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Abstract. In this paper, we consider signal recovery in both noiseless and noisy cases
via weighted ¢, (0 < p <1) minimization when some partial support information on
the signals is available. The uniform sufficient condition based on restricted isometry
property (RIP) of order tk for any given constant t >d (d >1 is determined by the prior
support information) guarantees the recovery of all k-sparse signals with partial sup-
port information. The new uniform RIP conditions extend the state-of-the-art results
for weighted ¢,-minimization in the literature to a complete regime, which fill the gap
for any given constant ¢ >2d on the RIP parameter, and include the existing optimal
conditions for the £,-minimization and the weighted /;-minimization as special cases.
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1 Introduction

In compressed sensing, a central goal is to efficiently recover sparse signals x € R" from
a relatively small number of linear measurements, i.e.

y=Ax+e, (1.1)

where yeR", AcR"*"(m<n) is a sensing matrix and e€IR™ denotes a vector of measure-
ment errors. It has been a research focus in applied mathematics, statistics, and machine
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learning, with abundant applications ranging from medical imaging to speech recogni-
tion and video coding. A series of fast algorithms have been developed to recover the sig-
nal x from a relatively small number of linear measurements (1.1). The £,-minimization
with 0 < p <1 is among the most well-known algorithms for the reconstruction of the
signal x

min |||}

x€R (1‘2)

st. Ax—yebB,

where B is a set determined by the noise structure and ||x||, = (L), |x;|P)!/?. For the
noiseless case, B={0}.

In this paper, we consider the weighted ¢,-minimization (0 <p <1) [7-9,11-15,17,
18,20] to recover the signal x from (1.1), when some prior information is included in the
estimates of the support of x or some estimates of largest coefficients of x. For instance,
video and audio signals exhibit strong correlation over temporal frames, which can be
used to estimate a portion of the support based on previously decoded frames. The main
idea inherited in the weighted Kp-minimization is to make the entries of x, which are
expected to be large, be penalized less in the weighted objective function by introducing
a weight vector w € [0,1]". The weighted /,-minimization is formulated as follows:

. p
min [|x,w 13
st. Ax—yebB,
where

) :
] = (Zwirxirp) .
i=1

In particular, the weighted /,-minimization (1.3) reduces to the well-known weighted
/1-minimization used for the signal recovery when p=1, i.e.

min | 1,w

x€R” (1'4)
st. Ax—yebB.
Let TC [n]={1,2,...,n} be a known support estimate of x. The weight vector w in this
paper is taken by
, i€T,
wi={ 5 (15)
1, ieT*

for some fixed w €[0,1].

The signal recovery based on partially known support is introduced in [2, 15, 20].
In [2, 14,16, 19, 20], the known support information is incorporated using weighted ¢;-
minimization with zero weights on the known support T,ie. w=0in (1.5). Friedlan-
der et al. [9] extended the weighted ¢;-minimization to nonzero weights, i.e. w € [0,1]
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in (1.5), and derived its stable and robust recovery guarantees based on restricted isom-
etry property, which is one of the most widely used frameworks in compressed sensing
proposed in [5]. RIP based signal recovery has been extensively studied via the weighted
{p-minimization (1.3) in the literature, see [7-10,14,15,17,20].

Definition 1.1. For a matrix A € R™*" and an integer 1 <k <n, A is said to satisfy the RIP of
order k if there exists a constant & € [0,1) such that

(1=6) [|x]15 < [|Ax[13 < (1+5k) [|x]13 (1.6)

holds for all k-sparse signals x €IR". A signal x €IR" is called k-sparse if the number of its nonzero
entries is k at most. The smallest constant Jy is called the restricted isometry constant (RIC) of
order k for A.

Note that when k is not an integer, J; is defined as Jp in [4], where [k]| denotes
an integer satisfying k < [k] <k+1.

This paper is devoted to developing a uniform RIP bound on &y for the exact recov-
ery of signals with partial support information via the weighted ¢,-minimization (1.3)
with 0 < p <1 for all t >d where d > 1 is determined by the prior support information.
We provide the state-of-the-art results for weighted /,-minimization in the literature to
a complete regime, which fill the gap for t >2d on 6, based signal recovery conditions,
and include the optimal results for the ¢;-minimization in [4] and the £,-minimization
with 0<p<1in [21,23] as special cases. Our main tool is to study a crucial sparse decom-
position technique adapted to the RIP analysis of the weighted £, (0<p<1) minimization.

On the other hand, the stable recovery guarantees based on 6y for all t > d for noisy
observations or non-sparse signals with suitable assumptions are provided. Our results
for stable recovery of non-sparse signals are new for the weighted /, (0<p<1) minimiza-
tion, compared to the recent work in [10]. Here we deduce an upper error bound using
some new transformations.

The rest of the paper is organized as follows. In Section 2, we recall some technical
lemmas for the (weighted) £,-minimization with 0 <p <1. In Section 3, we first present
uniform sufficient conditions for the recovery of sparse signals with prior support infor-
mation in the noiseless case. Then the error bounds of signal stable recovery are devel-
oped in ¢, bounded noise case or non-sparse signals. Finally, the conclusion of the paper
is presented in Section 5.

2 Preliminaries

In this section, we first recall some technical lemmas for the analysis of the weighted
¢ p-minimization (1.3) with 0 <p<1.

The following two lemmas have been used in [10]. The first one concerns elementary
¢, inequality.
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Lemma 2.1 ([10, Lemma V.1]). Let p and g be two positive numbers. Then
@ |xllp < llx]l2|supp(x)|Z~P/ P, if 0<p<2,
(D) [l < (€l (Nlellpy) =19, if pg>2 and q>1, where py=(p—2/9)(q/(q—1))-
The second lemma states some properties on a function g(z)=pz?/? /2+z—(2—p)A/2.

Lemma 2.2 ([10, Lemma V.2]). For 0< p <1 and A >0, the function ¢(z) = pz*/? /2+z—
(2—p)A/2 is monotonically increasing in (0,00). In addition, the following statements hold:

(D) If 0<A<2/(2—p), there exists a unique point zo€ ((1—p)A,(1—p/2)A) C(0,1) such
that g(zo)=0.

(ID If 2/(2—p)<A<(2+4p)/(2—p), there exists a unique point zo € ((1—p)A,1) C(0,1)
such that g(zp) =0.

(D) If A>(2+p)/(2—p), there does not exist a point zo € (0,1) such that g(zy) =0.
The third lemma is an important lifting inequality established in [3].

Lemma 2.3 ([3]). Suppose n>r,1>0,a1>a>--->0a,>0,and }.}_ a;+1>Y ",  a; Then

forallc>1,
1 o
n
Y af<r ( Za) +—
i=r+1

The cone constraint inequality obtained in [11, Inequality (14)] is an essential exten-
sion of [9, Inequality (21)], which will play a key role for analyzing the weighted £,-
minimization (1.3). See the following lemma.

Lemma 2.4. For any two vectors x,£ €R" and h=2—x, if |||l w < || x||})w with the weight
vector w defined in (1.5), then

el < wllbr |+ (1=w) B g o 1

2 (wllxre [+ (1=) e[} 1)

for any index set T C [n].

A well-known property on RICs with different orders (see for example [3,Lemma 4.1])
is stated as follows.

Lemma 2.5. Suppose AER™*",k>2is an integer, s>1 and sk is an integer. Then 65 <(25—1)J.

A key tool established in [4,22], which represents points in a polytope by convex com-
binations of k-sparse signals, initiates a process of improving and sharping RIP bounds
for signal recovery via the (weighted) /;-minimization. The sparse representation of
a polytope is extended in [23] to adapt [, (0 < p <1) case, see the following lemma.
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Lemma 2.6 ([23, Lemma 2.2]). For x € R" which satisfies |supp(x)| =K, |||/} < Lg? and
||x||co < with L <K being a positive integer, { being a positive constant and 0 < p <1, then x
can be represented as the convex combination of L-sparse vectors, i.e.

N
X = ZAiui,
i=1
where A;>0,Y N1 A;=1and ||u;||o < L. Furthermore,

N
. n 2
3 Al <min{ el 7113 e2)

i=1

We have used the key sparse representation tool with 0 < p <1 and obtained the
following state-of-the-art RIP condition for sparse signal recovery via the weighted £-
minimization (1.3), which includes the existing optimal result in [6, Theorem 1].

