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Abstract. In this paper, a direct arbitrary Lagrangian-Eulerian (ALE) discontinuous
Galerkin (DG) scheme is proposed for simulating compressible multi-material flows
on the adaptive quadrilateral meshes. Our scheme couples a conservative equation
related to the volume-fraction model with the Euler equations for describing the dy-
namics of the fluid mixture. The coupled system is discretized in the reference element
and we use a kind of Taylor expansion basis functions to construct the interpolation
polynomials of the variables. We show the property that the material derivatives of
the basis functions in the DG discretization are equal to zero, with which the scheme
is simplified. In addition, the mesh velocity in the ALE framework is obtained by us-
ing the adaptive mesh method from [H.Z. Tang and T. Tang, Adaptive mesh methods
for one-and two-dimensional hyperbolic conservation laws, SIAM J. NUMER. ANAL].
This adaptive mesh method can automatically concentrate the mesh nodes near the re-
gions with large gradient values and greatly reduces the numerical dissipation near
the material interfaces in the simulations. With the help of this adaptive mesh method,
the resolution of the solution near the target regions can be greatly improved and the
computational efficiency of the simulation is increased. Our scheme can be applied in
the simulations for the gas and water media efficiently, and it is more concise compared
to some other methods such as the indirect ALE methods. Several examples including
the gas-water flow problem are presented to demonstrate the efficiency of our scheme,
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and the results show that our scheme can capture the wave structures sharply with
high robustness.
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1 Introduction

The hydrodynamics of multi-material flows such as gas and water is of great interest in
Computational Fluid Dynamics (CFD) and exists in many problems such as the under-
water explosion and the Inertial Confinement Fusion (ICF), etc. It has a wide application
background in the fields of national economy and energy, etc. Its simulation has always
been one of the difficult and frontier problems in the field of the fluid simulation. The
simulation of compressible multi-material flows has the great theoretic significance and
application value for understanding the physical phenomena in nuclear physics, bio-
logical engineering, and many other research fields. So, the research for the numerical
simulations of compressible multi-material flows has obtained more and more attention
from the scholars in recent years.

The multi-material fluid flows have some challenging problems in both theory and
numerical simulations. The Eulerian method and the Lagrangian method are two kinds
of classical methods used for dealing with multi-material flows. The Eulerian method
[1–4] has strong robustness for solving the cases with large deformations, and the high-
resolution schemes like essentially non-oscillatory (ENO) schemes, etc. [5, 6] based on
the Eulerian method perform well when they are applied into the simulations of the
single-material flow. However, when these algorithms are applied into the simulations
of the multi-material cases, due to the numerical inaccuracies caused by the transport
calculation, it is quite difficult for them to capture the precise physical interfaces. The
Lagrangian method [7–14] has been studied by many scholars such as Després [7], Maire
[8, 12], Rieben [10, 11] and Shashkov [13, 14], et al. This method can catch the material
interfaces clearly in the simulations of multi-material flows. However, the large mesh
distortions may lead to the interruptions of the computational codes or some errors in
the simulations with large deformations, and these schemes need to introduce the mesh
rezoning phase and the variables remapping phase for avoiding the large mesh distor-
tions. For combining the advantages of this two kinds of methods above, Hirt et al. [15]
has presented an arbitrary Lagrangian-Eulerian (ALE) method whose mesh nodes can
move with the arbitrary velocity. The ALE method can flexibility simulate the flows
with large deformations and moving regions. There are two kinds of ALE methods. The
first one called indirect ALE method [16–18] consists of three steps: a Lagrangian step, a
mesh rezoning step, and a variables remapping step. The second one called direct ALE
method [19–21] consists of two steps: the step for obtaining the mesh velocity, the step
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for discretizing the system which includes the mesh velocity. Without the need of con-
sidering the remapping step, the direct ALE method is concise and can be applied to
construct the high-order schemes more easily than the ones with remapping step. There
are quite a few papers which use the direct ALE formulation to handle compressible
flows. For instance, Wang et al. [22] have developed a high-order accurate reconstructed
discontinuous Galerkin (rDG) method for the two-dimensional hydrodynamic problems
in the cell-centered updated Lagrangian formulation. This method is the Lagrangian
limit of the unsplit rDG-ALE formulation which is obtained by assuming the equality of
the mesh velocity to the fluid velocity only at cell boundaries. A number of benchmark
tests are conducted to assess the accuracy, robustness, and non-oscillatory property of
this developed rDG method [22]. Then, Wang et al. [23] have presented a high-order re-
constructed discontinuous Galerkin method for compressible inviscid and viscous flows
in arbitrary Lagrangian-Eulerian formulation on moving and deforming unstructured
curved meshes. Some benchmark test cases involving the variable geometries are sim-
ulated to assess the accuracy and robustness of this rDG-ALE method [23] for moving
and deforming boundary problems. Considering the features of the direct ALE method,
a research about a direct ALE type scheme for multi-material flows will be present in this
work.

Some difficulties such as the numerical oscillations may arise at material interfaces
in the implementations of the conservative methods for multi-material flows. In recent
decades, significant progress has been obtained in the development of the numerical
schemes for simulating multi-material flows, one can see e.g. [24–28]. In [25], Abgrall
and Karni have reviewed some numerical algorithms which had been proposed, and
they have pointed the common key ideas that the algorithms possessed. Among these
schemes, an extended system including the Euler equations has been studied in which
additional equations were used to describe the evolutions of the fluid parameters such as
the volume-fraction, the level set function or the ratio of specific heats of the fluid mix-
ture. For maintaining the pressure equilibrium and eliminating the spurious oscillations
near the regions involving the material interfaces, many scholars have studied various
models (e.g: the volume-fraction model, the level-set model, etc), and they have pro-
posed several schemes with an additional non-conservative equation for describing the
fluid mixture, one can see e.g. [25]. In this work, we will construct a conservative scheme
combining with an additional conservative equation for multi-material flows including
the compressible ideal gases or water medium, and a volume-fraction model [29–31]
which belongs to the diffusion interface models will be chosen to obtain the equation
of state (EOS) of the fluid mixture.

One of the effective approaches for reducing the numerical errors of the simulations
is combing the moving mesh methods with the schemes, so that the schemes can obtain
the high-resolution numerical solutions with relatively few elements and less computa-
tive cost. In the past decades, many moving mesh methods have been studied by the
scholars such as the variational approach presented of Winslow [32], the moving finite
element method of Miller [33], and the moving mesh PDEs method of Cao et al. [34]. A
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typical one of these methods is the R-type adaptive mesh moving method, and it is im-
plemented by redistributing the mesh points to the interesting portions of the physical
domain for resolving the large solution variations, without changing the topology of the
mesh. The R-type adaptive methods are widely used in various schemes, which firstly
aims at avoiding the serious distortion of mesh. Moreover, another important aim of this
kind of methods is concentrating the mesh nodes with fixed topological structure on the
regions with large gradient values of variables to improve the resolution of the specified
regions. Tang et al. [35] developed a kind of R-type adaptive moving mesh algorithms
based on the variational principle for the hyperbolic conservation laws, and the R-type
adaptive algorithms effectively improved the resolution of the numerical solution. Then,
Tang et al. [36] applied the adaptive mesh method [35] into the simulations of the two-
and three-dimensional Hamilton-Jacobi equations, and the adaptive mesh increased the
qualities of the solutions, similarly. Moreover, Tang et al. [37–39] also proposed a series
of entropy stable adaptive moving mesh schemes for two- and three-dimensional special
relativistic (magneto) hydrodynamics and (multi-component) compressible Euler equa-
tions with the stiffened equation of state respectively, and the excellent performance of
these schemes was shown by several numerical examples. Li et al. [40] used the general-
ized Riemann problem (GRP) solver to develop an adaptive generalized Riemann prob-
lem (AGRP) scheme for one- and two- dimensional compressible flows with the adaptive
moving quadrilateral meshes [35]. Ni et al. [41] developed a direct ALE type kinetic finite
volume scheme with the numerical fluxes obtained by using the Bhatnagar-Gross-Krook
(BGK) model on the adaptive quadrilateral mesh [35], and the mesh velocity given by the
adaptive mesh method helped the presented scheme resolve the wave structures clearly.
Although the R-type adaptive moving mesh methods have shown the effectiveness, their
extensions and applications for the simulations of compressible multi-material flows is
still relatively few and is worth studying. So, the authors consider that the researches of
the simulations of compressible multi-material flows with the R-type adaptive moving
mesh methods is quite meaningful.

