of Theorem 3.2 can be found in Section 4.3.

Remark 3.5. Let

Q(d,z)=
2

p
(t−d)

2−p
p

1−z2

z2

(
s(2−p)+

√
s2 p2+4(1−p)

2(1+sz)
z

)− 2−2p
p

×

(
2−ps2+s

√
s2 p2+4(1−p)

)−1

. (3.12)

Then the Eq. (3.11) can be written as Q(d,z)=χp/2.
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Remark 3.6. For ω=1 or α=1/2, Theorem 3.2 reduces to [21, Theorem 2]. That is, when
ω = 1 or α = 1/2, the condition (3.10) reduces to δtk < δ(p,t,1,1) for some t ≥ 2, which
is a state-of-the-art sufficient condition in [21, Theorem 2] for the sparse signal recovery
via the ℓp-minimization, where δ(p,t,1,1) is the unique positive solution of the equation
Q(1,z)=1.

When α>1/2 and ω∈[0,1), we have χ<1 in (2.5) and d=1 in (2.4). Then, the condition
(3.10) reduces to δtk < δ(p,t,1,χ) where δ(p,t,1,χ) is the unique positive solution of the
equation Q(1,z)=χp/2. By some simple calculation, the function Q(1,z) is monotonically
decreasing on z ∈ (0,1]. Therefore, δ(p,t,1,1)< δ(p,t,1,χ) when χ < 1. We establish the
following proposition.

Proposition 3.2. If α>1/2 and ω∈ [0,1), then the sufficient condition δtk < δ(p,t,1,χ) of the
weighted ℓp-minimization (1.3) is weaker than the condition δtk<δ(p,t,1,1) of the ℓp-minimiza-
tion (1.2) in [21, Theorem 2] for exact sparse recovery.

3.2 Noisy or non-sparse signal case

In the subsection, the origin signal x is not limited to be k-sparse, which is different
from the sparse signals considered in [10]. We derive the following results, which com-
plete the RIP based characterization for the recovery of signals via the weighted ℓp-
minimization (1.3).

First, we consider the stable recovery based on δtk with d<t≤d+(2−p)/(2+p)χ2/(2−p)

in the following theorem.

Theorem 3.3. Let y= Ax+e, where x∈R
n and ‖e‖2 ≤ ε. Let T = supp(xk) where xk is the

best k-term approximation of x which only keeps the largest k entries in magnitude, and T̃⊆ [n]
be a support estimate of xk. Define ρ ≥ 0 and 0 ≤ α ≤ 1 with αρ ≤ 1 such that |T̃|= ρk and
|T̃∩T|= αρk. Given the weight vector w∈ [0,1]n defined in (1.5) and 0< p≤ 1, suppose x̂ℓ2 is
a minimizer of (1.3) with B=Bl2(ε)={z∈R

m : ‖z‖2 ≤ ε}. If A satisfies RIP with

δtk<
1√

p2+(2−p)2χ
2

2−p −(1−p)

(3.13)

for d< t≤d+(2−p)χ2/(2−p)/(2+p) where χ and d are respectively defined in (2.5) and (2.4),
then

∥∥x− x̂ℓ2
∥∥

2
≤

√
1+2

2−2p
p C1

(√
p2+qχ

2
2−p +p

)−1(
1−δtk

(√
p2+qχ

2
2−p +p−1

))−1

ε

+

√

C2
2+2

2−2p
p

(
C2+

(
2(dk)−

2−p
2

) 1
p

)2(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p
, (3.14)



30 H. Ge, W. Chen and M. K. Ng / CSIAM Trans. Appl. Math., 5 (2024), pp. 18-57

where

C1=2

(√
p2+qχ

2
2−p +2p−2

)√
1+δtk

+

(
4

(√
p2+qχ

2
2−p +2p−2

)2

(1+δtk)+8

(√
p2+qχ

2
2−p +p

)

×

(
1−δtk

(√
p2+qχ

2
2−p +p−1

))
(1−p)

) 1
2

, (3.15)

q=q(t,d)=(2−p)2/(t−d), and

C2=





 2

p




√
p2+qχ

2
2−p +p

2
−1






p
2 (

(2−p)χ
2

2−p δtk

(t−d)(1+δtk)

)−
2−p

2

−1




− 1
p(

2

k
2−p

2 χ
2
p

) 1
p

. (3.16)

The proof of Theorem 3.3 can be found in Section 4.4.
Next, the stable recovery result based on δtk with d+(2−p)χ2/(2−p)/(2+p)≤ t<2d is

developed in the following theorem.

Theorem 3.4. Let y=Ax+e where x∈R
n and ‖e‖2 ≤ ε. Let T=supp(xk) where xk is the best

k-term approximation of x, and T̃ ⊆ [n] be a support estimate of xk. Define ρ≥ 0 and 0≤ α≤ 1
with αρ≤1 such that |T̃|= ρk and |T̃∩T|=αρk. Given the weight vector w∈ [0,1]n defined in
(1.5) and 0< p≤1, suppose x̂ℓ2 is a minimizer of (1.3) with B=Bl2(ε)={z∈R

m : ‖z‖2 ≤ ε}. If
A satisfies RIP with

δtk<
z0

(2−p)χ
2

2−p −z0

(3.17)

for d+(2−p)χ2/(2−p)/(2+p)< t≤2d, where

z0∈

(
1−p

t−d
χ

2
2−p ,min

{
1,

2−p

2(t−d)
χ

2
2−p

})

is the only positive solution of the equation

p

2
z

2
p +z−

2−p

2(t−d)
χ

2
2−p =0, (3.18)

then

‖x−x̂ℓ2‖2≤

√
1+2

2−2p
p D1

1−
(
(2−p)χ

2
2−p −z0(t−d)

)
δtk/

(
z0(t−d)

) ε

+

√

D2
2+2

2−2p
p

(
D2+

(
2(dk)−

2−p
2

) 1
p

)2(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

) 1
p
, (3.19)
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where

D1=2

(
1−

z0(t−d)

χ
2

2−p

)
√

1+δtk (3.20)

+2

((
1−

z0(t−d)

χ
2

2−p

)2

(1+δtk)+2

(
1−

(2−p)χ
2

2−p −z0(t−d)

z0(t−d)
δtk

)
1−p

2−p

z0(t−d)

χ
2

2−p

) 1
2

,

D2=


z

2−p
2

0

(
(2−p)χ

2
2−p δtk

(1+δtk)(t−d)

)− 2−p
2

−1




− 1
p(

2

k
2−p

2 χ

) 1
p

. (3.21)

The proof of Theorem 3.4 can be found in Section 4.5.
Finally, we consider the stable recovery of the signal x on the high order RIP δtk

with t≥2d.

Theorem 3.5. Let y=Ax+e where x∈R
n and ‖e‖2 ≤ ε. Let T=supp(xk) where xk is the best

k-term approximation of x, and T̃ ⊆ [n] be a support estimate of xk. Define ρ≥ 0 and 0≤ α≤ 1
with αρ≤1 such that |T̃|= ρk and |T̃∩T|=αρk. Given the weight vector w∈ [0,1]n defined in
(1.5) and 0< p≤1, suppose x̂ℓ2 is a minimizer of (1.3) with B=Bl2(ε)={z∈R

m : ‖z‖2 ≤ ε}. If
A satisfies RIP with (3.10), then

‖x− x̂ℓ2‖2≤

√
1+2

2−2p
p E1δ2(p,t,d,χ)

2
(
δ(p,t,d,χ)−δtk

) ε+

√

E2
2+

(
E2+

(
2(dk)−

2−p
2

) 1
p

)2

×
(

ω‖xTc‖
p
p+(1−ω)‖xT̃c∩Tc‖

p
p

) 1
p
, (3.22)

where

E1=

(
1

δ(p,t,d,χ)
−

1

2

(√
(sp)2+4(1−p)−sp

))√
1+δtk

+

((
1

δ(p,t,d,χ)
−

1

2

(√
(sp)2+4(1−p)−sp

))2

(1+δtk)

+2
δ(p,t,d,χ)−δtk

δ2(p,t,d,χ)

(√
(sp)2+4(1−p)−sp

)) 1
2

, (3.23)

E2=



(

δ(p,t,d,χ)
(
1+sδtk

)

δtk

(
1+sδ(p,t,d,χ)

)
)1−p

−1




− 1
p(

2

k
2−p

2 χ
2
p

) 1
p

, (3.24)

where s=(3t−4d)/t.

