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Abstract. This study aims to investigate the polar decomposition of tensors with

the Einstein product for the first time. The polar decomposition of tensors can be
computed using the singular value decomposition of the tensors with the Einstein

product. In the following, some iterative methods for finding the polar decomposi-

tion of matrices have been developed into iterative methods to compute the polar
decomposition of tensors. Then, we propose a novel parametric iterative method to

find the polar decomposition of tensors. Under the obtained conditions, we prove

that the proposed parametric method has the order of convergence four. In every
iteration of the proposed method, only four Einstein products are required, while

other iterative methods need to calculate multiple Einstein products and one tensor
inversion in each iteration. Thus, the new method is superior in terms of efficiency

index. Finally, the numerical comparisons performed among several well-known

methods, show that the proposed method is remarkably efficient and accurate.
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1. Introduction

Throughout this study, matrices are denoted by uppercase letters A,B, . . . , and

tensors are written in calligraphic font A,B, . . . . Tensors occur in a wide variety of ap-

plication areas such as in document analysis, psychometrics, formulation an n-person

noncooperative game, medical engineering, chemometrics, higher-order, and so on

[6, 15, 18, 24, 25]. Suppose that N is a positive integer, an N -th order tensor A =
(ai1...iN )1≤ij≤Pj

is a multidimensional array with P1 . . . PN entries. The tensor A is
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called a hyper-matrix or the tensor is the higher-order generalization of vectors and

matrices.

In the following, we give some definitions of tensors and the Einstein product which

are used in the body of this manuscript [3,4,12,13,20].

Definition 1.1 ([5]). Let N and M be positive integers, also A ∈ R
P1×···×PN×Q1×···×QN

and B ∈ R
Q1×···×QN×K1×···×KM are tensors. Then the Einstein product of A and B is

defined as follows:

(A ∗N B)p1...pNk1...kM :=

QN∑

qN

· · ·
Q1∑

q1

ap1...pNq1...qN bq1...qNk1...kM , (1.1)

therefore, A ∗N B ∈ R
P1×···×PN×K1×···×KM .

Note that if N = M = 1, the Einstein product reduces to the standard matrix

multiplication.

Definition 1.2 ([5]). Let A ∈ R
P1×···×PN×Q1×···×QN be a tensor, then transpose and

Frobenius norm of the tensor A are defined as follows:

(AT )p1...pNq1...qN := (A)q1...qNp1...pN ,

and

‖A‖ :=

√
∑

q1...qN ,p1...pN

(aq1...qNp1...pN )
2,

respectively.

Definition 1.3. A tensor A ∈ R
P1×···×PN×Q1×···×QN is a symmetric tensor if A = AT , it

means

ap1,p2,...,pn,q1,q2,...,qn = aq1,q2,...,qn,p1,p2,...,pn .

Definition 1.4 ([5]). A tensor A ∈ R
P1×···×PN×P1×···×PN is said to be a diagonal tensor

if ap1...pNq1...qN = 0 for pl 6= ql, l = 1, . . . , N . A diagonal tensor I ∈ R
P1×···×PN×P1×···×PN

is identity if

ip1...pNq1...qN = ΠN
k=1δplql ,

where

δplql =

{

1, pl = ql,

0, pl 6= ql.

Definition 1.5. A tensor A ∈ R
P1×···×PN×Q1×···×QN is an orthogonal tensor if

AT ∗N A = I.
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Definition 1.6. For A ∈ R
P1×···×PN×P1×···×PN , a tensor B ∈ R

P1×···×PN×P1×···×PN is

called inverse of A with Einstein product if

A ∗N B = I,

therefore A−1 = B.

The literature on the tensors is large and still growing. Miao et al. [22] investigated

the tensor similarity and proposed the T-Jordan canonical form and its properties. In

[21], a semi-tensor product of matrices was proposed as a generalization of the usual

matrix product in the case where the dimensions of two-factor matrices do not match.

Also, the properties of the semi-tensor product of tensors and swap tensors based on

the Einstein product were studied. In 2021, He et al. [13] investigated and discussed in

detail the structures of the quotient singular value decomposition and product singular

value decomposition for two tensors. Mo and Wei proved that the multi-linear system

with strong Mz-tensors always has a nonnegative solution under certain conditions by

the fixed point theory. Also, it was proved that the zero solution is the only solution of

the homogeneous multi-linear system for some structured tensors, such as strong M-

tensors, H+-tensors, and strictly diagonally dominant tensors with positive diagonal

elements [23].

In the last years, many works have investigated tensors and their applications to

economic equilibrium problems. For example, Barbagallo and Guarino Lo Bianco stud-

ied variational inequalities defined on a class of structured tensors. Moreover, they

introduced the generalized tensor change inequalities in the Hilbert tensor space con-

taining the inner product between two tensors and used this new tool to analyze the

extension of the monopoly market equilibrium problem [2]. In [1], inverse tensor vari-

ational inequalities were introduced and analyzed for their application to an economic

control equilibrium model.

One of the most important and practical matrix decompositions is the polar de-

composition of the matrix, for which various numerical methods have long been pro-

posed [7, 10, 16, 19]. In this study, we present the polar decomposition of the tensors

with the Einstein product. Suppose that A ∈ R
P1×···×PN×Q1×···×QN is a tensor, then the

polar decomposition A defined as follows:

A = U ∗N H,

where H ∈ R
Q1×···×QN×Q1×···×QN is the symmetric tensor and U ∈ R

P1×···×PN×Q1×···×QN

is orthogonal tensor, such that

UT ∗N U = I.

We only need methods for finding the orthogonal coefficient of the tensor U because

the symmetric coefficient H can be obtained from the following formula:

H =
1

2

(
UT ∗N A+AT ∗N U

)
.
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2. Preliminaries

At first, we show that the polar decomposition of the tensor A can be computed

using the singular value decomposition of the tensor with the Einstein product. For

this purpose, we give the singular value decomposition of a tensor in the following

lemma [5,26].