The DG method is a numerical simulation method widely used for handling various
models in many fields, e.g. compressible flows involving complex geometries and dis-
continuities. The solution of model is approximated with the help of base functions in
each element by DG method, which leads to a direct piecewise high-order representation
of solution. Boscheri et al. [42] proposed a high-order accurate nodal DG method for the
solution of nonlinear hyperbolic systems of partial differential equations on unstructured
polygonal Voronoi meshes. Liu et al. [43] developed a high-order DG method for solving
the incompressible Navier-Stokes equations with variable density. Xia et al. [44] proposed
a high-order accurate DG method for the compressible Euler equations under gravita-
tional fields on unstructured meshes. Chen et al. [45] developed an adaptive modal DG
finite element parallel method with unsplit multi-axial perfectly matched layer to simu-
late the seismic wave propagation. Coupling the features of the ALE scheme with the DG
method, the ALE-DG method can deal with the discontinuities flexibly and efficiently
in the simulations of compressible fluid flows. Considering the obvious advantages of
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the ALE-DG method and the adaptive moving meshes for handling with the problems
involving complex fluid flow, we mainly study a simple and high-efficiency ALE-DG
scheme for compressible multi-material flows on the adaptive quadrangular meshes in
this paper. In our scheme, the Euler equations couple with a conservative equation of
the volume-fraction of the fluid are discretized by the DG method in the general element,
and the conservative equation of the volume-fraction is used to describe the fluid compo-
sition for obtaining the equation of state (EOS) of the fluid mixture. Then the governing
equations are transformed into the corresponding forms in the reference element with
the help of the standard bilinear mapping, and they are discretized with the Taylor basis
functions. There are quite a few papers in which the schemes define the basis functions
on the reference element. For example, Liu et al. [46] have presented a high-order La-
grangian discontinuous Galerkin hydrodynamic method for compressible flows that is
up to third-order accurate using the Taylor basis functions in the reference element. In
addition, a specific property that the material derivatives of the Taylor basis functions
are equal to zero when they are transformed into the corresponding forms in the general
element is shown. With this property, our ALE-DG scheme does not need to consider the
items involving the material derivatives of the basis functions which may not be evolved
easily, and then the process of the discretization is greatly simplified. The velocity of
mesh motion for our ALE scheme is obtained by the approach based on the variational
principle [35]. This approach not only can make the new mesh maintain good quality but
also can make the mesh nodes automatically converge near the regions involving large
gradient values. Using this approach, our scheme have obtained the meshes and the
solutions with good qualities. Finally, a Weighted Essentially Non-oscillatory (WENO)
reconstruction on the quadrangular meshes is used to remove the spurious numerical
oscillations near the discontinuities.

The innovation of this work is combining the ALE method, the DG method with the
adaptive moving quadrilateral meshes to obtain a high-efficiency ALE-DG scheme for
simulating multi-material flows. It is important to note that our scheme only applies to
two-component flows involving the compressible ideal gases or water medium in two-
dimensional geometry, and we will study the extension of this scheme for obtaining the
wider scope of application in the future. In our work, the hydrodynamic Euler equa-
tions are coupled with a conservative equation associated with the volume-fraction for
describing the fluid components. This coupling system can help our scheme simulate
multi-material flows easily. This approach for describing the multi-material fluid is often
used in the Eulerian methods and this work will apply it into the direct ALE-DG method
with the adaptive quadrilateral meshes as a new attempt for the simulations of multi-
material flows. The physical process of flows near the large deformation interface is com-
plex, and material mixing and vorticity deposition often occur. In this event, the changes
of the topology of the interfaces such as breakage and merger may occur, whether the
clear material interfaces still exist has become a problem, so the pure Lagrangian de-
scription with clear-cut interfaces can no longer reflect the real physical process. Our
ALE-DG method based on the volume-fraction model is simple, practical and robust. It
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takes into account both the material components and the locations of the interfaces, and
it is suitable for simulating the large deformation flow fields containing material mixing.
Nevertheless, the disadvantage of the methods based on the diffusion interface models
is that the numerical dissipation is large, and they are not suitable for the simulations
which should obtain the interface positions accurately. In order to keep the compact
thickness of material interfaces during computation, special numerical technologies such
as the anti-diffusion technologies are needed to control the numerical dissipation at the
material interfaces. In our scheme, because of the adaptive concentration of the mesh
nodes near the discontinuities, to a certain extent the adaptive mesh moving method can
help our scheme alleviate the problem of high dissipation near the material interfaces and
capture the interfaces relatively clearly without other special numerical technologies.

Compared with the Lagrangian schemes, our scheme can simulate the wave struc-
tures clearly while ensuring the better quality of the meshes and can make the simula-
tions run over longer time without the additional mesh repair algorithms. Compared
with the indirect ALE schemes, without considering the remapping phase for the vari-
ables, our scheme is compact and it can avoid the influence of the remapping phase on the
accuracy of the whole algorithm. Compared with the Eulerian schemes on the moving
quadrilateral meshes [35, 36, 40], our scheme also need not consider the step of the vari-
ables interpolation from the old mesh to the new one. We have used several examples
to demonstrate the good properties of our scheme, some of which are just as follows.
In the radially symmetric underwater explosion problem, compared with the Eulerian
methods, our scheme not only can precisely obtain the sharper shock waves with good-
quality mesh but also consume less computational cost and fewer mesh elements. In the
triple point problem, our scheme not only captures the vortexes clearly but also can run
a long time meanwhile keeping the mesh good-quality. These examples have verified
the good capabilities of simulating multi-material flows by our scheme. From what the
authors have seen, this work is the first application of the direct ALE-DG method for sim-
ulating multi-material flows on the adaptive quadrilateral meshes. The authors consider
that the results obtained by our scheme is competitive and our scheme has certain value
in the field of the simulations of multi-material flows.

The outline of the rest of this paper is organized as follows. In Section 2, the governing
equations are provided. In Section 3, the individual steps of simulating compressible
multi-material flows by the ALE-DG scheme are shown. In Section 4, several examples
are used to assess the good properties of our scheme. Finally, some concluding remarks
for this work is shown in Section 5.

2 Governing equations

The Euler equations for inviscid compressible flows can be expressed as follows:
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∂ρ

∂t
+∇·(ρV)=0,

∂(ρV)

∂t
+∇·(ρV⊗V)+∇p=0,

∂(ρE)

∂t
+∇·(ρEV)+∇·(pV)=0,

(2.1)

where ρ is the density, V= (u,v) is the velocity vector, p is the pressure, E denotes the
specific total energy of the fluid, t is the time instant, and E = E− 1

2 ‖V ‖2 denotes the
specific internal energy. For the sake of clarity, we define U=(ρ,ρV,ρE).