Theorem 2.1 ([10, Theorem IIL.1]). For y= Ax, let x € R" be k-sparse with T =supp(x) and
the support estimate T C [n]. Define p>0and 0 <a <1 with ap <1 such that |T| = ok and
|TNT|=wpk. If A satisfies RIP with

1 2—p 2
= , d<t§d+2+pxz—l7,
5 o \/pz—}—(Z—p)ZXz—P/(t—d)—(l—p) , 2 23)
20 , d+ Py <1<0d,
@-p)x*7/(t=d) =2 24
where
_h w=1 (2.4)
14+max{0,1-2a}p, 0<w<],
x=w+(1-w)(1+p— 2zxp)sz (2.5)
and
1-p ZL 2—-p 2
Z°€<t A {1’2(t—d)X '
is the only positive solution of the equation
Prbpz 2P oo (2.6)
2 2(t—d) ’ '

then the weighted {,-minimization (1.3) with the weight vector w defined in (1.5) and 0<p <1
recovers x exactly.
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3 Main results

In this section, we present RIP bounds for the signal recovery via the weighted /,-mini-
mization (1.3) with 0 < p <1 in both noiseless and I, bounded noise cases.

3.1 Noiseless case

In noiseless case, we obtain a uniform recovery condition based on J; with ¢t > d for the
exact recovery of the sparse signals x from y= Ax via the weighted /,-minimization (1.3)
with 0< p<1and B={0}.

Theorem 3.1. Let y=Ax for a k-sparse vector x€R" with T=supp(x), andfg [n] be a support
estimate of x. Define p>0 and 0 <wa <1 with ap <1 such that |T|=pk and |TNT|=wpk. Given
the weight vector w € [0,1]" as defined in (1.5) and 0 < p <1, if tk is an integer and

2-2p

252 2
2 _2p P 52(t—d)k+4(1_p)(stk+<2_p)52(t—d)k
) (\/ L+0a(t—ayk

% (205 = Pyt Oate-ayey PP _aye 41— )5, ) >0 (3.1)

for some t > d, where d and x are defined in (2.4) and (2.5), respectively, then the weighted {,-
minimization (1.3) with B={0} recovers x exactly.

The proof of Theorem 3.1 can be found in Section 4.2. We first provide some remarks
for the case d < t<2d.

Ford<t<2d, 52(t,d)k < Jy by the monotonicity of RICs. By some simple calculation,
it is easy to see that the quantity

2-2p

(2=p)y—ap+ \/Pzég(tfd)k+4(1 -p)og)\
1+02(—ay

X (25tzk — POyt Oa(t-ay \/Pz(sg(t_d)k +4(1- P)‘ka)
is monotonically increasing in d(;_g)- Then
2-2p
1= —pxt (20t-d) 7 (2(?%&1&”‘) " (22-p)5) >0

guarantees the condition (3.1) holds. Therefore, we have the following corollary.

Corollary 3.1. Let y=Ax for a k-sparse vector x€R" with T=supp(x) and the support estimate
T C[n]. Let a and p be the same as in Theorem 3.1. If A satisfies RIP with

S <d(p,t,d,x) (3.2)
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for d <t <2d, where d and ) are respectively defined in (2.4) and (2.5), and

_1
- 2 —p _p :
o(p,td,x) e 1+2pxr - 1

is the unique position solution of the equation

P 5 222p N\
0= <1+px ( d) <1+5> ) , (3.3)
then the weighted {,-minimization (1.3) with the weight vector w defined in (1.5) and 0 <p <1
recovers x exactly.

Nl—

Remark 3.1. As pointed out before, the state-of-the-art result based on &y with d <t <24
for the exact recovery of the sparse signal x from y = Ax has been developed in our
previous paper [10]. See Theorem 2.1. The following facts have a direct bearing on the
matter and deserve our careful discussion. When d < t <d+(2—p)x?/?=7) /(2+p), the
condition (2.3) is weaker than (3.2). When d+(2—p)x2/(2=7) / (24 p) <t <2d, the condition
(2.3) is equivalent to (3.2). In fact, the Eq. (3.3) can be written as

2
4 2—p o 2 P 2—p 9 = 2—p 2
2<t—d i) Taiet T T ag=ayt Y

Then 6(p,t,d,x) in (3.2) satisfies
20
2
2=px>7/(t=d) =20

S(p,t,d,x)=
for the unique positive solution

I-p_ 2 . 2—p 2
ZOG(t—dX P,mm{l,z(t_d)x

of (2.6), which infers that (3.2) is exactly the condition (2.3). Whend<t< d+(2—p)/(2+p)
X Xz/ (2*1’), we will prove that

=

20 1

QPR —d)—20 [t p e ) —(1—p)

S(pt,d,x)=

That is to show that
zp < 2_p > XZTZI)/
(=) (\ PP+ @—pPa77 /(t~d) +p)
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which is obvious since zp <1 and

X 27 >1
e \/P2+(2_P)2X2%”/(t—d)+p -
ford<t§d+(2—p)xz/(2*;ﬂ)/(2+p)_

When w=1, we have y=11in (2.5) and d=1 in (2.4), then the condition (3.2) reduces to
a sufficient condition in [6, Theorem 1] for sparse signal recovery via the /,-minimization
(1.2), which includes the sharp sufficient condition [23, Theorem 1.2].

Corollary 3.2. Let y=Ax for a k-sparse vector x € R" with T=supp(x). If A satisfies RIP with
5tk<5<p/tl]‘l]‘) (34)

2 AN
~ — p
S(pt1,1)€ (1+2p<2(t’;)> ) 1

is the unique positive solution of the equation

for 1<t <2, where

’ 2-p 5 2-2p\
o —p p p
(10 () (55) )

then the {,-minimization (1.2) with 0<p <1 and B=0 recovers x exactly.

Remark 3.2. When w =1, the condition (3.2) reduces to (3.4), and the condition (2.3)
reduces to

1 2—p
, I<t<14+—,
VPP +Q2=p?/(t=1) = (1-p) 2+p
O < s 2 p (3.5)
0 _
/ 14+ ——<t<2
(2=p)/(t=d)~2 T2
for the unique positive solution
1-p_ 2 . 2—-p 2
ZOG(t—dX P,mm{l,z(t_d)x P
of the equation
Pob iz 27p =0, (3.6)

which is sufficient for sparse signal recovery via the £,-minimization. By Remark 3.1,
the condition (3.5) in [10] is equivalent to (3.4), which is sharp for sparse signal recovery
via the /,-minimization (1.2) when 14 (2—p)/(2+p) <t <2, see [6, Remark 10]. When
1<t<1+4(2—p)/(2+p), the condition (3.5) in [10] is weaker than (3.4).
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Remark 3.3. For t =2, the condition (3.5) or (3.4) is the sharp sufficient condition [23,
Theorem 1.2]. That is,

__ Mo

2—p—mo’

where 1790 € (1—p,1—p/2) is the only positive solution of the equation

P p
EZZ +Z—1+§ =0.

It is worth to point out that the uniform condition (3.1) in Theorem 3.1 involves both
Otk and d;(;_g)x for 0<p <1. It is a little surprise that the uniform condition (3.1) involves
only dy for p=1 and it reduces to the state-of-the-art condition in [8, Theorem 3.1, Re-
mark 3.1] for the exact recovery of x. See the following Corollary 3.3, which can be easily
inferred from Theorem 3.1.

oo <

Corollary 3.3. For y= Ax, let x €R" be k-sparse with T =supp(x) and the support estimate
T C[n]. Let a and p be the same as in Theorem 3.1. If A satisfies RIP with

| t—d
(Stk < W (37)

for some t >d, where d is defined in (2.4) and x is defined in (2.5) with p=1, then the weighted
Uy-minimization (1.4) with B= {0} exactly recovers x.

Remark 3.4. Note that the sufficient condition (3.7) is tight under certain cases, see [8,
Theorem 3.2].

For the most classical case p=1 and w =1, then x =1 in (2.5), d=1 in (2.4) and
the uniform condition (3.1) in Theorem 3.1 reduces to the sharp sufficient condition [4,
Theorem 1.1].

Corollary 3.4. Let y= Ax for a k-sparse vector x cR". If

[t—1
Oy < 5 (3.8)

for some t>1, then x can be exactly recovered by the £ ,-minimization (1.2) with p=1and B={0}.

Now we consider the general case t >d. When w=1ora=1/2, it is clear that y =1
in (2.5) and d=1 in (2.4). And the uniform RIP conditions (3.1) reduces to the uniform
result for the /,-minimization [21, Theorem 1].