Lemma 2.1 ([5]). Suppose that A ∈ R
P1×···×PN×Q1×···×QN , Pi ≥ Qi, for 1 ≤ i ≤ N , is

a tensor, the singular value decomposition of A has the form as follows:

A = V ∗N S ∗N WT , (2.1)

where V ∈ R
P1×···×PN×P1×···×PN and W ∈ R

Q1×···×QN×Q1×···×QN are orthogonal tensors

and S ∈ R
P1×···×PN×Q1×···×QN is a diagonal tensor its entries are called the singular

values of the tensor A.

Let V be a partition tensor of the form V = (V1,V2), where V1∈ R
P1×···×PN×Q1×···×QN

and V2 ∈ R
P1×···×PN×P1−Q1×···×PN−QN , also V1 is an orthogonal tensor, that means A

has the polar decomposition

A = U ∗N H,

where

U = V1 ∗N WT , H = W ∗N S ∗N WT .

Note that throughout this study X n means

n times
︷ ︸︸ ︷

X ∗N X ∗N · · · ∗N X .

In the following, we are interested in computing the polar decomposition of tensors

by iterative methods. There are several numerical methods for finding the polar de-

composition of matrices, and we review some of them for computing the polar decom-

position of tensors. Assume that A ∈ R
P1×Q1 is a nonsingular matrix, then the Kovaric

method (KM) for finding the polar decomposition of a matrix is as follows [17]:

Vk = UT
k Uk,

Kk = (I − Vk)(I + Vk)
−1,

Uk+1 = Uk(I +Kk), k ≥ 0,

(2.2)

where I is the identity matrix. Based on Newton’s method (NM) for finding a square

root of a positive number, Higham [14] presented another method for finding the fac-

tor U . The method is

Uk+1 =
1

2

(

Uk + U−T
k

)

, k ≥ 0. (2.3)

Using a simple modification of the iterative method (2.3) by Gander, the following

method was also presented (GM) [9]:

Uk+1 =
1

2
Uk

(
I + V −1

k

)
, k ≥ 0. (2.4)
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Like Newton’s method, we have the following cubically convergent Halley method

(HM) to obtain the factor U [8]:

Uk+1 = Uk(Vk + 3I)(3Vk + I)−1, k ≥ 0. (2.5)

Now, assume that A is a nonsingular tensor, then the Kovaric method to find the

polar decomposition of tensors is as follows:

Vk = UT
k ∗N Uk,

Kk = (I − Vk) ∗N (I + Vk)
−1,

Uk+1 = Uk ∗N (I +Kk), k ≥ 0.

(2.6)

The initial approximation used in the methods of this article to find the U factor is as

follows:

U0 = αA, α =
1

‖A‖+ 1
. (2.7)

Theorem 2.1. Suppose that A ∈ R
P1×···×PN×Q1×···×QN , Pi ≥ Qi, for 1 ≤ i ≤ N , is

an arbitrary tensor. Then the sequence of the tensor iterates {Uk}k≥0 generated by (2.6)

converges to the unitary factor U , for U0 = αA.

Proof. By using the singular value decomposition of the tensor A, we have

A = V ∗N S ∗N WT , (2.8)

where S = diag(S1,S2, . . . ,SQr), Qr = min{Q1, Q2, . . . , QN}, is a diagonal tensor, such

that

S1 ≥ S2 ≥ · · · ≥ SQr ≥ 0

are the singular values of tensor A, and V,W are orthogonal tensors. In the following,

we define the sequence of tensors

Dk =

(
Dk

0

)

= VT ∗N Uk ∗N W,

where Dk ∈ R

N times
︷ ︸︸ ︷

Qr × · · · ×Qr ×Q1×...×QN , and 0 ∈ R
P1−Qr×...×PN−Qr×Q1,...×QN . There-

fore, from (2.6), we can get

D0 = S,
Dk+1 = Dk ∗N

(
I + (I − D2

k) ∗N (I +D2
k)

−1
)
.

(2.9)

As D0 is a diagonal tensor with positive diagonal entries, it follows by induction that

sequence {Dk}k≥0 is defined as

Dk = diag
(

d
(k)
1 , d

(k)
2 , . . . , d

(k)
Qr

, 0, . . . , 0
)

.
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Note that (2.9) represents k uncoupled scalar iterations

d
(0)
i = Si, 1 ≤ i ≤ Qr,

d
(k+1)
i = d

(k)
i

(

1 +
(
1− d

(k)2

i

)(
1 + d

(k)2

i

)−1
)

.

Some algebraic manipulations give the following relation between d
(k+1)
i and d

(k)
i :

d
(k+1)
i − 1

d
(k+1)
i + 1

= −(d
(k)
i − 1)2

(d
(k)
i + 1)2

.

By repeating this step, we can get

d
(k+1)
i − 1

d
(k+1)
i + 1

= −
(

d
(0)
i − 1

d
(0)
i + 1

)2k+1

.

By taking d
(0)
i > 0, we have

lim
k→+∞

∣
∣
∣
∣
∣

d
(k+1)
i − 1

d
(k+1)
i + 1

∣
∣
∣
∣
∣
= 0,

that means

Dk → IQr
,

Dk →








IQr
∈ R

N times
︷ ︸︸ ︷

Qr × · · · ×Qr ×

N times
︷ ︸︸ ︷

Qr × · · · ×Qr 0 ∈ R

N times
︷ ︸︸ ︷

Qr × · · · ×Qr ×Q1−Qr×···×QN−Qr

0 ∈ R
P1−Qr×···×PN−Qr×

N times
︷ ︸︸ ︷

Qr × · · · ×Qr 0 ∈ R
P1−Qr×···×PN−Qr×Q1−Qr×···×QN−Qr








.

Then, we have limk→+∞ Uk = U , as a result H = UT ∗N A.

Theorem 2.2. Let A ∈ R
P1×···×PN×Q1×···×QN be an arbitrary tensor. Then the iterative

method generated by (2.6) has fourth order of convergence for finding the unitary factor U .