In the present work, our interest is centered on the perfect gases and the water media.
The Euler equations are closed by an additional equation of state (EOS) for the perfect
gases or the water medium which can be described uniformly as the form for the ”stiff-
ened” gas EOS:

p=(γ−1)ρE −γB, (2.2)

where γ denotes the effective ratio of specific heats of fluid mixture, B is a prescribed
pressure-like constant, and they depend on the fluid compositions of fluid flows. In
many schemes, a new variable (we can define it as Φ) is always used to describe the fluid
composition, and a non-conservative equation for Φ with the following form is chosen to
obtain the EOS of the fluid mixture:

∂Φ

∂t
+V·(∇Φ)=0. (2.3)

Eq. (2.3) should be solved specially because of the non-conservative form. In this paper,
we combine Eq. (2.3) with the conservation law of mass to obtain a conservative form of
Φ:

∂(ρΦ)

∂t
+∇·(ρΦV)=0, (2.4)

which is used for describing the dynamics of the fluid mixture.

Some choices of Φ which depend on the model assumptions have been studied in
other literatures. For example, Φ can be set to the ratio of specific heats, the volume-
fraction, or the level-set function, etc. In this work, the interface of two materials with
different γ (or B) will be considered as a contact discontinuity of γ (or B), we will use
the following volume-fraction model [29–31] with the volume-fraction Φ to describe the
fluid compositions and obtain effective EOS of the fluid mixture.

To close the system, we will adopt the isobaric assumption in [30]. That is, the pres-
sure for each fluid of the mixture is equal to each other in a mixed element. The EOS of
the fluid mixture can be expressed by

p=(γ−1)ρE −γB. (2.5)
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The average specific heat ratio γ and the average pressure-like constant B of the fluid
mixture are obtained by

1

γ−1
=

Φ1

γ1−1
+

Φ2

γ2−1
, (2.6)

B=
γ−1

γ

(
Φ1

γ1B1

γ1−1
+Φ2

γ2B2

γ2−1

)
, (2.7)

where Φ1 =Φ (or Φ2 =(1−Φ)) denotes the volume-fraction of composition ’1’ (or com-
position ’2’), γ1 (or γ2) denotes the specific heat ratio of composition ’1’ (or composition
’2’), and B1 (or B2) denotes the pressure-like constant of composition ’1’ (or composition
’2’).

The conservative equation (2.4) can be coupled with the Euler equations just as fol-
lows: 




∂ρ

∂t
+∇·(ρV)=0,

∂(ρV)

∂t
+∇·(ρV⊗V)+∇p=0,

∂(ρE)

∂t
+∇·(ρEV)+∇·(pV)=0,

∂(ρΦ)

∂t
+∇·(ρΦV)=0.

(2.8)

For obtaining the EOS of fluid mixture and accomplishing the simulation of flow field,
we design our algorithm as follows.

Step 1. Define the initial value of the volume-fraction Φ. We set the initial value Φ =
(Φ1)t=0=1 for the fluid composition ’1’ and (Φ2)t=0=0 for the fluid composition ’2’.

Step 2. At a certain time step, we obtain (ρΦ) and ρ of the fluid mixture by solving

Eq. (2.8). Then, Φ is locally computed from the quotient Φ= (ρΦ)
ρ , and Φ1 and Φ2 can be

obtained simultaneously.

Step 3. With the isobaric assumption, we acquire the γ and B of fluid mixture at this time
step.

Step 4. With γ, B and the uniform EOS (2.5), we implement the numerical simulation at
the next time step.

3 The process of simulating multi-material flows by the

ALE-DG scheme

3.1 Some notations and the basis functions

The space discretization is accomplished by the DG method in this paper. The initial
domain is set to Ω0, and we discretize the initial domain into a set of non-overlapping
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quadrilaterals {(Ω0)ij, i=1,··· ,M, j=1···N}with a total of M×N elements. Supposing Ωt

is the general region with coordinates (x,y) at time t which is filled by the inviscid fluid,
we let {Dij, i= 1,··· ,M, j= 1···N} denote a collection of non-overlapping quadrilaterals
whose reunion covers Ωt and let Dij denote the element located at the jth row and ith
column of the mesh structure. The vertices of Dij denoted by Vijr (r=1,··· ,4) are indexed
by counter clockwise, and we define the coordinates of Vijr as (xijr,yijr). In addition, we
let Vg =(ug,vg) be the mesh velocity vector of any point in Ωt. As time progresses, the
new partition {Dij, i=1,··· ,M, j=1,··· ,N} will be obtained with the mesh velocity at the
mesh node.

Then, we define the two-dimensional reference element as the bi-unit square D0 =
[−1,1]2 with coordinates (X,Y), where X and Y∈ [−1,1]. Using the bilinear finite element
shape functions ψr (r=1,··· ,4) as follows:

ψ1(X,Y)=
1

4
(1−X)(1−Y), ψ2(X,Y)=

1

4
(1+X)(1−Y),

ψ3(X,Y)=
1

4
(1+X)(1+Y), ψ4(X,Y)=

1

4
(1−X)(1+Y),

each physical space element Dij (i=1···M, j=1···N) at time t can be related to the refer-
ence element by a map

At : (X,Y)∈D0−→ (x,y)∈Dij . (3.1)

In more detail, the map can be expressed as

x=
4

∑
r=1

xijrψr(X,Y), y=
4

∑
r=1

yijrψr(X,Y). (3.2)

In Subsection 3.2, a DG scheme with a kind of linear Taylor basis functions defined in the
reference element as follows:

σ1=1, σ2=X, σ3=Y, σ4=XY, (3.3)

will be used to accomplish the space discretization. With the map At, each Taylor basis
function in the reference element D0 can be transformed into a corresponding function in
element Dij:

χr(x,y,t)=σr(X(x,y,t),Y(x,y,t)), r=1,··· ,4. (3.4)

So, the functions χr(x,y,t) (r = 1,··· ,4) have a property that their material derivatives

are equal to zero: dχr

dt = 0. Analogously, with map At, each bilinear finite element shape
function ψr in the reference element D0 can also be transformed into a shape function in
element Dij:

φr(x,y,t)=ψr(X(x,y,t),Y(x,y,t)), r=1,··· ,4. (3.5)

With the crucial property dχr

dt = 0, we need not consider the items involving dχr

dt in the
scheme, and then our scheme is simplified. This is one of the reasons why we choose this
kind of basis functions for the space discretization, and one can refer to [47] for a more
detailed proof of this property.
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3.2 The spatial discretization

Firstly, the weak formulation of Eq. (2.8) will be introduced. For any test function ϕ(x,y)∈
L2(Ωt), multiplying both sides of (2.8) by ϕ(x,y) and integrating them on Ωt, we can get
the following form:





∫

Ωt

∂ρ

∂t
ϕdΩt+

∫

Ωt

∇·(ρV)ϕdΩt =0,

∫

Ωt

∂(ρV)

∂t
ϕdΩt+

∫

Ωt

(∇·(ρV⊗V)+∇p)ϕdΩt =0,

∫

Ωt

∂(ρE)

∂t
ϕdΩt+

∫

Ωt

∇·(ρEV+pV)ϕdΩt =0,

∫

Ωt

∂(ρΦ)

∂t
ϕdΩt+

∫

Ωt

∇·(ρΦV)ϕdΩt =0.