The proof of Theorem 3.5 can be found in Section 4.6.
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4 Proofs of main results

To simplify the proof of the main results, we develop in advance some elementary esti-
mates based on technical lemmas in Section 2 for the analysis of the weighted ℓp-minimi-
zation with 0< p≤1 and the weight vector w∈ [0,1]n defined in (1.5).

4.1 Some elementary estimates

For any vector x∈R
n, define xmax(k) as x with all but the largest k entries in absolute value

set to zero, and x−max(k)=x−xmax(k). For any index set S⊂{1,2,.. . ,n}, xS is defined to be
the vector which equals to x on S, and zero elsewhere.

Combining Lemma 2.4 with Lemma 2.6, we first introduce the following estimates
which will play a crucial role in establishing recovery conditions.

Lemma 4.1. For the vectors x̂ and x, suppose that ‖x̂‖
p
p,w ≤‖x‖

p
p,w. Let xk be the best k-term

approximation of x with T = supp(xk), and T̃ ⊆ [n] be a known support estimate of x. Define
ρ≥0 and 0≤α≤1 with αρ≤1 such that |T̃|=ρk and |T̃∩T|=αρk. Let h= x̂−x and

νp=ω‖hT‖
p
p+(1−ω)

∥∥h(T̃∪T)\(T̃∩T)

∥∥p

p
+2
(

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)
. (4.1)

For t>d and a positive integer tk, define two index sets

Υ1=

{
i∈supp

(
h−max(dk)

)
: |hi|>

ν
(
(t−d)k

) 1
p

}
, (4.2)

Υ2=

{
i∈supp

(
h−max(dk)

)
: |hi|≤

ν
(
(t−d)k

) 1
p

}
, (4.3)

where d is defined in (2.4). Then

(i) The vector hΥ2
can be represented as a convex combination of ((t−d)k−|Υ1|)-sparse vec-

tors u(i) with supp(u(i))⊆Υ2, i.e.

hΥ2
=

N

∑
i=1

λiu
(i), (4.4)

where N is a positive integer, λi >0, ∑
N
i=1λi=1, and

N

∑
i=1

λi‖u(i)‖2
2≤

χ
2

2−p

t−d

(
‖hTh

dk
‖

p
2 +

2
(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

)

k
2−p

2 χ

) 2
2−p (

‖hΥ2
‖2

2

) 2−2p
2−p , (4.5)

where Th
dk =supp(hmax(dk)) and χ is defined in (2.5).
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(ii) For the vectors h−max(dk) and hΥ2
, the following estimates hold:

‖h−max(dk)‖
2
2≤

(
‖hmax(dk)‖

p
2+

2
(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

)

(dk)
2−p

2

) 2
p

, (4.6)

‖hΥ2
‖2

2 ≤
χ

2
p

(t−d)
2−p

p

(
‖hTh

dk
‖

p
2+

2
(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

)

k
2−p

2 χ

) 2
p

. (4.7)

Proof. (i) By ‖x̂‖
p
p,w≤‖x‖

p
p,w,h= x̂−x and (2.1) in Lemma 2.4 with Γ=T, one has

‖hTc‖
p
p≤ω‖hT‖

p
p+(1−ω)

∥∥h(T̃∪T)\(T̃∩T)

∥∥p

p

+2
(

ω‖xTc‖
p
p+(1−ω)‖xT̃c∩Tc‖

p
p

)
=νp (4.8)

for 0≤ω≤1, where the equality is due to the definition of νp in (4.1).

For the k-sparse signal xk and T = supp(xk), we have |T| ≤ k and d≥ 1 and dk∈N
+

from the definition of d in (2.4). Then it follows that

‖h−max(dk)‖
p
p≤‖hTc‖

p
p ≤νp, (4.9)

by the inequality (4.8).

First, we will show a convex combination of sparse vectors for hΥ2
∈ R

n. By Th
dk =

supp(hmax(dk)), the definitions of Υ1 in (4.2) and Υ2 in (4.3), it is obvious that

(Th
dk)

c=Υ1∪Υ2, Υ1∩Υ2=∅. (4.10)

For the vector hΥ1

‖hΥ1
‖

p
p= ∑

i∈Υ1

|hi|
p≥|Υ1|

νp

(t−d)k
. (4.11)

By (4.9) and (4.10), one has

‖hΥ1
‖

p
p≤‖hΥ1

‖
p
p+‖hΥ2

‖
p
p =‖h−max(dk)‖

p
p ≤νp.

Combining (4.11) with the above inequality, we deduce that for ν>0,

|Υ1|≤ (t−d)k.

For the vector hΥ2
, it is easy to see that

‖hΥ2
‖∞

(a)

≤
ν

(
(t−d)k

) 1
p

,

‖hΥ2
‖

p
p
(b)
= ‖h−max(dk)‖

p
p−‖hΥ1

‖
p
p

(c)

≤
(
(t−d)k−|Υ1|

) νp

(t−d)k
,

(4.12)
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where (a), (b) respectively follows from (4.3), (4.10), (c) is due to (4.9) and (4.11). Ap-
plying Lemma 2.6 with L = (t−d)k−|Υ1| and ζ = ν/((t−d)k)1/p , we obtain the sparse
expression (4.4)

hΥ2
=

N

∑
i=1

λiu
(i),

where λi>0,∑N
i=1λi=1, every u(i) is ((t−d)k−|Υ1|)-sparse and supp(u(i))⊆Υ2. Further-

more, by (2.2),

N

∑
i=1

λi‖u(i)‖2
2≤min

{
n

L
‖hΥ2

‖2
2,

νp

k(t−d)
‖hΥ2

‖
2−p
2−p

}
≤

νp

k(t−d)
‖hΥ2

‖
2−p
2−p

≤
νp

k(t−d)

(
‖hΥ2

‖2
2

) 2−2p
2−p
(
‖hΥ2

‖
p
p

) p
2−p

≤
νp

k(t−d)

(
‖hΥ2

‖2
2

) 2−2p
2−p

((
(t−d)k−|Υ1|

) νp

k(t−d)

) p
2−p

≤
ν

2p
2−p

k(t−d)

(
‖hΥ2

‖2
2

) 2−2p
2−p , (4.13)

where the third inequality is from Lemma 2.1(II), and the fourth inequality follows from
(4.12).

For νp in (4.1), we deduce that

νp =ω‖hT‖
p
p+(1−ω)

∥∥h(T∪T̃)\(T∩T̃)

∥∥p

p
+2
(

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

≤ω|T|
2−p

2 ‖hT‖
p
2+(1−ω)|(T∪T̃)\(T∩T̃)|

2−p
2
∥∥h(T∪T̃)\(T∩T̃)

∥∥p

2

+2
(

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

≤ k
2−p

2

(
ω+(1−ω)(1+ρ−2αρ)

2−p
2

)∥∥hTh
dk

∥∥p

2
+2
(

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

= k
2−p

2 χ
∥∥hTh

dk

∥∥p

2
+2
(

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)
, (4.14)

where the first inequality is from 0< p≤ 1 and Lemma 2.1(I) and the second inequality
follows from |T|≤ k and |(T∪T̃)\(T∩T̃)|≤ (1+ρ−2αρ)k≤ dk and Th

dk = supp(hmax(dk)),
and the last equality is due to the definition of χ in (2.5).

