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Abstract. In this work, we propose an explicit second order scheme for decoupled

mean-field forward backward stochastic differential equations with jumps. The sta-

bility and the rigorous error estimates are presented, which show that the proposed
scheme yields a second order rate of convergence, when the forward mean-field

stochastic differential equation is solved by the weak order 2.0 Itô-Taylor scheme.
Numerical experiments are carried out to verify the theoretical results.
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1. Introduction

Let (Ω,F ,F, P ) be a complete filtered probability space with F = {Ft}0≤t≤T be-

ing the filtration generated by the following two mutually independent stochastic pro-

cesses:

• The m-dimensional Brownian motion W = (Wt)0≤t≤T .

• The Poisson random measure {µ(A × [0, t]), A ∈ E , 0 ≤ t ≤ T} on E × [0, T ],
where E = R

q\{0} and E is its Borel field.

In this paper, we suppose that the Poisson measure µ has the intensity measure

ν(de, dt) = λ(de)dt = λF (de)dt,

∗Corresponding author. Email addresses: sunybly@163.com (Y. Sun), jieyang@sdu.edu.cn (J. Yang),

wdzhao@sdu.edu.cn (W. Zhao)

http://www.global-sci.org/nmtma 243 ©2024 Global-Science Press



244 Y. Sun, J. Yang and W. Zhao

where λ(de) is a Lévy measure on (E, E) describing the average number of jumps per

unit of time, λ = λ(E) is the intensity of the measure µ and F is the distribution of the

jump size e. Here λ(de) is a σ-finite measure satisfying
∫

E

(

1 ∧ |e|2
)

λ(de) < +∞.

Moreover, we have the compensated Poisson random measure

µ̃(de, dt) = µ(de, dt) − λ(de)dt,

such that {µ̃(A× [0, t]) = (µ− ν)(A× [0, t])}0≤t≤T is a martingale for any A ∈ E .

The Poisson measure µ can generate a sequence of pairs (τi, ei), i = 1, 2, . . . , NT

with τi ∈ [0, T ], i = 1, 2, . . . , NT , representing the jump times of Nt and ei ∈ E, i =

1, 2, . . . , NT the corresponding jump sizes satisfying ei
iid∼ F . Here Nt = µ(E × [0, t]) is

a Poisson process with intensity λ, which counts the number of jumps of µ occurring in

[0, t]. For more details of the Poisson random measure and Lévy measure, the readers

are referred to [6,17].

We are interested in the following general mean-field forward backward stochastic

differential equations with jumps (MFBSDEJs for short) on (Ω,F ,F, P )

X0,X0

t = X0 +

∫ t

0
E
[

b
(

s,X0,x0

s , x
)]
∣

∣

x=X
0,X0
s

ds

+

∫ t

0
E
[

σ
(

s,X0,x0

s , x
)]
∣

∣

x=X
0,X0
s

dWs

+

∫ t

0

∫

E

E
[

c
(

s,X0,x0

s− , x, e
)]
∣

∣

x=X
0,X0
s−

µ̃(de, ds),

Y 0,X0

t = E
[

Φ
(

X0,x0

T , x
)]
∣

∣

x=X
0,X0
T

+

∫ T

t

E
[

f
(

s,Θ0,x0

s , θ
)]
∣

∣

θ=Θ
0,X0
s

ds

−
∫ T

t

Z0,X0

s dWs −
∫ T

t

∫

E

U0,X0

s (e)µ̃(de, ds),

(1.1)

where

Θ0,x
s =

(

X0,x
s , Y 0,x

s , Z0,x
s ,Γ0,x

s

)

with x = x0 and X0 being the initial values of mean-field forward stochastic differential

equations with jumps (MSDEJs). Here, Γ0,x
s is defined by

Γ0,x
s =

∫

E

U0,x
s (e)η(e)λ(de)

for a given function η : E → R satisfying supe∈E |η(e)| < +∞,

b : [0, T ]× R
d × R

d → R
d,

σ : [0, T ]× R
d ×R

d → R
d×m,

c : [0, T ]× R
d × R

d × E → R
d
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are respectively drift, diffusion, and jump coefficients of MSDEJs, E[Φ(X0,x0

T , x)]|
x=X

0,X0
T

is the terminal condition with Φ : Rd × R
d → R

p, and

f : [0, T ] × R
d × R

p × R
p×m × R

p × R
d × R

p × R
p×m × R

p → R
p

is the generator of mean-field backward stochastic differential equations with jumps

(MBSDEJs). A quadruplet (X0,X0

t , Y 0,X0

t , Z0,X0

t , U0,X0

t ) is called an L2-adapted solution

of (1.1), if it is Ft-adapted, square integrable and satisfies (1.1). In general, the initial

values X0 and x0 are different, and (X0,x0

t , Y 0,x0

t , Z0,x0

t , U0,x0

t ) is the solution of (1.1)

with X0 = x0.

The theory of mean-field forward backward stochastic differential equations (MF-

BSDEs for short) was initially developed by Buckdahn et al. [3] in 2009. Since then,

MFBSDEJs have become an important tool in many research areas such as the nonlo-

cal diffusion problems [2–4, 11], stochastic optimal control [7, 13, 25, 26], and mean-

field games [1, 5, 8, 12]. Furthermore, Li [14] extended the theory of MFBSDEs to the

framework of MFBSDEJs. MFBSDEJs can obviously model the event-driven stochastic

phenomena much more accurately by comprising Lévy jump processes, and hence ad-

mit much wider applications in the above research areas [10, 15, 16, 21, 24]. In view

of its wide applications, it is important and interesting to study numerical methods for

solving MFBSDEJs. Due to the Poisson random measure and the nonlocal properties of

MFBSDEJs, it is very difficult to construct numerical methods for MFBSDEJs.

To prepare for the numerical methods for MFBSDEJs, we developed the Itô’s for-

mula and Itô-Taylor expansion for mean-field SDEs and SDEJs, and constructed gen-

eral Itô-Taylor schemes for them in our previous works [18, 21]. Then the authors

presented high order θ-schemes for MBSDEs in [22]. Furthermore, a second order

one-step scheme and a third order multi-step scheme were proposed in [19, 20] for

solving decoupled MFBSDEs. To our knowledge, nevertheless, there are few works on

MFBSDEJs in the literature.

In this paper, we are devoted to numerical methods for solving decoupled MFBS-

DEJs. By solving MSDEJs with the Itô-Taylor schemes proposed in the paper [21], we

will design a second order numerical scheme for solving decoupled MFBSDEJs. By us-

ing the Itô formula in mean-field version, we will first rigorously analyze the stability

of the proposed scheme, and then derive its error estimates from the obtained stability

results. The error estimates show that the proposed scheme admits a first order con-

vergence rate when MSDEJs are solved by the Euler scheme or the Milstein scheme,

and a second order convergence rate when MSDEJs are solved by the weak order 2.0

Itô-Taylor scheme. Our numerical results show that the proposed scheme is stable, ef-

fective and can be of second order rate of convergence, which are consistent with our

theoretical conclusions.

It is worth pointing out that compared with the numerical methods for solving

FBSDEs (short for forward backward stochastic differential equations), the methods

for mean-field FBSDEs with jumps are computationally expensive and complicated.

The main reasons are listed as below.
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• First, we need to approximate the expectations with respect to the solutions con-

tained in the coefficients of mean-field FBSDEs with jumps. Since the probability

density functions of the solutions are unknown, it is not easy to approximate

these expectations efficiently.

• Second, our constructed Scheme 3.1 contains several conditional expectations

with respect to the solutions. It can be very time-consuming and complicated

to approximate these conditional expectations because of the existing of the dis-

crete Poisson jumps in the solutions, whose numbers and sizes are both random

variables.

To overcome the above two difficulties, we first apply the Monte-Carlo method to simu-

late the expectations contained in the coefficients of MFBSDEJs. As for the conditional

expectations in our scheme, we write them in the form of multiple integrals by using

the distributions of the Brownian motion, the jump numbers and the jump sizes, and

the independence of these random variables. Then we approximate the corresponding

integrals by using the high-efficient Gaussian quadrature rules. For more details, please

refer to Section 5.

The paper is organized as follows. In Section 2, we present some preliminaries

including Itô’s formula and the Feynman-Kac formula. In Section 3, by discretizing MF-

BSDEJs in time, we develop an explicit second order numerical scheme for MFBSDEJs.

Stability analysis and error estimates are performed in Section 4. In Section 5, some

numerical experiments are carried out to verify our theoretical results, and we finally

conclude the paper in Section 6.

We close this section by listing some notation that will be used in what follows:

• | · |: the standard Euclidean norm in the Euclidean space.

• C2,2
b : the set of continuous differential functions φ(x, y) with uniformly bounded

partial derivatives ∂k1x ∂
k2
y φ for k1 ≤ 2 and k2 ≤ 2.

• C1,2,2
b : the set of continuous differential functions φ(t, x, y) with uniformly bound-

ed partial derivatives ∂l1t φ and ∂k1y ∂
k2
z φ for l1 ≤ 1 and k1 + k2 ≤ 2. Moreover, we

can define C1,2,2,2,2,2,2,2,2
b in a similar way.

2. Preliminaries

In this section, we will introduce some useful results including the nonlinear Feyn-

man-Kac formula and Itô’s formula for general MSDEJs.

2.1. The nonlinear Feynman-Kac formula

To show the representations of the solutions of decoupled MFBSDEJs, we recall

the nonlinear Feynman-Kac formula in this subsection, which explains why we can

numerically solve the MFBSDEJs (1.1) in spatiotemporal framework in this paper.
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For simplicity, we make the following assumption on the coefficients and the termi-

nal condition.

Assumption 2.1. Assume that b, σ ∈ C1,2,2
b and c(·, ·, ·, e) ∈ C1,2,2

b with the bound

of K(1 ∧ |e|) for all its derivatives of first and second order, f ∈ C1,2,2,2,2,2,2,2,2
b and

Φ ∈ C2,2
b .

Now we present the following nonlinear Feynman-Kac formula [14].

Lemma 2.1. Under Assumption 2.1, the solutions of the MBSDEJs in (1.1) have the fol-

lowing representations:

Y 0,X0

t = u
(

t,X0,X0

t

)

,

Z0,X0

t = ∇xu
(

t,X0,X0

t

)

E
[

σ
(

t,X0,x0

t , x
)]∣

∣

x=X
0,X0
t

,

U0,X0

t = u
(

t,X0,X0

t− + E
[

c
(

t,X0,x0

t− , x, e
)]
∣

∣

x=X
0,X0
t−

)

− u
(

t−,X0,X0

t−

)

,

(2.1)

where u(t, x) is the classical solution of the following nonlocal quasi-linear PIDE:

A[u](t, x) + E

[

f
(

t,X0,x0

t , u
(

t,X0,x0

t

)

,

∇xu
(

t,X0,x0

t

)

E
[

σ
(

t,X0,x0

t , x
)]
∣

∣

x=X
0,x0
t

,

B[u]
(

t−,X0,x0

t−

)

, x, u(t, x),

∇xu(t, x)E
[

σ
(

t,X0,x0

t , x
)]

,B[u](t, x)
)]

= 0 (2.2)

with the terminal condition u(T, x) = E[Φ(X0,x0

T , x)]. Here A is a second order integral-

differential operator defined as

A[u](t, x) =
∂u

∂t
(t, x) +

d
∑

i=1

E

[

bi
(

t,X0,x0

t , x
)

] ∂u

∂xi
(t, x)

+
1

2

d
∑

i,j=1

(

E
[

σ
(

t,X0,x0

t , x
)]

E
[

σ
(

t,X0,x0

t , x
)]⊤
)

ij

∂2u

∂xi∂xj
(t, x)

+

∫

E

(

u
(

t, x+ E
[

c
(

t,X0,x0

t− , x, e
)])

− u(t, x)

−
d
∑

i=1

E
[

ci
(

t,X0,x0

t− , x, e
)] ∂u

∂xi
(t, x)

)

λ(de),

and B is an integral operator defined as

B[u](t, x) =
∫

E

(

u
(

t, x+ E
[

c
(

t,X0,x0

t− , x, e
)])

− u(t, x)
)

η(e)λ(de). (2.3)
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Note that

Γ0,x
t =

∫

E

U0,x
t (e)η(e)λ(de),

then by (2.1) and (2.3), we get

Γ0,X0

t = B[u]
(

t−,X0,X0

t−

)

.