(3.6)

Secondly, we define the finite-element space as the following set of piecewise polynomi-
als:

(Ωt)h ={ϕh∈L2(Ωt) : ϕh |Dij
∈P(Dij); 1≤ i≤M, 1≤ j≤N},

where P(Dij) denotes a set of polynomials defined in the element Dij. Thirdly, we give

the Reynolds transport theorem which will be used as follows. Let ν∈Ω
1,∞
t (0,T,H1(Ωt)),

for all test functions ϕh∈ (Ωt)h, the Reynolds transport theorem can be expressed as the
following form:

d

dt

∫

Dij

νϕhdDij =
∫

Dij

∂(νϕh)

∂t
dDij+

∫

∂Dij

νϕhVg ·ndS, (3.7)

where ∂Dij denotes the boundary of Dij, and n = (n1,n2) is the unit outward normal
vector of ∂Dij. Then, the remaining process of the spatial discretization is implemented
as follows.

For all test functions ϕh∈ (Ωt)h and all elements Dij, we should find the approximate
function Uh =(ρh,(ρV)h,(ρE)h,(ρΦ)h)∈ (Ωt)h that satisfies





∫

Dij

∂ρh

∂t
ϕhdDij+

∫

Dij

∇·(ρV)h ϕhdDij =0,

∫

Dij

∂(ρV)h

∂t
ϕhdDij+

∫

Dij

(∇·(ρV⊗V)h+∇ph)ϕhdDij =0,

∫

Dij

∂(ρE)h

∂t
ϕhdDij+

∫

Dij

∇·((ρEV)h+(pV)h)ϕhdDij =0,

∫

Dij

∂(ρΦ)h

∂t
ϕhdDij+

∫

Dij

∇·(ρΦV)h ϕhdDij =0.

(3.8)
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Using the Reynolds transport theorem (3.7), we can obtain





d

dt

∫

Dij

ρh ϕhdDij+
∫

Dij

∇·(ρh(Vh−Vg))ϕhdDij =
∫

Dij

dϕh

dt
ρhdDij,

d

dt

∫

Dij

(ρV)h ϕhdDij+
∫

Dij

(∇·((ρV)h⊗(Vh−Vg))+∇ph)ϕhdDij =
∫

Dij

dϕh

dt
(ρV)hdDij,

d

dt

∫

Dij

(ρE)h ϕhdDij+
∫

Dij

∇·((ρE)h(Vh−Vg)+(pV)h)ϕhdDij =
∫

Dij

dϕh

dt
(ρE)hdDij,

d

dt

∫

Dij

(ρΦ)h ϕhdDij+
∫

Dij

∇·((ρΦ)h(Vh−Vg))ϕhdDij =
∫

Dij

dϕh

dt
(ρΦ)hdDij.

(3.9)
For simplicity, we rewrite Eq. (3.9) as

d

dt

∫

Dij

Uh ϕhdDij+
∫

Dij

∇·(F(Uh),G(Uh))ϕhdDij =
∫

Dij

dϕh

dt
UhdDij, (3.10)

where

F(Uh)=




F1

F2

F3

F4

F5



=




ρh(uh−ug)
(ρu)h(uh−ug)+ph

(ρv)h(uh−ug)
(ρE)h(uh−ug)+(pu)h

(ρΦ)h(uh−ug)




,

G(Uh)=




G1

G2

G3

G4

G5



=




(ρ)h(vh−vg)
(ρu)h(vh−vg)

(ρv)h(vh−vg)+ph

(ρE)h(vh−vg)+(pv)h

(ρΦ)h(vh−vg)




.

With the help of the divergence theorem, Eq. (3.10) can be equivalently expressed as:

d

dt

∫

Dij

Uh ϕhdDij =Rij(Uh)+
∫

Dij

dϕh

dt
UhdDij, (3.11)

where

Rij(Uh)=
∫

Dij

F(Uh)∂x ϕh+G(Uh)∂y ϕhdDij−
∫

∂Dij

(F(Uh)n1+G(Uh)n2)ϕhdS.

For the convenience of the calculations, we will transform (3.11) in each element Dij into
the corresponding form in the reference element D0 with the map At above. As men-
tioned in Subsection 3.1, we will use the Taylor basis functions in the reference element:
σ1 = 1,σ2 =X,σ3 =Y,σ4 =XY to carry out the spatial discretization. Here, we will define
P(Dij) in Dij. Firstly, we define a function space in the reference element D0 as: P(D0) =
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span{σ1,σ2,σ3,σ4}. Then, P(Dij) can be defined as a set of the transformed forms of the
functions in P(D0) with the map At. Since all the test functions can make Eq. (3.11) hold,
we choose χm(m = 1,··· ,4) as the test function ϕh. With the property that the material

derivatives of the basis functions χm are equal to zero, we can have
dϕh

dt = dχm

dt = 0 in (3.11),
and then the second item on the right-hand side of Eq. (3.11) becomes zero. For the sake
of brevity, the interpolation polynomials in the finite element approximations and the test
functions in the reference element are also denoted by Uh and ϕh, respectively. Assuming
Uh is any component of Uh, we use the Taylor basis functions in D0 to rewrite Uh and ϕh

as follows.

Uh(X,Y)=
4

∑
r=1

Uijrσr , ϕh(X,Y)=
4

∑
r=1

ϕijrσr, (X,Y)∈D0. (3.12)

Duo to ϕh(x,y) = χm(x,y) (m = 1,··· ,4) in the general element Dij, we have ϕh(X,Y) =
σm(X,Y) (m= 1,··· ,4) in the reference element D0 respectively, and this is equivalent to
setting ϕijr =1 for r=m and ϕijr = 0 for other case in (3.12). In addition, it can be verified
that (

∂X
∂x

∂X
∂y

∂Y
∂x

∂Y
∂y

)
=

(
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

)−1

=
1

J

(
∂y
∂Y − ∂x

∂Y

− ∂y
∂X

∂x
∂X

)
, (3.13)

where J is the determinant of Jacobian matrix:

J=

∣∣∣∣∣
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

∣∣∣∣∣. (3.14)

With (3.13), for ∂x ϕh and ∂y ϕh in (3.11), we can have





∂x ϕh=
∂σm

∂X

∂X

∂x
+

∂σm

∂Y

∂Y

∂x
=

1

J

(∂σm

∂X

∂y

∂Y
−

∂σm

∂Y

∂y

∂X

)
=∂xσm,

∂y ϕh=
∂σm

∂X

∂X

∂y
+

∂σm

∂Y

∂Y

∂y
=

1

J

(
−

∂σm

∂X

∂x

∂Y
+

∂σm

∂Y

∂x

∂X

)
=∂yσm.

(3.15)

Applying (3.12) and (3.15) into Eq. (3.11) and using
dϕh(x,y)

dt =0, (3.11) can evolve into the
following form:

d

dt

4

∑
r=1

∫

D0

Uijrσrσm JijdD0 =Rij(Uh),

Rij(Uh)=
∫

D0

(F(Uh)∂xσm+G(Uh)∂yσm)JijdD0−
4

∑
l=1

∫

Γl

(F̂(Uh),Ĝ(Uh))·nσm
|Ll |

2
dΓl ,

(3.16)
where Jij is the determinant of the Jacobian matrix of the transformation of coordinates
related to D0 and Dij, |Ll| denotes the length of the element edge Ll (l=1,··· ,4) that makes

up the boundary of Dij. (F̂(Uh),Ĝ(Uh))·n actually is the numerical flux at the element
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edge Ll (l=1,··· ,4), and we transform it into the equivalent form at the element edge Γl

that makes up the boundary of D0. In this work, we choose the L-F (Lax-Friedrichs) flux
as the replacement of the numerical flux.