Then, substituting (4.14) into (4.13), we obtain

∑
i

λi‖u(i)‖2
2≤

χ
2

2−p

t−d


∥∥hTh

dk

∥∥p

2
+

2
(
ω
∥∥xTc

∥∥p

p
+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
2−p (

‖hΥ2
‖2

2

) 2−2p
2−p ,

which is (4.5).
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(ii) For the vector h−max(dk), from (4.9) and νp in (4.1) it follows that

‖h−max(dk)‖
p
p ≤ω‖hT‖

p
p+(1−ω)

∥∥h(T∪T̃)\(T∩T̃)

∥∥p

p
+2
(

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

≤‖hmax(dk)‖
p
p+2

(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)
,

where we use the facts that |T|≤k and |(T∪T̃)\(T∩T̃)|≤(1+ρ−2αρ)k≤dk in the second
inequality. By the above inequality and Lemma 2.3, we obtain that

‖h−max(dk)‖
2
2≤dk


 ‖hmax(dk)‖

p
2

(dk)
p
2

+
2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

dk




2
p

=

(
‖hmax(dk)‖

p
2 +

2
(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

)

(dk)
2−p

2

) 2
p

,

which is (4.6). For the vector hΥ2
, there is

‖hΥ2
‖2

2 ≤‖hΥ2
‖

2−p
∞ ‖hΥ2

‖
p
p≤‖hΥ2

‖
2−p
∞ ‖h−max(dk)‖

p
p≤

(
νp

(t−d)k

) 2−p
p

νp

≤
χ

2
p

(t−d)
2−p

p

(
∥∥hTh

dk

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

)

k
2−p

2 χ

) 2
p

,

where the second and third inequalities are respectively due to ‖hΥ2
‖

p
p≤‖h−max(dk)‖

p
p≤νp

and ‖hΥ2
‖∞≤ν/((t−d)k)1/p in (4.12), and the last inequality is due to (4.14).

The following two lemmas contains useful facts on RIP, whose prototype has been
used in [21] for the analysis of the ℓp-minimization (1.2). The first one is based on
Lemma 2.5 and its proof is omitted since it is very simple.

Lemma 4.2. Suppose the sense matrix A∈R
m×n, t≥2d,k and tk are positive integers. Then

δtk≤δ2(t−d)k≤
3t−4d

t
δtk. (4.15)

Lemma 4.3. Suppose δtk < B(t) can guarantee the exact recovery of k-sparse signals via some
minimization method when tk is a positive integer. If the RIC bound B(t) is monotonically non-
decreasing for t>0, then δtk <B(t) can also guarantee the exact recovery of k-sparse signals via
the same minimization method when tk is not an integer.

Proof. For completeness, we give the proof although it seems routine as in [4, 21]. When
tk is not an integer, denote t

′
= ⌈tk⌉/k. Then t

′
k is an integer and t ≤ t

′
. Based on the

definition of RIP for non-integer tk, one has δtk=δ⌈tk⌉=δt
′
k. We deduce that the condition

δtk < B(t) implies δt
′
k < B(t′) since B(t) is monotonically nondecreasing with t > 0 and

then δt
′
k =δtk<B(t)≤B(t′). Therefore, the desired result holds since t

′
k is an integer.
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4.2 Proof of Theorem 3.1

Proof. Suppose that x̂ is a solution of the weighted ℓp-minimization (1.3) with B= {0},

then ‖x̂‖
p
p,w ≤ ‖x‖

p
p,w and Ax̂ = y. For the k-sparse signal x and T = supp(x), we have

|T|≤ k and xTc =0.
Let h= x̂−x. To prove that the weighted ℓp-minimization (1.3) exactly recovers the

k-sparse signal x reduces to proving h = 0. Suppose that h 6= 0 and tk is an integer, we
next show there is a contradiction under the condition (3.1). It deduces that the weighted
ℓp-minimization (1.3) exactly recovers the k-sparse signal x.

If hTc = 0, then h is a k-sparse vector. Since the sensing matrix A satisfies the RIP of
order tk with t>d≥1 and (3.1) implies δtk<1, we deduce that h=0. It is in contradiction
with the assumption h 6=0. Therefore, in the following proof, we assume that hTc 6=0. In
this case, the proof is divided into three main steps as follows.

Step 1: Using Lemma 4.1, we present a convex combination of some sparse vectors for
hΥ2

, where Υ2 is defined in (4.3). By ‖x̂‖
p
p,w≤‖x‖

p
p,w and Lemma 4.1, one has that

hΥ2
=

N

∑
i=1

λiu
(i), (4.16)

where λi>0,∑N
i=1λi=1,u(i) is ((t−d)k−|Υ1|)-sparse and supp(u(i))⊆Υ2. And

N

∑
i=1

λi‖u(i)‖2
2≤

χ
2

2−p

t−d

(∥∥hTh
dk

∥∥p

2

) 2
2−p
(
‖hΥ2

‖2
2

) 2−2p
2−p

≤
χ

2
2−p

t−d


 ‖hΥ2

‖2
2∥∥hTh

dk∪Υ1

∥∥2

2




2−2p
2−p

‖hTh
dk∪Υ1

‖2
2, (4.17)

which follows from (4.5) and xTc =0. In addition, the inequality (4.7) with

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p
=0

holds. Then

‖hΥ2
‖2

2≤
χ

2
p

(t−d)
2−p

p

∥∥hTh
dk

∥∥2

2
≤

χ
2
p

(t−d)
2−p

p

∥∥hTh
dk∪Υ1

∥∥2

2
. (4.18)

Step 2: Show an inequality on ‖hTh
dk∪Υ1

‖2
2 to estimate its upper bound based on the fol-

lowing important identity firstly presented in [4]:

N

∑
i=1

λi

∥∥∥∥∥A

(
N

∑
j=1

λjv
(j)−cv(i)

)∥∥∥∥∥

2

2

+
1−2c

2

N

∑
i=1

N

∑
j=1

λiλj

∥∥A(v(i)−v(j))
∥∥2

2

−(1−c)2
N

∑
i=1

λi

∥∥Av(i)
∥∥2

2
=0, (4.19)
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where c ≤ 1/2 and v(i) = hTh
dk∪Υ1

+µu(i) for any µ ∈ R is tk-sparse. In fact, v(i)−v(j) =

µ(u(i)−u(j)) and

N

∑
j=1

λjv
(j)−cv(i)=(1−c)hTh

dk∪Υ1
+µ

N

∑
j=1

λju
(j)−cµu(i)

=(1−c)hTh
dk∪Υ1

+µhΥ2
−cµu(i)

=(1−c−µ)hTh
dk∪Υ1

+µh−cµu(i). (4.20)

Substituting (4.20) into the first term of the identity (4.19) and using the fact that Ah=
Ax̂−Ax=y−y=0, one has

N

∑
i=1

λi

∥∥∥∥∥A

(
N

∑
j=1

λjv
(j)−cvi

)∥∥∥∥∥

2

2

=
N

∑
i=1

λi

∥∥A
(
(1−c−µ)hTh

dk∪Υ1
−cµu(i)

)∥∥2

2

≤ (1+δtk)
N

∑
i=1

λi

∥∥(1−c−µ)hTh
dk∪Υ1

−cµu(i)
∥∥2

2

=(1+δtk)

(
(1−c−µ)2

∥∥hTh
dk∪Υ1

∥∥2

2
+c2µ2

N

∑
i=1

λi‖u(i)‖2
2

)
, (4.21)

where the inequality follows from (1−c−µ)hTh
dk∪Υ1

−cµu(i) is tk-sparse and A satisfies the

RIP of order tk, and the last equality is due to supp(u(i))⊆Υ2 and (4.10) implying
〈
hTh

dk∪Υ1
,u(i)

〉
=0. (4.22)

For the second term of the identity (4.19), from the fact

v(i)−v(j)=µ(u(i)−u(j)),

it follows that

1−2c

2

N

∑
i=1

N

∑
j=1

λiλj

∥∥A(v(i)−v(j))
∥∥2

2

=
1−2c

2
µ2

N

∑
i=1

N

∑
j=1

λiλj

∥∥A(u(i)−u(j))
∥∥2

2

≤ (1+δ2(t−d)k)µ
2 1−2c

2

N

∑
i=1

N

∑
j=1

λiλj‖u(i)−u(j)‖2
2

=(1+δ2(t−d)k)µ
2(1−2c)

(
N

∑
i=1

λi‖u(i)‖2
2−

∥∥∥∥
N

∑
i=1

λiu
(i)

∥∥∥∥
2

2

)

=(1+δ2(t−d)k)µ
2(1−2c)

(
N

∑
i=1

λi‖u(i)‖2
2−‖hΥ2

‖2
2

)
, (4.23)
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where the inequality is from that ui is (k(t−d)−|Υ1|)-sparse and t>d, the last equality is
due to hΥ2

=∑
N
i=1λiu

(i).