Lemma 2.2. It is known that when the functions b, σ, c, f and Φ are bounded and smooth

enough with bounded derivatives, the PIDE (2.2) has a unique solution u(t, x) which is

also bounded and smooth with bounded derivatives [14].

2.2. Itô’s formula for MSDEJs

Let βt be a d-dimensional Itô process with jumps defined by

dβt = ψtdt+ ϕtdWt +

∫

E

ht−(e)µ(de, dt), (2.4)

where ψt, ϕt and ht are progressively measurable processes satisfying

∫ T

0
|ψt| dt < +∞,

∫ T

0
Tr
[

ϕsϕ
⊤
s

]

dt < +∞,

∫ T

0

∫

E

|ht(e)|2 λ(de)dt < +∞, a.e..

For notational simplicity, for two given functions g1 : R
+ × R

d × R
d → R and g2 :

R
+ × R

d × R
d × E → R, we define

gβ1 (t, x) = E
[

g1
(

t, βt, x
)]

,

gβ2 (t, x, e) = E
[

g2
(

t, βt, x, e
)]

,

gβ2 (t−, x, e) = E
[

g2
(

t−, βt−, x, e
)]

.

Consider the following general MSDEJ:

dXt = bβ(t,Xt)dt+ σβ(t,Xt)dWt +

∫

E

cβ(t−,Xt−, e)µ(de, dt). (2.5)

Note that under Assumption 2.1, the MSDEJ (2.5) has a unique solution. Now we state

the Itô’s formula [21] for the MSDEJ (2.5) in the following theorem.

Theorem 2.1. Let Xt be the unique solution of the MSDEJ (2.5). Then for f ∈ C1,2,2,

fβ(t,Xt) is an Itô process with jumps satisfying

fβ (t,Xt) = fβ (0,X0) +

∫ t

0
L0fβ (s,Xs) ds+

∫ t

0

−→
L 1fβ (s,Xs) dWs

+

∫ t

0

∫

E

L−1
e fβ (s,Xs−)µ (de, ds) , (2.6)
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where the operators L0,
−→
L 1 and L−1

e are defined as

L0fβ(s, x) =
∂fβ

∂s
(s, x) +∇xf

β (s, x) bβ (s, x)

+
1

2
Tr
[

fβxx(s, x)
(

σβ (s, x)
)(

σβ (s, x)
)⊤
]

,

−→
L 1fβ(s, x) =

(

L1fβ(s, x), . . . , Lmfβ(s, x)
)

,

L−1
e fβ (s, x) = fβ

(

s, x+ cβ(s−, x, e)
)

− fβ (s−, x)

(2.7)

with

∂fβ

∂s
(s, x) = E

[

∂f

∂s
(s, βs, x) +∇x′f (s, βs, x)ψs +

1

2
Tr
[

fx′x′ (s, βs, x)ϕsϕ
⊤
s

]

]

,

∇xf
β (s, x) = E

[

∇xf (s, βs, x)
]

, fβxx (s, x) = E
[

fxx (s, βs, x)
]

,

Ljfβ (t, x) =

d
∑

k=1

∂fβ

∂xk
(t, x)σβkj (t, x) , j = 1, 2, . . . ,m.

Here σj denotes the j-th column of the matrix σ and

∇xf =

(

∂f

∂x1
, . . . ,

∂f

∂xd

)

, fxx =

(

∂2f

∂xi∂xj

)

d×d

.

We remark that the above Itô’s formula for MSDEJs will play an important role in

the numerical analysis of our scheme. For the details of the Itô’s formula (2.6), the

readers are referred to [21].

3. Numerical scheme for MFBSDEJs

In this section, we first introduce the general Itô-Taylor schemes for solving MSDEJs,

then based on which, we develop an explicit second order numerical scheme for solving

the MFBSDEJs (1.1). For notational simplicity, we let d = m = p = 1.

Let N be a finite positive integer. For the temporal partition, we introduce a regular

time partition on [0, T ]

T :=
{

0 = t0 < t1 < · · · < tN = T
}

.

For the above regular time partition, we let

∆tn = tn+1 − tn, ∆Wn =Wtn+1
−Wtn , ∆Nn = Ntn+1

−Ntn .

Here the regularity means there exists a constant c0 ≥ 1 (independent of N) such that

max0≤n≤N−1∆tn
min0≤n≤N−1∆tn

≤ c0. (3.1)
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3.1. The general Itô-Taylor schemes for MSDEJs

Let XX0
n (Xx0

n ) be the approximation values of the solutions X0,X0

t (X0,x0

t ) of the

MSDEJ in (1.1) at time t = tn (n = 0, 1, . . . , N), solved by a Itô-Taylor scheme proposed

in [21] in the form

XX0

n+1 = XX0

n + E
[

ϕ
(

tn,∆tn,X
x0

n , x, w,m, τ, e
)]

(3.2)

with x = XX0
n , w = ∆Wn, m = ∆Nn, τ = τ and e = e, where ϕ is a method dependent

function, τ = (τ1, . . . , τ∆Nn) and e = (e1, . . . , e∆Nn) with ∆Nn the jump number and

(τi, ei) the pairs of jump time and jump size occurring in (tn, tn+1].
Define

b̃
(

t, x′, x
)

= b
(

t, x′, x
)

−
∫

E

c
(

t, x′, x, e
)

λ(de). (3.3)

Then by taking different forms of the function ϕ (depends on b, σ, c and their deriva-

tives), we give three examples of the Itô-Taylor scheme (3.2), see [18].

1. The Euler scheme

XX0

n+1 = XX0

n + b̃X
x0
n
(

tn,X
X0

n

)

∆tn + σX
x0
n
(

tn,X
X0

n

)

∆Wn

+

∆Nn
∑

i=1

cX
x0
n
(

tn,X
X0

n , ei
)

. (3.4)

2. The Milstein scheme

XX0

n+1 = XX0

n + b̃X
x0
n
(

tn,X
X0

n

)

∆tn + σX
x0
n
(

tn,X
X0

n

)

∆Wn

+

∆Nn
∑

i=1

cX
x0
n
(

tn,X
X0

n , ei
)

+
1

2
L1σX

x0
n
(

tn,X
X0

n

) (

(∆Wn)
2 −∆tn

)

+

∆Nn
∑

i=1

L1cX
x0
n
(

tn,X
X0

n , ei
) (

Wτi −Wtn

)

+
∆Nn
∑

i=1

L−1
ei
σX

x0
n
(

tn,X
X0

n

) (

Wtn+1
−Wτi

)

+

∆Nn
∑

i=1

Nτi−
∑

j=Ntn+1

L−1
ej
cX

x0
n
(

tn,X
X0

n , ei
)

. (3.5)

3. The weak order 2.0 Itô-Taylor scheme

XX0

n+1 = XX0

n + b̃X
x0
n
(

tn,X
X0

n

)

∆tn + σX
x0
n
(

tn,X
X0

n

)

∆Wn

+

∆Nn
∑

i=1

cX
x0
n
(

tn,X
X0

n , ei
)

+
1

2
L0b̃X

x0
n
(

tn,X
X0

n

)

(∆tn)
2
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+
1

2
L1σX

x0
n
(

tn,X
X0

n

) (

(∆Wn)
2 −∆tn

)

+

∆Nn
∑

i=1

L1cX
x0
n
(

tn,X
X0

n , ei
) (

Wτi −Wtn

)

+

∆Nn
∑

i=1

L−1
ei
σX

x0
n
(

tn,X
X0

n

) (

Wtn+1
−Wτi

)

+

∆Nn
∑

i=1

Nτi−
∑

j=Ntn+1

L−1
ej
cX

x0
n
(

tn,X
X0

n , ei
)

+

∆Nn
∑

i=1

L0cX
x0
n
(

tn,X
X0

n , ei
)

(τi − tn)

+

∆Nn
∑

i=1

L−1
ei
b̃X

x0
n
(

tn,X
X0

n

)

(tn+1 − τi)

+
1

2

(

L1b̃X
x0
n
(

tn,X
X0

n

)

+ L0σX
x0
n
(

tn,X
X0

n

)

)

∆Wn∆tn. (3.6)

Remark 3.1. Note that to solve the MSDEJ in (1.1) for X0 6= x0, we need two steps in

succession. We take the Euler scheme (3.4) for instance to illustrate this procedure.

• Step 1: solve the MSDEJ with X0 = x0 to obtain {Xx0
n }Nn=0

Xx0

n+1 = Xx0

n + b̃X
x0
n
(

tn,X
x0

n

)

∆tn + σX
x0
n
(

tn,X
x0

n

)

∆Wn

+

∆Nn
∑

i=1

cX
x0
n (tn,X

x0

n , ei) .

• Step 2: solve the MSDEJ with X0 6= x0 to get {XX0
n }Nn=0 after we get {Xx0

n }Nn=0

XX0

n+1 = XX0

n + b̃X
x0
n
(

tn,X
X0

n

)

∆tn + σX
x0
n
(

tn,X
X0

n

)

∆Wn

+

∆Nn
∑

i=1

cX
x0
n
(

tn,X
X0

n , ei
)

.

Let Ck
p be the set of continuously differentiable functions φ(x) such that all its partial

derivatives up to order k have a polynomial growth. Then we state some approximate

properties of the Itô-Taylor scheme in (3.2) in the following proposition, which will be

used in our error analysis.

Proposition 3.1. Let {XX0
n , n = 0, . . . , N} denote the numerical solutions of the Itô-

Taylor scheme in (3.2). Then there exist positive numbers r1, r2, r3, α1, α2 and l such that

for any g ∈ C2l+2
P and n = 0, 1, . . . , N ,

∣

∣

∣
E

[

g
(

X0,X0

tn

)

− g
(

XX0

n

)

]∣

∣

∣
≤ Cg(∆t)

l,
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∣

∣

∣

∣

E
Xn

tn

[

g
(

Xtn,X
X0
n

tn+1

)

− g
(

XX0

n+1

)

]
∣

∣

∣

∣

≤ Cg

(

1 + E

[

|Xx0

n |2r1
]

+
∣

∣XX0

n

∣

∣

2r1
)

(∆t)l+1,

∣

∣

∣

∣

E
Xn

tn

[(

g
(

Xtn,X
X0
n

tn+1

)

− g
(

XX0

n+1

)

)

∆W̃n

]∣

∣

∣

∣

≤ Cg

(

1 + E

[

|Xx0

n |2r2
]

+
∣

∣XX0

n

∣

∣

2r2
)

(∆t)α1+1,

∣

∣

∣

∣

E
Xn

tn

[(

g
(

Xtn,X
X0
n

tn+1

)

− g
(

XX0

n+1

)

)

∆µ̃∗n

]
∣

∣

∣

∣

≤ Cg

(

1 + E

[

|Xx0

n |2r3
]

+
∣

∣XX0

n

∣

∣

2r3
)

(∆t)α2+1,

where Cg is a positive constant independent of ∆t and l is called the global weak conver-

gence order of the Itô-Taylor scheme in (3.2).