Finally, we set

Mij =
∫

D0

σrσm JijdD0, (r=1,··· ,4; m=1,··· ,4),

(Ûh)ij1=[ρij1,ρij2,ρij3,ρij4]
T,

(Ûh)ij2=[(ρu)ij1,(ρu)ij2,(ρu)ij3,(ρu)ij4]
T,

(Ûh)ij3=[(ρv)ij1,(ρv)ij2,(ρv)ij3,(ρv)ij4]
T,

(Ûh)ij4=[(ρE)ij1,(ρE)ij2,(ρE)ij3,(ρE)ij4]
T,

(Ûh)ij5=[(ρΦ)ij1,(ρΦ)ij2,(ρΦ)ij3,(ρΦ)ij4]
T.

(3.17)

Eq. (3.16) will evolve into
d

dt
Mij ·(Ûh)ij =Rij(Uh), (3.18)

where Rij(Uh) is the spatial discrete operator, and

(Ûh)ij =[(Ûh)ij1,(Ûh)ij2,(Ûh)ij3,(Ûh)ij4,(Ûh)ij5].

3.3 The geometric conservation law

In the simulations of fluid flow with the moving meshes, it is important to ensure that
the scheme satisfies the geometric conservation law (GCL). That is to say, the numerical
scheme with an initial uniform flow should preserve exactly a constant solution. The ne-
cessity of GCL for the numerical stability has been discussed by many scholars. Farhat
et al. [48] showed that satisfying the corresponding discrete GCL (DGCL) is a necessary
and sufficient condition for a numerical scheme to preserve the nonlinear stability in the
sense of the discrete maximum principle of its fixed grid counterpart. Farhat et al. [48]
also highlighted the impact of this theoretical result on the practical applications of com-
putational fluid dynamics. Wang et al. [23] used a space-time type integration to obtain
the discretized equations of rDG scheme in ALE formulation and then modified the grid
velocity terms on the right-hand side of the discretized equations at Gauss quadrature
points to make the high-order ALE rDG scheme preserve the GCL.

It’s worth noting that our scheme is able to preserve the GCL in the semi-discrete
form, but it dose not guarantee the DGCL at present. In the future, we will continue to
study the DGCL of our scheme. Here, we will show that our scheme is able to preserve
the GCL in the semi-discrete form. In other words, our semi-discrete scheme (3.10) can
preserve the uniform flow.

Let us consider the Eq. (2.8) with an initial constant value Ut=0 = U0 =
(ρ0,(ρV)0,(ρE)0,(ρΦ)0) in Ω0. So, the numerical solution of our scheme should be
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preserved as U0. The divergence of the flux functions which can be expressed as
∇·(F(U0),G(U0)) will become (−(∇·Vg)U0) because of the constant value U0, and the
semi-discrete scheme (3.10) can be rewritten as

d

dt

∫

Dij

ϕhU0dDij−
∫

Dij

(∇·Vg)ϕhU0dDij =
∫

Dij

dϕh

dt
U0dDij. (3.19)

Then, with the divergence theorem, we can have

d

dt

∫

Dij

ϕhU0dDij =
∫

Dij

∂(U0ϕh)

∂t
dDij+

∫

∂Dij

U0 ϕhVg ·ndS, (3.20)

which is the expression of the GCL form for the semi-discrete scheme (3.10). Finally, we
can eliminate the constant value U0 and obtain

d

dt

∫

Dij

ϕhdDij =
∫

Dij

∂ϕh

∂t
dDij+

∫

∂Dij

ϕhVg ·ndS. (3.21)

It can be seen that (3.21) is exactly a expression of the transport equation (3.7) with ν=1.
Thus, the semi-discrete scheme (3.10) preserves the constant solution and satisfies the
GCL naturally.

3.4 The mesh velocity

For obtaining the appropriate meshes, we will study two factors to choose the approach
of determining the mesh velocity Vg. Firstly, the new meshes with good-quality should
be smooth. Secondly, the new meshes should be automatically redistributed and concen-
trated at the regions involving large gradient values of some variables. The approach of
the adaptive mesh movement in [35] based on the variational principle can satisfy these
two factors, so we will choose this approach to obtain the mesh velocity.

3.4.1 The approach of mesh motion based on the variational principle

Firstly, we define the computational domain which has quasi-uniform mesh partition as
Wl with the orthometric coordinates ξ=(ξ,η), and we define the physical domain as Wp

with coordinates x=(x,y). A one-to-one coordinate transformation from the computa-
tional domain Wl to the physical domain Wp is denoted by

x= x(ξ), ξ∈Wl . (3.22)

In the variational approach, supposing Wp is a convex region, the transformation can be
provided approximately by the minimizer of a functional with the following form:

Ẽ(x)=
1

2

2

∑
k=1

∫

Wl

(∇̃x)TGk∇̃xdξ, (3.23)
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where ∇̃= (∂ξ ,∂η), and Gk (k= 1,2) is given symmetric positive definite matrix named
monitor function.

The monitor function is adaptive and depends on the variables (or their derivatives)
of the underlying governing equations. One of the simple choices of the monitor func-
tions is Gk =ω I (k= 1,2), where I is an identity matrix and ω is positive piecewise con-
stant. In this paper, the monitor function ωi,j of element Dij is:

ωi,j=
√

1+α1|κi,j|2+α2|∇̃κi,j|2, (3.24)

where α1 and α2 are some positive constants given in each example for controlling the
movement of mesh, and κ can denote ρ, u,v, or p, etc. According to our experience,
the reasonable selection range of these artificial coefficients α1 or α2 can be set to [0,1] in
general and the suitable coefficients should be obtained by debugging the codes of the
simulations according to the specific examples.

Numerically, for obtaining the coordinate transformation (3.22), we can solve the
equations:

∇̃·(ω∇̃x)=0. (3.25)

Eq. (3.25) are the final target equations for the new mesh and they can be solved by a finite
difference method. Then, we will use an iteration method to complete the discretization:

x
[υ+1]
i,j =

ω
[υ]
1 x

[υ]
i+1,j+ω

[υ]
2 x

[υ]
i−1,j+ω

[υ]
3 x

[υ]
i,j+1+ω

[υ]
4 x

[υ]
i,j−1

ω
[υ]
1 +ω

[υ]
2 +ω

[υ]
3 +ω

[υ]
4

, (3.26)

where xi,j denote the coordinates of the mesh node located at the cross point of the jth
horizontal grid line and the ith vertical grid line in the mesh structure (i=1,··· ,(M+1); j=
1,··· ,(N+1)),

ω
[υ]
1 =

1

2
(ω

[υ]

i+ 1
2 ,j+ 1

2

+ω
[υ]

i+ 1
2 ,j− 1

2

), ω
[υ]
2 =

1

2
(ω

[υ]

i− 1
2 ,j+ 1

2

+ω
[υ]

i− 1
2 ,j− 1

2

),

ω
[υ]
3 =

1

2
(ω

[υ]

i+ 1
2 ,j+ 1

2

+ω
[υ]

i− 1
2 ,j+ 1

2

), ω
[υ]
4 =

1

2
(ω

[υ]

i+ 1
2 ,j− 1

2

+ω
[υ]

i− 1
2 ,j− 1

2

),

υ denotes the iterations, and

ωi± 1
2 ,j± 1

2
=

1

2
(ωi±1,j±1+ωi,j).