Furthermore, it follows from v(i) is tk-sparse for the third term of the identity (4.19)
that

(1−c)2
N

∑
i=1

λi‖Av(i)‖2
2≥ (1−δtk)(1−c)2

N

∑
i=1

λi‖v(i)‖2
2

=(1−δtk)(1−c)2

(
‖hTh

dk∪Υ1
‖2

2+µ2
N

∑
i=1

λi‖u(i)‖2
2

)
, (4.24)

where the equality is from the definition of v(i), i.e.

v(i)=hTh
dk∪Υ1

+µu(i)

and (4.22). Substituting the inequalities (4.21), (4.23) and (4.24) into the identity (4.19)
with any µ∈R, one has

0≤
(
(1+δtk)(1−c−µ)2−(1−δtk)(1−c)2

)∥∥hTh
dk∪Υ1

∥∥2

2

+
(
(1+δtk)c

2µ2+(1+δ2(t−d)k)(1−2c)µ2−(1−δtk)(1−c)2µ2
) N

∑
i=1

λi‖u(i)‖2
2

−(1+δ2(t−d)k)(1−2c)µ2‖hΥ2
‖2

2

=

(
(1+δtk)‖hTh

dk∪Υ1
‖2

2+
(
(2c2−2c+1)δtk+(1−2c)δ2(t−d)k

) N

∑
i=1

λi‖ui‖
2
2

−(1+δ2(t−d)k)(1−2c)‖hΥ2
‖2

2

)
µ2

−2(1−c)(1+δtk)
∥∥hTh

dk∪Υ1

∥∥2

2
µ+2δtk(1−c)2

∥∥hTh
dk∪Υ1

∥∥2

2

≤


(1+δtk)+

(
(2c2−2c+1)δtk+(1−2c)δ2(t−d)k

)χ
2

2−p

t−d


 ‖hΥ2

‖2
2∥∥hTh

dk∪Υ1

∥∥2

2




2−2p
2−p

−(1+δ2(t−d)k)(1−2c)
‖hΥ2

‖2
2∥∥hTh

dk∪Υ1

∥∥2

2



∥∥hTh

dk∪Υ1

∥∥2

2
µ2

−2(1−c)(1+δtk)
∥∥hTh

dk∪Υ1

∥∥2

2
µ+2δtk(1−c)2

∥∥hTh
dk∪Υ1

∥∥2

2
, (4.25)

where the last inequality is from (4.17).
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Step 3: We show that there is a contradiction for (4.25) under the condition (3.1). Set
a second-order function f (µ) for any µ∈R,

f (µ)=


(1+δtk)+

(
(2c2−2c+1)δtk+(1−2c)δ2(t−d)k

)χ
2

2−p

t−d


 ‖hΥ2

‖2
2∥∥hTh

dk∪Υ1

∥∥2

2




2−2p
2−p

−(1+δ2(t−d)k)(1−2c)
‖hΥ2

‖2
2

‖hTh
dk∪Υ1

‖2
2


µ2

−2(1−c)(1+δtk)µ+2δtk(1−c)2, (4.26)

where

c=
1

2
−

√
p2δ2

2(t−d)k
+4(1−p)δ2

tk−pδ2(t−d)k

4δtk
, (4.27)

and ‖hΥ2
‖2

2/‖hTh
dk∪Υ1

‖2
2 is a parameter. By (4.18), then

0≤
‖hΥ2

‖2
2∥∥hTh

dk∪Υ1

∥∥2

2

≤ (t−d)−
2−p

p χ
2
p .

And by the assumption that ‖hTh
dk∪Υ1

‖2 6=0, the above inequality (4.25) is equivalent to

f (µ)≥0, µ∈R. (4.28)

The discriminant of the function (4.26) is

∆=4(1−c)2(1+δtk)
2−8


(1+δtk)+

(
(2c2−2c+1)δtk+(1−2c)δ2(t−d)k

)

×
χ

2
2−p

t−d


 ‖hΥ2

‖2
2∥∥hTh

dk∪Υ1

∥∥2

2




2−2p
2−p

−(1+δ2(t−d)k)(1−2c)
‖hΥ2

‖2
2∥∥hTh

dk∪Υ1

∥∥2

2


δtk(1−c)2 (4.29)

with the parameters ‖hΥ2
‖2

2/‖hTh
dk∪Υ1

‖2
2 ∈ [0,(t−d)−(2−p)/pχ2/p] and c in (4.27). By some

simple analysis, ∆ gets minimum value denoting ∆min at

‖hΥ2
‖2

2∥∥hTh
dk∪Υ1

∥∥2

2

=




√
p2δ2

2(t−d)k
+4(1−p)δ2

tk+(2−p)δ2(t−d)k

2(1+δ2(t−d)k)(t−d)
χ

2
2−p




2−p
p

≤
χ

2
p

(t−d)
2−p

p

.
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Furthermore,

∆min=4(1−c)2


1−δ2

tk−pχ
2
p
(
2(t−d)

)− 2−p
p

×




√
p2δ2

2(t−d)k
+4(1−p)δ2

tk+(2−p)δ2(t−d)k

1+δ2(t−d)k




2−2p
p

×
(

2δ2
tk−pδ2

2(t−d)k+δ2(t−d)k

√
p2δ2

2(t−d)k

)

>0,

where the last inequality is from the condition (3.1). Therefore,

∆>0

for any ‖hΥ2
‖2

2/‖hTh
dk∪Υ1

‖2
2 ∈ [0,(t−d)−(2−p)/pχ2/p]. Then there must be µ0 ∈R such that

f (µ0)<0 which contradicts with (4.28). The proof is complete.

4.3 The proof of Theorem 3.2

Proof. By [21, Remark 5], it is clear that the function

g(z)=

(√
p2z2+4(1−p)δ2

tk+
(2−p)z

1+z

) 2−2p
p
(

2δ2
tk−pz2+z

√
p2z2+4(1−p)δ2

tk

)

is monotonically nondecreasing with z≥0. For t≥2d, Lemma 4.2 says that δ2(t−d)k≤ sδtk,
then

g(δ2(t−d)k)≤ g(sδtk),

where s=(3t−4d)/t, and

1−δ2
tk−p

(
χ

2
2−p

2(t−d)

) 2−p
p

g(δ2(t−d)k)≥1−δ2
tk−p

(
χ

2
2−p

2(t−d)

) 2−p
p

g(sδtk).

When tk is an integer, we only need to prove that

1−δ2
tk−p

(
χ2/(2−p)

2(t−d)

) 2−p
p

g(sδtk)>0

by Theorem 3.1. We next prove that it is true under the condition (3.10). It reduces to
proving that the continuous function

h(z)=1−z2


 1+p

(
χ

2
2−p

2(t−d)

) 2−p
p
(√

s2 p2+4(1−p)+s(2−p)

1+sz
z

) 2−2p
p
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×

(
2−ps2+s

√
s2 p2+4(1−p)

)
 (4.30)

for z∈[0,1] satisfies h(z)>0 when z<δ(p,t,d,χ). From (3.11), it follows that h(δ(p,d,t,χ))=
0. Next, we prove that δ(p,d,t,χ) is the only solution of h(z) = 0. Since z and z/(1+
sz) are both monotonically increasing with z,h(z) is monotonically decreasing with z.
Furthermore, one has that h(0)=1 and

h(1)=−p

(
χ

2
2−p

2(t−d)

) 2−p
p
(√

s2 p2+4(1−p)+s(2−p)

1+s

) 2−2p
p

×

(
2−ps2+s

√
s2 p2+4(1−p)

)
<0.

