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Abstract. In this paper, we formulate and analyse a kind of parareal-RKN algo-
rithms with energy conservation for Hamiltonian systems. The proposed algorithms

are constructed by using the ideas of parareal methods, Runge-Kutta-Nyström (RKN)

methods and projection methods. It is shown that the algorithms can exactly pre-
serve the energy of Hamiltonian systems. Moreover, the convergence of the integra-

tors is rigorously analysed. Three numerical experiments are carried out to support

the theoretical results presented in this paper and show the numerical behaviour of
the derived algorithms.
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1. Introduction

In computer science and engineering, the effective numerical solution of time-

dependent ordinary and partial differential equations has traditionally been a key area

of study. By discovering new parallelization techniques, we can use the many-core

high-performance computing architectures to achieve faster simulations. After spatial

parallelization, the idea of the time-related problem of parallelization in the time direc-

tion has received increasing attention, such as parareal (parallel in real time), PFASST

(parallel full approximation scheme in space and time), MGRIT (multigrid reduction in

time) [7,22,24], etc.
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Hamiltonian systems are widely recognized to occur often in many fields of re-

search and engineering, including applied mathematics, molecular biology, electronics,

chemistry, astronomy, mechanics, and quantum physics [9, 17]. There is potential to

parallelize the Hamiltion equation based on the time-consuming problem solved in long

times. About the parallelization methods, we are interested in a kind of multiple shoot-

ing methods focusing entirely on the time direction, i.e., the parareal method proposed

by Lions et al. [22] (see also [13, 18, 30]). The parareal method adopts two types of

calculation strategies: coarse propagator and fine propagator. They are combined for

the prediction and correction to bring updates to the values at the coarse time points.

The iteration sequence will converge to the solution of the fine propagator in the whole

time interval. Here, the fine propagator in time subintervals is only performed sequen-

tially, which can be implemented in parallel. Further studies based on the parareal

method include the parallel implicit time-integrator (PITA) [8], ParaExp [10], adap-

tive parareal method [19,23], etc. Parareal can also be constructed by combining with

other techniques, such as the strategies of domain decomposition and waveform relax-

ation [3,12,20], the diagonalization technique [14], and the application of probabilistic

methods to time-parallelization [25].

Although the common parareal method is efficient in theory, direct application of

parareal has some problems in some specific cases, such as the Hamiltonian systems.

Some related studies on Hamiltonian systems provide several ideas. Among them, [5]

has pointed that even when the coarse and fine propagators in parareal use symplectic

and symmetric integrators which are known to be suitable integrators for Hamilto-

nian systems, the whole algorithm does not enjoy adequate geometrical properties.

So they put forward a symmetric version of the parareal algorithm, which contains

a projection in each iteration, to guarantee the long-time properties of the numerical

flow. After that, [11] presents the long-time error estimates for the parareal iterates for

Hamiltonian systems and present a variant of the parareal algorithm for high accuracy

computations. The parareal based on the projection of each iterative solution onto the

manifold can also be used to solve hyperbolic type problems [6].

As an important class of structure-preserving algorithm, the energy-preserving al-

gorithm has been widely studied in many problems in recent years [1,2,4,21,26–29].

However, for the standard parareal algorithms, the energy conservation does not hold.

Motivated by the above projection approach, we intend to provide a class of spe-

cific energy-preserving parareal algorithms for Hamiltonian systems but in another

approach. This work focuses on the structure-preserving algorithms of Hamiltonian

systems which can be expressed by a system of differential equations of the form

q̇ = ∇pH(q, p), q(0) = q0,

ṗ = −∇qH(q, p), p(0) = p0,
(1.1)

where H : Rd × R
d → R is the Hamiltonian function, the dimension d is the number

of degrees of freedom, q(t) : R → R
d represents generalized positions, and p(t) :

R → R
d represents generalized momenta. The Hamiltonian function often has the
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special separable structure H(q, p) = T (p) + U(q). In this paper, we are interested in

a Hamiltonian system of the form (1.1) with the following Hamiltonian:

H(q, p) =
1

2
p⊺p+ U(q), (1.2)

where U(q) is a real-valued function with continuous second derivatives. In this paper,

‖ · ‖2 presents the Euclidean norm of a vector or spectral norm of a matrix. This Hamil-

tonian system is in fact identical to the following second-order differential equations:

q̈(t) = F
(

q(t)
)

, q(0) = q0, q̇(0) = q̇0, t ∈ [0, T ], T > 0, (1.3)

where F (q) = −∇qU(q).
In the existing literatures of the parareal algorithms, we found that the algorithm

construction for second-order differential equations or hyperbolic problems are often

achieved by transforming into a first-order differential systems. The coarse and fine

propagators are not constructed based on direct integrators. To be precise, the con-

struction of a coarse propagator of parareal directly for second-order differential equa-

tions means that the approximation of both the solution and its first-order derivative at

the coarse points should be calculated in each iteration. Based on this idea, we adopt

the Runge-Kutta-Nyström (RKN) integrator [17] to approximate and analyze a class of

parareal-RKN algorithms which are energy-preserving.

The paper is organized as follows. We will construct the energy-preserving parareal-

RKN algorithms in Section 2 by introducing the RKN-type coarse and fine propagators

and providing some practical schemes. In Section 3, the main results of the energy

conservation and convergence are first given, and then the proofs. We also show that

the projection does not deteriorate the convergence result of the underlying method.

Finally, the energy errors of three numerical experiments with respect to the time t
and the iterations are illustrated in Section 4 to verify the convergence orders of these

parareal-RKN algorithms.

2. Energy-preserving parareal-RKN algorithms

In this section, we present the formulation of the algorithms, which starts by the

restatement of parareal algorithms.

Consider a system of first-order initial value problem

u̇(t) = f
(

u(t)
)

, u(0) = u0, t ∈ [0, T ] (2.1)

and let uj0 = u0 for the iteration index j = 0, 1, 2, . . .. The parareal algorithm (see [22])

for solving this system is defined by

uj+1
n+1 = G∆t

(

Tn, u
j+1
n

)

+ Fδt

(

Tn, u
j
n

)

− G∆t

(

Tn, u
j
n

)

, n = 0, 1, . . . , T/∆T − 1,

where {u0n}n≥1 is the initial guess, F is the fine propagator using a small time stepsize

δt, G is the coarse propagator with a large time stepsize ∆t, and ∆T is an even larger
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time interval which partitions the time interval [0, T ] with Tn = n∆T . We note here

that the notations Fδt(Tn, u
j
n) and G∆t(Tn, u

j
n) are referred to the numerical solutions

of (2.1) at t = Tn+1 with the initial value ujn at t = Tn. In this paper we generate the

initial guess {u0n}n≥1 by the G-propagator.