Corollary 3.5. Assume that y = Ax where x €IR" is a k-sparse signal. If tk is an integer and

2-2p
) 2y (2_P)52(t—1)k+ \/P25§(t_1)k+4(1—i?)5fk '
1_5tk_p(2(t_1)) ’ 1+52(t71)k
X (20— P31y Ore- 1)y [P0, 1y H4(1=p)O% ) >0 (3.9)

for some t > 1, then the £,-minimization (1.2) with B={0} and 0 < p <1 exactly recovers x.
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When a >1/2 and w € [0,1), it is clear that x <1 from (2.5) and d=1in (2.4). If x <1
and d =1, then the sufficient condition (3.9) implies the condition (3.1). Therefore, we
have the following proposition.

Proposition 3.1. If « >1/2 and w € [0,1), then the sufficient condition (3.1) of the weighted
¢ p-minimization (1.3) is weaker than the condition (3.9) of the £,-minimization (1.2) for exact
sparse recovery.

Here, we provide a frame diagram (Fig. 1) to summarize the remarks and corollar-
ies following Theorem 3.1. And the conditions on J; contain several quantities in the
remarks and corollaries. Baraniuk et al. [1] provide a bound on RICs for a set of ran-
dom matrices from concentration of measure. For these random measurement matrices,
[1, Theorem 5.2] shows that

12en\ A2 A3
>1— - — -
P(or<A)>1 2( o > exp( m<16 48>>

holds for positive integer k <m and 0 <A < 1. Then, for any known bound J; <Jp <1,
Ox <9 hold in high probability when
klog(n/k)
- (5(75/16—58/48‘

(13) based on 5rkin Theorem 3.1
(r>d, and d=1 when @=])

0<wsl ol

p:l‘ 0<p<l p:l‘ ‘0<p£1

(13y=P (20) in Corollary 3.9 | (13)==¥21) in Corollary 3.10
> [€>=3 D)

(13) == (14)in Corollary 3.2
(d<t1<2d)

(13)==(19) in Corollary 3.7
(>d)

(9) is weaker than (14). See

(9) is equivalent to (14) .See

Remark 3.3. Remark 3.3.
2-p = 2-p 2
d<t<d+ v P
(d< 2+p)( ) (d+2+p;( <1<2d)
=1 o=l
(O)==P(17) and (14ymP(16) | OymP(17) and (14 )= (16)

(17) is weaker than (16). See
Remark 3.5.

(1<t <1428
2+p

(17) is equivalent to (16). See
Remark 3.5.

(1+§_—p<152)
tp

Figure 1: The whole structure of bounds on Jy follows from Theorem 3.1.
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For example, the lower bound of m to ensure 8y < §(p,t,d,x) in (3.2) to hold in high
probability is
. klog(n ~/ k) ‘
~62(p,td,x)/16—0%(p,t,d,x) /48
Next, we devote to developing a general RIP condition on dy for t > 2d to achieve the
recovery of sparse signals via the weighted £, minimization, which will fill the gap on 6y
based signal recovery condition for t >2d, compared with the work in [10].

Theorem 3.2. Let y = Ax where x € R" is a k-sparse vector with T = supp(x), and T C [n]
be a support estimate of x. Let « and p be the same as in Theorem 3.1. Given the weight vector
w e [0,1)" defined in (1.5) and 0< p <1, if

S <6(p,t,d,x) (3.10)
for some t>2d, where d and x are respectively defined in (2.4) and (2.5) and 6(p,t,d, x ) satisfying

5\ (sep) I\
1+P<2(t—d)> < a(t—d) t)

X (2—p52—|—s 52p2+4(1—p)> <dé(p,tdx)<1,

Nl—=

where s = (3t—4d) /t, is the unique positive solution of the following equation:

2\ S X
_ XZ7 s(2=p)+/s*p?+4(1-p) _\ '
2= 1+p<2(t—d)> < 1+sz z

1
2

X (2—p52+s 52p2+4(1—p)> , (3.11)

then the weighted ¢,-minimization (1.3) with B= {0} recovers x exactly.
The proof of Theorem 3.2 can be found in Section 4.3.
Remark 3.5. Let

2 2*7171—22 s(2—p)+/s?p*+4(1—p) 7
Q(d,z)-;(t—d) z2 < 2(1+sz) Z)
-1
><<2—p52+s 52p2+4(1—p)> : (3.12)

Then the Eq. (3.11) can be written as Q(d,z) = x?/2.
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Remark 3.6. For w=1or a =1/2, Theorem 3.2 reduces to [21, Theorem 2]. That is, when
w=1 or a« =1/2, the condition (3.10) reduces to éy < d(p,t,1,1) for some t > 2, which
is a state-of-the-art sufficient condition in [21, Theorem 2] for the sparse signal recovery
via the Ep-minimization, where 6(p,t,1,1) is the unique positive solution of the equation

Q(1,z)=1.

When a>1/2and we[0,1), we have y<1in (2.5) and d=1 in (2.4). Then, the condition
(3.10) reduces to oy <d(p,t,1,x) where 6(p,t,1,x) is the unique positive solution of the
equation Q(1,z) = x?/2. By some simple calculation, the function Q(1,z) is monotonically
decreasing on z € (0,1]. Therefore, 6(p,t,1,1) <d(p,t,1,x) when x <1. We establish the
following proposition.

Proposition 3.2. If a >1/2 and w €[0,1), then the sufficient condition éy. <6(p,t,1,x) of the
weighted (,-minimization (1.3) is weaker than the condition oy <46(p,t,1,1) of the £,-minimiza-
tion (1.2) in [21, Theorem 2] for exact sparse recovery.

3.2 Noisy or non-sparse signal case

In the subsection, the origin signal x is not limited to be k-sparse, which is different
from the sparse signals considered in [10]. We derive the following results, which com-
plete the RIP based characterization for the recovery of signals via the weighted /-
minimization (1.3).

First, we consider the stable recovery based on 0y with d<t<d+(2—p)/(2+p) x>/~
in the following theorem.

Theorem 3.3. Let y = Ax+e, where x € R" and ||e||» <e. Let T =supp(xy) where xy is the
best k-term approximation of x which only keeps the largest k entries in magnitude, and T C [n]
be a support estimate of x. Define p>0 and 0<x <1 with ap <1 such that |T| = pk and
ITNT| = apk. Given the weight vector w € [0,1)" defined in (1.5) and 0 < p <1, suppose 2" is
a minimizer of (1.3) with B=B"2(e) ={z€R™: ||z||, <e}. If A satisfies RIP with

Sk < (3.13)

1
VP @—p2xel —(1-p)

for d<t<d+(2—p)x* @) /(2+p) where x and d are respectively defined in (2.5) and (2.4),

then
2.2 -1 -1
!ZSV1+2”pCl<v p2+qx23p+n> (1—5tk<v P2+€IX2E”+P—1>> €

- oy 1\ 2
T \/ 342 <c2+ (2002 P) (wllrllf (=) 7

s

5) %, (3.14)
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where

C1=2<\/ p2+qx237 +2p—2> V140
2
+<4<VP2+Q7€2—2’”+2P—2> <1+5tk)+8<\/;72+qxﬁ+r)>
1
2
X (1—(5tk<\/ p2+qx2%P +p—1>> (1—p)> , (3.15)

q=q(t,d)=(2—p)*/(t—d), and

Co= (2(sz+q"22p+p1)) <m>_2_1 ( 2 )p.(3.16)

p 2 (£=d) (1435 =N

<IN

The proof of Theorem 3.3 can be found in Section 4.4.
Next, the stable recovery result based on 6, with d+(2—p)x?/>=P) /(24p) <t<2d is
developed in the following theorem.

Theorem 3.4. Let y=Ax—+e where x€R" and ||e||, <e. Let T =supp(xy) where xy is the best
k-term approximation of x, and T C [n] be a support estimate of xi. Define p>0 and 0<a <1
with ap <1 such that |T| = pk and |TNT| = apk. Given the weight vector w € [0,1]" defined in
(1.5) and 0 < p <1, suppose 2> is a minimizer of (1.3) with B=B"(¢) ={z€R™:||z|» <e}. If
A satisfies RIP with

Sy < S (3.17)
(2—p)x*7 —20
for d+(2—p)x* ?P) /(24 p) <t <2d, where
Lop oo [y 27P
Zp € (t—dX P,mm{l,z(t_d))( p
is the only positive solution of the equation
P, 27P o
22P+z 2(t—d)X r=0, (3.18)
then
14277 D
p
=]l = e

2

1= ((2=p)x*7 —z0(t—d)) o/ (20(t—d))

2-2 A 1
+\/D§+2 ; <D2+<2(dk)zz’”>P> (wllxrellp+0=w)llxrerellf) ) (3.19)
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where
Dy=2 (1—@) NSED (3.20)
X*f’
2 2 %
zo(t—d 2— 2 t—d 1—pzo(t—d
+2<<1_ olt— >> (1+5tk)+2<1_< ix (t_d>< >5tk>2_p olt— )) ,
xXTr 0 p XTF
e T ) (2 )
e[ 2—p)X* 7o 2
_ 2 —
Dy=| z, ((1+5tk)(t—d)> 1 (sz—”X> : (3.21)

The proof of Theorem 3.4 can be found in Section 4.5.
Finally, we consider the stable recovery of the signal x on the high order RIP J
with t>2d.