Then, there is a unique positive solution of h(z) = 0 with z ∈ (0,1). Then, by the fact
h(δ(p,d,t,χ))=0,δ(p,d,t,χ) is the only solution of h(z)=0. And h(z)> h(δ(p,d,t,χ))=0
when z<δ(p,d,t,χ). In addition, based on δ(p,d,t,χ)<1, it is clear that

δ(p,d,t,χ)

1+sδ(p,d,t,χ)
<

t

4(t−d)
.

Then, by (3.11), we have that

δ(p,d,t,χ)≥


1+p

(
χ

2
2−p

2(t−d)

) 2−p
p
(√

s2 p2+4(1−p)+s(2−p)

4(t−d)
t

) 2−2p
p

×

(
2−ps2+s

√
s2 p2+4(1−p)

)



− 1
2

.

When tk is not an integer, we have the following proof. Since the partial derivative
with respect to t in both sides of (3.11)

∂z

∂t
=

1−z2

2z(t−d)
(

2−ps2+s
√

s2 p2+4(1−p)
)
(

1+
1−z2

z2

(
1+psz

p(1+sz)

))−1

×


2−ps2+s

√
s2 p2+4(1−p)

p
(2−p)−

8d(1−p)(t−d)

t2 p(1+sz)

×

(
2−ps2+s

√
s2 p2+4(1−p)

s(2−p)+
√

s2 p2+4(1−p)

(2−p)
√

s2 p2+4(1−p)+sp2−4(1−p)z√
s2 p2+4(1−p)

)
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−

(√
s2 p2+4(1−p)−2ps

)2

√
s2 p2+4(1−p)

·
4d(t−d)

t2




≥
1−z2

2z(t−d)
(

2−ps2+s
√

s2 p2+4(1−p)
)
(

1+
1−z2

z2

(
1+psz

p(1+sz)

))−1

×
1+(1−p)2

√
s2 p2+4(1−p)+sp

·
2

p
>0 (4.31)

for t ≥ 2d. Therefore, ∂δ(p,d,t,χ)/∂t is monotonically nondecreasing with t ≥ 2d. And
using Lemma 4.3, it is clear that δtk<δ(p,t,d,χ) guarantees the exact recovery of k-sparse
signals via the weighted ℓp-minimization (1.3) with B={0}. We complete the proof.

4.4 Proof of Theorem 3.3

Proof. We first assume that tk is an integer. Let h= x̂ℓ2−x. Since x̂ℓ2 is a solution of the
weighted ℓp-minimization (1.3) with B=Bl2(ε)={z∈R

m : ‖z‖2≤ ε}, then ‖Ax̂ℓ2−y‖2≤ ε,

and ‖x̂ℓ2‖
p
p,w≤‖x‖

p
p,w. Furthermore, from ‖Ax̂ℓ2−y‖2≤ε and ‖Ax−y‖2≤ε, it follows that

‖Ah‖2≤‖Ax̂ℓ2−y‖2+‖Ax−y‖2≤2ε. (4.32)

Next, we will complete the proof by the following two steps.

Step 1: hΥ2
can be presented as a convex combination of some sparse signals by Lem-

ma 4.1 with x̂= x̂ℓ2 , where Υ2 is defined in (4.3). Applying ‖x̂ℓ2‖
p
p,w ≤‖x‖

p
p,w and Lem-

ma 4.1 with x̂= x̂ℓ2 , one has hΥ2
=∑

N
i=1λiu

(i), where u(i) is ((t−d)k−|Υ1|)-sparse vector
and for all i, supp(u(i))⊆Υ2,λi >0 such that ∑

N
i=1λi =1. And

N

∑
i=1

λi‖u(i)‖2
2≤

χ
2

2−p

t−d


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
2−p(

‖hΥ2
‖2

2

) 2−2p
2−p . (4.33)

In addition, (4.6) and (4.7) hold.

Step 2: We will develop an upper bound on ‖hTh
dk∪Υ1

‖2 based on the identity (4.19), where

Υ1 is defined in (4.2). For the first term of the identity (4.19), we deduce

N

∑
i=1

λi

∥∥∥∥A

( N

∑
j=1

λjv
(j)−cv(i)

)∥∥∥∥
2

2

(a)
=

N

∑
i=1

λi

∥∥A
(
(1−c−µ)hTh

dk∪Υ1
+µh−cµu(i)

)∥∥2

2
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=
N

∑
i=1

λi

∥∥A
(
(1−c−µ)hTh

dk∪Υ1
−cµu(i)

)∥∥2

2
+µ2‖Ah‖2

2

+2µ

〈
A

(
(1−c−µ)hTh

dk∪Υ1
−cµ

N

∑
i=1

λiu
(i)

)
,Ah

〉

(b)
=

N

∑
i=1

λi

∥∥A
(
(1−c−µ)hTh

dk∪Υ1
−cµu(i)

)∥∥2

2

+(1−2c)µ2‖Ah‖2
2+2(1−c)µ(1−µ)

〈
AhTh

dk∪Υ1
,Ah

〉

(c)

≤ (1+δtk)
N

∑
i=1

λi

∥∥(1−c−µ)hTh
dk∪Υ1

−cµu(i)
∥∥2

2

+(1−2c)µ2‖Ah‖2
2+2(1−c)µ(1−µ)

∥∥AhTh
dk∪Υ1

∥∥
2
‖Ah‖2

(d)

≤ (1+δtk)

(
(1−c−µ)2

∥∥hTh
dk∪Υ1

∥∥2

2
+c2µ2

N

∑
i=1

λi‖u(i)‖2
2

)

+4(1−2c)µ2ε2+4(1−c)µ(1−µ)
√

1+δtkε
∥∥hTh

dk∪Υ1

∥∥
2
, (4.34)

where (a) is due to (4.20), (b) follows from hΥ2
=∑

N
i=1λiu

(i) and h=hTh
dk∪Υ1

+hΥ2
, (c) comes

from the fact that (1−c−µ)hTh
dk∪Υ1

−cµu(i) is tk-sparse and Hölder inequality, and (d) is

because hTh
dk∪Υ1

is tk-sparse and ‖Ah‖2≤2ε in (4.32).

For the second term of the identity (4.19), by the monotonicity of RIP and d < t ≤
d+(2−p)χ2/(2−p)/(2+p), the inequality (4.23) reduces to

1−2c

2

N

∑
i=1

N

∑
j=1

λiλj

∥∥A
(
v(i)−v(j)

)∥∥2

2
≤ (1+δtk)µ

2(1−2c)

(
N

∑
i=1

λi‖u(i)‖2
2−‖hΥ2

‖2
2

)
.

Substituting (4.24), (4.34) and the above inequality into the identity (4.19) with c= p/2,
we derive that

0≤ (1+δtk)

((
1−

p

2
−µ
)2

‖hTh
dk∪Υ1

‖2
2+

(
p2µ2

4
+µ2(1−p)

) N

∑
i=1

λi‖u(i)‖2
2−µ2(1−p)‖hΥ2

‖2
2

)

−(1−δtk)
(

1−
p

2

)2
(∥∥hTh

dk∪Υ1

∥∥2

2
+µ2

N

∑
i=1

λi‖u(i)‖2
2

)

+2(2−p)µ(1−µ)
√

1+δtkε
∥∥hTh

dk∪Υ1

∥∥
2
+4(1−p)µ2ε2

(a)

≤

(
(1+δtk)

(
1−

p

2
−µ
)2

−(1−δtk)
(

1−
p

2

)2
)∥∥hTh

dk∪Υ1

∥∥2

2

+2(2−p)µ(1−µ)
√

1+δtkε
∥∥hTh

dk∪Υ1

∥∥
2
+4(1−p)µ2ε2
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+


 2δtk

χ
2

2−p

t−d

(
1−

p

2

)2


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω
∥∥xTc

∥∥p

p
+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
2−p

×
(
‖hΥ2

‖2
2

) 2−2p
2−p −(1+δtk)(1−p)‖hΥ2

‖2
2


µ2, (4.35)

where (a) is due to (4.33).