2.1. RKN-type coarse and fine propagators

We firstly formulate the numerical methods for coarse and fine propagators. Apply-

ing the well-known variation-of-constants formula to (1.3) gives the following integral

equations (see [17]):

q(t) = q0 + tq̇0 +

∫ t

0
(t− ξ)F̂ (ξ)dξ, q̇(t) = q̇0 +

∫ t

0
F̂ (ξ)dξ (2.2)

for any real number t ∈ [0, T ], where F̂ (ξ) = F (q(ξ)).
Partition the time interval [0, T ] of (1.3) by ∆T and then consider

q̈(t) = F
(

q(t)
)

, q(Tn) = qn, q̇(Tn) = q̇n, t ∈ [Tn, Tn +∆T ]. (2.3)

With the help of (2.2), the following RKN-type coarse propagator is chosen for solving

(2.3):
qn,0 = qn, q̇n,0 = q̇n,

Fn,(m−1)∆t = F
(

qn,(m−1)∆t +∆tc1q̇n,(m−1)∆t

)

,

qn,m∆t = qn,(m−1)∆t +∆tq̇n,(m−1)∆t +∆t2b̄1Fn,(m−1)∆t,

q̇n,m∆t = q̇n,(m−1)∆t +∆tb1Fn,(m−1)∆t,

qn+1 = qn,∆T , q̇n+1 = q̇n,∆T ,

(2.4)

where m = 1, 2, . . . ,∆T/∆t, c1 ∈ [0, 1] is a real constant, and b1 and b̄1 are coefficients

of a one-stage RKN method. This coarse propagator over one coarse stepsize ∆t is

denoted by

[qn,m∆t; q̇n,m∆t] = GTn+m∆t
Tn+(m−1)∆t

(

[qn,(m−1)∆t; q̇n,(m−1)∆t]
)

. (2.5)

In this propagator, replacing the coarse stepsize ∆t by the fine one δt leads to a choice

of fine propagator, which reads for m = 1, 2, . . . ,∆T/δt

qn,0 = qn, q̇n,0 = q̇n,

Fn,(m−1)δt = F
(

qn,(m−1)δt + δtc1q̇n,(m−1)δt

)

,

qn,mδt = qn,(m−1)δt + δtq̇n,(m−1)δt + δt2b̄1Fn,(m−1)δt,

q̇n,mδt = q̇n,(m−1)δt + δtb1Fn,(m−1)δt,

qn+1 = qn,∆T , q̇n+1 = q̇n,∆T .

(2.6)

Denote the fine propagator as

[qn,mδt; q̇n,mδt] = FTn+mδt
Tn+(m−1)δt

(

[qn,(m−1)δt; q̇n,(m−1)δt]
)

. (2.7)
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As an example, choosing

c1 =
1

2
, b1 = 1, b̄1 =

1

2
(2.8)

gives a second-order RKN integrator.

It is remarked that high-order RKN method can be taken into account for the fine

propagator. For example, we can consider a three-stage explicit RKN integrator of order

three

qn,0 = qn, q̇n,0 = q̇n,

Fn,(m−1)δt,j = F

(

qn,(m−1)δt + δtcj q̇n,(m−1)δt + δt2
j−1
∑

k=1

ājkFn,(m−1)δt,k

)

, j = 1, 2, 3,

qn,mδt = qn,(m−1)δt + δtq̇n,(m−1)δt + δt2
3

∑

j=1

b̄jFn,(m−1)δt,j , (2.9)

q̇n,mδt = q̇n,(m−1)δt + δt

3
∑

j=1

bjFn,(m−1)δt,j ,

qn+1 = qn,∆T , q̇n+1 = q̇n,∆T

with

c1 = 0, c2 =
6−

√
6

10
, c3 =

6 +
√
6

10
,

b1 =
c2c3φ1 − (c2 + c3)φ2 + 2φ3

c2c3
, b2 =

c3φ2 − 2φ3

c2c3 − c22
, b3 =

c2φ2 − 2φ3

c2c3 − c23
,

b̄1 =
c2c3φ2 − (c2 + c3)φ3 + 2φ4

c2c3
, b̄2 =

c3φ3 − 2φ4

c2c3 − c22
, b̄3 =

c2φ3 − 2φ4

c2c3 − c23
,

ā21 = c22φ2, ā31 = c23φ2 − ā32, ā32 = 0,

(2.10)

and φk = 1/k! for k = 1, 2, 3, 4.
With these preparations, we are in the position to present the parareal-RKN algo-

rithms for (1.3).

Definition 2.1. Let qj0 = q0, q̇
j
0 = q̇0 for the iteration index j = 0, 1, 2, . . .. Given a time in-

terval ∆T . Choose a small time stepsize 0 < δt < 1, and a large time stepsize 0 < ∆t < 1.

The parareal-RKN algorithm for solving (1.3) is defined by
[

qj+1
n+1; q̇

j+1
n+1

]

= GTn+
∆T

∆t
∆t

Tn+(∆T

∆t
−1)∆t

◦ · · · ◦ GTn+2∆t
Tn+∆t ◦ GTn+∆t

Tn

([

qj+1
n ; q̇j+1

n

])

+ FTn+
∆T

δt
δt

Tn+(∆T

δt
−1)δt

◦ · · · ◦ FTn+2δt
Tn+δt ◦ FTn+δt

Tn

([

qjn; q̇
j
n

])

− GTn+
∆T

∆t
∆t

Tn+(∆T

∆t
−1)∆t

◦ · · · ◦ GTn+2∆t
Tn+∆t ◦ GTn+∆t

Tn

([

qjn; q̇
j
n

])

(2.11)

for n = 0, 1, . . . , T/∆T , where the coarse and fine propagators are given by (2.5) and

(2.7), respectively. The initial guess {q0n}n≥1 and {q̇0n}n≥1 are generated by the G-propaga-

tor (2.5).
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2.2. Energy-preserving parareal-RKN algorithm

From the point of Hamiltonian system, it is well known that the energy (1.2) is ex-

actly preserved by the solution of (1.3). This important property can also be kept by the

numerical methods named as energy-preserving (EP) algorithms. However, it is a pity

that the parareal-RKN algorithm (2.11) is not energy-preserving even EP algorithms are

used for the coarse and fine propagators. To make the parareal-RKN algorithm (2.11)

be energy-preserving, the technique of standard projection method [17, Chapter IV] is

used in this paper and the procedure is stated blew.