Proof. According to Theorem 2.1, the iterative method (2.6) transforms the singular

values of Uk as follows:

S(k+1)
i = S(k)

i

(

1 +
1− S(k)2

i

1 + S(k)2

i

)

, 1 ≤ i ≤ Qr,

and leaves the singular vectors invariant. Now, similar to the previous theorem, we can

obtain

S(k+1)
i − 1

S(k+1)
i + 1

= −
(
S(k)
i − 1

)2

(
S(k)
i + 1

)2
.
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Therefore, we have
∣
∣
∣
∣
∣

S(k+1)
i − 1

S(k+1)
i + 1

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

S(k)
i − 1

S(k)
i + 1

∣
∣
∣
∣
∣

2

.

This means the convergence order of the method (2.6) is two.

In the following, Newton’s method for computing the polar decomposition of ten-

sors is

Uk+1 =
1

2

(

Uk + U−T
k

)

, k ≥ 0. (2.10)

Also, Gander’s method is

Uk+1 =
1

2
Uk ∗N

(
I + V−1

k

)
, k ≥ 0, (2.11)

and finally, Hally’s method is as follows:

Uk+1 = Uk ∗N (Vk + 3I) ∗N (3Vk + I)−1, k ≥ 0. (2.12)

3. A new parametric iterative method

Most of the methods in the previous section are in the form

Uk+1 = Uk ∗N h
(
UT
k ∗N Uk

)
, k ≥ 0, (3.1)

where h(t) is a function. Using Lk = UT
k ∗N Uk, Uk = U−T

k ∗N Lk, and (3.1) can be

rewritten as

Uk+1 = U−T
k ∗N Lk ∗N h(Lk).

If limk→∞Lk ∗N h(Lk) → I, then Uk → U−T . To have Lk ∗N h(Lk) → I, 1 must be

a fixed point of the function

g(x) = xh(x2),

for example g(1) = 1. On the other hand, if

g(i)(x) = 0, i = 1, . . . , p− 1,

then the method is p-th order convergence.

For this purpose, we define a function as follows:

g(x) = ax+ bx3 + cx5 + dx7 + ex9.

By applying these relationships

g(1) = 1, g′(1) = 0, g′′(1) = 0, g′′′(1) = 0,

therefore, we have

a =
1

16
(35 + 16e), b = − 1

16
(35 + 64e), c =

3

16
(7 + 32e), d = − 1

16
(5 + 64e),
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finally, we can write

g(x) =
1

16
(35 + 16e)x − 1

16
(35 + 64e)x3

+
3

16
(7 + 32e)x5 − 1

16
(5 + 64e)x7 + ex9. (3.2)

Now, we can find the fixed and critical points of g(x) as follows:

g(x) = x ⇒ x = 0, 1, 1 + ζ,

g′(x) = 0 ⇒ x = 1,

√
35 + 16e

12
√
e

,

where

ζ =

(

1 +
5

48e
− 6

(125 − 2160e + 27648e2 + 48
√
3
√
775e2 − 13824e3 + 110592e4)1/3

+
25

48e(125 − 2160e + 27648e2 + 48
√
3
√
775e2 − 13824e3 + 110592e4)1/3

+
(125 − 2160e + 27648e2 + 48

√
3
√
775e2 − 13824e3 + 110592e4)1/3

48e

)1/2

.

In the following, we show that [0, 1 + ζ] is the optimal range. Note that x = 0, 1 and

x =
√
35 + 16e/(12

√
e), 1+ ζ, are minimizers and maximizers of g(x) in [0, 1+ ζ]. Now,

we want [0, 1 + ζ] to be written to itself by the function g(x), for this we need

g

(√
35 + 16e

12
√
e

)

< g(1 + ζ) = 1 + ζ.

Then, we have 0.2 ≤ e ≤ 2, so for e ∈ [0.2, 2], we obtain

0 = g(0) ≤ g(x) ≤ g(1 + ζ) = 1 + ζ.

Fig. 1 shows y = x and the function (3.2), for several e. By choosing e = 3/2, we have

g(x) =
59

16
x− 131

16
x3 +

165

16
x5 − 101

16
x7 +

3

2
x9. (3.3)

Using the iteration function (3.3), we present the following iterative method to find

the factor U :

Uk+1 = Uk ∗N
(
59

16
I − 131

16

(
UT
k ∗N Uk

)
+

165

16

(
UT
k ∗N Uk

)2

− 101

16

(
UT
k ∗N Uk

)3
+

3

2

(
UT
k ∗N Uk

)4
)

. (3.4)
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Figure 1: Plot y = x and g(x) for several e.

Now, we prove that the method (3.4) is fourth-order convergent. So, the iterative

method (3.4) can be written as follows:

Vk = UT
k ∗N Uk, Wk = V2

k ,

Uk+1 = Uk ∗N
(
59

16
I − 131

16
Vk +

165

16
Wk +Wk ∗N

(
3

2
W − 101

16
Vk

))

, k ≥ 0.
(3.5)

Theorem 3.1. Suppose that A ∈ R
P1×···×PN×Q1×···×QN is an arbitrary tensor. Then the

sequence of the tensor iterates {Uk}k≥0 generated by (3.4) converges to the unitary factor

U , for U0 = αA.

Proof. Similar to Theorem 2.1 for the method (3.4), we have

D0 = S,

Dk+1 = Dk ∗N
(
59

16
I − 131

16
D2

k +
165

16
D4

k +
3

2
D6

k −
101

16
D8

k

)

.
(3.6)

Again, it follows by induction that the sequence {Dk}k≥0 is defined as

Dk = diag
(

d
(k)
1 , d

(k)
2 , . . . , d

(k)
Qr

, 0, . . . , 0
)

,

therefore, we have

d
(0)
i = Si, 1 ≤ i ≤ Qr,

d
(k+1)
i =

59

16
d
(k)
i − 131

16
d
(k)3

i +
165

16
d
(k)5

i +
3

2
d
(k)7

i − 101

16
d
(k)9

i .