The iteration determines the locations of the new mesh nodes, and it is continued until
there is no detectable change in the new mesh from one iteration to the next. Typically,
the mesh movement for each time step requires 3 to 5 times iterations. For keeping the
simulations steady and uniform, we choose 5 times iterations at each time step in this
work.
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Finally, the mesh velocity (V
g
i,j)

n of the mesh node with coordinates xi,j at the nth time

step t= tn can be obtained as follows:

(V
g
i,j)

n =
x

n+1
i,j −x

n
i,j

(∆t)n
, (3.27)

where ∆t is the time steplength and the symbols of the variables with superscript n (or
(n+1)) denote the values of the corresponding variables at the n (or (n+1))th time step.
The time steplength at the nth time step is set to

(∆t)n =λ· min
i=1,···,M;j=1,···,N

{(∆lij/Cij)
n}, Cij=(|uij−u

g
ij|+cij)+(|vij−v

g
ij|+cij), (3.28)

where ∆lij denotes the length of the shortest edge in Dij, cij is the sound speed at the
barycenter of Dij, and the values of other variables needed for obtaining (∆t)n are also
set to the corresponding values at the barycenter of Dij. For keeping the scheme stable,

the Courant number λ of the scheme should satisfy this condition: λ≤ 1
3 which is detailed

in [49, 50] and we will simulate the examples with λ=0.27 in Section 4.

3.4.2 The technology of spatial smoothing

In the simulations, adding the temporal smoothing or the spatial smoothing on the mon-
itor value ω to make the mesh smoother is useful. Using the smoothing technology can
avoid producing very singular mesh and large approximation errors near the regions
with large gradient values of some variables. In this work, we will apply the following
technology into the smoothing of the monitor:

ωi+ 1
2 ,j+ 1

2
←

1

4
ωi+ 1

2 ,j+ 1
2
+

1

8
(ωi− 1

2 ,j+ 1
2
+ωi+ 3

2 ,j+ 1
2
+ωi+ 1

2 ,j− 1
2
+ωi+ 1

2 ,j+ 3
2
)

+
1

16
(ωi+ 3

2 ,j+ 3
2
+ωi− 1

2 ,j+ 3
2
+ωi+ 3

2 ,j− 1
2
+ωi− 1

2 ,j− 1
2
). (3.29)

Then, we can obtain the new monitor value. Applying this smoothing technology 2 or 3
times, the approach of mesh movement can improve the mesh smoothness clearly.

3.5 The slope limiter and the time discretization

3.5.1 Time discretization

The semi-discrete system (3.18) can be integrated in time with the explicit methods di-
rectly. In this work, we will use the explicit second-order Total Variation Diminish-
ing (TVD) Runge-Kutta (RK) scheme [49, 50] to accomplish the time discretization of
Eq. (3.18). Besides the semi-discrete system, the mesh and the mass matrix of each el-
ement should be also updated at each RK stage because of the mesh movement. The
readers can refer to [49, 50] for more details of the time-marching algorithm.
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3.5.2 The slope limiter based on the WENO reconstruction

When the flows involving strong discontinuities are simulated by the DG scheme de-
scribed above, the non-physical oscillations will be produced. So we will choose a WENO
reconstruction as a non-linear slope limiter to control the oscillations in this work. For
controlling the oscillations perfectly, we will implement this reconstruction after the up-
date of each sub-stage of the time-marching algorithm.

Before implementing the reconstruction, firstly we let (xe,ye) denote the coordinates
of the centroid of an arbitrary element e, and we define the symbol ∆x or ∆y as ∆x =
x−xe or ∆y = y−ye. Then, we compute the element average values of the variables.
For instance, we focus on element e and an arbitrary variable denoted by w which can
represent any component of (ρ,ρu,ρv,ρE,ρΦ). By solving Eq. (3.18), the Taylor expansion
of w on the element e can be obtained. Next, we can get the element average value of
variable w with the Gauss integration algorithm:

we=
1

|e|

∫

e
wdxdy, (3.30)

where |e| denotes the area of element e.
For our DG scheme, we will reconstruct a polynomial ŵ for the variable w on ele-

ment e: ŵ =we+w̃x∆x+w̃y∆y, where we is the element average value of w on element
e. It can be seen that the polynomial ŵ remains the element average value of w on the
element e. There are still two undefined coefficients w̃x and w̃y in ŵ. We will evaluate
this two coefficients with the WENO reconstruction algorithm for the DG scheme in [51],
and one can see [51] for more details of the reconstruction. For clarity, we show the po-
sitional relationship of e and its eight related Neumann neighborhood elements denoted
by a,b,··· ,g,i in Fig. 1.

After the process above is finished, we apply this new reconstruction to modify the
coefficients of the Taylor expansion of variable w on the reference element. A L2 projec-
tion procedure will be used for obtaining the revised coefficients of the Taylor expansion
of w with the reconstructed polynomial ŵ of w on the general element e, and we still refer

Figure 1: Element e and its eight nearest neighborhoods.
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the reader to [51] for more details. Under the premise of remaining the average value of
w on the element e, the revised Taylor expansion of w on the reference element retains the
second-order accuracy in the smooth regions and can make the solutions oscillation-free
near the discontinuities.

4 Numerical examples

In this section, we will simulate several examples to demonstrate the accuracy and the
good performance of our scheme. If there is no special explanation, all the boundary
conditions will be set to the wall boundary conditions, and the κ in the method of the
adaptive mesh movement will be set to the density ρ. All the examples are simulated by
the codes of our scheme on a PC with a CPU: Inter Core i7-8700(3.2GHz).

4.1 The accuracy test: Taylor-Green vortex problem

The first example is a vortical flow problem with an analytical solution [52]. It is actually
a single-material case, and we only need to consider the Euler equations (2.1) in this
simulation. The initial condition of this case is set to

ρ0=1, p0=
1

4
[sin(2πx)+cos(2πy)]+1,

u0=sin(πx)cos(πy), v0 =−cos(πx)sin(πy),

in the domain (x,y)∈[0,1]×[0,1]. According to the characteristic of this example, the mesh
vertex velocity is set to the adaptive velocity obtained by the adaptive mesh method us-

ing a special monitor function ωi,j in element Dij: ωi,j=
√

1+200|pi,j−p|2 in which p de-

notes the average value of maximum pressure and minimum pressure at the barycenters
of all elements in the whole domain. In addition, an approximate fluid velocity obtained
by the approach in [53] are also used for testing this example. In the simulation of the
compressible inviscid flow, an energy source term is used to make the solution be in the
steady state,

SE=
π

4(γ−1)
[cos(3πx)cos(πy)−cos(3πy)cos(πx)].

The meshes and the pressure distributions of this case with 80×80 elements at t=0.75 are
shown in Fig. 2. The L1, L2, L∞ errors and the corresponding convergence orders of our
scheme for density ρ at t= 0.75 are shown in Table 1 and Table 2, respectively. It can be
seen that our scheme achieves the second-order accuracy, and we obtain the satisfactory
result containing the good-quality meshes and the appropriate pressure distributions on
the moving quadrilateral meshes.
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Figure 2: The results of the Taylor-Green vortex problem at t=0.75 for 80×80 elements. Left: the mesh; right:
the pressure; top: the result obtained with the adaptive mesh method; bottom: the result obtained with the
approximate fluid velocity in [53].