Denote the energy-preserving manifold by

M :=
{

[q; p]|g(q, p) := H(q, p)−H(q0, p0) = 0
}

and we project the results obtained from parareal-RKN algorithm (2.11) onto M. More

precisely, first assume that [q̃jn; ˙̃q
j
n] and [q̃j+1

n ; ˙̃qj+1
n ] ∈ M. Then using the parareal-RKN

algorithm (2.11), one gets the result [qj+1
n+1; q̇

j+1
n+1] from [q̃jn; ˙̃q

j
n] and [q̃j+1

n ; ˙̃qj+1
n ]. Finally

project the result [qj+1
n+1; q̇

j+1
n+1] onto the manifold M to obtain [q̃j+1

n+1;
˙̃qj+1
n+1] ∈ M, which

is denoted by
[

q̃j+1
n+1;

˙̃qj+1
n+1

]

= πM

[

qj+1
n+1; q̇

j+1
n+1

]

. (2.12)

This procedure can be done in the whole parareal-RKN algorithm (2.11).

For the computation of [q̃j+1
n+1;

˙̃qj+1
n+1] in (2.12), we have to solve the following con-

strained minimization problem:

∥

∥

∥

[

q̃j+1
n+1;

˙̃qj+1
n+1

]

−
[

qj+1
n+1; q̇

j+1
n+1

]∥

∥

∥

2
→ min

s.t. g
(

q̃j+1
n+1,

˙̃qj+1
n+1

)

= 0.

To this end, introduce the Lagrange multiplier λ and consider the Lagrange function

L
([

q̃j+1
n+1;

˙̃qj+1
n+1

]

, λ
)

=
1

2

∥

∥

∥

[

q̃j+1
n+1;

˙̃qj+1
n+1

]

−
[

qj+1
n+1; q̇

j+1
n+1

]∥

∥

∥

2

2
− λg

(

q̃j+1
n+1,

˙̃qj+1
n+1

)

.

From the necessary condition ∂L/∂[q̃j+1
n+1;

˙̃qj+1
n+1] = 0, it follows that

q̃j+1
n+1 = qj+1

n+1 − λF
(

qj+1
n+1

)

, (2.13a)

˙̃qj+1
n+1 = q̇j+1

n+1 + λq̇j+1
n+1, (2.13b)

g
(

q̃j+1
n+1,

˙̃qj+1
n+1

)

= 0. (2.13c)

To save some evaluations, it is noted that in the above derivations q̃j+1
n+1 and ˙̃qj+1

n+1 are

replaced by qj+1
n+1 and q̇j+1

n+1, respectively. By inserting Egs. (2.13a) and (2.13b) into

(2.13c), a nonlinear system for λ is obtained and the following simplified Newton

iteration is considered here:
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λk+1 = λk +△λkg
(

qj+1
n+1 − λkF (qj+1

n+1), q̇
j+1
n+1 + λk q̇

j+1
n+1

)

,

△λk = −
(

d

dλ
g
(

qj+1
n+1 − λF

(

qj+1
n+1

)

, q̇j+1
n+1 + λq̇j+1

n+1

)

|λ=0

)−1

= −
((

q̇j+1
n+1

)

⊺
(

q̇j+1
n+1

)

+
(

F
(

qj+1
n+1

))

⊺
(

F
(

qj+1
n+1

)))−1
.

The details of the projection method πM are given in Algorithm 2.1.

Algorithm 2.1 Projection Method [q̃j+1
n+1;

˙̃qj+1
n+1] = πM[qj+1

n+1; q̇
j+1
n+1].

1: Set λ := 0.

2: Set A := −F (qj+1
n+1), B := −(A⊺A+ (q̇j+1

n+1)
⊺(q̇j+1

n+1))
−1.

3: Set ∆λ := Bg(qj+1
n+1, q̇

j+1
n+1).

4: while |∆λ| ≥ Tol do

5: Set λ := λ+∆λ.

6: Set ∆λ := Bg(qj+1
n+1 + λA, q̇j+1

n+1 + λq̇j+1
n+1).

7: end while

8: Set q̃j+1
n+1 := qj+1

n+1 + λA.

9: Set ˙̃qj+1
n+1 := q̇j+1

n+1 + λq̇j+1
n+1.

On the basis of the above derivations, we are in a position to present the energy-

preserving parareal-RKN (EPPRKN) algorithm whose details are given in the following

definition.

Definition 2.2. Generate the initial guess {q0n}n≥1 and {q̇0n}n≥1 by the G-propagator (2.5)

and then with Algorithm 2.1, we get [q̃0n; ˙̃q
0
n] = πM[q0n; q̇

0
n]. Denote q̃j0 = q0, ˙̃qj0 = q̇0 for the

iteration index j = 0, 1, 2, . . .. The energy-preserving parareal-RKN (EPPRKN) algorithm

for (1.3) is defined by

[

qj+1
n+1; q̇

j+1
n+1

]

= GTn+
∆T

∆t
∆t

Tn+(∆T

∆t
−1)∆t

◦ · · · ◦ GTn+2∆t
Tn+∆t ◦ GTn+∆t

Tn

([

q̃j+1
n ; ˙̃qj+1

n

])

+ FTn+
∆T

δt
δt

Tn+(∆T

δt
−1)δt

◦ · · · ◦ FTn+2δt
Tn+δt ◦ FTn+δt

Tn

([

q̃jn; ˙̃q
j
n

])

− GTn+
∆T

∆t
∆t

Tn+(∆T

∆t
−1)∆t

◦ · · · ◦ GTn+2∆t
Tn+∆t ◦ GTn+∆t

Tn

([

q̃jn; ˙̃q
j
n

])

,
[

q̃j+1
n+1;

˙̃qj+1
n+1

]

= πM

[

qj+1
n+1; q̇

j+1
n+1

]

(2.14)

for n = 0, 1, . . . , T/∆T , where the coarse and fine propagators are given by (2.5) with ∆t
and (2.7) with δt, respectively.

The parareal algorithm using the integrator (2.8) as the fine and coarse propagators

is denoted by EPPRKN2. Replacing the propagator of EPPRKN2 by the third order RKN

integrator (2.10) yields another parareal which is referred to EPPRKN3. If (2.10) is
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considered as the coarse propagator and (2.8) is for the fine one, the third parareal is

obtained which is denoted by EPPRKN2-3.

3. Energy conservation and error bounds

3.1. The main results

In the light of the projection process, we get the following energy preservation

immediately.