Remark 3.2. In Proposition 3.1, it holds that [21]:

1. α1 = α2 = l = 1 for the Euler scheme (3.4) and the Milstein scheme (3.5).

2. α1 = α2 = l = 2 for the weak order 2.0 Itô-Taylor scheme (3.6).

3.2. The explicit second order scheme for MFBSDEJs

Based on the nonlinear Feynman-Kac formula (2.1), we first discretize the MBSDEJ

in (1.1) in time. Then by solving the MSDEJ in (1.1) using the Itô-Taylor scheme,

we propose an explicit second order semi-discrete numerical scheme for solving the

decoupled MFBSDEJs (1.1).

To derive the reference equations for constructing the numerical scheme, we define

the following two stochastic processes ∆W̃tn,s and ∆µ̃∗tn,s by

∆W̃tn,s =

∫ s

tn

p(r)dWr, ∆µ̃∗tn,s =

∫ s

tn

∫

E

p(r)η (e) µ̃ (de, dr)

for tn ≤ s ≤ T , where p(r) = 2− (3(r − tn))/∆tn. It is obvious that
∫ T

tn
p2(r)dr < +∞,

and thus the Itô integral ∆W̃tn,s is a martingale satisfying

E
x
tn

[

(

∆W̃tn,s

)2
]

= E
x
tn

[

(
∫ s

tn

p(r)dWr

)2
]

= E
x
tn

[
∫ s

tn

p2(r)dr

]

=

∫ s

tn

(

2− 3(r − tn)

∆tn

)2

dr

= (s− tn)

(

1 +
3

∆t2n
(s− tn+1)

2

)

.

Let ∆W̃n = ∆W̃tn,tn+1
and ∆µ̃∗n = ∆µ̃∗tn,tn+1

. Then by taking s = tn+1, we obtain

E
x
tn

[

∆W̃n

]

= 0, E
x
tn

[

(

∆W̃n

)2
]

= ∆tn.

Since supe∈E |η(e)| < +∞, it holds that

∫ T

tn

∫

E

p2(r)η2(e)µ(de, dr) < +∞.
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Thus ∆µ̃∗tn,s is a martingale satisfying

E
x
tn

[

∆µ̃∗n
]

= 0, E
x
tn

[

∣

∣∆µ̃∗n
∣

∣

2
]

= ∆tn

∫

E

η2(e)λ(de).

Let Θt,x
s = (Xt,x

s , Y t,x
s , Zt,x

s ,Γt,x
s ) denote the unique solution of the MFBSDEJs (1.1)

with the forward MSDEJ starting from the time-space point (t, x). Then for n = N − 1,
. . . , 1, 0, we have

Y tn,x
tn

= Y tn,x
tn+1

+

∫ tn+1

tn

E
[

f
(

s,Θ0,x0

s , θ
)] ∣

∣

θ=Θtn,x
s

ds

−
∫ tn+1

tn

Ztn,x
s dWs −

∫ tn+1

tn

∫

E

U tn,x
s (e)µ̃(de, ds). (3.7)

In the following, we first solve the unknowns Ztn,x
tn

and Γtn,x
tn

based on (3.7). Using the

obtained values of Ztn,x
tn

and Γtn,x
tn

, we solve Y tn,x
tn

in an explicit way.

To solve Ztn,x
tn

, we multiply (3.7) with ∆W̃n and take the conditional expectation

E
x
tn
[·] := E

[

· |Ftn ,X
0,X0

tn
= x

]

on both sides of the derived equation to deduce

0 = E
x
tn

[

Y tn,x
tn+1

∆W̃n

]

+

∫ tn+1

tn

E
x
tn

[

E
[

f
(

s,Θ0,x0

s , θ
)]
∣

∣

θ=Θtn,x
s

∆W̃n

]

ds

− E
x
tn

[
∫ tn+1

tn

Ztn,x
s dWs ·∆W̃n

]

.

From the above equation, we get the reference equation for solving Ztn,x
tn

1

2
∆tnZ

tn,x
tn

= E
x
tn

[

Y tn,x
tn+1

∆W̃n

]

+∆tnE
x
tn

[

E

[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)

] ∣

∣

∣

θ=Θtn,x
tn+1

∆W̃n

]

+Rn,X0

z , (3.8)

where Rn,X0
z = Rn,X0

z1 +Rn,X0
z2 with

Rn,X0

z1
=

∫ tn+1

tn

E
x
tn

[

E
[

f
(

s,Θ0,x0

s , θ
)] ∣

∣

θ=Θtn,x
s

∆W̃n

]

ds

−∆tnE
x
tn

[

E

[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)

]
∣

∣

∣

θ=Θtn,x
tn+1

∆W̃n

]

,

Rn,X0

z2
=

1

2
∆tnZ

tn,x
tn

− E
x
tn

[
∫ tn+1

tn

Ztn,x
s dWs ·∆W̃n

]

.
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To solve Γtn,x
tn

, we multiply (3.7) by ∆µ̃∗n and take E
x
tn
[·] on both sides of the derived

equation to obtain

0 = E
x
tn

[

Y tn,x
tn+1

∆µ̃∗n

]

+

∫ tn+1

tn

E
x
tn

[

E
[

f
(

s,Θ0,x0

s , θ
)]
∣

∣

θ=Θtn,x
s

∆µ̃∗n

]

ds

− E
x
tn

[
∫ tn+1

tn

∫

E

U tn,x
s (e)µ̃(de, ds) ·∆µ̃∗n

]

,

from which, we get the reference equation for solving Γtn,x
tn

1

2
∆tnΓ

tn,x
tn

= E
x
tn

[

Y tn,x
tn+1

∆µ̃∗n

]

+∆tnE
x
tn

[

E

[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)

]
∣

∣

∣

θ=Θtn,x
tn+1

∆µ̃∗n

]

+Rn,X0

γ , (3.9)

where Rn,X0
γ = Rn,X0

γ1 +Rn,X0
γ2 with

Rn,X0

γ1
=

∫ tn+1

tn

E
x
tn

[

E
[

f
(

s,Θ0,x0

s , θ
)] ∣

∣

θ=Θtn,x
s

∆µ̃∗n

]

ds

−∆tnE
x
tn

[

E

[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)

]
∣

∣

∣

θ=Θtn,x
tn+1

∆µ̃∗n

]

,

Rn,X0

γ2
=

1

2
∆tnΓ

tn,x
tn

− E
x
tn

[
∫ tn+1

tn

∫

E

U tn,x
s µ̃(de, ds) ·∆µ̃∗n

]

.

Now we consider the reference equation for solving Y tn,x
tn

. Using the fact that the

stochastic integrals {
∫ t

tn
Ztn,x
s dWs}tn≤t≤T and {

∫ t

tn

∫

E
U tn,x
s (e)µ̃(de, ds)}tn≤t≤T are both

martingales, we take E
x
tn
[·] on both sides of (3.7) to get

Y tn,x
tn

= E
x
tn

[

Y tn,x
tn+1

]

+

∫ tn+1

tn

E
x
tn

[

E
[

f
(

s,Θ0,x0

s , θ
)]
∣

∣

θ=Θtn,x
s

]

ds

= E
x
tn

[

Y tn,x
tn+1

]

+
1

2
∆tnE

[

f
(

tn,Θ
0,x0

tn
, θ
)

]
∣

∣

∣

θ=Θtn,x
tn

+
1

2
∆tnE

x
tn

[

E

[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)

]
∣

∣

∣

θ=Θtn,x
tn+1

]

+Rn,X0

y1
, (3.10)

where

Rn,X0

y1
=

∫ tn+1

tn

E
x
tn

[

E
[

f
(

s,Θ0,x0

s , θ
)]
∣

∣

θ=Θtn,x
s

]

ds

− 1

2
∆tnE

[

f
(

tn,Θ
0,x0

tn
, θ
)

]
∣

∣

∣

θ=Θtn,x
tn

− 1

2
∆tnE

x
tn

[

E

[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)

]
∣

∣

∣

θ=Θtn,x
tn+1

]

.
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The expectations in (3.10) make it inefficient to solve Y tn,x
tn

implicitly. To overcome this

difficulty, in this paper, we will propose an explicit scheme for solving Y tn,x
tn

. To this

end, we first present Y tn,x
tn

in the form

Y tn,x
tn

= E
x
tn

[

Y tn,x
tn+1

]

+∆tnE
x
tn

[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)

]
∣

∣

∣

θ=Θtn,x
tn+1

+Rn,X0

yr ,

where

Rn,X0

yr =

∫ tn+1

tn

E
x
tn

[

E
[

f
(

s,Θ0,x0

s , θ
)]
∣

∣

θ=Θtn,x
s

]

ds

−∆tnE
x
tn

[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)

]
∣

∣

∣

θ=Θtn,x
tn+1

.

Define the prediction value Ȳ tn,x
tn

of Y tn,x
tn

by

Ȳ tn,x
tn

= E
x
tn

[

Y tn,x
tn+1

]

+∆tnE
x
tn

[

E

[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)

]
∣

∣

∣

θ=Θtn,x
tn+1

]

, (3.11)

and let

Θ̄tn,x
tn

=
(

Xtn,x
tn

, Ȳ tn,x
tn

, Ztn,x
tn

,Γtn,x
tn

)

,

Θ̄0,x0

tn
=
(

X0,x0

tn
, Ȳ 0,x0

tn
, Z0,x0

tn
,Γ0,x0

tn

)

.

We then get the following reference equation for solving Y tn,x
tn

:

Y tn,x
tn

= E
x
tn

[

Y tn,x
tn+1

]

+
1

2
∆tnE

[

f
(

tn, Θ̄
0,x0

tn
, θ
)

] ∣

∣

∣

θ=Θ̄tn,x
tn

+
1

2
∆tnE

x
tn

[

E

[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)

]
∣

∣

∣

θ=Θtn,x
tn+1

]

+Rn,X0

y , (3.12)

where Rn,X0
y = Rn,X0

y1 +Rn,X0
y2 with Rn,X0

y2 defined as

Rn,X0

y2
= ∆tn

(

E

[

f
(

tn,Θ
0,x0

tn
, θ
)

] ∣

∣

∣

θ=Θtn,x
tn

− E

[

f
(

tn, Θ̄
0,x0

tn
, θ
)

] ∣

∣

∣

θ=Θ̄tn,x
tn

)

.

Note that by the Feynman-Kac formula (2.1), the prediction values Ȳ tn,x
tn

and Ȳ 0,x0

tn
are

functions of (tn, x) and (tn,X
0,x0

tn
), respectively, which can be interpreted as

Ȳ tn,x
tn

= Ȳtn(x), Ȳ 0,x0

tn
= Ȳtn

(

X0,x0

tn

)

.

Using the reference equations (3.8), (3.9), (3.11) and (3.12), we are ready to con-

struct our explicit second order semi-discrete numerical scheme for solving the MFBS-

DEJs (1.1).
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Let

ΘX0

n =
(

XX0

n , Y X0

n , ZX0

n ,ΓX0

n

)

denote the numerical approximations of the solution (X0,X0

t , Y 0,X0

t , Z0,X0

t ,Γ0,X0

t ) of

(1.1) at time t = tn and define

fx0,X0

n = E
[

f (tn,Θ
x0

n , θ)
]
∣

∣

θ=Θ
X0
n
, n = 0, 1, . . . , N.