We now consider the last term of the above inequality. Define the function

g1(ν)=2δtk
χ

2
2−p

t−d

(
1−

p

2

)2

×


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω
∥∥xTc

∥∥p

p
+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
2−p

ν
2−2p
2−p

−(1+δtk)(1−p)ν (4.36)

for

ν∈


0,

χ
2
p

(t−d)
2−p

p


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p


.

By some simple calculation, we verify that g1(ν)≤ g1(ν0) with

ν0=

(
(2−p)δtkχ

2
2−p

(1+δtk)(t−d)

) 2−p
p


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

. (4.37)

In addition, by d< t≤d+((2−p)(2+p))χ
2

2−p , and

δtk<
1

u−(1−p)

in (3.13), where

u=

√

p2+
(2−p)2χ

2
2−p

t−d
,

we derive that

ν0 <
χ

2
p

(t−d)
2−p

p


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

,
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and

g1(ν0)=
p

2
(1+δtk)

(
(2−p)χ

2
2−p δtk

(1+δtk)(t−d)

) 2−p
p

×


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω
∥∥xTc

∥∥p

p
+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

. (4.38)

For (4.38), it follows from

δtk<
1

u−(1−p)

in (3.13) that

g1max(ν0)<
p

2
(1+δtk)

(
(2−p)χ

2
2−p

(t−d)(u+p)

) 2−p
p

×


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

≤ (1+δtk)

(
u+p

2
−1

)

×

(
‖hTh

dk∪Υ1
‖

p
2+

2
(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

)

k
2−p

2 χ

) 2
p

,

where we use Lemma 2.2(III) with Λ=χ2/(2−p)/(t−d) and

z=
(2−p)χ

2
2−p /(t−d)

u+p
<1

and

d< t≤d+
2−p

2+p
χ

2
2−p

in the second inequality. Furthermore, by the above inequality and (4.38), there is the fact
that

p

2

(
(2−p)χ

2
2−p δtk

(1+δtk)(t−d)

) 2−p
p

<
u+p

2
−1. (4.39)

Let

µ=
2−p

u+p
,
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we derive that

(1+δtk)
(

1−
p

2
−µ
)2

−(1−δtk)
(

1−
p

2

)2
+(1+δtk)

(
u+p

2
−1

)
µ2

=

(
2−p

u+p

)2

−
(2−p)2

u+p
+δtk

((
1−

p

2
−

2−p

u+p

)2

+
(

1−
p

2

)2
)

+(1+δtk)

(
u+p

2
−1

)(
2−p

u+p

)2

=
u+p

2

(
−1+δtk(u+p−1)

)
µ2

<0, (4.40)

where the inequality follows from

δtk <
1

u−(1−p)
.

By (4.35) and the function g1(ν) in (4.36), one has that
(
(1+δtk)

(
1−

p

2
−µ
)2

−(1−δtk)
(

1−
p

2

)2
+(1+δtk)

(
u+p

2
−1

)
µ2

)
∥∥hTh

dk∪Υ1

∥∥2

2

+2(2−p)µ(1−µ)
√

1+δtkε
∥∥hTh

dk∪Υ1

∥∥
2
+4(1−p)µ2ε2

−(1+δtk)

(
u+p

2
−1

)
µ2
∥∥hTh

dk∪Υ1

∥∥2

2
+g1

(
‖hΥ2

‖2
2

)
µ2≥0.

From (4.40), g1(‖hΥ2
‖2

2)≤ g1max(ν0), (4.38) and

µ=
2−p

u+p
,

the above inequality reduces to

u+p

2

(
−1+δtk(u+p−1)

)∥∥hTh
dk∪Υ1

∥∥2

2
+2(u+2p−2)

√
1+δtkε

∥∥hTh
dk∪Υ1

∥∥
2

+4(1−p)ε2−(1+δtk)

(
u+p

2
−1

)∥∥hTh
dk∪Υ1

∥∥2

2
+

p

2
(1+δtk)

(
(2−p)χ

2
2−p δtk

(t−d)(1+δtk)

) 2−p
p

×


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

≥0.

Then, by (4.39),

∥∥hTh
dk∪Υ1

∥∥
2
≤

C1

(u+p)
(
1−δtk(u+p−1)

) ε

+C2

(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

) 1
p
, (4.41)
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where the constants C1 and C2 are defined in (3.15) and (3.16), respectively. Furthermore,

‖h‖2
2 =‖hmax(dk)‖

2
2+‖h−max(dk)‖

2
2 (4.42)

≤
∥∥hTh

dk∪Υ1

∥∥2

2
+


‖hTh

dk∪Υ1
‖

p
2+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

(dk)
2−p

2




2
p

≤
∥∥hTh

dk∪Υ1

∥∥2

2
+2

2−2p
p


∥∥hTh

dk∪Υ1

∥∥
2
+

(
2

(dk)
2−p

2

) 1
p (

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p




2

,

where we use (4.6) and Th
dk = supp(hmax(dk)) in the first inequality, and Jensen inequality

in the other inequalities. By (4.41) and (4.42), we have that

‖h‖2
2 ≤

(
C1

(u+p)(1−δtk(u+p−1))
ε+C2

(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p

)2

+2
2−2p

p


 C1

(u+p)
(
1−δtk(u+p−1)

) ε+C2

(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p

+

(
2

(dk)
2−p

2

) 1
p (

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p




2

.

Therefore,

‖h‖2 ≤

√
1+2

2−2p
p C1

(u+p)
(
1−δtk(u+p−1)

) ε+

√

C2
2+2

2−2p
p

(
C2+

(
2(dk)−

2−p
2

) 1
p

)2

×
(

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p
.

When tk is not an integer, we define t
′
=⌈tk⌉/k. Then t

′
> t, t

′
k is an integer and

δt
′
k =δtk<

1

u−(1−p)
.

We obtain the desired result by working on δt′ k.

4.5 Proof of Theorem 3.4

Proof. By Lemma 2.2,
p

2
z

2
p +z−

2−p

2(t−d)
χ

2
2−p =0
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with
2−p

2+p
χ

p
2−p +d≤ t≤2d

has a unique solution in ((1−p)χ2/(2−p)/(t−d),1). If z0 is the only positive solution of
the equation

p

2
z

2
p +z−

2−p

2(t−d)
χ

2
2−p =0,

it is easy to see

z0∈

(
1−p

t−d
χ

2
2−p ,min

{
1,

2−p

2(t−d)
χ

2
2−p

})
.

First we assume tk is an integer. When

d+
2−p

2+p
χ

2
2−p < t≤2d,

the inequalities (4.32)-(4.38) still hold as in the proof of Theorem 3.3 in Section 4.4. By the
condition δtk< (t−d)z0/((2−p)χ2/(2−p)−(t−d)z0) in (3.17), we derive that

(2−p)δtkχ
2

2−p

(1+δtk)(t−d)
< z0. (4.43)

Then (4.37) and (4.38) respectively change to

ν0 < z
2−p

p

0


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

<

(
2−p

2

) 2−p
p χ

2
p

(t−d)
2−p

p


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

, (4.44)

and

g1max(ν0)<
p

2
(1+δtk)z

2−p
p

0


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

, (4.45)

where we used the facts that z0 < (2−p)χ2/(2−p)/(2(t−d)) and 0< p≤ 1 in the second
inequality of (4.44).