Theorem 3.1 (Energy Preservation). For the numerical result [q̃jn, ˙̃q
j
n] produced by (2.14),

it exactly preserves the energy (1.2) of the Hamiltonian system (1.1), i.e.,

H
(

q̃jn, ˙̃q
j
n

)

≡ H(q0, q̇0) for any j = 0, 1, . . . , and any n = 0, 1, . . . , T/∆T .

The next theorem is devoted to the convergence of the EPPRKN algorithms given in

Definition 2.2.

Theorem 3.2 (Convergence Result). Denote the solution of (1.3) by the propagator E ,

i.e.,

[q(t), q̇(t)] = E t
0[q(0), q̇(0)].

It is assumed that there exists a constant C1 > 0 such that
∥

∥E t
0[q(0), q̇(0)]

∥

∥

2
≤ C1

∥

∥[q(0), q̇(0)]
∥

∥

2
, t ∈ [0, T ]. (3.1)

Moreover, let F be locally Lipschitz-continuous. Choose ∆T = ∆t in the EPPRKN algo-

rithms, and then the global errors of the proposed methods are given by

EPPRKN2 : ‖q̃jn − q(tn)‖2 + ‖ ˙̃qjn − q̇(tn)‖2 ≤ C
(

∆t2j+2 + δt2
)(

1 + ‖[q0; q̇0]‖2
)

,

EPPRKN3 : ‖q̃jn − q(tn)‖2 + ‖ ˙̃qjn − q̇(tn)‖2 ≤ C
(

∆t3j+3 + δt3
)(

1 + ‖[q0; q̇0]‖2
)

,

EPPRKN2-3 : ‖q̃jn − q(tn)‖2 + ‖ ˙̃qjn − q̇(tn)‖2 ≤ C
(

∆t2j+2 + δt3
)(

1 + ‖[q0; q̇0]‖2
)

,

(3.2)

where 0 < tn := n∆t ≤ T and j = 0, 1, . . .. Here C is a generic constant independent of

∆t, δt or n, j but depends on T,C1 and the bounds of the first- and second-order partial

derivative of F with respect to q.

Remark 3.1. From these two theorems, it can be seen that the EPPRKN algorithms

not only exactly preserve the energy of the considered Hamiltonian system but also

have good convergence. Meanwhile, it can also be observed from the proof that the

convergence presented above also holds for the algorithms without projection.

3.2. The proof of Theorem 3.2

The proof is presented for the algorithm EPPRKN2 and it can be easily modified for

the other two algorithms which is skipped for brevity. To prove the convergence, we

firstly need to study the stability and boundedness of the propagators. Then based on

the results, the global errors will be derived.
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3.2.1. Stability of the propagators

We firstly pay attention to the coarse propagator (2.4). From the scheme (2.4), it

follows that

GTn+∆t
Tn

([q; q̇])− GTn+∆t
Tn

(

[q̃; ˙̃q]
)

=

(

1 ∆t
0 1

)

(

[q; q̇]− [q̃; ˙̃q]
)

+∆t

(

∆tb̄1
(

F (q +∆tc1q̇)− F (q̃ +∆tc1 ˙̃q)
)

b1
(

F (q +∆tc1q̇)− F (q̃ +∆tc1 ˙̃q)
)

)

=
(

[q; q̇]− [q̃; ˙̃q]
)

+∆t

(

0 1
0 0

)

(

[q; q̇]− [q̃; ˙̃q]
)

+∆t

(

∆tb̄1
(

F (q +∆tc1q̇)− F (q̃ +∆tc1 ˙̃q)
)

b1
(

F (q +∆tc1q̇)− F (q̃ +∆tc1 ˙̃q)
)

)

.

Considering the Lipschitz condition of F , we get
∥

∥F
(

q +∆tc1q̇
)

− F
(

q̃ +∆tc1 ˙̃q
)∥

∥

2
≤ L

(

‖q − q̃‖2 +∆t‖q̇ − ˙̃q‖2
)

,

and further have
∥

∥

∥GTn+∆t
Tn

([q; q̇])− GTn+∆t
Tn

([q̃; ˙̃q])
∥

∥

∥

2

≤ (1 + C∆t)
∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
+ (∆t2 +∆t)L

(

‖q − q̃‖2 +∆t‖q̇ − ˙̃q‖2
)

≤ (1 + C∆t)
∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
+ 2(∆t2 +∆t)L

∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
.

This immediately shows that for all 0 < n∆t ≤ T
∥

∥

∥
GTn+∆t
Tn

([q; q̇])− GTn+∆t
Tn

([q̃; ˙̃q])
∥

∥

∥

2
≤

(

1 + C∆t+ C∆t2
) ∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
, (3.3)

and similarly
∥

∥

∥
FTn+δt
Tn

([q; q̇])−FTn+δt
Tn

([q̃; ˙̃q])
∥

∥

∥

2
≤

(

1 + Cδt+Cδt2
) ∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
.

The propagator G after many integrations are deduced as
∥

∥

∥
GTn+m∆t
Tn+(l−1)∆t ◦ · · · ◦ G

Tn+∆t
Tn

([q; q̇])− GTn+m∆t
Tn+(l−1)∆t ◦ · · · ◦ G

Tn+∆t
Tn

([q̃; ˙̃q])
∥

∥

∥

2

≤
(

1 + C∆t+ C∆t2
)m ∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2

≤
(

1 +
(

C∆t+ C∆t2
)∆T

∆t
+O(∆t)

)

∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2

≤ C
∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
, m =

∆T

∆t
> 1.

In a same way, one gets
∥

∥

∥
FTn+mδt
Tn+(m−1)δt ◦ · · · ◦ F

Tn+δt
Tn

([q; q̇])−FTn+mδt
Tn+(m−1)δt ◦ · · · ◦ F

Tn+δt
Tn

([q̃; ˙̃q])
∥

∥

∥

2

≤ C
∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
, m =

∆T

δt
> 1. (3.4)
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3.2.2. Local errors and boundedness of the propagators

Define the local errors of propagators

eGn,m([q; q̇]) = GTn+m∆t
Tn+(m−1)∆t ◦ · · · ◦ G

Tn+2∆t
Tn+∆t ◦ GTn+∆t

Tn
([q; q̇])− ETn+m∆t

Tn
([q; q̇]),

eFn,m([q; q̇]) = FTn+mδt
Tn+(m−1)δt ◦ · · · ◦ F

Tn+2δt
Tn+δt ◦ FTn+δt

Tn
([q; q̇])− ETn+mδt

Tn
([q; q̇]),

and in what follows we study the stability of these errors.