Then by letting x = XX0
n and removing the truncation error terms Rn,X0

z , Rn,X0
γ , Rn,X0

yr

and Rn,X0
y in (3.8), (3.9), (3.11) and (3.12), we propose the following explicit second

order scheme for solving (1.1).

Scheme 3.1. Step 1. Given initial value x0, solveXx0
n for n = 1, . . . , N by the Itô-Taylor

scheme (3.2).

Step 2. Given initial value X0, and terminal conditions Y X0

N , ZX0

N and Γ0,X0

N , for

n = N − 1, . . . , 0, we solve Y X0
n = Yn(X

X0
n ), ZX0

n = Zn(X
X0
n ) and ΓX0

n = Γn(X
X0
n ) by

1

2
∆tnZ

X0

n = E
X

X0
n

tn

[

Y X0

n+1∆W̃n

]

+∆tnE
X

X0
n

tn

[

fx0,X0

n+1 ∆W̃n

]

, (3.13)

1

2
∆tnΓ

X0

n = E
X

X0
n

tn

[

Y X0

n+1∆µ̃
∗
n

]

+∆tnE
X

X0
n

tn

[

fx0,X0

n+1 ∆µ̃∗n

]

, (3.14)

Ȳ X0

n = E
X

X0
n

tn

[

Y X0

n+1

]

+∆tnE
X

X0
n

tn

[

fx0,X0

n+1

]

, (3.15)

Y X0

n = E
X

X0
n

tn

[

Y X0

n+1

]

+
1

2
∆tnf̄

x0,X0

n +
1

2
∆tnE

X
X0
n

tn

[

fx0,X0

n+1

]

, (3.16)

where XX0

n+1 is solved by the Itô-Taylor scheme (3.2), and

f̄x0,X0

n = E
[

f
(

tn, Θ̄
x0

n , θ
)]
∣

∣

θ=Θ̄
X0
n

with Θ̄x
n = (Xx

n , Ȳ
x
n , Z

x
n ,Γ

x
n) for x = x0 and X0.

We remark that the terminal conditions used in Scheme 3.1 are given by

Y 0,X0

T = E
[

Φ
(

X0,x0

T , x
)]
∣

∣

x=X
0,X0
T

,

Z0,X0

T = ∇xE
[

Φ
(

X0,x0

T , x
)]∣

∣

x=X
0,X0
T

E
[

σ
(

T,X0,x0

T , x
)]∣

∣

x=X
0,X0
T

,

Γ0,X0

T =

∫

E

(

E

[

Φ
(

X0,x0

T , x+ E
[

c
(

T−,X0,x0

T− , x, e
)]

)]
∣

∣

∣

x=X
0,X0
T−

− E
[

Φ
(

X0,x0

T− , x
)]
∣

∣

x=X
0,X0
T−

)

η(e)λ(de).

Remark 3.3. It is clear that Scheme 3.1 is explicit for solving Y x
n , Z

x
n and Γx

n, calculating

from the time level tn+1 to tn. And the approximations of the conditional expectations

in the scheme are presented in detail in Section 5.2.

We also remark that Scheme 3.1 can not be applied to solve general mean-field

FBSDEJs whose coefficients depend on the probability distribution P
X

0,x0
s

of X0,x0
s in

a nonlinear way as shown in [9,23].
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4. Stability analysis and error estimates

In this section, we first study the stability of Scheme 3.1, and then give its error

estimates using the derived stability results. For simplicity, we only perform the analysis

in the one-dimensional setting. But all the conclusions hereafter can be extended to

multidimensional cases.

4.1. Stability analysis

To analyze the stability of Scheme 3.1, we define

Y X0

N,ε = Y X0

N + εN,X0

y ,

ZX0

N,ε = ZX0

N + εN,X0

z ,

ΓX0

N,ε = ΓX0

N + εN,X0

γ ,

fε = f + εf ,

where εf and (εN,X0
y , εN,X0

z , εN,X0
γ ) denote the random perturbations on the generator

f and the terminal condition (Y X0

N , ZX0

N ,ΓX0

N ), respectively. Here we assume that

εf = εf
(

t, x′, y′, z′, γ′, x, y, z, γ
)

is a Ft-adapted stochastic process for any given (t, x′, y′, z′, γ′, x, y, z, γ) ∈ [0, T ] × R
8.

For notational simplicity, we let

fx0,X0

n,ε = E
[

f
(

tn,Θ
x0

n,ε, θ
)] ∣

∣

θ=Θ
X0
n,ε
,

f̄x0,X0

n,ε = E
[

f
(

tn, Θ̄
x0

n,ε, θ
)] ∣

∣

θ=Θ̄
X0
n,ε
,

εx0,X0

f,n = E
[

εf
(

tn,Θ
x0

n,ε, θ
)]
∣

∣

θ=Θ
X0
n,ε
,

ε̄x0,X0

f,n = E
[

εf
(

tn, Θ̄
x0

n,ε, θ
)] ∣

∣

θ=Θ̄
X0
n,ε
,

where

Θx
n,ε =

(

Xx
n , Y

x
n,ε, Z

x
n,ε,Γ

x
n,ε

)

,

Θ̄x
n,ε = (Xx

n , Ȳ
x
n,ε, Z

x
n,ε,Γ

x
n,ε)

for x = x0 and X0 with Ȳ X0
n,ε , Y X0

n,ε , ZX0
n,ε and ΓX0

n,ε being the solutions of Scheme 3.1 with

perturbations on f and (Y X0

N , ZX0

N ,ΓX0

N ), which satisfy

1

2
∆tnZ

X0

n,ε = E
X

X0
n

tn

[

Y X0

n+1,ε∆W̃n

]

+∆tnE
X

X0
n

tn

[(

fx0,X0

n+1,ε + εx0,X0

f,n+1

)

∆W̃n

]

,

1

2
∆tnΓ

X0

n,ε = E
X

X0
n

tn

[

Y X0

n+1,ε∆µ̃
∗
n

]

+∆tnE
X

X0
n

tn

[(

fx0,X0

n+1,ε + εx0,X0

f,n+1

)

∆µ̃∗n

]

,

Ȳ X0

n,ε = E
X

X0
n

tn

[

Y X0

n+1,ε

]

+∆tnE
X

X0
n

tn

[

fx0,X0

n+1,ε + εx0,X0

f,n+1

]

,
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Y X0

n,ε = E
X

X0
n

tn

[

Y X0

n+1,ε

]

+
1

2
∆tn

(

f̄x0,X0

n,ε + ε̄x0,X0

f,n

)

+
1

2
∆tnE

X
X0
n

tn

[

fx0,X0

n+1,ε + εx0,X0

f,n+1

]

,

or equivalently

1

2
∆tnZ

X0

n,ε = E
X

X0
n

tn

[

Y X0

n+1,ε∆W̃n

]

+∆tnE
X

X0
n

tn

[

fx0,X0

n+1,ε∆W̃n

]

+Rn,X0

εz , (4.1)

1

2
∆tnΓ

X0

n,ε = E
X

X0
n

tn

[

Y X0

n+1,ε∆µ̃
∗
n

]

+∆tnE
X

X0
n

tn

[

fx0,X0

n+1,ε∆µ̃
∗
n

]

+Rn,X0

εz , (4.2)

Ȳ X0

n,ε = E
X

X0
n

tn

[

Y X0

n+1,ε

]

+∆tnE
X

X0
n

tn

[

fx0,X0

n+1,ε

]

+ R̄n,X0

εy , (4.3)

Y X0

n,ε = E
X

X0
n

tn

[

Y X0

n+1,ε

]

+
1

2
∆tnf̄

x0,X0

n,ε +
1

2
∆tnE

X
X0
n

tn

[

fx0,X0

n+1,ε

]

+Rn,X0

εy , (4.4)

where R̄n,X0
εy , Rn,X0

εy , Rn,X0
εz and Rn,X0

εγ are the perturbation terms

Rn,X0

εz = ∆tnE
X

X0
n

tn

[

εx0,X0

f,n+1∆W̃n

]

,

Rn,X0

εγ = ∆tnE
X

X0
n

tn

[

εx0,X0

f,n+1∆µ̃
∗
n

]

,

R̄n,X0

εy = ∆tnE
X

X0
n

tn

[

εx0,X0

f,n+1

]

,

Rn,X0

εy =
1

2
∆tnε̄

x0,X0

f,n +
1

2
∆tnE

X
X0
n

tn

[

εx0,X0

f,n+1

]

.

(4.5)

Define the perturbation errors of Scheme 3.1 as

εn,X0

y = Y X0

n,ε − Y X0

n , εn,X0

ȳ = Ȳ X0

n,ε − Ȳ X0

n ,

εn,X0

z = ZX0

n,ε − ZX0

n , εn,X0

γ = ΓX0

n,ε − ΓX0

n ,

then by subtracting (3.13) and (3.16) from (4.1) and (4.4), respectively, we get the

perturbation error equations

1

2
∆tnε

n,X0

z = E
X

X0
n

tn

[

εn+1,X0

y ∆W̃n

]

+∆tnE
X

X0
n

tn

[

(

fx0,X0

n+1,ε − fx0,X0

n+1

)

∆W̃n

]

+Rn,X0

εz , (4.6)

1

2
∆tnε

n,X0

γ = E
X

X0
n

tn

[

εn+1,X0

y ∆µ̃∗n
]

+∆tnE
X

X0
n

tn

[

(

fx0,X0

n+1,ε − fx0,X0

n+1

)

∆µ̃∗n

]

+Rn,X0

εγ , (4.7)

εn,X0

ȳ = E
X

X0
n

tn

[

εn+1,X0

y

]

+∆tnE
X

X0
n

tn

[

fx0,X0

n+1,ε − fx0,X0

n+1

]

+ R̄n,X0

εy , (4.8)

εn,X0

y = E
X

X0
n

tn

[

εn+1,X0

y

]

+
1

2
∆tn

(

f̄x0,X0

n,ε − f̄x0,X0

n

)

+
1

2
∆tnE

X
X0
n

tn

[

fx0,X0

n+1,ε − fx0,X0

n+1

]

+Rn,X0

εy . (4.9)

Based on the above perturbation error equations, we first consider the stability of

Scheme 3.1 for X0 = x0 in Theorem 4.1.
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Theorem 4.1. Suppose that f is uniformly Lipschitz continuous with a Lipschitz constant

L†, and Assumption 2.1 holds. Then for sufficiently small time step ∆t, we have (for

n = 0, 1, . . . , N − 1)

E

[

∣

∣εn,x0

y

∣

∣

2
]

+∆t

N−1
∑

i=n

E

[

∣

∣εi,x0

z

∣

∣

2
+
∣

∣εi,x0

γ

∣

∣

2
]

≤ C
(

E

[

∣

∣εN,x0

y

∣

∣

2
]

+∆tE
[

∣

∣εN,x0

z

∣

∣

2
+
∣

∣εN,x0

z

∣

∣

2
])

+
C

∆t

N−1
∑

i=n

E

[

(∆t)2
∣

∣R̄i,x0

εy

∣

∣

2
+
∣

∣Ri,x0

εy

∣

∣

2
+
∣

∣Ri,x0

εz

∣

∣

2
+
∣

∣Ri,x0

εγ

∣

∣

2
]

, (4.10)

where ∆t = max0≤n≤N−1∆tn, and C is a positive constant depending on c0 in (3.1), η,

L and T .