Theorem 3.5. Let y=Ax—+e where x€R" and ||e||, <e. Let T =supp(xy) where xy is the best
k-term approximation of x, and T C [n] be a support estimate of xi. Define p>0and 0<a <1
with ap <1 such that |T| = pk and |TNT| =apk. Given the weight vector w € [0,1]" defined in
(1.5) and 0 < p <1, suppose 2> is a minimizer of (1.3) with B=B"(¢) ={z€R™:||z|» <e}. If
A satisfies RIP with (3.10), then

% 2 B 1\ 2
(P AR AL (V'*'d"”w\/ 3+ (B (2 )

2(6(p,t,d,x) —0u)
1
x (wlarellh+(1 =) lxgenrellp) (3.22)

where

(5 (Pt x) _% (\/(SP)2+4(1—P)—SP>> V1+64

- ((5(;9,:51 X) ;_ <\/(Sp)2+4(1_p)_sp>>2(1+(5tk)

*(p,td x)
st (1+ss)\ P N T/ 2 )
E2 _ p,t,a,xX tk 1 N ) (324)
‘Stk(1+s‘5(p/tld/7()) kTpxﬁ
The proof of Theorem 3.5 can be found in Section 4.6.

==

where s= (3t—4d) /t.
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4 Proofs of main results

To simplify the proof of the main results, we develop in advance some elementary esti-
mates based on technical lemmas in Section 2 for the analysis of the weighted £,-minimi-
zation with 0 < p <1 and the weight vector w € [0,1]" defined in (1.5).

4.1 Some elementary estimates

For any vector x€R", define x,,,(x) as x with all but the largest k entries in absolute value
set to zero, and X_ (k) =X — ¥max(k)- FOr any index set S C {1,2,...,n}, xs is defined to be
the vector which equals to x on S, and zero elsewhere.

Combining Lemma 2.4 with Lemma 2.6, we first introduce the following estimates
which will play a crucial role in establishing recovery conditions.

Lemma 4.1. For the vectors & and x, suppose that ||£||w < ||x||hw. Let xy be the best k-term

approximation of x with T = supp(x), and TC [n] be a known support estimate of x. Define
p>0and 0<a <1 with ap <1 such that |T|=pk and |TNT|=wpk. Let h=2%—x and

1m:amhﬂﬁ+(1—wﬂmﬁwn“ﬂﬁﬂz+204uwm%41—wﬂuﬁmTZ). (4.1)
For t >d and a positive integer tk, define two index sets
, v
Y1= {Z €supp (hfmax(dk)) : |hl’ > 1 }/ (4.2)
((t=d)i)?
) v
Y= {1Esupp(h_max(dk)) 2 |l §71}, (4.3)
((t=d)k)?

where d is defined in (2.4). Then

(i) The vector hy, can be represented as a convex combination of ((t—d)k—|Y1|)-sparse vec-
tors u') with supp(u(l)) CY,, ie.

N .
hy,=Y_ Aul, (4.4)
i=1

where N is a positive integer, A; >0, Zfil/\i =1, and

> 2
-

P 2(w||xTch—}—(1—w)Hx~f c||p) v 2-2p
[P 115+ P ETOT T (kB T, (45)
k= x

N
j X
YailOB<—

where Tl =supp (max(ax)) and x is defined in (2.5).
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(ii) For the vectors h_ ax(ax) and hy,, the following estimates hold:

2
2(w]lxrellp+ A=) [x5qrellp) \ 7
thmax(dk)H%S Hhmax(dk)||§+ ( ‘ 2-p Lot P) ’ (4.6)
(dk) =
2 2
[ 2(w]|xe p+(1—aJ X |lP) \ P
||hY2||%§X72—p HhT" ||§+ ( H ”P — )H T°NT HP) ) (4'7)
(t=d)7 \ K7 x

Proof. (i) By [|%|hw < |x|/)w, h=%—x and (2.1) in Lemma 2.4 with [ =T, one has
HhTfugSw”hT”5+<1_w)Hh(TuT)\(TﬂT)H::
+2(@lxrel|f+ (1= ) | x7epell ) =7 (4.8)

for 0 <w <1, where the equality is due to the definition of v” in (4.1).

For the k-sparse signal x; and T = supp(x;), we have |T| <k and d >1 and dk € IN"
from the definition of 4 in (2.4). Then it follows that

17— max(an |1 < e [h <vP, (4.9)

by the inequality (4.8).

First, we will show a convex combination of sparse vectors for hy, € R". By T!llk =
sUpp (Mmax(ak)), the definitions of Y1 in (4.2) and Y in (4.3), it is obvious that

(TE)*=Y1UY>, YiNY,=Q. (4.10)
For the vector hy,
vP
hy [[b=Y" |h|P>Y1|—. (4.11)
H 1HP ieZy]‘ l’ ‘ 1’(t_d>k
By (4.9) and (4.10), one has
HhY1 ”5 < ”hYl ”5+ ”hYz ”5 = thmax(dk) ”5 Svp'
Combining (4.11) with the above inequality, we deduce that for v >0,
1Y1| < (t—d)k.
For the vector hy,, it is easy to see that
(a) v
N
((t—d)k)? (4.12)

P

(t—d)k’

(b) ()
13,1 = 17— max(ai |1 = o, lp < ((t—d)k—[Y1])
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where (a), (b) respectively follows from (4.3), (4.10), (c) is due to (4.9) and (4.11). Ap-
plying Lemma 2.6 with L= (t—d)k—|Y;| and { =v/((t—d)k)'/?, we obtain the sparse
expression (4.4)

N .
hyz = Z/\iu(l),
i=1

where A;>0,YN A;=1, every u') is ((t—d)k—|Y1|)-sparse and supp(u')) CY,. Further-
more, by (2.2),

= )12 < mi vr 2-p
313 < mind s s a5 < s I

i=1
yP

amar (a3) 7 (I )7

< g Il (k=)

v2-p 2-2p

(Ihy,[5) =7, (4.13)

| /\

/\

<

where the third inequality is from Lemma 2.1(II), and the fourth inequality follows from
(4.12).

For v* in (4.1), we deduce that

vP =wllhr|[p+ (=) B mn Hp+2(w”xﬁ||5+(1_w 17 Z)
<w|T| 7" |5+ (1—w) [(TUT)\ (TAT)]
+2(wllere]lf+(1-w) o ')

2-
<k <w+(1—w)(1+p 2ap0) > HhT" Hz+2<w||xT”Hp (1= w)|[*ferre

gy e 13

')

Z) (4.14)

2—p
=K% x|y |5 +2(wllere b+ (1) |¥7ene
where the first inequality is from 0 < p <1 and Lemma 2.1(I) and the second inequality

follows from |T| <k and |(TUT)\ (TNT)| < (1+p—2ap)k <dk and Th = supp (Bmax(dr) ),
and the last equality is due to the definition of x in (2.5).

Then, substituting (4.14) into (4.13), we obtain

L 2(|hmz 2elerl,

which is (4.5).

2

P) 2-p 2-2
p) (I, 113) =7,

w) HxTCmTC

+(1-
=
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(ii) For the vector h_ .« (ax), from (4.9) and v* in (4.1) it follows that

||h—max(dk)||zSthT||z+(1_w)Hh(TUT)\(TﬂT)HZ+2<W||xT”H5+(1_w)HxTCﬂTf 5)
14
p)’
where we use the facts that | T| <k and |(TUT)\(TNT)| < (14p—2ap)k <dk in the second
inequality. By the above inequality and Lemma 2.3, we obtain that

< ramax(a 15 +2 (@l xre [+ (1=0) |71

2
p 14 P
”h H2<dk Hhmax(dk)Hg+2(w||xT”HP+(1_w)HxTcmTc P) b
—max(dk) 112 = (dk)% P
2
(g 2 2l (=) lp) )
max (dk) 112 (dk)%Tp
which is (4.6). For the vector hy,, there is
P 2-p
2— 2— 1% [
HhYZH%S HhYZH"O thY2Hz§ ”hY2”00 pHI/l—maX(dk)HZS (t—dk v
(t—d)k
2 2
T (CL =S
< 5 - )
(t—d) 7\ K2 x

where the second and third inequalities are respectively due to ||hy, || <||h_ max(ax) [|b <7
and || hy, || <v/((t—d)k)'/? in (4.12), and the last inequality is due to (4.14). O

The following two lemmas contains useful facts on RIP, whose prototype has been
used in [21] for the analysis of the /,-minimization (1.2). The first one is based on
Lemma 2.5 and its proof is omitted since it is very simple.