We start with eGn,1([q; q̇]) and it can be expressed as

eGn,1([q; q̇]) =









∆t2b̄1F̂n,c1 −∆t2
∫ 1

0
(1− z)F̂ (Tn +∆tz)dz

∆tb1F̂n,c1 −∆t

∫ 1

0
F̂ (Tn +∆tz)dz









,

where

F̂n,c1 = F
(

q(Tn) + ∆tc1q̇(Tn)
)

,

F̂ (Tn +∆tz) = F
(

q(Tn +∆tz)
)

.

By the variation-of-constants formula (2.2), we have

q(Tn + c1∆t) = q(Tn) + ∆tc1q̇(Tn) + ∆t2
∫ 1

0
(1− z)F̂ (Tn + c1∆tz)dz.

Then it is deduced that eGn,1([q; q̇]) = [q⊺1 , q
⊺

2 ]
⊺ with

q1 = ∆t2b̄1F̂ (Tn + c1∆t)−∆t2
∫ 1

0
(1− z)F̂ (Tn +∆tz)dz +∆t4b̄1Λ,

q2 = ∆tb1F̂ (Tn + c1∆t)−∆t

∫ 1

0
F̂ (Tn +∆tz)dz +∆t3b1Λ,

Λ = ∂2F
(

q(Tn) + ∆tc1q̇(Tn) + θ(Tn + c1∆t)
)

∫ 1

0
(1− z)F̂ (Tn + c1∆tz)dz, 0 ≤ θ ≤ 1.

By some computations, it is obtained that

X1 = ∆t2
(

b̄1 −
1

2

)

F̂ (Tn) + c1∆t3ε2b̄1F̂
′
(

Tn + θX1

1 c1∆t
)

−∆t3
∫ 1

0
z(1− z)F̂ ′

(

Tn + θX1

2 ∆tz
)

dz +∆t4b̄1Λ,

X2 = ∆t(b1 − 1)F̂ (Tn) + ∆t2
(

c1b1 −
1

2

)

F̂ ′(Tn)

+ c1∆t3b1F̂
′′
(

Tn + θX2

1 c1∆t
)

−∆t3
∫ 1

0
zF̂ ′′

(

Tn + θX2

2 ∆tz
)

dz +∆t3b1Λ,
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where θX1

1 , θX1

2 , θX2

1 , θX2

2 ∈ [0, 1]. With the above results and on noticing the fact that

1

2
− b̄1 = 0, 1− b1 = 0,

1

2
− c1b1 = 0,

we obtain that
∥

∥eGn,1([q; q̇])
∥

∥

2
≤ C∆t3

∥

∥[q; q̇]
∥

∥

2
.

Using the same arguments leads to

∥

∥eGn,1([q; q̇])− eGn,1([q̃;
˙̃q])
∥

∥

2
≤ C∆t3

∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
. (3.5)

Similarly, we derive

∥

∥eFn,1([q; q̇])− eFn,1([q̃; ˙̃q])
∥

∥

2
≤ Cδt3

∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
.

Now we concentrate on the eGn,m which has the decomposition

eGn,m = GTn+m∆t
Tn+(m−1)∆t ◦ · · · ◦ G

Tn+2∆t
Tn+∆t ◦ GTn+∆t

Tn
− ETn+m∆t

Tn

=

m
∑

l=1

[

ETn+(m−l)∆t
Tn

◦
(

GTn+∆t
Tn

− ETn+∆t
Tn

)

◦
(

GTn+m∆t
Tn+(l−1)∆t ◦ · · · ◦ G

Tn+∆t
Tn

)

]

=

m
∑

l=1

[

ETn+(m−l)∆t
Tn

◦ eGn,1 ◦
(

GTn+m∆t
Tn+(l−1)∆t ◦ · · · ◦ G

Tn+∆t
Tn

)

]

.

With this result, we obtain

∥

∥eGn,m([q; q̇])− eGn,m([q̃; ˙̃q])
∥

∥

2

≤ C∆t3
m
∑

l=1

∥

∥

∥
GTn+m∆t
Tn+(l−1)∆t ◦ · · · ◦ G

Tn+∆t
Tn

([q; q̇])− GTn+m∆t
Tn+(l−1)∆t ◦ · · · ◦ G

Tn+∆t
Tn

)

([q̃; ˙̃q])
∥

∥

∥

2

≤ C∆t3m
∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
≤ C∆T∆t2

∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
, m =

∆T

∆t
. (3.6)

Similar result holds for the propagator F

∥

∥eFn,m([q; q̇])− eFn,m([q̃; ˙̃q])
∥

∥

2
≤ C∆Tδt2

∥

∥[q; q̇]− [q̃; ˙̃q]
∥

∥

2
, m =

∆T

δt
. (3.7)

Based on these results, we can find the boundedness of the coarse and fine propagators

which is shown below. Letting [q̃; ˙̃q] = [0; 0] and [q; q̇] = [qn,0; q̇n,0] gives

∥

∥

∥
GTn+m∆t
Tn+(m−1)∆t ◦ · · · ◦ G

Tn+2∆t
Tn+∆t ◦ GTn+∆t

Tn
([qn,0; q̇n,0])− ETn+m∆t

Tn
([qn,0; q̇n,0])

∥

∥

∥

2

≤ C∆T∆t2 ‖[qn,0; q̇n,0]‖2 .
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Combing the above result and the boundedness of E presented in (3.1), one gets the

following estimate:

∥

∥

∥
GTn+m∆t
Tn+(m−1)∆t ◦ · · · ◦ G

Tn+2∆t
Tn+∆t ◦ GTn+∆t

Tn
([qn,0, q̇n,0])

∥

∥

∥

2

≤ C‖[qn,0, q̇n,0]‖2, m =
∆T

∆t
. (3.8)

In a similar way, the propagator F is bounded by

∥

∥

∥
FTn+mδt
Tn+(m−1)δt ◦ · · · ◦ F

Tn+2δt
Tn+δt ◦ FTn+δt

Tn
([qn,0, q̇n,0])

∥

∥

∥

2

≤ C ‖[qn,0, q̇n,0]‖2 , m =
∆T

δt
. (3.9)

3.2.3. Global errors

This part is devoted to the parareal-RKN algorithm (2.11) without using the projection

method Algorithm 2.1. It is noted that the stepsize of the coarse propagator is chosen

as ∆t = ∆T and we show by induction over j ≥ 0 that

∥

∥[qjn; q̇
j
n]− [q(Tn); q̇(Tn)]

∥

∥

2
≤ C

(

∆t2j+2 + δt2
)(

1 + ‖[q0; q̇0]‖2
)

. (3.10)

We first consider j = 0 and in this case, one needs to derive the global errors

for the G-propagator which generates the values {[q0n; q̇0n]}n≥1. Denote errors of the

G-propagator by

en = q(Tn)− q0n, ėn = q̇(Tn)− q̇0n, En = q
(

tn + c1∆t
)

−
(

q0n +∆tc1q̇
0
n

)

.