Proof. For simplicity of notation, we let Xx0
n = Xn when X0 = x0 and denote

(

εnȳ , ε
n
y , ε

n
z , ε

n
γ

)

=
(

εn,x0

ȳ , εn,x0

y , εn,x0

z , εn,x0

γ

)

,
(

R̄n
εy, R

n
εy, R

n
εz, R

n
εγ

)

=
(

R̄n,x0

εy , Rn,x0

εy , Rn,x0

εz , Rn,x0

εγ

)

,
(

fn, f̄n
)

=
(

fx0,x0

n , f̄x0,x0

n

)

,
(

fn,ε, f̄n,ε
)

=
(

fx0,x0

n,ε , f̄x0,x0

n,ε

)

.

By the uniform Lipschitz continuity condition, we have

|fn,ε − fn| ≤ L
(

E
[
∣

∣εny
∣

∣+ |εnz |+
∣

∣εnγ
∣

∣

]

+
∣

∣εny
∣

∣+ |εnz |+
∣

∣εnγ
∣

∣

)

, (4.11)
∣

∣f̄n,ε − f̄n
∣

∣ ≤ L
(

E
[∣

∣εnȳ
∣

∣+ |εnz |+
∣

∣εnγ
∣

∣

]

+
∣

∣εnȳ
∣

∣+ |εnz |+
∣

∣εnγ
∣

∣

)

. (4.12)

Then substituting (4.11) and (4.12) into (4.9), we deduce

∣

∣εny
∣

∣ ≤
∣

∣

∣
E
Xn
tn

[

εn+1
y

]

∣

∣

∣

+
1

2
∆tnL

(

E
[
∣

∣εnȳ
∣

∣

]

+
∣

∣εnȳ
∣

∣+ E
[

|εnz |+
∣

∣εnγ
∣

∣

]

+ |εnz |+
∣

∣εnγ
∣

∣

)

+
1

2
∆tnL

(

E
[
∣

∣εn+1
y

∣

∣+
∣

∣εn+1
z

∣

∣+
∣

∣εn+1
γ

∣

∣

]

+ E
Xn

tn

[
∣

∣εn+1
y

∣

∣+
∣

∣εn+1
z

∣

∣+
∣

∣εn+1
γ

∣

∣

]

)

+
∣

∣Rn
εy

∣

∣ . (4.13)

Similarly, by (4.8) and (4.11), we get
∣

∣εnȳ
∣

∣ ≤ E
Xn

tn

[
∣

∣εn+1
y

∣

∣

]

+∆tnL
(

E
[∣

∣εn+1
y

∣

∣+
∣

∣εn+1
z

∣

∣+
∣

∣εn+1
γ

∣

∣

]

+ E
Xn

tn

[
∣

∣εn+1
y

∣

∣+
∣

∣εn+1
z

∣

∣+
∣

∣εn+1
γ

∣

∣

]

)

+
∣

∣R̄n
εy

∣

∣ .

†The function f is uniformly Lipschitz continuous with the Lipschitz constant L, i.e.,

|f(t, x′
1, y

′
1, z

′
1, γ

′
1, x1, y1, z1, γ1) − f(t, x′

2, y
′
2, z

′
2, γ

′
2, x2, y2, z2, γ2)| ≤ L(|x′

1 − x′
2| + |y′

1 − y′
2| + |z′1 −

z′2| + |γ′
1 − γ′

2| + |x1 − x2| + |y1 − y2| + |z1 − z2| + |γ1 − γ2|) for any x′
i, y

′
i, z

′
i, γ

′
i, xi, yi, zi, γi ∈ R with

i = 1, 2.
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Assume that ∆tL < 1, then it is easy to obtain

E
[
∣

∣εnȳ
∣

∣

]

+
∣

∣εnȳ
∣

∣ ≤ 4E
[
∣

∣εn+1
y

∣

∣+
∣

∣εn+1
z

∣

∣+
∣

∣εn+1
γ

∣

∣

]

+ E
[
∣

∣R̄n
εy

∣

∣

]

+
∣

∣R̄n
εy

∣

∣

+ 2EXn
tn

[
∣

∣εn+1
y

∣

∣+
∣

∣εn+1
z

∣

∣+
∣

∣εn+1
γ

∣

∣

]

. (4.14)

By inserting (4.14) into (4.13), we have
∣

∣εny
∣

∣ ≤
∣

∣

∣
E
Xn

tn

[

εn+1
y

]

∣

∣

∣

+ 3∆tnL
(

E
[∣

∣εn+1
y

∣

∣+
∣

∣εn+1
z

∣

∣+
∣

∣εn+1
γ

∣

∣

]

+ E
Xn

tn

[ ∣

∣εn+1
y

∣

∣+
∣

∣εn+1
z

∣

∣+
∣

∣εn+1
γ

∣

∣

]

+ E
[

|εnz |+
∣

∣εnγ
∣

∣

]

+ |εnz |+
∣

∣εnγ
∣

∣+ E
[
∣

∣R̄n
εy

∣

∣

]

+
∣

∣R̄n
εy

∣

∣

)

+
∣

∣Rn
εy

∣

∣ .

Apply the inequalities

(a+ b)2 ≤ (1 + γ∆t)a2 +

(

1 +
1

γ∆t

)

b2

for some γ > 0 and (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i with n = 13 to the above equation, and we

get

∣

∣εny
∣

∣

2 ≤ (1 + γ∆t)
∣

∣

∣
E
Xn
tn

[

εn+1
y

]

∣

∣

∣

2
+ 117

(

1 +
1

γ∆t

)

×
(

(∆tnL)
2
(

E

[

∣

∣εn+1
y

∣

∣

2
+
∣

∣εn+1
z

∣

∣

2
+
∣

∣εn+1
γ

∣

∣

2
]

+ E
Xn

tn

[

∣

∣εn+1
y

∣

∣

2
+
∣

∣εn+1
z

∣

∣

2
+
∣

∣εn+1
γ

∣

∣

2
]

+ E

[

|εnz |2 +
∣

∣εnγ
∣

∣

2
]

+ |εnz |2 +
∣

∣εnγ
∣

∣

2
+ E

[

∣

∣R̄n
εy

∣

∣

2
]

+
∣

∣R̄n
εy

∣

∣

2
)

+
∣

∣Rn
εy

∣

∣

2
)

. (4.15)

By using

(a+ b)2 ≤ (1 + δ)a2 +

(

1 +
1

δ

)

b2

for some δ > 0 and Hölder’s inequality to (4.6), we deduce

1

4
(∆tn)

2 |εnz |2 ≤ (1 + δ)
∣

∣

∣
E
Xn

tn

[

εn+1
y ∆W̃n

]

∣

∣

∣

2
(4.16)

+ 2

(

1 +
1

δ

)

(

(∆tn)
2
E
Xn
tn

[

|fn+1,ε − fn+1|2
]

E
Xn
tn

[

∣

∣W̃n

∣

∣

2
]

+ |Rn
εz|2
)

.

From (4.16) and the following inequalities:

E
Xn

tn

[

|fn+1,ε − fn+1|2
]

≤ 6L2
(

E

[

∣

∣εn+1
y

∣

∣

2
+
∣

∣εn+1
z

∣

∣

2
+
∣

∣εn+1
γ

∣

∣

2
]

+ E
Xn

tn

[

∣

∣εn+1
y

∣

∣

2
+
∣

∣εn+1
z

∣

∣

2
+
∣

∣εn+1
γ

∣

∣

2
] )

,
∣

∣

∣
E
Xn
tn

[

εn+1
y ∆W̃n

]

∣

∣

∣

2
=
∣

∣

∣
E
Xn
tn

[

(

εn+1
y − E

Xn
tn

[

εn+1
y

] )

∆W̃n

]∣

∣

∣

2

≤ ∆tn

(

E
Xn

tn

[

∣

∣εn+1
y

∣

∣

2
]

−
∣

∣

∣
E
Xn

tn

[

εn+1
y

]

∣

∣

∣

2 )

,
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we derive

1

4
(∆tn)

2 |εnz |2 ≤ (1 + δ)∆tn

(

E
Xn

tn

[

∣

∣εn+1
y

∣

∣

2
]

−
∣

∣

∣
E
Xn

tn

[

εn+1
y

]

∣

∣

∣

2 )

+ 12

(

1 +
1

δ

)

(

L2(∆tn)
3
(

E

[

∣

∣εn+1
y

∣

∣

2
+
∣

∣εn+1
z

∣

∣

2
+
∣

∣εn+1
γ

∣

∣

2
]

+ E
Xn
tn

[

∣

∣εn+1
y

∣

∣

2
+
∣

∣εn+1
z

∣

∣

2
+
∣

∣εn+1
γ

∣

∣

2
] )

+ |Rn
εz|2

)

. (4.17)

Now we divide (4.17) by 2(1 + δ)(∆tn)
2/∆t and take E[·] on the derived equation to

get

∆t

8(1 + δ)
E

[

|εnz |2
]

≤ c0
2

(

E

[

∣

∣εn+1
y

∣

∣

2
]

− E

[

∣

∣E
Xn
tn

[

εn+1
y

]
∣

∣

2
])

+
6c20
δ∆t

E

[

|Rn
εz|2
]

+
12L2(∆t)2

δ

(

E

[

∣

∣εn+1
y

∣

∣

2
+
∣

∣εn+1
z

∣

∣

2
+
∣

∣εn+1
γ

∣

∣

2
])

. (4.18)

Similarly, we can deduce

∆t

8η0(1 + δ)
E

[

∣

∣εnγ
∣

∣

2
]

≤ c0
2

(

E

[

∣

∣εn+1
y

∣

∣

2
]

− E

[

∣

∣E
Xn

tn

[

εn+1
y

]
∣

∣

2
])

+
6c20
δη0∆t

E

[

∣

∣Rn
εγ

∣

∣

2
]

+
12L2(∆t)2

δ

(

E

[

∣

∣εn+1
y

∣

∣

2
+
∣

∣εn+1
z

∣

∣

2
+
∣

∣εn+1
γ

∣

∣

2
])

, (4.19)

where η0 =
∫

E
η2(e)λ(de). Now by (4.15), (4.18) and (4.19), we deduce

c0E
[

∣

∣εny
∣

∣

2
]

+
∆t

8(1 + δ)
E

[

|εnz |2
]

+
∆t

8η0(1 + δ)
E

[

∣

∣εnγ
∣

∣

2
]

≤ c0

(

1 +

(

γ + 234L2∆t+
234L2

γ
+

24L2∆t

δc0

)

∆t

)

E

[

∣

∣εn+1
y

∣

∣

2
]

+

(

234c0L
2∆t+

234c0L
2

γ
+

24L2∆t

δ

)

∆tE
[

∣

∣εn+1
z

∣

∣

2
+
∣

∣εn+1
γ

∣

∣

2
]

+ 234c0L
2

(

∆t+
1

γ

)

∆tE
[

|εnz |2 +
∣

∣εnγ
∣

∣

2
]

+ 234c0L
2

(

∆t+
1

γ

)

1

∆t
E

[

(∆t)2
∣

∣R̄n
εy

∣

∣

2
+
∣

∣Rn
εy

∣

∣

2
]

+
6c20
η0δ∆t

E

[

η0 |Rn
εz|2 +

∣

∣Rn
εγ

∣

∣

2
]

,

which can be written as

c0E
[

∣

∣εny
∣

∣

2
]

+ C1∆tE
[

|εnz |2 +
∣

∣εnγ
∣

∣

2
]

≤ c0 (1 + C2∆t)E
[

∣

∣εn+1
y

∣

∣

2
]

+ C3∆tE
[

∣

∣εn+1
z

∣

∣

2
+
∣

∣εn+1
γ

∣

∣

2
]

+
C4

∆t
E

[

(∆t)2
∣

∣R̄n
εy

∣

∣

2
+
∣

∣Rn
εy

∣

∣

2
]

+
C5

∆t
E

[

|Rn
εz|2 +

∣

∣Rn
εγ

∣

∣

2
]

, (4.20)
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where

C1 =
1 + η0

8(1 + δ)η0
− 234c0L

2

(

∆t+
1

γ

)

,

C2 = γ + 234L2∆t+
234L2

γ
+

24L2∆t

δc0
,

C3 = 234c0L
2∆t+

234c0L
2

γ
+

24L2∆t

δ
,

C4 = 234c0L
2

(

∆t+
1

γ

)

, C5 =
6c20(1 + η0)

δη0
.