Table 1: The errors of density for Taylor-Green vortex problem obtained with the adaptive mesh method.

Elements L1 error order L2 error order L∞ error order

10×10 2.2273E-002 - 3.4680E-002 - 1.1589E-001 -

20×20 8.3157E-003 1.4214 1.2145E-002 1.5137 5.7678E-002 1.0067

40×40 2.2976E-003 1.8557 3.9872E-003 1.6069 2.0232E-002 1.5114

80×80 5.9081E-004 1.9594 1.0172E-003 1.9708 6.6917E-003 1.5962

160×160 1.3947E-004 2.0827 2.5569E-004 1.9921 1.7469E-003 1.9376
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Table 2: The errors of density for Taylor-Green vortex problem obtained with the approximate fluid velocity.

Elements L1 error order L2 error order L∞ error order

10×10 2.5246E-002 - 3.7267E-002 - 1.4852E-001 -

20×20 8.8949E-003 1.5050 1.5221E-002 1.2918 6.7247E-002 1.1431

40×40 2.4377E-003 1.8675 4.4757E-003 1.7659 2.2815E-002 1.5595

80×80 6.3564E-004 1.9392 1.1693E-003 1.9365 7.2820E-003 1.6476

160×160 1.5835E-004 2.0051 2.9160E-004 2.0036 1.9310E-003 1.9150

4.2 The two-phase gas-liquid Riemann problem

The second example describes a two-phase gas-liquid Riemann problem. In this example,
there is the gas phase with the initial data (ρ,u,p,γ,B,Φ)L =(1.241,0,2.753,1.4,0,1) on the
left region: x∈ [0,0.5), and there is the liquid phase with the initial data (ρ,u,p,γ,B,Φ)R=
(0.991,0,3.059×10−4 ,5.5,1.505,0) on the right: x∈ [0.5,1.0]. In our work, we will run the
simulation of this one-dimensional problem on a two-dimensional region [0,1.0]×[0,0.1]
with the computational meshes consisting of 100×10 cells and 200×10 cells, respectively.
The final time of this simulation is t= 0.1, and the artificial parameters of the adaptive
mesh motion are set to α1 = 0 and α2 = 0.6. For obtaining the reference solution, we use
the front-tracking algorithm for the radial symmetry (with 1000 computing elements) to
solve the one-dimensional multicomponent model with appropriate source terms, whose
derivation can be found in [54].

Fig. 3 shows our result at t = 0.1. As illustrated, we can see the good behavior of
the computed wave structures. In addition, as the number of the mesh cells increases
in the x-direction (from 100 cells to 200 cells), the contact discontinuity and the shock
wave approximate the reference solution better. So, our scheme can capture the waves
precisely and sharply, and this case shows the ability of our scheme in the simulations of
multi-material flows.

4.3 The Dukowicz refraction problem

The Dukowicz refraction problem involves a shock wave interacting with the interface
which has been tested by many scholars with different schemes, see for example, [55,56].
In this refraction problem, a vortex sheet is generated by the interaction of a shock wave
with an inclined material interface. The initial domain with the mesh partition is shown
in Fig. 4. The left region has 37×30 mesh elements with a vertical left boundary and a
right boundary aligned at 30◦ to the horizontal direction, and the right region has 53×
30 mesh elements with uniformly slanted at 30◦ to the horizontal direction. In [55, 56],
the computational domain consists of two adjacent regions whose gases have different
densities but equal pressure, and the two regions are all filled up with the single ideal
gas which have γ= 1.4. Here, we simulate this problem with two materials of different
γ (1.4 and 1.67) and then makes it be a two-material case which contains an ’material
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Figure 3: The two-phase gas-liquid Riemann problem at t=0.1. Top left: the density; top right: the pressure;
bottom left: the horizontal velocity; bottom right: the volume-fraction of gas phase.

interface’ located at the dividing line of two regions. The detailed initial values are shown
as follows:

(ρ,u,v,p,γ,Φ)=

{
(1.0,0.0,0.0,1.0,1.4,1), left,

(1.5,0.0,0.0,1.0,1.67,0), right.

The upper boundary and the lower boundary are all reflective boundaries, and the left
boundary is a piston which moves to the right with a horizontal velocity 1.48. This prob-
lem will run to a final time t=1.3. In the code of this case, we set α1=0 and α2=0.03.

Fig. 5 shows the result consisting of the mesh, the density contours and the volume-
fraction contours at t=1.3. It can be seen that though there is a certain numerical dissipa-
tion near the material interface because of the characteristic of diffusion interface mod-
els, the wave structures are well resolved and the material interface is relatively sharply
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Figure 4: The initial computational domain and the initial mesh of the Dukowicz refraction problem.

captured. Meanwhile, the final mesh keeps good-quality. This case can verify that our
scheme keeps good capability of capturing the wave structures and can carry out the
simulations of multi-material flows well.

4.4 The triple point problem

The triple point problem [57] is a two-material problem which corresponds to a three
states two-dimensional Riemann problem in a rectangular domain. This problem is often
used to assess the capability of simulating multi-material flows and the robustness of the
numerical scheme because of the significant vorticity, the large shear, and the complex
interacting shocks. The computational domain Ω = [0,7]×[0,3] is split into three sub-
domains Ω1=[0,1]×[0,3], Ω2 =[1,7]×[0,1.5] and Ω3=[1,7]×[1.5,3]. Ω1 contains a high-
pressure and high-density gas with the initial state: (ρ1,p1,V1,Φ1)=(1,1,0,1). Ω2 contains
a low-pressure and high-density gas with the initial state (ρ2,p2,V2,Φ2) = (1,0.1,0,0).
Ω3 contains a low-pressure, low-density gas whose initial state is (ρ3,p3,V3,Φ3) =
(0.125,0.1,0,1). Ω1 and Ω3 are filled with the same material characterized by the poly-
tropic index γ1=γ3=1.5, whereas Ω2 is filled with a different material with γ2=1.4.

This simulation is carried out with 140×60 elements, and the final time is t= 8. We
set α1 =0 and α2 =0.2 in this case. Due to the difference of the acoustic impedance, two
shocks in Ω2 and Ω3 propagate with different speeds, which creates a strong shear along
the initial contact discontinuity located at the interface between Ω2 and Ω3. The shear
produces a Kelvin-Helmholtz instability and a vortex structure occurs. Capturing the
vortex may be difficult when some methods such as the pure Lagrangian methods are
used.

The meshes, the distributions of density and the distributions of volume-fraction at
t= 3.5,5,8 are shown in Fig. 6. As illustrated, our scheme captures the wave structures
including the material interface relatively clearly with the help of the adaptive mesh,
though there is a certain numerical dissipation near the material interface.
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Figure 5: The Dukowicz refraction problem at t=1.3. Top: the adaptive mesh; middle: the density contours;
bottom: the volume-fraction contours.
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Figure 6: The triple point problem at t = 3.5,5,8 (top to bottom). Left: the adaptive meshes; middle: the
distributions of density; right: the distributions of volume-fraction.