According to the scheme (2.4) of the G-propagator and the variation-of-constants for-

mula (2.2), it is easy to have the error equations

En = en + c1∆tėqn + ∆̂n1,

en+1 = en +∆tėqn +∆t2b̄1
(

F
(

q(tn + c1∆t)
)

− F 0
n,∆t

)

+ δ̂n+1,

ėn+1 = ėn +∆tb1
(

F
(

q(tn + c1∆t)
)

− F 0
n,∆t

)

+ δ̂′n+1

(3.11)

with tn = n∆t, F 0
n,∆t = F (q0n + ∆tc1q̇

0
n), the initial values e0 = 0, ė0 = 0 and the local

errors

‖∆̂n1‖2 ≤ C∆t2, ‖δ̂n+1‖2 ≤ C∆t3, ‖δ̂′n+1‖2 ≤ C∆t3, (3.12)

which are derived in the same way as (3.5).

The last two formulae of (3.11) immediately imply

‖en+1‖2 ≤ ‖en‖2 +∆t‖ėn‖2 +∆t2
∥

∥F
(

q(tn + c1∆t)
)

− F 0
n,∆t

∥

∥

2
+ ‖δ̂n+1‖2,

‖ėn+1‖2 ≤ ‖ėn‖2 +∆t
∥

∥F
(

q(tn + c1∆t)
)

− F 0
n,∆t

∥

∥

2
+ ‖δ̂′n+1‖2.
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Combining these two results, it is arrived that

‖en+1‖2 + ‖ėn+1‖2 ≤ ‖en‖2 + ‖ėn‖2 +∆t‖ėn‖2 +∆t(1 + ∆t)C‖En‖2
+ ‖δ̂n+1‖2 + ‖δ̂′n+1‖2. (3.13)

Meanwhile, from the first formula of (3.11) it follows that

‖En‖2 ≤ ‖en‖2 + c1∆t‖ėn‖2 + ‖∆̂n1‖2. (3.14)

Inserting (3.14) into (3.13) gives

‖en+1‖2 + ‖ėn+1‖2 ≤ ‖en‖2 + ‖ėn‖2 +∆t‖ėn‖2
+∆t(1 + ∆t)C

(

‖en‖2 + c1∆t‖ėn‖2 + ‖∆̂n1‖2
)

+ ‖δ̂n+1‖2 + ‖δ̂′n+1‖2,

which can be simplified as

‖en+1‖2 + ‖ėn+1‖2 ≤
(

1 + ∆t(1 + (1 + ∆t)C)
)(

‖en‖2 + ‖ėn‖2
)

+ ‖δ̂n+1‖2 + ‖δ̂′n+1‖2 +∆t(1 + ∆t)C‖∆̂n1‖2. (3.15)

By the local error bounds (3.12), there holds

‖δ̂n+1‖2 + ‖δ̂n+1‖2 +∆t(1 + ∆t)C‖∆̂n1‖2 ≤ C∆t3.

Using the Gronwall inequality, we find that

‖en+1‖2 + ‖ėn+1‖2 ≤ exp
(

n∆t(1 + (1 + ∆t)C)
)

Cn∆t3,

which proves (3.10) for j = 0.

In what follows, we prove the result (3.10) for j + 1 under the assumption that

(3.10) is true for j. With the previous preparations, the errors can be expressed as
[

qj+1
n+1; q̇

j+1
n+1

]

−
[

q(Tn+1); q̇(Tn+1)
]

= GTn+1

Tn

([

qj+1
n ; q̇j+1

n

])

+FTn+1

Tn

([

qjn; q̇
j
n

])

− GTn+1

Tn

([

qjn; q̇
j
n

])

− ETn+1

Tn

(

[q(Tn); q̇(Tn)]
)

with the notations

GTn+1

Tn
:= GTn+m∆t

Tn+(m−1)∆t ◦ · · · ◦ G
Tn+2∆t
Tn+∆t ◦ GTn+∆t

Tn
, m =

∆T

∆t
,

FTn+1

Tn
:= FTn+mδt

Tn+(m−1)δt ◦ · · · ◦ F
Tn+2δt
Tn+δt ◦ FTn+δt

Tn
, m =

∆T

δt
.

The above expression can be further split as
[

qj+1
n+1; q̇

j+1
n+1

]

−
[

q(Tn+1); q̇(Tn+1)
]

= GTn+1

Tn

([

qj+1
n ; q̇j+1

n

])

− GTn+1

Tn

(

[q(Tn); q̇(Tn)]
)
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+
(

ETn+1

Tn
− GTn+1

Tn

)

([

qjn; q̇
j
n

])

−
(

ETn+1

Tn
− GTn+1

Tn

)

(

[q(Tn); q̇(Tn)]
)

−
(

ETn+1

Tn
−FTn+1

Tn

)

([

qjn; q̇
j
n

])

+
(

ETn+1

Tn
−FTn+1

Tn

)

(

[q(Tn); q̇(Tn)]
)

−
(

ETn+1

Tn
−FTn+1

Tn

)

(

[q(Tn); q̇(Tn)]
)

= GTn+1

Tn

([

qj+1
n ; q̇j+1

n

])

− GTn+1

Tn

(

[q(Tn); q̇(Tn)]
)

− eG
n,∆T

∆t

([

qjn; q̇
j
n

])

+ eG
n,∆T

∆t

(

[q(Tn); q̇(Tn)]
)

+ eF
n,∆T

δt

( [

qjn; q̇
j
n

] )

− eF
n,∆T

δt

(

[q(Tn); q̇(Tn)]
)

+ eF
n,∆T

δt

(

[q(Tn); q̇(Tn)]
)

.

