
East Asian Journal on Applied Mathematics Vol. 14, No. 1, pp. 104-123

doi: 10.4208/eajam.2023-062.170523 February 2024

Less Emphasis on Hard Regions: Curriculum

Learning of PINNs for Singularly Perturbed

Convection-Diffusion-Reaction Problems

Yufeng Wang1, Cong Xu2, Min Yang1,* and Jin Zhang3

1School of Mathematics and Information Sciences, Yantai University,

Yantai, China.
2School of Computer Science and Technology, East China Normal

University, Shanghai, China.
3Department of Mathematics, Shandong Normal University,

Jinan, China.

Received 18 February 2023; Accepted (in revised version) 17 May 2023.

Abstract. Although physics-informed neural networks (PINNs) have been successfully

applied in a wide variety of science and engineering fields, they can fail to accurately pre-

dict the underlying solution in slightly challenging convection-diffusion-reaction prob-

lems. In this paper, we investigate the reason of this failure from a domain distribu-

tion perspective, and identify that learning multi-scale fields simultaneously makes the

network unable to advance its training and easily get stuck in poor local minima. We

show that the widespread experience of sampling more collocation points in high-loss

regions hardly help optimize and may even worsen the results. These findings motivate

the development of a novel curriculum learning method that encourages neural net-

works to prioritize learning on easier non-layer regions while downplaying learning on

harder regions. The proposed method helps PINNs automatically adjust the learning em-

phasis and thereby facilitates the optimization procedure. Numerical results on typical

benchmark equations show that the proposed curriculum learning approach mitigates

the failure modes of PINNs and can produce accurate results for very sharp boundary

and interior layers. Our work reveals that for equations whose solutions have large

scale differences, paying less attention to high-loss regions can be an effective strategy

for learning them accurately.
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1. Introduction

Convection-diffusion-reaction problems appear in the modeling of various modern com-

plicated processes, such as fluid flow at high Reynolds numbers [16], drift diffusion in

semiconductor device modeling [29], and chemical reactor theory [26]. Very often the

size of diffusion is characterized by a parameter ε, which could be smaller by several or-

ders of magnitude compared to the size of convection and/or reaction, resulting in narrow

boundary or interior layers in which the solution changes extremely rapidly [31]. Classi-

cal numerical methods use layer-adapted meshes or introduce carefully designed artificial

stability terms to solve these challenging problems [2,4,33,37,38].

In recent years, there has been a surge of interest in applying neural networks in tradi-

tional scientific modeling — e.g. partial differential equations, which yields the so-called

physics-informed neural networks [5,10,11,14,17,18,21,23,30,34,35]. The main idea of

PINNs is to include physical domain knowledge as soft constraints in the empirical loss func-

tion and then use existing machine learning methodologies such as stochastic optimization,

to train the model. As an interesting alternative to traditional numerical solvers, PINN has

the advantage of flexibility in dealing with high-dimensional PDEs in complicated geom-

etry and easy incorporation of available data information. Moreover, well-trained PINNs

can have good generalization ability and can quickly predict solutions outside the compu-

tational area.

However, as reflected in some recent studies on the failure modes of PINNs [1,6–8,21],

it has been found that PINNs can fail to converge to the correct solution even for relatively

simple convection-diffusion problems. Approaches to improve the accuracy of PINNs in

solving convection-diffusion problems can be broadly classified into two categories. The

first category borrows theories and concepts from conventional numerical methods. For

example, Mojgani et al. [28] rewrote the original equation into a Lagrangian form on the

characteristic curves and then applied a two-branch neural network to solve the reformu-

lated form. However, the approach is only applicable to time-dependent problems and

not to steady-state equations. Recently, inspired by the theory of singular perturbation and

asymptotic expansions, Arzani et al. [1] used separate neural networks to learn the different

levels on the inner and outer layer regions, respectively. The second category emphasizes

machine learning techniques, such as the design of loss functions, sample selection, and

learning strategies. He et al. [15] used a weighted sum of residual losses and showed that

in order to obtain an accurate solution of the advection-dispersion equation, the weights

of the initial and boundary conditions should be larger than the PDE residuals. Daw et

al. [6] proposed an evolutionary sampling algorithm in which the collocation points evolve

gradually with training to prioritize high-loss regions while maintaining a background dis-

tribution of uniformly sampled points. Krishnapriyan et al. [21] argued that the PDE-based

soft constraints make the loss landscapes difficult to optimize, and proposed a curricu-

lum approach that sets the PINN loss term starting with a simple equation regularization

and progressively become more complex as the network gets trained, which suffers from

complex training scheme and very long training phase when solving strong singular per-

turbation problems.
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The existing studies mainly consider relatively simple cases where the viscosity/diffu-

sivity is about a scale of 10−4. Singularly perturbed problems containing extremely sharp

layers (strong vanishing viscosity/diffusivity limit) remain an urgent target for PINNs. This

paper aims to unravel the failure modes of PINNs from some new perspectives and to further

advance the approximation performance of PINNs. We show that simultaneously learning

multi-scale solutions in layer and non-layer regions makes the network difficult to advance

its training and easily get stuck in poor local minima. We demonstrate that in such a case,

prioritizing layer regions (sampling more collocation points in high-loss regions) can make

the training more difficult and worsen the performance. This surprising finding is contrary

to the majority of existing studies on PINNs. While most previous studies have empha-

sized high-loss regions, our investigation indicates that for problems containing samples

with extreme scale differences, it seems not a good idea to emphasize high-loss regions.