Lemma 4.2. Suppose the sense matrix A € R™*",t >2d,k and tk are positive integers. Then
3t—4d
t

Lemma 4.3. Suppose 6y < B(t) can guarantee the exact recovery of k-sparse signals via some
minimization method when tk is a positive integer. If the RIC bound B(t) is monotonically non-
decreasing for t >0, then 8y < B(t) can also guarantee the exact recovery of k-sparse signals via
the same minimization method when tk is not an integer.

S < (s ak < S (4.15)

Proof. For completeness, we give the proof although it seems routine as in [4,21]. When
tk is not an integer, denote t = [tk|/k. Then 'k is an integer and t < t'. Based on the
definition of RIP for non-integer tk, one has oy =0 =0,. We deduce that the condition
Oy < B(t) implies d,, < B(t') since B(t) is monotonically nondecreasing with ¢ >0 and
then 6, = dy < B(t) < B(t'). Therefore, the desired result holds since t'kis an integer. [
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4.2 Proof of Theorem 3.1

Proof. Suppose that £ is a solution of the weighted £,-minimization (1.3) with B = {0},
then ||£(| w < ||x[|bw and A£=1y. For the k-sparse signal x and T =supp(x), we have
|T| <k and x1c=0.

Let h = x—x. To prove that the weighted £,-minimization (1.3) exactly recovers the
k-sparse signal x reduces to proving h = 0. Suppose that h # 0 and tk is an integer, we
next show there is a contradiction under the condition (3.1). It deduces that the weighted
¢p,-minimization (1.3) exactly recovers the k-sparse signal x.

If hre =0, then h is a k-sparse vector. Since the sensing matrix A satisfies the RIP of
order tk with t >d>1 and (3.1) implies J; <1, we deduce that h=0. It is in contradiction
with the assumption h # 0. Therefore, in the following proof, we assume that hrc #0. In
this case, the proof is divided into three main steps as follows.

Step 1: Using Lemma 4.1, we present a convex combination of some sparse vectors for
hy,, where Y, is defined in (4.3). By ||£||},w < ||*||},w and Lemma 4.1, one has that

N .
hy, = 2/\1-14(1), (4.16)

where A; >0,y N A =1,u is ((t—d)k—|Y1|)-sparse and supp(u)) C Y,. And
2
XT7

=
Z)‘ ) %S (HhT"H )7 (I, |13 )
,'Zz—ﬁ
(el )T
S ( E 2” |k Tkuyle, (4.17)
TkUYl 2
which follows from (4.5) and x1c =0. In addition, the inequality (4.7) with
wllere (1) g =0
holds. Then , ,
X7 X" 2
Iy, 15 < (e d)_p HhT;;kH,z— e d)Z—_P Hth,fkquHz' (4.18)
_ P _ p

Step 2: Show an inequality on HhT;‘kUYl |5 to estimate its upper bound based on the fol-
lowing important identity firstly presented in [4]:

N N ‘ RV ,
Z;/\i A(Z;Ajv(])—cv(l)> ZZ/\/\ A —oD)|3
i= j=

) i=1j=1

12c

N i) 112
—(1—c)?Y_A]|Av?]]5 =0, (4.19)
i=1
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where ¢ <1/2 and v() = hTh Uy, +uu') for any p € R is tk-sparse. In fact, o)) —oU) =
pu(u) —ul)) and

Z/\jv(]) —co=(1 _C)hT;’kqu +u Z)\]-u(]) —cuul)
j=1

=(1 _C)hTt’i’kqu + phy, —cuu'
= (1—c—pt)hT;.kUY1—i—pth—cyu(i). (4.20)

Substituting (4.20) into the first term of the identity (4.19) and using the fact that Ah =
AX—Ax=y—y=0, one has

N N ‘ N &
Z/\i A Z)\]-'o(])—cvl
i—1 i=1 )

N .
= LM A=y~

N .
< (140) YoMl (1= =) oy, — e
i=1

N »
:<1+atk>(<1 ) thluz+c2y2mnu<z>na), 42y
i=1

where the inequality follows from (1—c— i”)hT;kqu —cyu(i) is tk-sparse and A satisfies the
RIP of order tk, and the last equality is due to supp(#?)) C Y, and (4.10) implying
(B oy, u) =0. (4.22)
For the second term of the identity (4.19), from the fact
o) —o0) =y (u —u ),
it follows that
1-2c L ¥

Y Y Al A =202

i—lj—l

1 2 ;
: ZZZM A =M

i=1j=1

1-2c Y
< (14— ay) 1 5 ZZA/\ D —u |3
i=1j=1

= (140 (t—ak *(1-2c) <Z7\ ||” ||2

“[)

= (140 d)) (1-2c) <Z7\ 13— HhY2H2> (4.23)
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where the 1nequahty is from that u; is (k(t—d)—|Y1|)-sparse and t >d, the last equality is
due to by, =Y N ; Auld).

Furthermore, it follows from v'?) is tk-sparse for the third term of the identity (4.19)
that

—CZZA | A0V 3> (1—6y)(1—c) ZA |0
i=1 i=1

= (1—6y) (1— )<||hThuy1||z+M227\ s ||2> (4.24)

i=1
where the equality is from the definition of o) ie.

and (4.22). Substituting the inequalities (4.21), (4.23) and (4.24) into the identity (4.19)
with any # €R, one has

2
0< ((1+8i) (1—c—p)* = (1=84) (1=0)%) s v, |1
N ‘
(14 80) 22+ (14 i) (1= 20082 — (1= 8) (1 =) 3i2) 1At
i=1

— (1+8¢—ay) (1=20) || By, |13

(180 gy, (2 =20 1) (1=20) 3 D B

—<1+52<td>k><1—zc>uhyzrr%)y2

—2(1—c)(1+5y) HhThUY1|]2y+25tk —¢)?||hp kun”z

17y, 113 =
< | (140u) + (26 =2c+1) 8+ (1—20) 054 g )f ( x2l2 )
s v, 12
h 2
(b g0 (1—20) el
[z v, Il
=2(1=0) (1+04) | g oy, 51 +280(1=0)2[[ g oy, [ (4.25)

where the last inequality is from (4.17).



H. Ge, W. Chen and M. K. Ng / CSIAM Trans. Appl. Math., 5 (2024), pp. 18-57 39

Step 3: We show that there is a contradiction for (4.25) under the condition (3.1). Set
a second-order function f(y) for any p € R,

2-2p

2 2=y
2-p h 2
£ = | (14804 (2 —2e D)o+ (1261 ) 1 | Lzl
HhT;'kuyl Hz

h 2
—(1+63—ap) (1 —20)% u
I Th UY; 13
—2(1—c)(1 4+ ) u+264(1—c)?, (4.26)

where

1 \/Pzég(t—d)k+4(1_P)‘Stzk_P‘Sz(t—d)k
2 45 /
and ||hy, |3/ Hth‘kun |3 is a parameter. By (4.18), then

C

(4.27)

<IN

2 -
< HhYzHZ S(t—d)_27p)( )
Hthkqu Hz

And by the assumption that || hoi oy, |l #0, the above inequality (4.25) is equivalent to

f(u)=0, peR. (4.28)

The discriminant of the function (4.26) is

A=4(1—c)*(1+54)> -8 ((1 64 )+ ((2c2—2c+1)c5tk+(1—2c)c52(t_d)k)

2-2p

—~ 2—
x( AE ) ”
t—d \ ||n 2

H Tgkuyluz

h 2
(o120l 5 g2 (a2)
Hthkuyl Hz

with the parameters ||hy,||3/ HhT;kqu 13€10,(t—d)~(2=P)/Px2/P] and c in (4.27). By some
simple analysis, A gets minimum value denoting Amin at

N
|

z—p
Iy, |12 (\/P25§(td)k+4(1P)55k+(2p)5z(td)k 2) ’

= 2-p
= 21+ —ay) (t—) X
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Furthermore,

_2p
[

Amin =4(1—c)? (15&?7(?’ (2(t—d))