Taking δ = 1 and choosing γ0 to be large enough and ∆t0 small enough in (4.20), and

letting γ0 ≤ γ ≤ 2γ0 and 0 < ∆t ≤ ∆t0, we get

C1 ≤ C, C2 ≤ C, C4 ≤ C, C5 ≤ C, C1 − C3 > C∗ > 0,

where C and C∗ are constants depending on c0, η0 and L. Then by (4.20), we obtain

c0E
[

∣

∣εny
∣

∣

2
]

+ C1∆tE
[

|εnz |2 +
∣

∣εnγ
∣

∣

2
]

≤ (1 + C∆t)
(

c0E
[

∣

∣εn+1
y

∣

∣

2
]

+ C3∆tE
[

∣

∣εn+1
z

∣

∣

2
+
∣

∣εn+1
γ

∣

∣

2
])

+
C

∆t
E

[

(∆t)2
∣

∣R̄n
εy

∣

∣

2
+
∣

∣Rn
εy

∣

∣

2
+ |Rn

εz|2 +
∣

∣Rn
εγ

∣

∣

2
]

,

which leads to

c0E
[

∣

∣εny
∣

∣

2
]

+ C∗∆t
N−1
∑

i=n

(1 + C∆t)i−n
E

[

∣

∣εiz
∣

∣

2
+
∣

∣εiγ
∣

∣

2
]

≤ (1 + C∆t)N−n
(

c0E
[

∣

∣εNy
∣

∣

2
]

+ C3∆tE
[

∣

∣εNz
∣

∣

2
+
∣

∣εNγ
∣

∣

2
])

+

N−1
∑

i=n

(1 + C∆t)i−n C

∆t
E

[

(∆t)2
∣

∣R̄i
εy

∣

∣

2
+
∣

∣Ri
εy

∣

∣

2
+
∣

∣Ri
εz

∣

∣

2
+
∣

∣Ri
εγ

∣

∣

2
]

≤ C
(

E

[

∣

∣εNy
∣

∣

2
]

+∆tE
[

∣

∣εNz
∣

∣

2
+
∣

∣εNγ
∣

∣

2
])

+
C

∆t

N−1
∑

i=n

E

[

(∆t)2
∣

∣R̄i
εy

∣

∣

2
+
∣

∣Ri
εy

∣

∣

2
+
∣

∣Ri
εz

∣

∣

2
+
∣

∣Ri
εγ

∣

∣

2
]

,

where the constant C depends on c0, η, L and T .

We give the stability results of Scheme 3.1 for X0 6= x0 in the following theorem.
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Theorem 4.2. Under the conditions in Theorem 4.1, for sufficiently small time step ∆t
and n = 0, 1, . . . , N − 1, we have

E

[

∣

∣εn,X0

y

∣

∣

2
]

+∆t

N−1
∑

i=n

E

[

∣

∣εi,X0

z

∣

∣

2
+
∣

∣εi,X0

γ

∣

∣

2
]

≤ C
(

E

[

∣

∣εN,x0

y

∣

∣

2
+
∣

∣εN,X0

y

∣

∣

2
]

+∆tE
[

∣

∣εN,x0

z

∣

∣

2
+
∣

∣εN,x0

γ

∣

∣

2
+
∣

∣εN,X0

z

∣

∣

2
+
∣

∣εN,X0

γ

∣

∣

2
])

+
C

∆t

N−1
∑

i=n

E

[

(∆t)2
∣

∣R̄i,x0

εy

∣

∣

2
+
∣

∣Ri,x0

εy

∣

∣

2
+
∣

∣Ri,x0

εz

∣

∣

2
+
∣

∣Ri,x0

εγ

∣

∣

2
]

+
C

∆t

N−1
∑

i=n

E

[

(∆t)2
∣

∣R̄i,X0

εy

∣

∣

2
+
∣

∣Ri,X0

εy

∣

∣

2
+
∣

∣Ri,X0

εz

∣

∣

2
+
∣

∣Ri,X0

εγ

∣

∣

2
]

,

where C is a positive constant depending on c0, η, L and T .

The above theorem follows from Theorem 4.1 by the similar arguments used in the

proof of Theorem 4.1. So we omit it here.

Remark 4.1. From Theorem 4.2, we come to the conclusion that Scheme 3.1 is stable.

4.2. Error estimates

In this subsection, we will give the error estimates of Scheme 3.1 by applying the

stability results in Theorem 4.2.

For notational simplicity, we let

(

Y X0

tn
, Ȳ X0

tn
, ZX0

tn
,ΓX0

tn

)

=
(

Y tn,X
X0
n

tn
, Ȳ tn,X

X0
n

tn
, Ztn,X

X0
n

tn
,Γtn,X

X0
n

tn

)

=
(

Ytn
(

XX0

n

)

, Ȳtn
(

XX0

n

)

, Ztn

(

XX0

n

)

,Γtn

(

XX0

n

)

)

,

and define

f̄x0,X0

tn
= E

[

f
(

tn, Θ̄
tn,X

x0
n

tn
, θ
)

]
∣

∣

∣

θ=Θ̄
tn,X

X0
n

tn

,

fx0,X0

tn
= E

[

f
(

tn,Θ
tn,X

x0
n

tn
, θ
)

]∣

∣

∣

θ=Θ
tn,X

X0
n

tn

.

Then the reference equations (3.8), (3.9), (3.11) and (3.12) can be rewritten as

1

2
∆tnZ

X0

tn
= E

X
X0
n

tn

[

Y X0

tn+1
∆W̃n

]

+∆tnE
X

X0
n

tn

[

fx0,X0

tn+1
∆W̃n

]

+Rn,X0

z + R̃n,X0

z , (4.21a)

1

2
∆tnΓ

X0

tn
= E

X
X0
n

tn

[

Y X0

tn+1
∆µ̃∗n

]

+∆tnE
X

X0
n

tn

[

fx0,X0

tn+1
∆µ̃∗n

]

+Rn,X0

γ + R̃n,X0

γ , (4.21b)
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Ȳ X0

tn
= E

X
X0
n

tn

[

Y X0

tn+1

]

+∆tnE
X

X0
n

tn

[

fx0,X0

tn+1

]

+ R̃n,X0

yr , (4.21c)

Y X0

tn
= E

X
X0
n

tn

[

Y X0

tn+1

]

+
1

2
∆tnf̄

x0,X0

tn
+

1

2
∆tnE

X
X0
n

tn

[

fx0,X0

tn+1

]

+Rn,X0

y + R̃n,X0

y , (4.21d)

where R̃n,X0
yr , R̃n,X0

y , R̃n,X0
z and R̃n,X0

γ are defined as

R̃n,X0

z = E
X

X0
n

tn

[

(

Y tn,X
X0
n

tn+1
− Y X0

tn+1

)

∆W̃n

]

+∆tnE
X

X0
n

tn

[

(

f0,x0,tn,Xn

tn+1
− fx0,X0

tn+1

)

∆W̃n

]

,

R̃n,X0

γ = E
X

X0
n

tn

[

(

Y tn,X
X0
n

tn+1
− Y X0

tn+1

)

∆µ̃∗n

]

+∆tnE
X

X0
n

tn

[

(

f0,x0,tn,Xn

tn+1
− fx0,X0

tn+1

)

∆µ̃∗n

]

,

R̃n,X0

yr = E
X

X0
n

tn

[

Y tn,X
X0
n

tn+1
− Y X0

tn+1

]

+∆tnE
X

X0
n

tn

[

f0,x0,tn,Xn

tn+1
− fx0,X0

tn+1

]

, (4.22)

R̃n,X0

y = E
X

X0
n

tn

[

Y tn,X
X0
n

tn+1
− Y X0

tn+1

]

+
1

2
∆tn

(

f̄0,x0,tn,Xn

tn
− f̄x0,X0

tn

)

+
1

2
∆tnE

X
X0
n

tn

[

f0,x0,tn,Xn

tn+1
− fx0,X0

tn+1

]

with f̄0,x0,tn,Xn

tn
and f0,x0,tn,Xn

tn+1
defined by

f̄0,x0,tn,Xn

tn
= E

[

f
(

tn, Θ̄
0,x0

tn
, θ
)

]
∣

∣

∣

θ=Θ̄
tn,X

X0
n

tn

,

f0,x0,tn,Xn

tn+1
= E

[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)

]∣

∣

∣

θ=Θ
tn,X

X0
n

tn+1

.

Since the equations in (4.21) have the same forms as the equations (4.1)-(4.4), we can

take (Y X0

tn
, ZX0

tn
,ΓX0

tn
) as the solution of Scheme 3.1 with perturbations, i.e.,

(

Y X0

n,ε , Z
X0

n,ε,Γ
X0

n,ε

)

=
(

Y X0

tn
, ZX0

tn
,ΓX0

tn

)

,

then the perturbation errors of Scheme 3.1 become its numerical errors, which are

en,X0

y = Y X0

tn
− Y X0

n , en,X0

z = ZX0

tn
− ZX0

n , en,X0

γ = ΓX0

tn
− ΓX0

n ,

and the perturbation terms become
(

R̃n,X0

yr , Rn,X0

y + R̃n,X0

y , Rn,X0

z + R̃n,X0

z , Rn,X0

γ + R̃n,X0

γ

)

.

Then by directly applying the stability results in Theorem 4.2, we deduce the error

estimates of Scheme 3.1 in the following theorem.

Theorem 4.3. Under the conditions in Theorem 4.1, for sufficiently small time step ∆t
and n = 0, 1, . . . , N − 1, we have

E

[

∣

∣en,X0

y

∣

∣

2
]

+∆t
N−1
∑

i=n

E

[

∣

∣ei,X0

z

∣

∣

2
+
∣

∣ei,X0

γ

∣

∣

2
]
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≤ C
(

E

[

∣

∣eN,x0

y

∣

∣

2
+
∣

∣eN,X0

y

∣

∣

2
]

+∆tE
[

∣

∣eN,x0

z

∣

∣

2
+
∣

∣eN,x0

γ

∣

∣

2
+
∣

∣eN,X0

z

∣

∣

2
+
∣

∣eN,X0

γ

∣

∣

2
])

+
C

∆t

N−1
∑

i=n

E

[

∣

∣Ri,x0

y

∣

∣

2
+
∣

∣Ri,x0

z

∣

∣

2
+
∣

∣Ri,x0

γ

∣

∣

2
+
∣

∣Ri,X0

y

∣

∣

2
+
∣

∣Ri,X0

z

∣

∣

2
+
∣

∣Ri,X0

γ

∣

∣

2
]

+
C

∆t

N−1
∑

i=n

E

[

(∆t)2
∣

∣R̃i,x0

yr

∣

∣

2
+
∣

∣R̃i,x0

y

∣

∣

2
+
∣

∣R̃i,x0

z

∣

∣

2
+
∣

∣R̃i,x0

γ

∣

∣

2
]

+
C

∆t

N−1
∑

i=n

E

[

(∆t)2
∣

∣R̃i,X0

yr

∣

∣

2
+
∣

∣R̃i,X0

y

∣

∣

2
+
∣

∣R̃i,X0

z

∣

∣

2
+
∣

∣R̃i,X0

γ

∣

∣

2
]

,

where C is a positive constant depending on c0, η, L and T .