In addition, from (4.35) and the function g1(ν) defined in (4.36), it is clear that
(
(1+δtk)

(
1−

p

2
−µ
)2

−(1−δtk)
(

1−
p

2

)2
+

p

2
(1+δtk)z

2−p
p

0 µ2

)∥∥hTh
dk∪Υ1

∥∥2

2

+2(2−p)µ(1−µ)
√

1+δtkε
∥∥hTh

dk∪Υ1

∥∥
2

+4(1−p)µ2ε2−
p

2
(1+δtk)z

2−p
p

0 µ2
∥∥hTh

dk∪Υ1

∥∥2

2
+g1

(
‖hΥ2

‖2
2

)
µ2≥0. (4.46)
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Combining the fact that g1(‖hΥ2
‖2

2)≤ g1max(v0) with (4.7) and (4.38), we derive that

[
(1+δtk)

(
1−

p

2
−µ
)2

−(1−δtk)
(

1−
p

2

)2
+

p

2
(1+δtk)z

2−p
p

0 µ2

]∥∥hTh
dk∪Υ1

∥∥2

2

+2(2−p)µ(1−µ)
√

1+δtkε
∥∥hTh

dk∪Υ1

∥∥
2
+4(1−p)µ2ε2

−
p

2
(1+δtk)z

2−p
p

0 µ2
∥∥hTh

dk∪Υ1

∥∥2

2
+

p

2
(1+δtk)

(
(2−p)χ

2
2−p δtk

(1+δtk)(t−d)

) 2−p
p

×

(
∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

)

k
2−p

2 χ

) 2
p

µ2≥0.

Let µ= z0(t−d)/χ2/(2−p). Then

(1+δtk)
(

1−
p

2
−µ
)2

−(1−δtk)
(

1−
p

2

)2
+

p

2
(1+δtk)z

2−p
p

0 µ2

=
(
µ2−(2−p)µ

)
+δtk

((
1−

p

2
−µ
)2

+
(

1−
p

2

)2
)
+

p

2
(1+δtk)z

2−p
p

0 µ2

=
(
µ2−(2−p)µ

)
+δtk

((
1−

p

2
−µ
)2

+
(

1−
p

2

)2
)
+(1+δtk)

(
2−p

2
µ−µ2

)

=
2−p

2

(
−µ+δtk(2−p−µ)

)

<
2−p

2

(
−µ+

(t−d)z0

(2−p)χ
2

2−p −(t−d)z0

(2−p−µ)

)
=0,

where we used the fact that

p

2
z

2
p

0 +z0−
(2−p)χ

2
2−p

2(t−d)
=0

in the second equality, and the inequality follows from

δtk<
(t−d)z0

(2−p)χ
2

2−p −(t−d)z0

in (3.17) and

z0<
(2−p)χ

2
2−p

2(t−d)
.

From the above two inequalities, together with µ=z0(t−d)/χ2/(2−p) and (4.46), it follows
that

2−p

2

(
µ−δtk(2−p−µ)

)∥∥hTh
dk∪Υ1

∥∥2

2
−2(2−p)µ(1−µ)

√
1+δtkε

∥∥hTh
dk∪Υ1

∥∥
2
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−4(1−p)µ2ε2+
p

2
(1+δtk)z

2−p
p

0 µ2
∥∥hTh

dk∪Υ1

∥∥2

2
−

p

2
(1+δtk)

(
(2−p)χ

2
2−p δtk

(1+δtk)(t−d)

) 2−p
p

×v2


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

≤0,

i.e.

2−p

2

(
1−

(2−p)χ
2

2−p −z0(t−d)

z0(t−d)
δtk

)
∥∥hTh

dk∪Υ1

∥∥2

2
−2(2−p)(1−µ)

√
1+δtkε

∥∥hTh
dk∪Υ1

∥∥
2

−4(1−p)µε2+
p

2
(1+δtk)z

2−p
p

0 µ
∥∥hTh

dk∪Υ1

∥∥2

2
−

p

2
(1+δtk)

(
(2−p)χ

2
2−p δtk

(1+δtk)(t−d)

) 2−p
p

µ

×


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

≤0.

Then, by (4.43), one has that

∥∥hTh
dk∪Υ1

∥∥
2
≤

D1

1−
(
(2−p)χ

2
2−p −z0(t−d)

)
δtk/

(
z0(t−d)

) ε

+D2

(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p
, (4.47)

where the constants D1 and D2 are defined in (3.20) and (3.21), respectively. Furthermore,
combining (4.42) with (4.47) we deduce

‖h‖2
2 ≤


 D1

1−
(
(2−p)χ

2
2−p −z0(t−d)

)
δtk

/(
z0(t−d)

) ε

+D2

(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p




2

+2
2−2p

p


 D1

1−
(
(2−p)χ

2
2−p −z0(t−d)

)
δtk

/(
z0(t−d)

) ε

+D2

(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p

+

(
2

(dk)
2−p

2

) 1
p (

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p




2

.
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As a consequence,

‖h‖2 ≤

√
1+2

2−2p
p D1

1−
(
(2−p)χ

2
2−p −z0(t−d)

)
δtk

/(
z0(t−d)

) ε

+

√

D2
2+2

2−2p
p

(
D2+

(
2(dk)−

2−p
2

) 1
p

)2(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p
.

When tk is not an integer, we define t
′
= ⌈tk⌉/k as usual. Then t

′
> t, t

′
k is an integer and

z
′

0< z0, where z0 and z
′

0 respectively are the unique solution of Eq. (3.18) and

p

2
z

2
p +z−

2−p

2(t′−d)
χ

2
2−p =0.

Therefore,

δt
′
k =δtk<

(t−d)z0

(2−p)χ
2

2−p −(t−d)z0

<
(t′−d)z

′

0

(2−p)χ
2

2−p −(t′−d)z
′

0

.

We obtain the desired result by working on δt
′
k. We complete the proof.

4.6 Proof of Theorem 3.5

Proof. Similarly, we first assume tk is an integer. When t≥2d, the inequalities (4.32)-(4.34)
also hold in the proof of Theorem 3.3 in Section 4.4. And let the parameters c and µ in the
identity (4.19) be

c=
1

2
−

1

4

(√
s2 p2+4(1−p)−sp

)
, (4.48)

µ=
2−sp+

√
s2 p2+4(1−p)

2
(
1+δ(p,t,d,χ)

) δ(p,t,d,χ), (4.49)

where s=(3t−4d)/t, and δ(p,t,d,χ) is in (3.10). By t≥2d and Lemma 4.2, the inequality
(4.23) reduces to

1−2c

2

N

∑
i=1

N

∑
j=1

λiλj

∥∥A(v(i)−v(j))
∥∥2

2

≤ (1+sδtk)µ2(1−2c)

(
N

∑
i=1

λi‖u(i)‖2
2−‖hΥ2

‖2
2

)
. (4.50)

Substituting the inequalities (4.24), (4.34) and (4.50) into the identity (4.19), we deduce

0≤
(
(1+δtk)(1−c−µ)2−(1−δtk)(1−c)2

)∥∥hTh
dk∪Υ1

∥∥2

2
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+
(
(1+δtk)c

2µ2+(1+sδtk)µ2(1−2c)−(1−δtk)(1−c)2µ2
) N

∑
i=1

λi‖u(i)‖2
2

−(1+sδtk)(1−2c)µ2‖hΥ2
‖2

2+4(1−2c)µ2ε2+4(1−c)µ(1−µ)
√

1+δtk ε
∥∥hTh

dk∪Υ1

∥∥
2

=
(
(1+δtk)(1−c−µ)2−(1−δtk)(1−c)2

)∥∥hTh
dk∪Υ1

∥∥2

2

+4(1−c)µ(1−µ)
√

1+δtkε
∥∥hTh

dk∪Υ1

∥∥
2
+4(1−2c)µ2ε2

+

(
2c2+(1−2c)

4t−4d

t

)
δtkµ2

N

∑
i=1

λi‖ui‖
2
2−(1+sδtk)(1−2c)µ2‖hΥ2

‖2
2

≤
(
(1+δtk)(1−c−µ)2−(1−δtk)(1−c)2

)∥∥hTh
dk∪Υ1

∥∥2

2

+4(1−c)µ(1−µ)
√

1+δtkε
∥∥hTh

dk∪Υ1

∥∥
2
+4(1−2c)µ2ε2

+
χ

2
2−p

t−d

(
2c2+(1−2c)

4t−4d

t

)
δtkµ2

×


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
2−p (

‖hΥ2
‖2

2

) 2−2p
2−p

−(1+sδtk)(1−2c)µ2‖hΥ2
‖2

2, (4.51)

where the inequality is due to (4.33) and t≥2d. Similarly, we first consider the last term
of (4.51). Define a function

g2(ν)=
χ

2
2−p

t−d

(
2c2+(1−2c)

4t−4d

t

)
δtkµ2

×


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
2−p

ν
2−2p
2−p −(1+sδtk)(1−2c)µ2ν

for

ν∈


0,

χ
2
p

(t−d)
2−p

p


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p


.