2-2p

1+ —ayk

X <25%k_p5§(t7d)k+52(t_d)k pz‘sg(td)k)) >0,

where the last inequality is from the condition (3.1). Therefore,
A>0

for any ||hy, |3/ 1 Ly, 13€10,(t—d)~(2=P)/Px2/P]. Then there must be 1o € R such that
f(p0) <0 which contradicts with (4.28). The proof is complete. 0

( \/P25§(t—d)k+4(1 — )05+ (2= P) -k )
X

4.3 The proof of Theorem 3.2
Proof. By [21, Remark 5], it is clear that the function

P
=
g<z>:<\/P222+4(1_P)5%k+%> p (25?k—PZZ+Z\/P222+4<1—P)5?k>

is monotonically nondecreasing with z> 0. For { >2d, Lemma 4.2 says that d;(;_4)x <50,
then

8(Ga(t—ayk) <8(s04),
where s = (3t—4d) /t, and

2— 2—
2\ PN
2 —

P 2—-p ?
1—‘522k—P<2gfd)> 8(52(t—d)k)21—‘522k—17<2()§fd)> g (8-

When tk is an integer, we only need to prove that

5 XZ/(pr) ;
1—(3tk—p m g(S(Stk)>0

by Theorem 3.1. We next prove that it is true under the condition (3.10). It reduces to
proving that the continuous function

2—p 2-2p

h(z)1z2<1+p<2<7§2;)> p < 52p2+4(11;£)+5(2_p)z>ﬂ




H. Ge, W. Chen and M. K. Ng / CSIAM Trans. Appl. Math., 5 (2024), pp. 18-57 41

X (2—psz—i—s 52p2+4(1—p)> ) (4.30)

for z€[0,1] satisfies h(z) >0 when z<é(p,t,d,x). From (3.11), it follows that h(é(p,d,t,x)) =
0. Next, we prove that é(p,d,t,x) is the only solution of h(z) =0. Since z and z/(1+
sz) are both monotonically increasing with z,/(z) is monotonically decreasing with z.
Furthermore, one has that #1(0) =1 and

2— _
» 2—p 2-2p

_ X7\ (VPP AA=p)+s2—p) | T
h(l)__p<2(t—d)> ( 1+s )

X (2—p52+sw /52p2—|—4(1—p)> <0.

Then, there is a unique positive solution of h(z) =0 with z € (0,1). Then, by the fact
h(é(p,d,t,x))=0,6(p,d,t,x) is the only solution of h(z) =0. And h(z) >h(é(p,d,t,x))=0
when z<é(p,d,t,x). In addition, based on é(p,d,t,x) <1, it is clear that

i(pdt x) t

Then, by (3.11), we have that

2—p 2-2p

5(p.dtx)> 1+p<2<7§2__vd)> v ( s2p2+4(1—P)+S(2—P)t>p

X (2—;752—1—5 szp2—|—4(1—p)>

When tk is not an integer, we have the following proof. Since the partial derivative
with respect to t in both sides of (3.11)

9z _ 1-22 <1+1—zz< 1+ psz >>
ot 2z(t—d)(2—ps2+sy/s2p2+4(1—p)) z2 \p(1+sz)

y (2p52+5«/52p2+4(1p) (2-p)- 8d(1—p)(t—d)

p P eyt s2)

y (2—P52+s\/szpz+4(1—r7> (2—p) 52P2+4<1—P)+5P2—4<1—P)Z>

s(2—p)++/s2p2+4(1—p) P2 +4(1—p)
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(/P —2ps)" 4d(t— d))

s2p2+4(1—p) 2

1-z 1-2z ( 1+psz
2z(t—d) (2—ps7~+s 52p2+4(1—p)) <1+ z? (P(1+SZ)>>
1+(1—p)? 2

\/s2 2+4(1—p) +sp p

for t >2d. Therefore, d6(p,d,t,x)/dt is monotonically nondecreasing with t >2d. And
using Lemma 4.3, it is clear that 0y <J(p,t,d,x) guarantees the exact recovery of k-sparse
signals via the weighted £,-minimization (1.3) with B={0}. We complete the proof. [

>0 (4.31)

4.4 Proof of Theorem 3.3
Proof. We first assume that tk is an integer. Let h = £ —x. Since £/ is a solution of the

weighted ¢,-minimization (1.3) with B=B"(¢) ={z€R": ||z||, <e}, then || A%2 —y||» <e,
and ||£%|} w <||x||w. Furthermore, from || A£2 —y||,<e and || Ax—y||» <¢, it follows that

| 4RIl <[| A% —y|]+[| Ax—y]|> <2e. (4.32)
Next, we will complete the proof by the following two steps.

Step 1: hy, can be presented as a convex combination of some sparse signals by Lem-
ma 4.1 with £ =%£%, where Y, is defined in (4.3). Applying [£2||},w < x|/} w and Lem-

ma 4.1 with £ = xﬁz, one has hy, = N Aut), where ul?) is ((t—d)k—|Y1|)-sparse vector
and for all i, supp(u")) CY,A; >0 such that YN ; A;=1. And

2

P) 2-p -
”) (HhYsz)“ (4.33)

% 2(wl|xre|lh+(1—w) || 270 e
Dnu (hwym e
k= x

In addition, (4.6) and (4.7) hold.

Step 2: We will develop an upper bound on HhT},'kqu |2 based on the identity (4.19), where
Y, is defined in (4.2). For the first term of the identity (4.19), we deduce

(fom-o)

N 2

)

i=1

2

—

Mz

2 /\HA (1—c— ]/l)hThUyl‘f'Vh CV” Hz

Il
—_



H. Ge, W. Chen and M. K. Ng / CSIAM Trans. Appl. Math., 5 (2024), pp. 18-57 43

—ZA JA((1=c= )y, —cpuD)|[3+12| AR |3

N .
+2pt<A ((1 —c— V)hT;,'kqu —cyz}\iu(l)> ,Ah>

i—1
0 &
:Z;A i|A((1=c— P‘)hT"qu cuull Hz

+(1=2¢c)p?|| AR5 +2(1—c)u(1— Pl)<AhThuYf h)

—

c

< (1+(5tk)ZAiH(l—C—V)hT;kuyl —cpu)|[3
i=1

(1202 | AR[3+2(1— (1) | Algy [, A2

-

d N ‘
< (140y) ((1—c— HthUYl|\2+c2u2DiHu“>H%>
i=1

+4(1-20) P +4(1—c)pu(1—p) \/1+5tk€HthkuY1

—
=

(4.34)

where (a) is due to (4.20), (b) follows from hy, :):fil Aiu) and h:hT;'kqu +hy,, (c) comes
from the fact that (1—c— V)hT;'kqu —cpuu' is tk-sparse and Holder inequality, and (d) is
because th'kqu is tk-sparse and || Ah||, <2¢ in (4.32).

For the second term of the identity (4.19), by the monotonicity of RIP and d <t <
d+(2—p)x¥ ?=P) /(24 p), the inequality (4.23) reduces to

12c

ZZ/\/\HA o) |5 < (1+64)?(1—2c) <ZA 3~ HhYzH2>

i=1j=1

Substituting (4.24), (4.34) and the above inequality into the identity (4.19) with c=p/2,
we derive that

0 (1-+8)( (1-B-1) Py 1+ (EL 402 )D 311 [,
—ﬂ—&wo——><Wanh+ﬂXMH"HJ
+2(2—=p)u( \/1+5tk8HhThuY1H2+41 P)ﬂ

(a)
< (a+aw (1—§—u) -0 (1=5)") Moy
+2(2=p) (L= ) v/ T+6ue|lpn oy, ||, +4(1—p)p*e?
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5>)*”

2-2p
X (I, [13) 77 = (1+6w) 1= p) Iy, |3 | 12, (4.35)

2
2

2(w [+
+ 2‘5fk)tc d<1 P) (HhT”quz

w) HfomTf

+(1-
P

where (a) is due to (4.33).