For the estimates of Rn,X0
y , Rn,X0

z and Rn,X0
γ defined in the reference equations

(3.8), (3.9) and (3.12), we have the following lemma.

Lemma 4.1. Under Assumption 2.1, for n = 0, 1, . . . , N − 1, we have

E

[

∣

∣Rn,X0

y

∣

∣

2
]

≤ C
(

1 + E

[

|x0|8 + |X0|8
])

(∆t)6,

E

[

∣

∣Rn,X0

z

∣

∣

2
]

≤ C
(

1 + E

[

|x0|8 + |X0|8
])

(∆t)6,

E

[

∣

∣Rn,X0

γ

∣

∣

2
]

≤ C
(

1 + E

[

|x0|8 + |X0|8
])

(∆t)6,

where C is a positive constant depending on η, T , and the upper bounds of the derivatives

of the functions b, σ, c, f and Φ.

Proof. Based on the Feynman-Kac formulas in Lemma 2.1, by using Lemma 2.2, the

Itô’s formula (2.6) and the estimates of the solutions of MSDEJs in [10], the proof of

Lemma 4.1 is standard. We omit it here. Interested readers can refer to [20,22].

We also have the following estimates for R̃n,X0
yr , R̃n,X0

y , R̃n,X0
z and R̃n,X0

γ given in

(4.22), which are generated by the Itô-Taylor scheme (3.2) for solving MSDEJs.

Lemma 4.2. Assume that the conditions in Lemma 4.1 hold, then for n = 0, 1, . . . , N − 1,

we have

E

[

∣

∣R̃n,X0

yr

∣

∣

2
]

≤ C
(

1 + E
[

|x0|4r1 + |X0|4r1
]

)

(∆t)2l+2,

E

[

∣

∣R̃n,X0

y

∣

∣

2
]

≤ C
(

1 + E
[

|x0|4r1 + |X0|4r1
]

)

(∆t)2l+2,

E

[

∣

∣R̃n,X0

z

∣

∣

2
]

≤ C
(

1 + E
[

|x0|4r2 + |X0|4r2
]

)

(

(∆t)2l+3 + (∆t)2α1+2
)

,

E

[

∣

∣R̃n,X0

γ

∣

∣

2
]

≤ C
(

1 + E
[

|x0|4r3 + |X0|4r3
]

)

(

(∆t)2l+3 + (∆t)2α2+2
)

,

where C is a positive constant independent of ∆t and the values of α1, α2 and l depend on

the specific Itô-Taylor schemes used to solve the forward MSDEJs.
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Proof. Based on Feynman-Kac formulas in Lemma 2.1 and the estimates of numeri-

cal solutions of Itô-Taylor scheme (3.2) (see [21, Theorem 5.1]), Lemma 4.2 is a direct

application of Proposition 3.1.

Combining Lemmas 4.1-4.2 and Theorem 4.3, we obtain the error estimates of

Scheme 3.1 in the following theorem.

Theorem 4.4. Assume that the conditions in Lemma 4.2 and Theorem 4.3 hold, then for

sufficiently small time step ∆t and n = 0, 1, . . . , N − 1, we have

E

[

∣

∣en,X0

y

∣

∣

2
]

+∆t

N−1
∑

i=n

E

[

∣

∣ei,X0

z

∣

∣

2
+
∣

∣ei,X0

γ

∣

∣

2
]

≤ C
(

(∆t)2α1 + (∆t)2α2 + (∆t)2l + (∆t)4
)

,

where C is a positive constant depending on c0, η, T, L, x0,X0 and the upper bounds of the

derivatives of b, σ, c, f and Φ.

Remark 4.2. From Remark 3.2 and the above theorem, we conclude that under certain

regularity conditions, Scheme 3.1 is convergent with first order when the Euler scheme

or the Milstein scheme are used, and second order when the weak order 2.0 Itô-Taylor

scheme is used to solve MSDEJs.

5. Numerical experiments

To implement Scheme 3.1 into practice, we need to approximate the expectations

E[·] contained in the scheme (3.2) for solving MSDEJs and the conditional expectations

E
x
tn
[·] in Scheme 3.1 for solving MBSDEJs.

• For the approximations of E[·] in the coefficients b, σ, c and f , we choose the

Monte Carlo method.

• For the approximations of Ex
tn [·], we choose the Gaussian quadrature rules.

In this section, we first show how to approximate the expectations in the scheme

(3.2) and the conditional expectations in Scheme 3.1. Then we present some numerical

experiments to verify our theoretical results.

5.1. The approximations of the expectations

To apply Scheme 3.1, we first approximate the expectations contained in the scheme

(3.2) by using the Monte-Carlo method. We shall take the following Euler scheme as

an example to illustrate this procedure:

XX0

n+1 = XX0

n + E
[

b̃
(

tn,X
x0

n , x
)]∣

∣

x=X
X0
n

∆tn

+ E
[

σ
(

tn,X
x0

n , x
)]
∣

∣

x=X
X0
n

∆Wn
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+

∆Nn
∑

i=1

E
[

c
(

tn,X
x0

n , x, ei
)]
∣

∣

x=X
X0
n
.

Now we use the Monte-Carlo method to approximate the expectations in the above

scheme to get

E
[

b̃
(

tn,X
x0

n , x
)]

=
1

M

M
∑

k=1

b̃
(

tn,X
x0,k
n , x

)

+O
(

1√
M

)

,

E
[

σ
(

tn,X
x0

n , x
)]

=
1

M

M
∑

k=1

σ
(

tn,X
x0,k
n , x

)

+O
(

1√
M

)

,

E
[

c
(

tn,X
x0

n , x, ei
)]

=
1

M

M
∑

k=1

c
(

tn,X
x0,k
n , x, ei

)

+O
(

1√
M

)

,

where M is the sample times and Xx0,k
n is the numerical approximation solution at the

time tn obtained by the Euler scheme for MSDEJs at the k-th sampling. Denote by Ê[·]
the approximated expectation obtained by the above Monte-Carlo method, i.e.,

Ê
[

b̃
(

tn,X
x0

n , x
)]

=
1

M

M
∑

k=1

b̃
(

tn,X
x0,k
n , x

)

,

Ê
[

σ
(

tn,X
x0

n , x
)]

=
1

M

M
∑

k=1

σ
(

tn,X
x0,k
n , x

)

,

Ê
[

c
(

tn,X
x0

n , x, ei
)]

=
1

M

M
∑

k=1

c
(

tn,X
x0,k
n , x, ei

)

.

(5.1)

Then we can write the Euler scheme as

XX0

n+1 = XX0

n + Ê
[

b̃
(

tn,X
x0

n , x
)]
∣

∣

x=X
X0
n

∆tn

+ Ê
[

σ
(

tn,X
x0

n , x
)]
∣

∣

x=X
X0
n

∆Wn

+

∆Nn
∑

i=1

Ê
[

c
(

tn,X
x0

n , x, ei
)]∣

∣

x=X
X0
n
.

To be more specific, we solve the MSDEJs by the following two steps:

Step 1. Solve the MSDEJ with X0 = x0 to obtain the values {Xx0,k
n }Nn=0

Xx0,k
n+1 = Xx0,k

n + Ê
[

b̃
(

tn,X
x0

n , x
)]
∣

∣

x=X
x0,k
n

∆tn

+ Ê
[

σ
(

tn,X
x0

n , x
)]∣

∣

x=X
x0,k
n

∆W k
n

+

∆Nk
n

∑

i=1

Ê
[

c
(

tn,X
x0

n , x, eki
)]∣

∣

x=X
x0,k
n

, k = 1, . . . ,M,

where ∆W k
n , ∆Nk

n and eki are the k-th samples of ∆Wn, ∆Nn and ei, respectively.
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Step 2. Solve the MSDEJ with X0 6= x0 to get the random variables {XX0
n }Nn=0 after we

get the values {Xx0,k
n }Nn=0

XX0

n+1 = XX0

n + Ê
[

b̃
(

tn,X
x0

n , x
)]
∣

∣

x=X
X0
n

∆tn

+ Ê
[

σ
(

tn,X
x0

n , x
)]∣

∣

x=X
X0
n

∆Wn

+

∆Nn
∑

i=1

Ê
[

c
(

tn,X
x0

n , x, ei
)]
∣

∣

x=X
X0
n
.

5.2. The approximations of the conditional expectations

In this subsection, we shall show how to approximate the conditional expectations

by using the Gaussian quadrature rules in detail. For simplicity, we write XX0
n = Xn,

Y X0
n = Yn and show the approximation procedures of

E
x
tn

[

Yn+1

]

, E
x
tn

[

Yn+1∆W̃n

]

, E
x
tn

[

Yn+1∆µ̃
∗
n

]

with the Euler scheme being used to solve MSDEJs. Moreover, we let

b̃n = Ê
[

b̃
(

tn,X
x0

n , x
)]

, σn = Ê
[

σ
(

tn,X
x0

n , x
)]

, cn,i = Ê
[

c
(

tn,X
x0

n , x, ei
)]

,

where Ê[·] is the approximated expectation defined as in (5.1) and ei ∈ E is the i-th
jump size for i = 1, . . . ,∆Nn with ∆Nn = Ntn+1

−Ntn the jump number occurring in

(tn, tn+1]. Let Xn = x and we have

Xn+1 = x+ b̃n∆tn + σn∆Wn +

∆Nn
∑

i=1

cn,i.

Suppose that the Lévy measure λ(de) is in the form of

λ(de) = λρ(e)de,

where λ = λ(E) is the intensity of µ and ρ(e) is the probability density at e. Then

E
x
tn

[

Yn+1

]

= E
x
tn

[

Yn+1

(

Xn+1

)]

= E

[

Yn+1

(

x+ b̃n∆tn + σn∆Wn +

∆Nn
∑

i=1

cn,i

)]

= E

[

∞
∑

m=0

Yn+1

(

x+ b̃n∆tn + σn∆Wn +
m
∑

i=1

cn,i

)

I{∆Nn=m}

]

=

∞
∑

m=0

E

[

Yn+1

(

x+ b̃n∆tn + σn∆Wn +

m
∑

i=1

cn,i

)]

P{∆Nn = m}

= E
x
tn,My

[

Yn+1

]

+O
(

(∆tn)
My+1

)

, (5.2)
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where My is the number of the truncated jumps, and

E
x
tn,My

[

Yn+1

]

=

My
∑

m=0

exp(−λ∆tn)
(

λ∆tn
)m

m!
E

[

Yn+1

(

x+ b̃n∆tn + σn∆Wn +

m
∑

i=1

cn,i

)]

is the approximation of Ex
tn

[

Yn+1

]

. Since {e1, . . . , em} are independent and identically

distributed, we have

E
x
tn,My

[

Yn+1

]

=

My
∑

m=0

exp(−λ∆tn)
(

λ∆tn
)m

m!