Some algebraic manipulations give the following relation between d
(k+1)
i and d

(k)
i

d
(k+1)
i − 1

d
(k+1)
i + 1

= −
(

d
(k)
i − 1

)4
(

1 +
5

16
d
(k)
i − 19

4
d
(k)2

i − 139

16
d
(k)3

i − 6d
(k)4

i − 3

2
d
(k)5

i

)
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×
((

d
(k)
i + 1

)4
(

1− 5

16
d
(k)
i − 19

4
d
(k)2

i +
139

16
d
(k)3

i − 6d
(k)4

i +
3

2
d
(k)5

i

))−1

,

by repeating this step, we can get

d
(k+1)
i − 1

d
(k+1)
i + 1

= −
(

d
(0)
i − 1

d
(0)
i + 1

)4k+1

G
(

d
(k)
i , d

(k−1)
i , . . . , d

(0)
i

)

.

Considering G(d
(k)
i , d

(k−1)
i , . . . , d

(0)
i ) < 1 and d

(0)
i > 0, we have

lim
k→+∞

∣
∣
∣
∣
∣

d
(k+1)
i − 1

d
(k+1)
i + 1

∣
∣
∣
∣
∣
= 0.

Finally, like Theorem 2.1, we can obtain limk→+∞ Uk = U , as a result, H = UT ∗NA.

Theorem 3.2. Let A ∈ R
P1×···×PN×Q1×···×QN be an arbitrary tensor. Then the iterative

method generated by (3.4) has fourth order of convergence for finding the unitary factor U .

Proof. According to Theorem 3.1, the iterative method (3.4) transforms the singular

values of Uk as follows:

S(k+1)
i =

59

16
S(k)
i − 131

16
S(k)3

i +
165

16
S(k)5

i +
3

2
S(k)7

i − 101

16
S(k)9

i , 1 ≤ i ≤ Qr,

and leaves the singular vectors invariant. Now, similar to the previous theorem, we can

obtain

S(k+1)
i − 1

S(k+1)
i + 1

= −
(

S(k)
i − 1

)4
(

1 +
5

16
S(k)
i − 19

4
S(k)2

i − 139

16
S(k)3

i − 6S(k)4

i − 3

2
S(k)5

i

)

×
((

S(k)
i + 1

)4
(

1− 5

16
S(k)
i − 19

4
S(k)2

i +
139

16
S(k)3

i − 6S(k)4

i +
3

2
S(k)5

i

))−1

.

Therefore, we have

∣
∣
∣
∣
∣

S(k+1)
i − 1

S(k+1)
i + 1

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

S(k)
i − 1

S(k)
i + 1

∣
∣
∣
∣
∣

4 ∣
∣
∣
∣
1 +

5

16
S(k)
i − 19

4
S(k)2

i − 139

16
S(k)3

i − 6S(k)4

i − 3

2
S(k)5

i

∣
∣
∣
∣

×
∣
∣
∣
∣
1− 5

16
S(k)
i − 19

4
S(k)2

i +
139

16
S(k)3

i − 6S(k)4

i +
3

2
S(k)5

i

∣
∣
∣
∣

−1

.

This means the convergence order of the method (3.4) is four.
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4. Efficiency index

In this section, we want to analyze the efficiency index (EI) of the new parametric

method. Since a high-speed method may cost a lot, we have to define the efficiency

index for the proposed methods. Therefore, to get better implementation times when

solving problems, the most important goal is to create a theoretical discussion on prac-

tical issues. In [11], the efficiency index of iterative methods for finding the polar

decomposition of matrices was presented. In the following, similarly, we generalize the

efficiency index of iterative methods for calculating the polar decomposition of tensors

with the Einstein product.

Definition 4.1. The efficiency of iterative methods to find U is defined as follows:

EI = O
1

s(m+2c) , (4.1)

where s,m, and c, show the whole number of iterations needed to obtain U , the number

of the Einstein products and the tensor inversion in every cycle, respectively. Also, O is the

order of convergence methods.

Note that to obtain a fair comparison, if the cost of m is β, then the cost of c would

be more than 2β.

Now, the approximate value EI for the proposed methods would be in Table 1,

wherein si, is all the number of iterations required for the convergence of the methods,

respectively, in the same environment. For example, if si for the method KM is s, then

for the method HM is (2/3)s. Fig. 2 shows γ = EI − 1 of each method for different

dimensions.
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Figure 2: The EI of several methods for various s.
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Table 1: The process of calculating the EI .

Method si m c O EI

KM s 3 1 2 21/5s

NM s 0 1 2 21/2s

GM s 2 1 2 21/4s

HM (2/3)s 3 1 3 33/10s

JM (1/2)s 4 0 4 41/2s

The EI supports the superiority of the new method for solving some numerical

examples in the next section.

5. Numerical experiments

In this section, we give some numerical experiments to illustrate the performance

of the proposed methods. All of the programs have been done in Matlab code. We

compare our method, denoted by JM, which is free from tensor inversion computa-

tion, with several well-known iterative methods such as KM, NM, GM, and HM, which

require an inversion per iteration. The stopping criterion is as follows:

Res =
‖Uk+1 − Uk‖

‖Uk+1‖
< 10−10.

Example 5.1. In the first example, we consider the behavior of the mentioned iterative

methods with the tensor A ∈ R
3,3,3,3 as follows:

A(:, :, 1, 1) =





0.0301 0.4130 0.4640
0.3292 0.2561 −0.1517
0.1736 −0.3315 0.0985



 ,

A(:, :, 2, 1) =





0.2314 −0.0370 −0.0436
0.3708 −0.3331 −0.3722
−0.1666 −0.0336 0.1399



 ,

A(:, :, 3, 1) =





0.3965 −0.2051 −0.4733
−0.0726 −0.4413 0.0505
−0.3242 −0.4398 0.0631



 ,

A(:, :, 1, 2) =





−0.1954 0.4398 0.2892
0.2545 −0.0148 0.0712
0.1711 0.0181 0.2665



 ,

A(:, :, 2, 2) =





0.4202 −0.0343 0.1776
−0.2897 0.1167 −0.4827
0.1081 −0.2969 −0.2734



 ,
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A(:, :, 3, 2) =





0.4145 −0.4316 0.4666
0.2684 −0.3004 0.3322
0.0333 −0.4880 −0.0547



 ,

A(:, :, 1, 3) =





0.4905 −0.3694 −0.1762
0.2943 −0.2878 0.2388
−0.0114 0.3311 −0.3401



 ,

A(:, :, 2, 3) =





0.2315 −0.3783 −0.2305
−0.4463 0.4840 −0.0680
0.2144 0.0931 0.4305



 ,

A(:, :, 3, 3) =





0.0079 −0.0508 0.0313
−0.4359 −0.3528 −0.4121
0.1591 0.2752 0.4005



 ,

and the obtained factor U is

U(:, :, 1, 1) =





0.0226 0.2854 0.0423
0.4577 0.1772 −0.2263
0.6499 −0.4446 0.0631



 ,

U(:, :, 2, 1) =





0.1765 −0.1499 0.0219
0.5411 −0.1323 −0.5822
−0.4477 0.1026 0.2928



 ,

U(:, :, 3, 1) =





0.3345 0.1279 −0.5839
−0.1235 −0.3842 0.1380
−0.1758 −0.5415 0.1575



 ,

U(:, :, 1, 2) =





0.2649 0.6728 0.3542
0.0372 −0.0504 0.3170
−0.1249 0.2145 0.4309



 ,

U(:, :, 2, 2) =





0.5492 0.1636 0.2932
−0.4138 0.1557 −0.4471
−0.0851 −0.1565 −0.3981



 ,

U(:, :, 3, 2) =





0.2048 −0.5080 0.6010
0.1048 −0.2437 0.3338
0.0130 −0.3865 0.0865



 ,

U(:, :, 1, 3) =





0.5650 −0.1265 −0.2104
0.3182 −0.2025 0.2146
0.3120 0.4742 −0.3315



 ,
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U(:, :, 2, 3) =





0.3444 −0.3486 −0.1829
−0.2186 0.5791 0.0241
0.1600 0.0827 0.5570



 ,

U(:, :, 3, 3) =





−0.0696 −0.0678 0.0805
−0.3870 −0.5839 −0.3639
0.4475 0.2168 0.3371



 .

Also, the tensor A ∈ R
5,5,5,5 is

A(:, :, 1, 1) =









0.2513 0.3087 0.3598 0.4061 0.3053
−0.3611 0.1329 0.1270 −0.4227 0.0308
−0.1507 0.1884 −0.3194 −0.1615 −0.2727
−0.3487 0.1396 0.0733 0.0806 0.2095
−0.0033 0.2293 −0.3364 −0.0248 −0.3514









,

A(:, :, 2, 1) =









0.1581 −0.3504 −0.4743 0.3964 −0.3921
0.1340 −0.2973 0.4711 −0.3110 −0.3211
−0.2707 0.4550 −0.2024 0.1607 0.2466
−0.3178 −0.4841 0.0251 0.4412 −0.4505
−0.3336 0.4575 0.3623 0.4757 −0.4287









,

A(:, :, 3, 1) =









−0.0109 0.3613 −0.3825 −0.3305 0.3679
0.3499 0.4091 0.0090 0.3837 0.2415
0.4970 0.3454 −0.3312 −0.1121 −0.0521
−0.4956 0.3789 0.3311 −0.1174 0.2096
0.0426 0.2462 0.4280 −0.2285 0.4443









,

A(:, :, 4, 1) =









−0.3259 −0.1019 −0.2854 0.4226 0.4257
−0.2554 −0.3845 0.2910 −0.0077 0.3327
0.1409 −0.4197 0.1547 0.3340 −0.2406
0.3086 −0.1395 −0.4739 −0.3686 −0.2870
0.3534 0.3289 0.2858 0.2598 0.0223









,

A(:, :, 5, 1) =









−0.1026 −0.0096 −0.4470 0.0571 −0.3613
−0.0209 −0.0621 −0.4122 0.2198 0.3819
0.4939 0.2727 0.2980 −0.3896 0.4236
0.1045 0.2441 0.1556 −0.2834 −0.4872
0.4449 −0.0571 −0.4677 0.3110 −0.1228









,

A(:, :, 1, 2) =









−0.3322 0.4716 −0.4604 0.4554 −0.4950
0.0402 −0.1391 −0.0306 0.2242 0.2825
−0.3983 0.1442 −0.3499 0.0809 0.4269
−0.4607 −0.4321 0.4913 0.0403 −0.4917
0.4332 −0.2921 −0.0729 0.2054 0.3246









,
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A(:, :, 2, 2) =









0.2673 −0.3947 −0.0302 −0.2402 0.1423
0.4971 −0.2318 −0.2809 0.3781 0.0669
−0.2723 0.2638 0.4227 −0.3117 −0.1236
0.4195 0.3055 −0.1797 0.2592 −0.2875
0.1420 −0.3957 0.3575 −0.4683 0.2922









,

A(:, :, 3, 2) =









−0.3546 0.3382 −0.0111 0.0942 −0.2094
−0.0109 −0.3589 0.4714 −0.0014 0.0613
−0.4872 0.2322 −0.3875 0.0679 0.1333
−0.3134 0.1911 0.2432 −0.0735 0.4308
−0.0148 −0.4655 0.1385 −0.4238 0.4778









,

A(:, :, 4, 2) =









−0.4064 −0.0244 0.0908 0.0041 −0.0467
0.1617 0.1710 0.4122 0.2684 0.2374
0.1028 0.4596 −0.3989 −0.2170 0.0099
−0.0262 −0.4109 −0.2067 −0.2746 −0.1175
−0.1437 0.2977 −0.4484 −0.1687 0.4055









,

A(:, :, 5, 2) =









0.4653 0.4912 0.1894 0.3398 0.4494
0.1283 −0.2132 −0.4495 −0.3818 −0.2436
−0.3680 0.2062 −0.3156 −0.0896 0.4899
0.1183 0.0352 −0.4543 −0.3798 −0.1502
−0.1170 −0.3068 0.3850 0.0721 −0.2915









,

A(:, :, 1, 3) =









0.1658 −0.3337 −0.1270 −0.1407 0.1455
0.4733 −0.2687 0.3321 −0.4111 0.0135
0.1227 −0.4478 0.2538 −0.1583 0.3144
−0.4365 0.4018 0.1219 0.0487 −0.4028
−0.1265 0.2933 −0.1059 −0.0395 −0.0363