We now consider the last term of the above inequality. Define the function

2
s X7 p
gl(v)_z‘st"t—d(l 2>
2

s 2 )
TkUY12 kTpX

—(1+0)(1=p)v (4.36)

2wlere ot (1-) )\
W <|thuyl|z+ =

w) HxTCmTC

for

By some simple calculation, we verify that g1 (v) < g1(vp) with

2

AN 2(w|xre |+ (1= )Xo
VO_(W) (‘thuY12+ kTpX

) b
”) . (4.37)

In addition, by d <t <d+((2— p)(2+p))7(% and
1
S =)

in (3.13), where

we derive that

; 2(wllrelp
P p
< —= 2 (thUY1|2+
p

w) HxTCmTC

£>)5

+(1-
e
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and

2-p

gl(VO)Ig(H‘S”‘) (%)

2(wl e[|+ (1 =) |37erze
k

PV 7
— p)> . (4.38)

X (‘hT;kuY1§+ N

For (4.38), it follows from

in (3.13) that

p (2_P)X23_p '
S1max(10) < §(1+5tk) (W)

2
T Gl el VA A
TdeYl 2 2—_p
k= x

u+p_1

< (1+5tk)<

2
p P 2
X (HhTh HP+2(aJHxTcHp—l—(l—w)HxTEmTCHp) ) P
B Y112 = )

k= x

where we use Lemma 2.2(II) with Azxz/(pr)/(t_d) and

Lo 2opxrr/(t=d)
u+p

and
2—p 2

2-p
2+t

in the second inequality. Furthermore, by the above inequality and (4.38), there is the fact
that

d<t<d+

p(@-pxTioe\ " _utp

Let
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we derive that

(180 (1=5 =) =180 (1-5 )+ (10) (1521 2
(8-S 38 1)
+<1+5fk)<”+’? 1>< >

:u;p(—l—i—&tk(u—i—p—l))y <0, (4.40)

where the inequality follows from

v
u—(1-=p)’
By (4.35) and the function g1 (v) in (4.36), one has that

<(1+5tk) <1—§—y>2— (1—0) <1—§)2+(1+5tk) <#_1> ) Hthuyl Hz

+22—p)u(1—p) \/1+(5tk€HhThkUY1Hz+4(1—p)y2€2
+
= (1000 (52 =1) g, I3 (e 1) 0.

From (4.40), g1(||hy, Hz) < g1max(v0), (4.38) and

2—p
u+p’

O <

"l,[:

the above inequality reduces to

u+p
2

(—14+0u(u+p—1)) Hthkqu H§+2<“+2P—2) \/1+‘5tk€HhT5kuY1 I

2-p

a1 =) (U5 1) g [+ 00w ( SP0

2
2(w|lxrel|h+ (1) [|Xgenpe] 1)\ 7
(!thuYJﬁ & = >0

Then, by (4.39),

G
<
HhT;'kquuz— (u+p) (1—5tk(u+l7—1))£

1
+Co(@llxre |+ (1 =) el ) (4.41)
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where the constants C; and C; are defined in (3.15) and (3.16), respectively. Furthermore,

HhH%: Hhmax(dk)H%—i_Hh—max(dk)”% (4.42)
2(w||xre b+ (1—w)||¥5eqrc]|7) \ 7
2 p TeNT
= HhT;kuY1H2+ (hT;’kqug"‘ (dk)%Tp ’
1 2
2 =% 2 g 5
< Hth‘kUY1H2+2 P (HthkU\ﬁZ—i_ <W> (aJHfoug‘f’(l—aJ)focmTc ::) p) ’

where we use (4.6) and Ta;llk = SuPP(hmax(dk)) in the first inequality, and Jensen inequality
in the other inequalities. By (4.41) and (4.42), we have that

P

)

12 G e+ Cawllerell) + (1-w)|1x7
(u+p) (1= (utp—1)) ’ T
>2
Therefore,

2-2p - 1N 2
i< Vitz @ G ))e+\/cg+zzi’”<c2+<z<dk>z-/>v>

u+p) (1—=0u(u+p—1
1
pP\Pr
p) '

When tk is not an integer, we define t = [tk] /k. Then t >t,t k is an integer and

C1 2

I3 < <(u+p)(1—5tk(”+p_1))

1
P

e+C (CUHxT” II;’3+(1—¢0) HfomTf

==

')

==

s \7
+ <(dk)22p> (W”xTcug"“ﬂ_w)HxTCmTﬂ i)

% (wllxrellf+ (=) ¥

0y, =0y <
'k tk 1

(1-p)

We obtain the desired result by working on § Vi

4.5 Proof of Theorem 3.4
Proof. By Lemma 2.2,
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with

2—|—P -

has a unique solution in ((1—p)x*>~P)/(t—d),1). If zo is the only positive solution of
the equation

it is easy to see

1-p 2; 2—p 2
1, 2= .
ZOE( —ax { 2(t-d)~ D
First we assume tk is an integer. When

2+

the inequalities (4.32)-(4.38) still hold as in the proof of Theorem 3.3 in Section 4.4. By the
condition dy < (t—d)zo/ ((2—p)x?/?~P) — (t—d)zp) in (3.17), we derive that

d+2_—gxﬁ <t<2d,

% (4.43)

(1+0u) (t— )
Then (4.37) and (4.38) respectively change to
2
p P
) )

2-p (CL)H?CTCHP
v <zy" (‘hT" uY; Hz

w) HxTCmTC

(1-
K

=N

-\ X wlere [h+ (1) ez 7)) 7
<<22p> LA [ oy, 15+ 2l l — o) o (444)
(t—d)T k= x
and
2
= 2(wllxre ||+ (1= )| xzenre D) \ 7
glmaX(V0)<g(1+5tk (‘thUY12+ =N ), (445)

where we used the facts that zy < (2—p)x?/?>~#)/(2(t—d)) and 0 < p <1 in the second
inequality of (4.44).
In addition, from (4.35) and the function g7 (v) defined in (4.36), it is clear that

2 2 2-p
<(1+(5tk) <1—g—ﬂ> —(1—0u) (1—5) +g(1+‘5f’<)20p V2>HthUY1H2
+2(2—P)P‘(1—ﬂ)\/1+‘5tk8HhTh UY1H2

+4(1—p)pe —E<1+5tk " 2|y, 15+ 81 (1, [3) 12 > 0. (4.46)
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Combining the fact that g1 (||, ||3) < g1max(v0) with (4.7) and (4.38), we derive that

(a0 (12 )"~ 000 (1-B) + B0+ 000207 17 Dy v,
+2(2=p) (1= )V 1+-bpe[lgn oy, ||, +4(1—p) e

) 2-p

p 2=p)x7ou | "
— 5 (140u) Zo V HthUY1H2 1+5”‘)<(1+5tk)(t—d)>

2

2(w||ere w)[%zenrellp)

<HhThuylH2 TeNT P) 14220

Let u=zo(t ~P). Then

I+

+(1-
2

(1+54) (1—%—;:) —(1-64) (1—%) §(1+5tk) TPV’-
:(P‘z_(z_P)H)+5tk<(1——— > < ) > S(1+6k) z0 y
Z(MZ—(2—p)M)+5tk<( ) +(1-%) ) (1+64) <2;pﬂ—ﬂ2>

2—
= (—pton2—p—m)

2—_P<_ (t—d)zo o >_
< + (2 ) | =0,
2 \ M o ——m

where we used the fact that

Nl‘ﬁ Nl‘@

2
; 2—p)x7
/4 = FPA
Zg +20 2<t—d) 0

NI

in the second equality, and the inequality follows from

in (3.17) and

From the above two inequalities, together with =z (t—d) /x?/(?~?) and (4.46), it follows
that

2P (a2 p— 1)) g, |13~ 22— )1 (1= 1) VT el g o,
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50
A1 —Na22 P (2= p)X* 7
4(1—-p)p’e +2(1+5k P’ HhT"UYluz (1+3) ((1+5tk)(t—d)>
2
2(wllxrellh+ (1= w)|[xgenre2) \
(‘hT"quz 2-p : =0,
k= x
ie.

2;P<1_<2—P) e Z)O“ ””cstk) [Bgov, 3 =22 = ) (0=10) V1 By o,

2-p

2
—4(1-p)pet+ £ (14610, ﬂHhThquuz 1+5tk)<(1+5tk)(t—d)

2
2(w|lerel|h+ (1—w) |2z pe|[2) \ 7
(\thLmﬁ P = <o

Then, by (4.43), one has that

Dy
hon Gy, ||, < 2
ko G a0 Gt

5) %, (4.47)

€

+D» <WHfoH§+(1—w)HxTcmTc

where the constants D; and D; are defined in (3.20) and (3.21), respectively. Furthermore,
combining (4.42) with (4.47) we deduce

D,

(1((2;7)7(22 zo(t—d) )(5tk/(20t d))
)
D,

+22ﬁ( 2
1= (2 P —2olt—)) 6] (z0(t—d)

+Da(wllrrellh+ (1= @) |27 e })

1 2
2\’ l
+<(dk)25”> (wllerellh+ (1= ) |7 Z)p) .