4.5 The shock wave and a Helium cylindrical bubble interaction

This case has been extensively studied by many authors, see e.g. [58]. It describes the
interaction of a shock wave with a cylindrical Helium bubble surrounded by air at rest.
The computational domain is [0,325]×[−44.5,44.5] with the top and the bottom reflective
boundaries, the left inflow and the right outflow boundaries. The bubble is assumed to
be in both thermal and mechanical equilibrium with the surrounding air. A shock wave
with Mach number Ms=1.22 moves to the left. The initial condition is determined by the
shock condition with the given shock Mach number. More detailedly, the initial data is
set to

(ρ,u,v,p,γ,Φ)=





(1,0,0,1,1.4,1), 0≤ x≤225, −44.5≤y≤44.5,

(1.3764,−0.394,0,1.5698,1.4,1), 225< x≤325, −44.5≤y≤44.5,

(0.1358,0,0,1,1.67,0),
√
(x−175)2+y2≤25.

Here, the initial mesh consists of 240×60 rectangular elements, and we use the artificial
parameters α1=0 and α2=0.17 to control the mesh motion.

The results at t=75,120,150 which include the adaptive meshes and the density maps
are shown in Fig. 7. The shape of bubble is strongly distorted and the results show that
the material interfaces are resolved well and accurately. In addition, Fig. 8 shows the
comparison between the density map of bubble at t= 150 obtained by our scheme and
the schlieren image of the density of bubble at t=150 obtained by a second-order adaptive
finite volume method in [59]. It is obvious that the profile of the bubble structure obtained
by our scheme is similar to the one in [59] for reference. This case can verify that our
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Figure 7: The shock wave and a Helium cylindrical bubble interaction at t=75,120,150 (top to bottom). Left:
the meshes; right: the density maps.

Figure 8: The shock wave and a Helium cylindrical bubble interaction at t=150. Left: the schlieren image of
the density of bubble in [59]; right: the density map of bubble obtained by our scheme.

scheme has the capability of carrying out the simulations of multi-material flows with
large deformations.
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4.6 The shock wave and a R22 cylindrical bubble interaction

This case is similar to the above one, but the present gas R22 in the bubble is heavier than
air. When these two gases interact with the shock, they will yield different flow patterns
around the material interface. The computational domain, the initial rectangular mesh
elements, the artificial parameters in the adaptive motion, and the boundary conditions
are same as those of the above case. The initial data of this problem is set to

(ρ,u,v,p,γ,Φ)=





(1,0,0,1,1.4,1), 0≤ x≤225, −44.5≤y≤44.5,

(1.3764,−0.394,0,1.5698,1.4,1), 225< x≤325, −44.5≤y≤44.5,

(3.1538,0,0,1,1.249,0),
√
(x−175)2+y2≤25.

The results at t=60,100,150 which include the adaptive meshes and the density maps are
shown in Fig. 9. We can see that the wave structures are captured well and the meshes
have good qualities. At the final time t=150, the shape of bubble is strongly distorted and
the material interface is resolved well and accurately. This case can also verify that our
scheme has the capability of carrying out the simulations of multi-material flows with
large deformations.
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Figure 9: The shock wave and a Helium cylindrical bubble interaction at t=60,100,150 (top to bottom). Left:
the meshes; right: the density maps.

4.7 The 2D underwater explosion problem of the air bubble

In this case, we will study a gas-liquid radially symmetric problem in which an ini-
tially at rest circular air bubble is exploded under the water because of the pres-
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Figure 10: The result of the underwater explosion problem obtained by our ALE-DG scheme with 200×200
adaptive mesh elements. Left: the adaptive mesh; right: the density contours.

sure difference [29]. The breaking of the bubble will result in an outgoing radi-
ally shock wave and an incoming rarefaction wave, meanwhile there is a contact dis-
continuity between these wave structures. We will use the same set of the initial
data as in Example 4.2: Inside the bubble with radius R = 0.2, the fluid is air with
(ρ1,u1,v1,p1,γ1,B1,Φ1) = (1.241,0,0,2.753,1.4,0,1); while outside the bubble, the fluid is
water with (ρ2,u2,v2,p2,γ2,B2,Φ2)=(0.991,0,0,3.059×10−4,5.5,1.505,0). Under these con-
ditions, the simulation is performed by using our ALE-DG scheme in an initial compu-
tational domain [−0.5,0.5]×[−0.5,0.5] with 200×200 mesh elements. In the algorithm of
the adaptive mesh motion, we set α1=0 and α2=0.26.

The density contours and the adaptive mesh at the final time t= 0.058 are shown in
Fig. 10. As illustrated in Fig. 10, we can see that our scheme quite sharply captures the
wave structures duo to the adaptive concentration of mesh nodes. For comparing with
the simulation of our ALE-DG scheme on the adaptive mesh, we implement the simu-
lation by our scheme with ’Vg = 0’ and in this situation our scheme evolves into a DG
scheme on the fixed uniform mesh (that is, a DG scheme in the Eulerian form). In addi-
tion, the density contours obtained by our DG scheme on the fixed uniform meshes with
200×200 elements and 800×800 elements at t= 0.058 are given in Fig. 11, respectively.
The density contours on the adaptive moving mesh with 200×200 elements are evidently
better-resolved than the ones on the fixed mesh with 200×200 elements, and the resolu-
tion of density contours on the adaptive mesh with 200×200 elements is similar to the
one on the fixed mesh with 800×800 elements. For more clarity, we also show a com-
parison of the density distribution along the positive half-axis of x-axis obtained by our
ALE-DG scheme on the adaptive mesh of 200×200 elements and the one obtained by our
DG scheme on the fixed mesh of 200×200 elements in Fig. 12. Finally, we give the com-
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Figure 11: The density contours of the underwater explosion problem obtained by our DG scheme on the fixed
meshes. Left: 200×200 elements; right: 800×800 elements.
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Figure 12: The density distribution along the positive half-axis of x-axis obtained by our ALE-DG scheme on
the adaptive mesh with 200×200 elements and the one obtained by our DG scheme on the fixed mesh with
200×200 elements.

parison between the CPU time consumed by the three simulations in Table 3. Under the
precondition of keeping other conditions same, compared with the DG schemes using
the fixed meshes, our ALE-DG scheme with the adaptive mesh has obvious advantage in
the quality of the result with an acceptable computational cost.
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Table 3: The comparison between the CPU time consumed by the simulations of DG scheme on the fixed
meshes and the one of ALE-DG scheme on the adaptive mesh.

Schemes CPU time consumed (seconds)

DG scheme with 200×200 fixed mesh elements 25475

DG scheme with 800×800 fixed mesh elements 365842

ALE-DG scheme with 200×200 adaptive mesh elements 74534

5 Conclusions

In this paper, we have proposed a direct ALE-DG scheme for compressible multi-material
flows on the adaptive quadrilateral meshes. A conservative equation related to the vol-
ume fraction is coupled with the Euler equations to identify the fluid components of
the fluid mixture, which makes the system can be applied into the simulations of multi-
material flows conveniently. The mesh velocity in the ALE framework is given by the
adaptive mesh method [35] which can not only automatically concentrate the mesh nodes
near the regions with large gradient values of variables but also help the mesh remain
the good quality. Without considering a mesh repair algorithm, the meshes in our sim-
ulations have not been too deteriorated, and the adaptive mesh method has greatly im-
proved the resolution of the solution near the regions involving large gradient values and
the computational efficiency of the simulations. Our scheme applies to the simulations
for two-component flows involving the compressible ideal gases or water medium in
two-dimensional geometry. Several examples are presented to demonstrate the accuracy
and the good properties of our scheme. Considering the effectiveness and the simplic-
ity of our algorithm, our scheme is competitive when it is compared with some other
schemes.
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