,

A(:, :, 2, 3) =









0.0898 0.3423 0.2567 0.3289 −0.3873
−0.3128 −0.0003 0.2961 0.3418 0.1483
0.1113 −0.0610 −0.2064 0.1652 −0.0192
−0.4481 −0.3509 −0.3848 0.4601 −0.4335
0.0757 −0.4717 −0.1249 0.4431 0.3978









,

A(:, :, 3, 3) =









−0.0028 −0.3664 −0.1185 −0.0575 −0.4801
0.2713 0.1385 −0.2000 −0.0458 −0.1582
−0.4396 −0.1151 −0.1599 0.4453 0.2660
−0.2375 0.2657 0.4189 −0.2809 −0.1572
0.1511 0.1529 −0.0437 0.3824 0.1188









,

A(:, :, 4, 3) =









−0.0470 −0.1573 −0.4016 −0.1355 −0.3665
−0.4898 −0.0067 0.1498 0.1762 0.1727
0.0991 0.2018 0.2641 −0.1242 −0.2974
0.1016 0.3878 0.4880 0.3635 0.3685
0.1494 −0.4449 −0.3747 −0.2080 0.2512









,
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A(:, :, 5, 3) =









−0.0806 0.1013 0.4251 0.0749 −0.4349
−0.4998 −0.1788 0.0053 −0.4535 0.4240
−0.3505 −0.2157 0.1276 −0.0775 0.0341
−0.2262 −0.0647 0.2193 −0.0323 −0.1332
0.3724 0.4038 −0.4761 −0.4774 −0.1361









,

A(:, :, 1, 4) =









−0.3486 −0.0133 0.3352 0.1246 −0.3759
−0.3504 −0.0352 0.1565 0.2282 −0.4972
−0.1492 −0.3687 0.4839 −0.0018 −0.3470
−0.1640 0.3864 0.4798 0.3498 0.0342
0.2840 0.1746 −0.2498 −0.3091 0.0106









,

A(:, :, 2, 4) =









−0.1148 −0.0517 −0.0327 0.3176 0.2653
−0.1894 −0.2559 0.4707 −0.0942 0.0745
−0.4964 0.3034 0.3412 −0.0337 0.4159
0.3152 0.3240 −0.4215 0.4515 −0.0046
0.1384 0.3522 −0.2624 0.4650 −0.3340









,

A(:, :, 3, 4) =









−0.1740 −0.3332 0.4984 −0.4259 0.1402
−0.2036 0.4474 0.4875 −0.1882 0.3032
0.0583 0.3111 −0.3499 0.3952 −0.2549
−0.4325 0.2105 0.4585 0.3348 −0.4359
−0.4310 0.4702 0.0305 −0.4977 −0.2369









,

A(:, :, 4, 4) =









−0.3973 −0.0794 −0.4707 −0.2511 −0.3351
−0.0163 −0.2162 0.2023 0.1525 0.3834
−0.0811 −0.4518 −0.4924 −0.1797 0.1665
−0.1187 −0.2808 0.1109 −0.3963 0.3477
0.3868 −0.2608 −0.0919 0.0356 0.2627









,

A(:, :, 5, 4) =









0.3070 0.0316 0.4043 −0.0312 0.0340
0.1330 0.3732 0.1302 0.0452 −0.0204
0.2104 −0.4455 0.4830 −0.3209 0.2937
0.1887 0.0004 0.0852 0.1345 −0.4073
−0.1791 −0.0672 0.3406 0.4630 0.3808









,

A(:, :, 1, 5) =









−0.4961 −0.1795 −0.4009 −0.3526 −0.4389
0.0115 0.1016 0.0110 0.2776 −0.2805
0.1785 0.4132 −0.3899 −0.1009 −0.4172
0.0657 0.1825 0.0453 0.3983 0.4504
−0.0215 0.4467 0.1888 −0.1930 −0.4836









,

A(:, :, 2, 5) =









−0.3853 0.0170 −0.4922 0.3393 0.3391
−0.4876 −0.2545 0.1027 −0.2376 0.4825
−0.2838 −0.3063 −0.0211 0.0142 0.1265
−0.4886 −0.4091 −0.1919 −0.0532 −0.3187
0.1424 −0.1316 0.2444 −0.1588 −0.3770









,



On Polar Decomposition of Tensors with Einstein Product and a Novel Iterative Parametric Method 85

A(:, :, 3, 5) =









0.0800 0.1785 0.4006 −0.0838 0.4514
−0.1715 −0.4443 0.3466 0.2288 −0.1540
−0.2318 −0.4659 −0.1043 −0.0935 −0.2098
0.0502 −0.2135 −0.3308 0.4518 0.3867
−0.3195 −0.4226 −0.0695 0.4120 −0.2900









,

A(:, :, 4, 5) =









−0.3691 −0.4213 0.2922 0.2118 0.0293
0.0205 0.4331 −0.1665 −0.3331 0.1265
0.4055 0.1029 0.1927 −0.0572 0.1808
−0.0975 −0.1225 −0.2962 0.1330 0.4232
−0.2842 0.1649 0.4587 0.4300 −0.3472









,

A(:, :, 5, 5) =









−0.0943 0.3058 0.1761 −0.2839 0.0697
−0.1875 −0.1736 0.3284 −0.4659 −0.1404
0.1939 0.0499 −0.3899 −0.0634 −0.4732
0.3907 −0.1112 −0.2208 0.4369 0.0004
−0.0093 0.3968 0.2676 −0.2379 0.3270









,

and again by applying the proposed methods, the factor U is obtained as follows:

U(:, :, 1, 1) =









0.2294 0.0844 0.1454 0.3714 0.1783
−0.0090 0.2134 0.1311 −0.2788 0.0631
−0.1289 0.1232 −0.2312 −0.3269 −0.4362
−0.2052 0.1485 0.1053 −0.0469 0.0934
0.1994 0.0110 −0.1894 0.1346 −0.2060









,

U(:, :, 2, 1) =









0.2831 −0.2572 −0.2128 0.1545 −0.2174
−0.0313 −0.2889 0.2900 −0.0665 −0.2317
−0.0449 0.3195 −0.0141 −0.0331 0.0796
−0.1717 −0.3445 0.1411 0.1043 −0.1287
−0.1254 0.2391 0.2706 0.1899 −0.1458