With the stability and boundedness derived above, we could obtain

∥

∥

∥

[

qj+1
n+1; q̇

j+1
n+1

]

−
[

q(Tn+1); q̇(Tn+1)
]

∥

∥

∥

2

≤
∥

∥

∥
GTn+1

Tn

([

qj+1
n ; q̇j+1

n

])

− GTn+1

Tn

(

[q(Tn); q̇(Tn)]
)

∥

∥

∥

2

+

∥

∥

∥

∥

eG
n,∆T

∆t

([

qjn; q̇
j
n

])

− eG
n,∆T

∆t

(

[q(Tn); q̇(Tn)]
)

∥

∥

∥

∥

2

+
∥

∥

∥eF
n,∆T

δt

([

qjn; q̇
j
n

])

− eF
n,∆T

δt

(

[q(Tn); q̇(Tn)]
)

∥

∥

∥

2

+
∥

∥

∥
eF
n,∆T

δt

(

[q(Tn); q̇(Tn)]
)

∥

∥

∥

2

≤ (1 + C∆t)
∥

∥

[

qj+1
n ; q̇j+1

n

]

−
[

q(Tn); q̇(Tn)
]∥

∥

2

+ C∆t3
∥

∥

[

qjn; q̇
j
n

]

−
[

q(Tn); q̇(Tn)
]∥

∥

2

+ C∆tδt2
∥

∥

[

qjn; q̇
j
n

]

−
[

q(Tn); q̇(Tn)
]∥

∥

2

+ C∆tδt2
∥

∥ [q(Tn); q̇(Tn)]
∥

∥

2
. (3.16)

The induction hypothesis

∥

∥

[

qjn; q̇
j
n

]

−
[

q(Tn); q̇(Tn)
]∥

∥

2
≤ C

(

∆t2j+2 + δt2
)(

1 + ‖[q0; q̇0]‖2
)

and the boundedness of [q(Tn); q̇(Tn)] further imply

∥

∥

∥

[

qj+1
n+1; q̇

j+1
n+1

]

−
[

q(Tn+1); q̇(Tn+1)
]

∥

∥

∥

2

≤ (1 + C∆t)
∥

∥

[

qj+1
n ; q̇j+1

n

]

−
[

q(Tn); q̇(Tn)
]∥

∥

2

+ C∆t
(

∆t2 + δt2
)(

∆t2j+2 + δt2
)(

1 + ‖[q0; q̇0]‖2
)

+ C∆tδt2‖[q0; q̇0]‖2.

If we require
(

∆t2 +∆t2j+2 + δt2
) (

1 + ‖[q0; q̇0]‖2
)

≤ 1,
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it is obtained that
∥

∥

∥

[

qj+1
n+1; q̇

j+1
n+1

]

−
[

q(Tn+1); q̇(Tn+1)
]

∥

∥

∥

2

≤ (1 + C∆t)
∥

∥

[

qj+1
n ; q̇j+1

n

]

− [q(Tn); q̇(Tn)]
∥

∥

2

+ C∆t
(

∆t2j+4 + δt2
)(

1 + ‖[q0; q̇0]‖2
)

,

which shows (3.10) for j + 1 in the light of the discrete Gronwall lemma.

Remark 3.2. We can also show the convergence in the sense of iterations. For conve-

nience, denote by

εjn :=
∥

∥

[

qjn; q̇
j
n

]

−
[

q(Tn); q̇(Tn)
]∥

∥

2
,

α := 1 + C∆t, β := C
(

∆t3 +∆tδt2
)

,

γ := C∆tδt2, η := C∆t3.

We have the recurrence inequality according to (3.16) and (3.15)

εj+1
n+1 ≤ αεj+1

n + βεjn + γ, ε0n+1 ≤ αε0n + η, j = 0, 1, . . . , n = 0, 1, . . . , T/∆T − 1.

The above relation can be solved by introducing a sequence of generating functions

ρj(ξ) =
∑∞

n=1 ε
j
nζn (0 < ξ < 1), which is induced as the following bound [15]:

εjn ≤ Cj+1
n αn−j−1βjη + Cn−1

n (α+ β)n−1γ, j = 0, 1, . . . .

Thus it yields for j ≤ n that

∥

∥

[

qjn; q̇
j
n

]

−
[

q(Tn); q̇(Tn)
]∥

∥

2

≤ Cj+1
n (1 + C∆t)n−j−1

(

C(∆t3 +∆tδt2)
)j (

C∆t3
)

+ Cn−1
n

(

1 + C(∆t+∆t3 +∆tδt2)
)n−1 (

C∆tδt2
)

≤ C(n∆t3)j+1eC(n−j−1)∆t

(j + 1)!
+ Cn∆tδt2eCn∆t.

Furthermore, if j ≥ n, it shows

∥

∥

[

qjn; q̇
j
n

]

−
[

q(Tn); q̇(Tn)
]∥

∥

2
≤ Cn∆tδt2eCn∆t

since the fact that [qj0; q̇
j
0] ≡ [q(0); q̇(0)].

3.2.4. Convergence for the algorithm with projection

In this part, it is shown that the projection πM (2.12) does not deteriorate the conver-

gent order. To this end, we first assume that the parareal-RKN algorithm introduced in

the first formula of (2.14) has the following accuracy:

[

qjn+1; q̇
j
n+1

]

=
[

q̃jn; ˙̃q
j
n

]

+O(∆tr). (3.17)
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Then we show that after the projection πM, the accuracy is not deteriorated, i.e.,

[

q̃jn+1;
˙̃qjn+1

]

:= πM
[

qjn+1; q̇
j
n+1

]

=
[

qjn+1; q̇
j
n+1

]

+O(∆tr). (3.18)

Here and in the rest of this subsection, the constant in the O-notation is independent

of n. Inserting (3.17) into the energy function leads to

H
(

qjn+1, q̇
j
n+1

)

= H
(

q̃jn, ˙̃q
j
n

)

+O(∆tr). (3.19)

Meanwhile, if we consider (2.13) for the energy function, the following result is ob-

tained:

H
(

qjn+1, q̇
j
n+1

)

= H
(

[q̃jn+1;
˙̃qjn+1]− λ∇H

)

= H
(

q̃jn+1,
˙̃qjn+1

)

+O(λ). (3.20)

Noticing H(q̃jn, ˙̃q
j
n) = H(q̃jn+1,

˙̃qjn+1) and comparing (3.19) and (3.20), we have

λ = O(∆tr),

which implies (3.18) by combining (2.13). The proof for EPPRKN2 is complete.

4. Numerical experiments

In this section, to demonstrate the performance of the derived methods, we present
three numerical experiments. For our schemes, we consider the following settings:

• EPPRKN2: choose j = 1,∆T = ∆t and δt = ∆t2 and then its accuracy is O(∆t4).

• EPPRKN3: consider j = 1,∆T = ∆t and δt = ∆t2 and then its accuracy is O(∆t6).