Then the inequality (4.51) can be written as

(
(1+δtk)(1−c−µ)2−(1−δtk)(1−c)2

)∥∥hTh
dk∪Υ1

∥∥2

2

+4(1−c)µ(1−µ)
√

1+δtkε
∥∥hTh

dk∪Υ1

∥∥
2

+4(1−2c)µ2ε2+g2

(
‖hΥ2

‖2
2

)
≥0. (4.52)
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By some elementary calculation, the function g2(z) attains its supremum at

ν0=

(
(2−2p)

(
2c2+(1−2c)(4t−4d)/t

)
δtk

(2−p)(t−d)(1+sδtk)(1−2c)

) 2−p
p

χ
2
p

×


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

=

(√
p2s2+4(1−p)+(2−p)s

2(1+sδtk)
δtk

) 2−p
p

(t−d)−
2−p

p χ
2
p

×


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

,

where we used the definition of c in (4.48). That is

g1(ν)≤ g1(ν0)

=


 1

t−d

(
2c2+(1−2c)

4t−4d

t

)
δtk

(√
p2s2+4(1−p)+(2−p)s

2(1+sδtk)
δtk

) 2−2p
p

− (1+sδtk)(1−2c)

(√
p2s2+4(1−p)+(2−p)s

2(1+sδtk)
δtk

) 2−p
p




×µ2χ
2
p

(
‖hTh

dk∪Υ1
‖

p
2+

2
(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

)

k
2−p

2 χ

) 2
p

×
(t−d)−

2−p
p χ

2
p p
(
s
√

p2s2+4(1−p)+2−s2 p
)
δtk

4

×

(√
p2s2+4(1−p)+(2−p)s

2(1+sδtk)
δtk

) 2−2p
p

×χ
2
p


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

µ2

=
δtk

2

(
1−h(δtk)

δ2
tk

−1

)
∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

µ2,

where the last two equalities follow from the definition of c in (4.48), and the function
h(z) in (4.30), respectively. Then, applying (4.52) and g2(‖hΥ2

‖2
2)≤g2(ν0), we derive that
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(
(1+δtk)(1−c−µ)2−(1−δtk)(1−c)2

)∥∥hTh
dk∪Υ1

∥∥2

2

+4(1−c)µ(1−µ)
√

1+δtkε
∥∥hTh

dk∪Υ1

∥∥
2
+4(1−2c)µ2ε2+

δtk

2

(
1−h(δtk)

δ2
tk

−1

)

×


∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω
∥∥xTc

∥∥p

p
+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

µ2≥0. (4.53)

On the other hand, based on the parameters c in (4.48) and µ in (4.49), one has

(1+δtk)(1−c−µ)2−(1−δtk)(1−c)2=

(
−

1

δ(p,t,d,χ)
+

(
1+δ2(p,t,d,χ)

2δ2(p,t,d,χ)

)
δtk

)
µ2,

4(1−c)µ(1−µ)=2

(
1

δ(p,t,d,χ)
−

1

2

(√
(sp)2+4(1−p)−sp

))
µ2,

4(1−2c)µ2 =2

(√
(sp)2+4(1−p)−sp

)
µ2. (4.54)

Furthermore, since h(z) is monotonically decreasing with z, h(δ(p,t,d,χ))= 0, and δtk <

δ(p,t,d,χ), then
(
−

1

δ(p,t,d,χ)
+

(
1+δ2(p,t,d,χ)

2δ2(p,t,d,χ)

)
δtk

)
−

δtk

2

(
1−h(δtk)

δ2
tk

−1

)

≤

(
−

1

δ(p,t,d,χ)
+

(
1+δ2(p,t,d,χ)

2δ2(p,t,d,χ)

)
δtk

)
+

1−δ2(p,t,d,χ)

2δ2(p,t,d,χ)
δtk

=−
δ(p,t,d,χ)−δtk

δ2(p,t,d,χ)
<0.

Then, using the equalities in (4.54) and the above inequality, (4.53) reduces to

−
δ(p,t,d,χ)−δtk

δ2(p,t,d,χ)

∥∥hTh
dk∪Υ1

∥∥2

2

+2

(
1

δ(p,t,d,χ)
−

1

2

(√
(sp)2+4(1−p)−sp

))√
1+δtkε

∥∥hTh
dk∪Υ1

∥∥
2

+2

(√
(sp)2+4(1−p)−sp

)
ε2−

1−δ2(p,t,d,χ)

2δ2(p,t,d,χ)
δtk

∥∥hTh
dk∪Υ1

∥∥2

2

+
δtk

2

(
1−h(δtk)

δ2
tk

−1

)
∥∥hTh

dk∪Υ1

∥∥p

2
+

2
(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

)

k
2−p

2 χ




2
p

µ2≥0.

As a result, one has

∥∥hTh
dk∪Υ1

∥∥
2
≤

E1δ2(p,t,d,χ)

δ(p,t,d,χ)−δtk
ε+E2

(
ω‖xTc‖

p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p
,
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where the constants E1 and E2 are defined in (3.23) and (3.24), respectively. Similarly,
using (4.42) and the above inequality, we obtain

‖h‖2
2 ≤

(
E1δ2(p,t,d,χ)

δ(p,t,d,χ)−δtk
ε+E2

(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

) 1
p

)2

+2
2−2p

p

(
E1δ2(p,t,d,χ)

δ(p,t,d,χ)−δtk
ε+E2

(
ω‖xTc‖

p
p+(1−ω)‖xT̃c∩Tc‖

p
p

)

+
(

2(dk)−
2−p

2

) 1
p
(

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p

)2

.

And thus,

‖h‖2 ≤

√
1+2

2−2p
p E1δ2(p,t,d,χ)

δ(p,t,d,χ)−δtk
ε+

√

E2
2+

(
E2+

(
2(dk)−

2−p
2

) 1
p

)2

×
(

ω‖xTc‖
p
p+(1−ω)

∥∥xT̃c∩Tc

∥∥p

p

) 1
p
.

When tk is not an integer, again we define t
′
= ⌈tk⌉/k. And δ(p,d,t,χ)≤ δ(p,d,t

′
,χ) since

∂z/∂t>0 in (4.31) for t≥2d. Therefore,

δt
′
k =δtk<δ(p,d,t,χ)≤δ(p,d,t

′
,χ).

We obtain the desired result by working on δt
′
k. We complete the proof.

5 Conclusion

In this paper, we provide a uniform RIP bound for the exact recovery of sparse signals
via the weighted ℓp-minimization with 0< p≤1 in the noiseless case. In the ℓ2 bounded
noise case, we present the error bound for the stable signal recovery via the weighted ℓp-
minimization with 0<p≤1, when signals are not limited to sparse signals. The proposed
sufficient conditions extend the state-of-the-art results for weighted ℓp-minimization in
the literature to a complete regime, which fills the gap on δtk based signal recovery con-
dition for t>2d and include the existing optimal conditions for the ℓp-minimization and
the weighted ℓ1-minimization as special cases.
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