,

U(:, :, 3, 1) =









0.1329 0.2304 −0.1701 −0.1639 0.3100
0.0234 0.0633 −0.0533 0.3159 0.1369
0.2100 0.1724 −0.0714 −0.0699 0.0737
−0.4184 0.1839 0.1386 0.0075 0.1965
0.0981 0.3369 0.3017 −0.0070 0.285









,

U(:, :, 4, 1) =









−0.1267 −0.0987 −0.0837 0.4187 0.1559
−0.1063 −0.2833 0.1728 0.1295 0.2680
0.1530 −0.2273 −0.0130 0.2686 −0.2693
0.2633 0.1197 −0.1228 −0.2717 −0.1426
0.1236 0.2367 0.2398 0.1160 0.0502









,
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U(:, :, 5, 1) =









−0.1597 0.0645 −0.0431 −0.1642 −0.1460
−0.0895 −0.2363 −0.1480 0.0285 0.1385
0.3695 0.3159 0.1403 −0.3026 0.1005
0.0059 0.1941 0.1094 −0.2380 −0.3460
0.2171 −0.1072 −0.1881 0.3113 −0.1996









,

U(:, :, 1, 2) =









−0.2684 0.2930 −0.1414 0.3750 −0.0591
0.2486 −0.0122 −0.1685 0.0801 0.1969
−0.1538 −0.0282 −0.2241 0.0718 0.1782
0.0146 −0.2310 0.4298 0.3155 −0.2154
0.1531 −0.0871 −0.0474 0.0573 0.1007









,

U(:, :, 2, 2) =









0.1286 −0.3764 0.0956 −0.0423 0.0800
0.3112 −0.1617 −0.1615 0.1959 0.1596
−0.2735 0.2042 0.1329 −0.2767 −0.2008
0.1108 0.1030 −0.1239 0.2103 −0.1982
0.2319 −0.2015 0.2585 −0.2419 0.1380









,

U(:, :, 3, 2) =









−0.2788 0.2637 0.1050 0.0348 −0.2234
0.0955 −0.2627 0.4090 −0.1302 0.0599
−0.2175 0.2402 0.0355 0.0384 0.0105
−0.1493 0.2447 0.0676 −0.2437 0.2228
−0.1280 −0.3358 0.2193 −0.1305 0.1638









,

U(:, :, 4, 2) =









−0.2930 −0.1586 0.0750 0.1202 0.0563
0.0360 0.0733 0.1291 0.2268 0.0134
−0.0434 0.2310 −0.2069 −0.3173 0.0224
0.0068 −0.2252 −0.1935 −0.2233 −0.1099
−0.3093 0.2481 −0.3776 −0.1008 0.3627









,

U(:, :, 5, 2) =









0.1918 0.1189 0.1188 0.2538 0.1535
−0.2004 −0.1531 −0.3061 −0.0508 −0.2156
−0.0821 0.0367 −0.4258 −0.1296 0.4410
0.1216 0.2326 −0.1759 −0.1475 −0.1294
−0.1364 −0.0876 0.2264 −0.1319 −0.0819









,

U(:, :, 1, 3) =









0.0322 −0.1522 −0.1520 0.0481 0.0502
0.4251 −0.2281 0.1599 −0.2902 0.0146
0.1935 −0.3988 0.0127 −0.1278 0.1801
−0.2817 0.3503 −0.0404 0.1529 −0.1807
−0.1772 0.1045 −0.2053 −0.1220 0.0271









,

U(:, :, 2, 3) =









0.1562 0.1080 0.1547 0.1178 −0.3201
−0.1666 0.0734 0.1226 0.2062 0.0591
0.1697 −0.0316 −0.1439 0.1693 −0.0413
−0.3584 0.0058 −0.4912 0.2834 −0.2288
0.1103 −0.2560 −0.0501 0.1579 0.2024









,
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U(:, :, 3, 3) =









−0.0674 −0.2790 −0.0267 −0.1661 −0.1857
0.0183 0.0670 −0.2810 −0.0760 −0.0875
−0.4529 −0.0632 −0.1648 0.2337 −0.0585
−0.1785 0.2988 0.1005 −0.1982 −0.0989
−0.0033 0.1420 −0.0201 0.4507 0.2434









,

U(:, :, 4, 3) =









0.1265 −0.2466 −0.3476 0.1443 −0.0930
−0.4858 −0.0347 −0.0241 0.0110 0.1526
0.0868 0.0583 0.0057 −0.0807 −0.0479
0.1614 0.2710 0.2689 0.2609 0.1998
−0.2155 −0.2204 −0.1813 −0.0740 0.2807









,

U(:, :, 5, 3) =









0.1456 0.1018 0.3033 −0.0190 −0.3663
−0.2515 −0.2428 −0.1656 −0.1132 0.4384
−0.2031 −0.1261 0.1224 −0.0903 0.0940
−0.1117 −0.0784 0.0283 −0.0009 0.0693
0.0768 0.4281 −0.0971 −0.2734 −0.0243









,

U(:, :, 1, 4) =









−0.2886 −0.0859 0.2511 0.1798 −0.0266
−0.2510 −0.0649 0.0516 0.2295 −0.5907
0.0075 −0.1743 0.2089 −0.1055 −0.0345
−0.1728 0.1524 0.2410 0.1066 −0.0511
0.2875 0.1107 −0.0150 −0.1831 0.0402









,

U(:, :, 2, 4) =









−0.0880 0.0428 −0.0612 0.0188 0.2082
−0.0734 0.0514 0.3234 0.0151 0.0640
−0.3318 0.2065 0.1811 0.0518 0.4055
0.2067 0.2502 −0.2629 0.3134 0.0903
0.2347 0.2164 −0.1833 0.2153 −0.1033









,

U(:, :, 3, 4) =









−0.0992 −0.2307 0.3292 −0.2394 0.1550
−0.1517 0.1921 0.2620 0.0068 0.2256
0.0703 0.1474 −0.2785 0.2915 0.0298
−0.0507 0.1344 0.2990 0.1263 −0.3586
−0.1411 0.0205 0.0623 −0.2138 −0.2304