€

I3 <

D2 (wlxrellp+ (1-) [ ¥

€

==
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Asa consequence,

1]l2 < z e
1—(( —p) 2- Zo(t—d))(stk/(Z()(t—d))

+\/D2+2 v <Dz+( <dk)—7p)1>2(wawH5+<1—w>wav )"

When tk is not an integer, we define = [tk] /k as usual. Then t >t,t k is an integer and
z/0 < zo, where zg and z respectively are the unique solution of Eq. (3.18) and

2—p 2

EZ%—}—Z— X2_p :O'
2 2(t'—d)
Therefore,
t—d t—d)z,
Oy =0u< ( 5 )70 < ( 5 )2 ;
2-p)xT7—(t=d)zo (2—p)x*7 —(¥'—d)z,
We obtain the desired result by working on J,/,. We complete the proof. O

4.6 Proof of Theorem 3.5

Proof. Similarly, we first assume tk is an integer. When ¢t > 24, the inequalities (4.32)-(4.34)
also hold in the proof of Theorem 3.3 in Section 4.4. And let the parameters c and y in the

identity (4.19) be
1 1 .2
=51 \/$?p?>+4(1—p)—sp |, (4.48)

_ 212 1 4(1— 1)
2oV (4.49)
2(146(p,t,d,x))

where s = (3t—4d) /t, and é(p,t,d,x) is in (3.10). By t >2d and Lemma 4.2, the inequality
(4.23) reduces to

12c

ZZM A oM

i=1j=
< (1456 > (1-2¢) (Z/\ [ H’%H%)- (4.50)
Substituting the inequalities (4.24), (4.34) and (4.50) into the identity (4.19), we deduce

0< ((146) (1—c—p)* = (1—04) (1 )Hthuyle
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N )
+ ((1464) P + (1450 > (1—-2¢) — (1—64) (1)) Z/\i””m I3
— (1+58) (1-20)p |y, |3+4(1 —20) 2 +4(1— ) (1= )/ T 3gee g oy,

= (1+80) (1=c=p)* = (1=80) (1=)?) [l v, 1
H4(L—c) (1= ) v/ 1+ Se [l oy, ||, +4(1—20) p?e?

+ <2c2+(1—2c)4t_4d>

§(<1+5tk)(1—c_7f‘) —(1=dy)(1 Hthuyle
+4(1—c)y(1—;4)\/1+5tk£HhT;kUY1H2+4 (1—2¢) %

2
=5 _
+ X7 <2c2—|—(1—2c)4t t4d>5tky2

N
Suih® Y_Aillmil|3 — (14584 ) (1—2¢) ? |y, |I3
i=1

t—d
2
2(wllxrellp+ (1 =) | *genrel[2) \ = 22
("%wﬂﬁ K2 x : (v, 3) =
— (1+564) (1—20) 12 || by, |13, (4.51)

where the inequality is due to (4.33) and ¢ > 2d. Similarly, we first consider the last term
of (4.51). Define a function

2
= 4t—4d
$2(v)= f_ y <2CZ+<1—2C) . )(Wz

Z(CUHX'TCHP
(HhT kUY] H2+

2
p

2-p
p)) v%—(l—i—sétk)(l—%)yzv

w) HxTCmTC

(1-
e

for

2 P ;
; 2(wllarellp+ (=) [ xzenre ) | 7
ve O,Xiz__p (‘hT”UYJz 2p —
z k=" x

Then the inequality (4.51) can be written as

((1+0u) (1 —c—p)* = (1—by) (1 )HthUY1H2
+4(1—c)u(1- V\/1+5tk8HhThuY1Hz
+4(1—20) 2+ g2 (|| v, |13) >0. (4.52)
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By some elementary calculation, the function g»(z) attains its supremum at

((2—2p)(2c2—|—(1—20)(4t—4d)/t)5tk>”p >
Vo=

=

(2—p) (t=d)(1+s0u) (1-2c)

2(wlerellh+(1-) e )
HthUY1H2+ kTpX

2_

~ ( p252+4(1—p)+(2—p)55k> (t—d)_%TpX
) t

=N

t‘
M=
=N

2(1+S(Stk

2(wllrrellp+ (1) [z })
HhT" UY1H2 2—p ’
k= x

where we used the definition of c in (4.48). That is

=N

g1(v) <g1(vo)
! s-4d\ (VPRI +-p)s, |
(t y <2c +(1—2¢) n >(5tk< 2(15s07) (Stk>
S S

2(w|laerelp+

2
2 (1—w)xgerrellp) \
XX ”(IIhThuylllz = roreb)
=X
2

(t— d_Tp Pp(sy/p? 52+41 p)+2—52p)du

X
2-2p
><< PrA—p) + (2—17)55) ”
2(1+s0y) *
2
) 2(w||xTe P4 X e P\ 7
p<|thuY12+ ( H H (_p )H 7 p)) P‘z
k= x

Ok 1_h<(5tk) Hh H (w”xTC”P < )HxTCﬂTC
= — _— n
2 5?]{ T UYl 2 k 2}’7)(

P) 7
P

53

where the last two equalities follow from the definition of ¢ in (4.48), and the function
h(z) in (4.30), respectively. Then, applying (4.52) and ¢»(||hy, [|3) < g2(v0), we derive that
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(14+65) (1—c—p)* = (1—6y) (1 )HhT"quuz

T S (1—h(6
+4(1—c)p(1— )/ T+0pe | Bn oy, ||, +4(1—-20) 7€ + = <7( ) _1>

2 (Stzk
2
2(w|xere, + (1=)[xgergell,) |’
(‘thquzJF ’ P ) 2o, (4.53)
z X

On the other hand, based on the parameters c in (4.48) and y in (4.49), one has

2
(an)1-e = (-a1-7= (=50 (SGanan ) o)

-0t =2 (50— 5 (VP Haa=—p) - ) )2
4(1—2c)y2:2<\/(sp)2+4(1—p)—sp> 112, (4.54)

Furthermore, since h(z) is monotonically decreasing with z, h(d(p,t,d,x)) =0, and oy <
o(p,t,d,x), then

(1R, | e 1k
5(p,t,d,x) 282(ptdx) )% 2 6%

1 1+6%(p,t,d, 1—062%(p,t,d,
<(- o (ot ) oot

s(ptd,x)  \ 282(p,td,x) 202(p,t,d,x)
_ (S(p/t/d/X) _(Sik
52(p/t/d17() <O.

Then, using the equalities in (4.54) and the above inequality, (4.53) reduces to

(3(p,t,d,)() ‘StkH H
52(p,t,d,x) By vz

1

1
22 (VP 40— ) ) VIFaueliny v,

1-6%(p,t,d, x) 2
w2((yfoppraimp)—op) - S A sy e

2
S (1—h(s 2(wllxrellp+(1=w) || %genge D) \ 7
+ £k< 52< ) _ ) (hThuY1|z P - u?>0.
7 x

As a result, one has

H Eléz(p,t,d,)()
T2 = 5(p,t,d, x) — o

==

| e+ B (wllxrelll+(1-w) | %ene

)
p 7
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where the constants E; and E; are defined in (3.23) and (3.24), respectively. Similarly,
using (4.42) and the above inequality, we obtain

E16%(p,t,d, x) 0
2< 1 p/ 7 /X E . p 1_ _ AR
1413 < (TP (ol (=)l o)

2-2p

2 (B
5(p/t/d/X) _51’](

1
+ (z(dk)JTp) ’ (aJHfo||5+(1—w)HxTcmTc

e+ B (wllxrellp+ (1=) 37}
1\ 2
pP\P
p) ) '
2-2p 2
V14277 Ei8(p,td, v
< Y1+2 7 Ei0(p X%+¢g+<5+@umzﬁy>

(S<P1t/dlx> _(Stk
p
)

x (@llxrellf+(1=0) |27z
When tk is not an integer, again we define f = [tk]/k. And é(p,d,t,x) < (5(p,d,t/, X) since
0z /0t >0in (4.31) for t >2d. Therefore,

Sy =0 <(p,d,t,x) <o(p.d,t x).
We obtain the desired result by working on J,/,. We complete the proof. O

And thus,

==

5 Conclusion

In this paper, we provide a uniform RIP bound for the exact recovery of sparse signals
via the weighted £,-minimization with 0 < p <1 in the noiseless case. In the ¢, bounded
noise case, we present the error bound for the stable signal recovery via the weighted /-
minimization with 0 < p <1, when signals are not limited to sparse signals. The proposed
sufficient conditions extend the state-of-the-art results for weighted /,-minimization in
the literature to a complete regime, which fills the gap on J based signal recovery con-
dition for ¢ > 2d and include the existing optimal conditions for the /,-minimization and
the weighted /;-minimization as special cases.
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