• EPPRKN2-3: consider j = 2,∆T = ∆t and δt = ∆t2 and then its accuracy is O(∆t6).

In the following experiments, we uniformly denote h := ∆t.

Problem 1. For computing the motion of two bodies which attract each other, we

consider the system

q̈1(t) = − q1(t)

(q21(t) + q22(t))
3/2

, q1(0) = 1− e, q′1(0) = 0,

q̈2(t) = − q2(t)

(q21(t) + q22(t))
3/2

, q2(0) = 0, q′2(0) =

√

1 + e

1− e
, t ∈ [0, T ]

with e = 0.6. The Hamiltonian function of the system is given by

H(p, q) =
1

2

(

p21 + p22
)

− 1
√

q21(t) + q22(t)
.

We first solve this problem with different step sizes h = 1/(2i), i = 2, 3, . . . , 6, and

present the global error

err := ‖q̃jn − q(tn)‖2/‖q(tn)‖2 + ‖ ˙̃qjn − q̇(tn)‖2/‖q̇(tn)‖2
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Figure 1: Problem 1: The logarithm of the relative errors err against the logarithm of h for different ε.

at different t = tn in Fig. 1. Then this problem is integrated with the step size h = 0.01
and Fig. 2 presents the energy error

errH := H
(

q̃jn, ˙̃q
j
n

)

−H
(

q(0), q̇(0)
)

for different methods. For comparison, here we consider the method EPPRKN2 with-

out using the projection method and denote it by EPPRKN2-W. Finally, to show the

convergence for different iterations j, we consider a very small step size for the fine

propagator used in EPPRKN2-3 such that the error brought by the fine propagator can

be ignored. The errors for this EPPRKN2-3 with ∆t = 0.1 and different j are displayed

in Fig. 3.

Problem 2. We consider a Fermi-Pasta-Ulam problem discussed by Hairer et al.

in [16]. The motion is described by a Hamiltonian system with total energy

H(y, x) =
1

2

2m
∑

i=1

y2i +
ω2

2

m
∑

i=1

x2m+i

+
1

4

[

(x1 − xm+1)
4 +

m−1
∑

i=1

(xi+1 − xm+i−1 − xi − xm+i)
4 + (xm − x2m)4

]

,
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Figure 2: Problem 1: The energy errors errH against t.
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Figure 3: Problem 1: The logarithm of the relative errors err against different iterations j.

where xi represents a scaled displacement of the i-th stiff spring, xm+i is a scaled

expansion (or compression) of the i-th stiff spring, and yi, ym+i are their velocities (or

momenta). The corresponding Hamiltonian system is
{

x′ = Hy(y, x),

y′ = −Hx(y, x),
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Figure 4: Problem 2: The logarithm of the relative errors err against the logarithm of h for different ε.

which is equivalent to x′′ = −Hx(y, x). This leads to

x′′(t) +Mx(t) = −∇U(x), t ∈ [0, T ],

where

M =

(

0m×m 0m×m

0m×m ω2Im×m

)

,

and

U(x) =
1

4

[

(x1 − xm+1)
4 +

m−1
∑

i=1
(xi+1 − xm+i−1 − xi − xm+i)

4 + (xm − x2m)4
]

.

For this test, we consider m = 3, ω = 5 and the initial values x(0) = [1, 0, 0, 0.2, 0, 0],
y(0) = [1, 0, 0, 1, 0, 0]. This problem is firstly solved with different step sizes h = 1/(2i),
i = 4, 5, . . . , 8, and the global errors are shown in Fig. 4. Then we display the energy

conservation of different methods in Fig. 5 with the step size h = 0.01.

Problem 3. Consider a nonlinear wave equation










∂2u

∂t2
− ∂2u

∂x2
= −1

5
u3 − 1

10
u2, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, u(x, 0) =
sin(πx)

2
, ut(x, 0) = 0.
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Figure 5: Problem 2: The energy errors errH against t.

By using second-order symmetric differences, this problem is converted into a system

in time














∂2ui
∂t2

− ui+1 − 2ui + ui−1

∆x2
= −1

5
u3i −

1

10
u2i , 0 < t ≤ T,

ui(0) =
sin(πxi)

2
, u

′

i(0) = 0, i = 1, . . . , N − 1,

where ∆x = 1/N is the spatial mesh step and xi = i∆x. This semi-discrete oscillatory

system has the form















∂2U

∂t2
+MU = F (t, U), 0 < t ≤ T ,

U(0) =

(

sin(πx1)

2
, . . . ,

sin(πxN−1)

2

)T

, U ′(0) = 0,
(4.1)

where U(t) = (u1(t), . . . , uN−1(t))
T with ui(t) ≈ u(xi, t), i = 1, . . . , N − 1, and

F (t, U) = F (t, U) =

(

−1

5
u31 −

1

10
u21, . . . ,−

1

5
u3N−1 −

1

10
u2N−1

)T

,
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M =
1

∆x2















2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2















. (4.2)

The Hamiltonian of (4.1) is given by

H(U ′, U) =
1

2
U ′TU ′ +

1

2
UTMU +G(U),

where

G(U) =

(

1

20
u41 +

1

30
u31, . . . ,

1

20
u4N−1 +

1

30
u3N−1

)T

.

In this test we take N = 16 and present the errors in Fig. 6 with h = 1/(2i),
i = 3, 4, . . . , 6. The energy conservation is demonstrated in Fig. 7 with h = 0.01.

From the results presented in these problems, we have the following observations:

a) In terms of accuracy, it can be observed that the global error lines of our methods

EPPRKN2 and EPPRKN3, EPPRKN2-3 are respectively nearly parallel to the lines
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Figure 6: Problem 3: The logarithm of the relative errors err against the logarithm of h for different ε.
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Figure 7: Problem 3: The energy errors errH against t.

of slope four and six. This indicates that they have the convergence as stated in

Theorem 3.2.

b) From the energy conservation, it is clear that our methods can preserve the energy

exactly while the method EPPRKN2-W without using the projection method does

not have such nice property.

5. Conclusions

Hamiltonian systems quite frequently arise in many applications and the design and

analysis of numerical schemes for such systems has received a great deal of attention in

the last few decades. In this paper we paid our attention to the analysis and construc-

tion of the energy-preserving parareal-RKN algorithms for solving the Hamiltonian sys-

tem (1.2). We formulated a kind of parareal algorithms by using Runge-Kutta-Nyström

(RKN) methods and projection methods. The energy conservation and convergence

were analyzed in detail. Three of the algorithms were presented as examples to show

the efficiency and robustness by three numerical experiments.
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