×
∫

R

∫

E

· · ·
∫

E

Yn+1

(

x+ b̃n∆tn + σn
√

∆tns+

m
∑

i=1

cn,i

)

× exp(−s2/2)√
2π

ρ (e1) · · · ρ (em) dsde1 · · · dem,

which can be approximated by appropriate Gaussian quadrature rules according to the

probability density function ρ(e).
The other two conditional expectations E

x
tn [Yn+1∆W̃n] and E

x
tn [Yn+1∆µ̃

∗
n] can be

approximated similarly, see more details in [27].

In our numerical tests, to keep Scheme 3.1 being second order convergent in time,

by (5.2), we take My = 2. And we set the sample number in Monte Carlo method to

be M = 100000 and the number of Gaussian quadrature points to be L = 6 such that

the effect of the spatial approximation errors on the time discretization errors can be

neglected.

5.3. Numerical examples

For simplicity, we take uniform partition in time with time step ∆t = T/N where N
is a positive number. In all examples, we set the terminal time T = 1.0.

In the following tables, we denote by |Y0 − Y 0|, |Z0 − Z0| and |Γ0 − Γ0| the errors

between the exact solutions Y 0,X0

t , Z0,X0

t and Γ0,X0

t of the MFBSDEJs (1.1) at t = 0
and the numerical solutions Y X0

n , ZX0
n and ΓX0

n of Scheme 3.1 at n = 0, respectively.

The convergence rate (CR) with respect to ∆t is obtained by using linear least square

fitting of the errors.

Example 5.1. The considered MFBSDEJs model is

dX0,X0

t = bdt+ σdWt +

∫

E

cµ̃(de, dt), (5.3a)

−dY 0,X0

t =

(

Y 0,X0

t

(

bX0,X0

t − 1
)

− σ

2
Z0,X0

t

(

(

X0,X0

t

)2 − 1
)

+Γ0,X0

t +
1

3
E

[

(

Y 0,x0

t − exp

(

t− 1

2

(

X0,x0

t

)2
))3

])

dt
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− Z0,X0

t dWt −
∫

E

U0,X0

t (e)µ̃(de, dt), (5.3b)

Y 0,X0

T = exp

(

T − 1

2

(

X0,X0

T

)2
)

, (5.3c)

where the Lévy measure

λ(de) = λρ(e)de = λ
1√
2π

exp

(

−e
2

2

)

de

with λ = λ(E) the intensity of µ. The analytic solutions Y 0,X0

t , Z0,X0

t and Γ0,X0

t are

Y 0,X0

t = exp

(

t− 1

2

(

X0,X0

t

)2
)

,

Z0,X0

t = −σX0,X0

t exp

(

t− 1

2

(

X0,X0

t

)2
)

,

Γ0,X0

t = λ

(

exp

(

t− 1

2

(

X0,X0

t + c
)2
)

− exp

(

t− 1

2

(

X0,X0

t

)2
))

.

Note that the solution of the MSDEJ in (5.3) is

X0,X0

t = X0 + (b− cλ)t+ σWt + cNt,

and hence there is no error in solving the MSDEJ. Therefore, we can expect that

Scheme 3.1 is second order accurate for solving the MFBSDEJs (5.3).

In our tests, we set λ = 1.0 and take the coefficients b = 2.0 and σ = c = 1.0, and

solve (5.3) with different initial values of x0 and X0. All numerical results are listed in

Tables 1 and 2.

All numerical results listed in Tables 1 and 2 show that Scheme 3.1 is stable and

accurate for solving the decoupled MFBSDEJs (5.3) with different initial values of x0
and X0. Moreover, Scheme 3.1 is always convergent with second order when the

MSDEJ in (5.3) has analytic solution. All numerical results are consistent with our

theoretical conclusions.

Table 1: Errors and convergence rates of Scheme 3.1 with x0 = X0.

x0 = X0 = 0.0 x0 = X0 = −0.5

N |Y0 − Y 0| |Z0 − Z0| |Γ0 − Γ0| |Y0 − Y 0| |Z0 − Z0| |Γ0 − Γ0|
16 3.344E-03 5.507e-03 6.382e-03 2.744E-03 1.396e-02 2.670e-03

32 8.452E-04 1.327e-03 1.634e-03 7.723E-04 3.683e-03 8.507e-04

64 2.092E-04 3.273e-04 4.142e-04 1.733E-04 9.010e-04 1.642e-04

128 4.827E-05 8.146e-05 1.043e-04 4.163E-05 2.231e-04 3.567e-05

256 7.731E-06 2.032e-05 2.619e-05 1.119E-05 5.623e-05 9.235e-06

CR 2.164 2.019 1.983 2.009 1.996 2.093
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Table 2: Errors and convergence rates of Scheme 3.1 with x0 6= X0.

x0 = 0.0, X0 = −1.0 x0 = −0.5, X0 = 0.5

N |Y0 − Y 0| |Z0 − Z0| |Γ0 − Γ0| |Y0 − Y 0| |Z0 − Z0| |Γ0 − Γ0|
16 5.962E-03 5.272e-03 1.202e-02 2.322E-03 6.616e-03 2.090e-03

32 1.549E-03 1.477e-03 3.102e-03 4.896E-04 1.463e-03 3.463e-04

64 4.060E-04 4.627e-04 8.026e-04 1.217E-04 3.673e-04 8.449e-05

128 1.064E-04 1.128e-04 2.017e-04 2.921E-05 9.063e-05 1.990e-05

256 3.117E-05 2.936e-05 5.077e-05 6.342E-06 2.185e-05 4.402e-06

CR 1.902 1.869 1.972 2.110 2.050 2.190

Example 5.2. Consider the following nonlinear MFBSDEJs:

dX0,X0

t = E
[

X0,x0

t

]

dt+
(

1− x0 exp(t) + E
[

X0,x0

t

])

dWt +

∫

E

eµ̃(de, dt),

−dY 0,X0

t =

(

1

2
Y 0,X0

t

(

1− x0 exp(t) + E
[

X0,x0

t

])2 − Z0,X0

t

(

1 + E
[

X0,x0

t

])

−Γ0,X0

t E

[

sin
(

2
(

t+X0,x0

t

))

+
(

Y 0,x0

t

)2
]

)

ds

− Z0,X0

t dWt −
∫

E

U0,X0

t (e)µ̃(de, dt),

Y 0,X0

T = sin
(

T +X0,X0

T

)

− cos
(

T +X0,X0

T

)

.

(5.4)

In this example, we choose the Lévy measure

λ(de) = λρ(e)de =
λ

2δ
χ[−δ,δ](e)de

with the parameter δ > 0. The analytic solution Y 0,X0

t , Z0,X0

t and Γ0,X0

t are

Y 0,X0

t =
(

cos
(

t+X0,X0

t

)

+ sin
(

t+X0,X0

t

)

)(

1− x0 exp(t) + E
[

X0,x0

t

]

)

,

Γ0,X0

t =
λ

2δ

(

cos
(

t+X0,X0

t − δ
)

− cos
(

t+X0,X0

t + δ
)

− 2δ sin
(

t+X0,X0

t

)

)

− λ

2δ

(

sin
(

t+X0,X0

t + δ
)

− sin
(

t+X0,X0

t − δ
)

− 2δ cos
(

t+X0,X0

t

)

)

.

In our experiments, we take the intensity λ = 2δ and set δ = 0.5, i.e., λ = 1.0. Then

we implement Scheme 3.1 to solve the problem (5.4) with different initial values of x0
and X0. We test the Euler scheme (3.4), the Milstein scheme (3.5) and the weak order

2.0 Itô-Taylor scheme (3.6) for solving the MSDEJ in (5.4). These three schemes are

denoted by Eul, Mil and W-2.0, respectively.

The errors |Y0 − Y 0|, |Z0 −Z0| and |Γ0 −Γ0|, and their convergence rates are listed

in the following Tables 3 and 4.
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Table 3: Errors and convergence rates of Scheme 3.1 with x0 = X0 = 0.5.

N = 8 N = 16 N = 32 N = 64 N = 128 CR

Eul

|Y0 − Y 0| 4.495E-02 2.378E-02 1.202E-02 5.992E-03 3.099E-03 0.971

|Z0 − Z0| 4.489E-02 2.179E-02 1.120E-02 5.638E-03 2.797E-03 0.996

|Γ0 − Γ0| 4.481E-03 1.349E-03 5.482E-04 2.531E-04 1.293E-04 1.265

Mil

|Y0 − Y 0| 4.495E-02 2.378E-02 1.202E-02 5.992E-03 3.099E-03 0.971

|Z0 − Z0| 4.489E-02 2.179E-02 1.120E-02 5.638E-03 2.797E-03 0.996

|Γ0 − Γ0| 4.481E-03 1.349E-03 5.482E-04 2.531E-04 1.293E-04 1.265

W-2.0

|Y0 − Y 0| 1.269E-02 3.336E-03 8.703E-04 2.300E-04 2.282E-05 2.210

|Z0 − Z0| 2.862E-02 6.475E-03 1.708E-03 4.699E-04 1.443E-04 1.905

|Γ0 − Γ0| 1.813E-03 1.933E-04 1.274E-05 3.584E-06 7.142E-07 2.837

Table 4: Errors and convergence rates of Scheme 3.1 with x0 = 1.0 and X0 = 0.0.

N = 8 N = 16 N = 32 N = 64 N = 128 CR

Eul

|Y0 − Y 0| 6.082E-02 3.671E-02 1.990E-02 1.036E-02 5.316E-03 0.886

|Z0 − Z0| 8.414E-02 3.696E-02 1.779E-02 8.753E-03 4.377E-03 1.061

|Γ0 − Γ0| 5.696E-03 2.184E-03 9.713E-04 4.610E-04 2.273E-04 1.154

Mil

|Y0 − Y 0| 6.082E-02 3.671E-02 1.990E-02 1.036E-02 5.316E-03 0.886

|Z0 − Z0| 8.414E-02 3.696E-02 1.779E-02 8.753E-03 4.377E-03 1.061

|Γ0 − Γ0| 5.696E-03 2.184E-03 9.713E-04 4.610E-04 2.273E-04 1.154

W-2.0

|Y0 − Y 0| 3.219E-02 8.075E-03 2.084E-03 5.258E-04 8.621E-05 2.103

|Z0 − Z0| 3.499E-02 8.082E-03 2.065E-03 5.887E-04 1.631E-04 1.927

|Γ0 − Γ0| 1.395E-03 2.787E-04 5.883E-05 1.198E-05 4.858E-06 2.087

The numerical results in Tables 3 and 4 show that Scheme 3.1 is stable and accurate

for solving the decoupled MFBSDEJs (5.4), and its accuracy depends on the methods

used for solving the MSDEJ in (5.4). It is convergent with first order when the Euler

scheme (3.4) and the Milstein scheme (3.5) are used to solve the MSDEJ, and is second

order when the weak-order 2.0 Itô-Taylor scheme (3.6). All the numerical results admit

a good match with our theoretical conclusions.

6. Conclusions

We proposed an explicit numerical scheme for solving decoupled MFBSDEJs. We

rigorously analyzed the stability of the scheme and theoretically obtained its error es-

timates. Numerical results are presented to verify our theoretical conclusions, which

show that the proposed scheme can be second order accurate when the weak order 2.0

Itô-Taylor scheme is used to solve the forward MSDEJ. In our future work, we shall

focus on deep learning methods for solving high dimensional MFBSDEJs.
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