,

U(:, :, 4, 4) =









−0.0231 −0.2869 −0.1020 −0.2088 −0.1000
−0.0472 −0.0094 0.2767 0.0533 0.0942
0.0169 −0.3039 −0.4344 −0.2224 0.2470
0.0233 −0.1741 0.0445 −0.1701 0.2391
0.4754 −0.1552 0.0410 0.0024 0.0089









,

U(:, :, 5, 4) =









0.1250 0.1455 0.1505 −0.0071 −0.1267
−0.0370 0.3733 0.2343 0.0490 0.0815
−0.0568 −0.3091 0.2199 −0.4150 0.1070
0.2138 0.0512 0.1496 −0.0192 −0.2468
−0.2192 0.0149 0.3360 0.2651 0.1600









,
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U(:, :, 1, 5) =









−0.2684 0.0880 −0.2561 −0.0673 −0.4121
0.0858 0.1141 −0.0442 0.2404 −0.0370
−0.0130 −0.0125 −0.2816 −0.1739 −0.2377
0.1100 0.2594 −0.1603 0.2019 0.1085
−0.1449 0.2297 0.1558 −0.0937 −0.4098









,

U(:, :, 2, 5) =









−0.3102 0.0085 −0.3908 −0.0540 0.2507
−0.3707 0.0653 −0.0552 −0.1624 0.1307
−0.2765 −0.1392 0.1464 −0.1519 −0.0456
−0.3783 −0.1808 −0.1917 −0.0381 −0.2439
−0.0443 −0.1363 0.1611 −0.1097 −0.1501









,

U(:, :, 3, 5) =









−0.0428 0.0655 0.2593 −0.1831 0.2835
−0.0679 −0.4829 0.0032 0.2861 0.0487
−0.1260 −0.2217 −0.1121 −0.1395 −0.1341
−0.0571 −0.0958 0.0534 0.2305 0.1773
−0.3006 −0.1268 −0.0768 0.3748 −0.1518









,

U(:, :, 4, 5) =









−0.3705 −0.3514 0.2829 0.2440 −0.0095
0.0337 0.1465 −0.2274 −0.2460 0.1606
0.2760 0.0902 0.0789 −0.0728 0.1728
−0.1305 −0.0542 −0.1005 0.1710 0.3435
−0.0739 0.0023 0.2860 0.2186 −0.0303









,

U(:, :, 4, 5) =









−0.1659 0.1949 0.0391 −0.2956 0.0553
−0.1278 −0.1719 0.0209 −0.5045 −0.1588
0.1243 0.0618 −0.2336 −0.1003 −0.2327
0.2434 −0.0658 −0.0855 0.3020 −0.1194
0.1350 0.1785 0.1359 0.0297 0.3642









.

Fig. 3 shows the results of Example 5.1.

(a) (b)

Figure 3: The residual of the results of the iterative methods for (a) A ∈ R
3,3,3,3 and (b) A ∈ R

5,5,5,5 of
Example 5.1, respectively.
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Example 5.2. In this example, consider square matrices with sizes n = 10, 20 as fol-

lows:

• Hilbert matrix with entries aij = 1/(i + j − 1).

• Pascal matrix with entries ai1 = a1j = 1 and aij = ai−1,j + ai,j−1.

Figs. 4 and 5 display the results of Example 5.2.

(a) (b)

Figure 4: The residual of the results of the iterative methods for the Hilbert matrix with (a) n = 10 and
(b) n = 20, respectively.

(a) (b)

Figure 5: The residual of the results of the iterative methods for the Pascal matrix with (a) n = 10 and
(b) n = 20, respectively.

Example 5.3. As the last example, we consider the random tensor A ∈ R
n,n,n,n gener-

ated in Matlab code by

A = tenrand(n, n, n, n).

Fig. 6 represents the results of Example 5.3.
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(a) (b)

(c) (d)

Figure 6: The residual of the results of the iterative methods for random tensors with (a) n = 10, (b) n = 20,
(c) n = 30 and (d) n = 40 for Example 5.3, respectively.

6. Conclusions

In this paper, we have shown that the polar decomposition of the tensor can be

computed using the singular value decomposition of the tensor with the Einstein prod-

uct. Then several iterative methods for finding the polar decomposition of the matrices

have been developed into iterative methods to compute the polar decomposition of

tensors. Therefore, a novel iterative method for computation of the polar decomposi-

tion of the tensors was thoroughly proposed and investigated. It has been shown that

the proposed method is globally convergent of order four. Also, the new parametric

method was free from calculating the tensor inversion, while the other mentioned it-

erative methods needed to calculate the tensor inversion in each iteration. Thus, the

new method was superior in terms of efficiency index. Finally, we tested the presented

methods for calculating the U coefficient of the polar decomposition of a wide range of

random tensors with the Einstein product, and the new parametric method has excel-
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lent superiority in comparing the other well-known methods such as Kovarik method,

Newton method, Gander method, and Halley method.

Data Availability

The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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decomposition, SIAM J. Matrix Anal. Appl. 38 (2017), 1354–1379.
[11] F. K. HAGHANI AND F. SOLEYMANI, On a fourth-order matrix method for computing polar

decomposition, Comp. Appl. Math. 34 (2015), 389–399.

[12] M. HAJARIAN, Tensor Bi-CR methods for solutions of high order tensor equation accompa-

nied by Einstein product, Numer. Math. Theor. Meth. Appl. 14 (2021), 998–1016.

[13] Z.-H. HE, M. K. NG, AND C. ZENG, Generalized singular value decompositions for tensors

and their applications., Numer. Math. Theor. Meth. Appl. 14 (2021), 692–713.

[14] N. J. HIGHAM, Computing the polar decomposition-with applications, SIAM J. Sci. Stat.

Comput. 7 (1986), 1160–1174.



92 R. Erfanifar, M. Hajarian and K. Sayevand

[15] Z.-H. HUANG AND L. QI, Formulating an n-person noncooperative game as a tensor com-
plementarity problem, Comput. Optim. Appl. 66 (2017), 557–576.
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