We argue that this is because collocation points from layer regions are significantly more

challenging to learn than those from non-layer regions. To alleviate the learning difficul-

ties, we propose a novel curriculum learning approach that can automatically adjust the

sample weights to emphasize easier non-layer regions, thereby improving the approxima-

tion accuracy of the network for strongly singular perturbation problems. We empirically

demonstrate the efficiency of the proposed approach in a variety of typical convection-

diffusion-reaction problems. We show that the proposed curriculum learning algorithm

can mitigate the failure modes of vanilla PINNs and well capture the sharp boundary or

interior layers even in the cases of very small diffusivity (ε = 10−9). Our approach success-

fully learns solutions containing very sharp layers, using only one neural network, with-

out learning any intermediate solutions. More importantly, we provide a new perspective

to understand the failure modes of PINNs and reveal that for equations whose solutions

have large scale differences, paying less attention to high-loss regions could be a feasible

strategy for learning them accurately. The source code built on PyTorch is available at

https://github.com/WYu-Feng/CLPINN to enable other researchers to reproduce and

extend the results.

The remainder of the paper is organized as follows. Section 2 gives the problem under

study and introduces the basic notation of PINNs. A toy example is used in Section 3 to

explore the possible reason for the failure mode of PINNs in solving singularly perturbed

equations. In Section 4, we design a curriculum learning approach to improve the perfor-

mance of PINNs. Section 5 gives comprehensive experimental results to demonstrate the

efficiency of the proposed method. Finally, the conclusion is drawn in Section 6.

2. Problem Setup

Consider the following singularly perturbed equation:

L u := εL2u+L1u+L0u = f (x ), x ∈ Ω,

where Ω is a physical domain in Rd , Lk represents a differential operator of order k, k =

0,1,2, f (x ) denotes the source term, and the diffusion coefficient satisfies 0 < ε ≤ 1.
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Further we assume that the solution u(x ) satisfies the following boundary condition:

Bu = g(x ), x ∈ ∂Ω,

whereB is a well-defined differential operator determining the condition on the admissible

boundary ∂Ω. When the diffusion coefficient ε is very small, the latent solution of the

equation changes rapidly within some thin layers, posing a great challenge to the numerical

simulation [4,27].

For PINNs, the solution u(x ) is approximated by a neural network uθ (x ), where θ

denotes the parameters of the network. Let

Lphys(θ) =
1

N

N
∑

i=1

r2
phys
(x i;θ) =

1

N

N
∑

i=1

�

L uθ (x i)− f (x i)
�2

(2.1)

be the mean-squared physical residual loss of N training sample points in Ω, and

Lbc(θ) =
1

M

M
∑

i=1

r2
bc
(x i;θ) =

1

M

M
∑

i=1

�

Buθ (x i)− g(x i)
�2

(2.2)

be the mean-squared boundary loss of M training sample points on ∂Ω. All the samples

constitute a training set X t rain.

The neural network approximation uθ (x ) can be determined by solving the following

optimization objective:

min
θ

Lphys(θ) +λLbc(θ), (2.3)

where λ is a hyperparameter to balance the weights of the two loss terms.

Although PINNs have been successfully applied in solving many types of differential

equations, their performance for relatively simple convection-diffusion equations are far

from satisfactory. In the next section, we are to analyze the dilemma encountered by PINNs.

3. Analysis of Failure Mode

Consider the following one-dimensional convection-diffusion problem:

− εux x + (x − 2)ux = f (x), x ∈ (0,1),

u(0) = u(1) = 0,
(3.1)

where the diffusion coefficient ε is set as 10−3, and the source term f (x) is determined by

the exact solution u(x) = cos(πx/2)(1− exp(2x/ε)). This problem has a boundary layer

at x = 0.

Consider a four-layer fully connected neural network uθ (x), where each intermediate

layer has 20 neurons and Tanh is used as the activation function. The training set X t rain

consists of 2500 points uniformly sampled from the domain (0,1).
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Initialization and optimization. The network parameters are initialized by normal Xavier

or uniform Xavier methods [9]. Two mainstream optimizers, stochastic gradient descent

(SGD) and Adam [20], are utilized to solve the optimization objective (2.3), where the

balance parameter λ is set to 1.

It can be observed from Fig. 1 that the prediction uθ (x) has very large errors throughout

the computational domain, regardless of the initial or training methods used. When we

further plot the corresponding training loss curves (Fig. 2), it is clear that the training loss

of PINN fails to converge even after very long iterations. In particular, it can be seen that

the training losses in the layer regions are much higher than those in the non-layer regions

(Fig. 3).
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Figure 1: Predictions of PINN under various parameter initializations using SGD and Adam optimizers,
respectively.
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Figure 2: Training loss curves of PINN under various parameter initializations using SGD and Adam
optimizations, respectively.
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Figure 3: Training loss distribution of Eq. (3.1) under different initializations using the Adam optimizer.

Emphasizing high-loss layer regions? Note that there exists a widely accepted consen-

sus that the performance of PINNs can be improved by sampling more collocation points

in high-loss regions. We tried such a strategy, but unfortunately it can be found from Fig. 4

that instead of improving the approximations, the dense sampling in the high-loss layer

region may lead to worse results.

The above experiments show that for singular perturbation equations, common PINNs

cannot solve them well even with dense sampling in the high-loss layer regions. Such para-

doxical phenomenon leads to the natural question of what is the cause of this undesirable

performance.

Figure 4: Predictions of PINN using a dense sampling in the layer domain, where 2500 points are sampled
in the non-layer domain (0.1, 1), and 2500, 12500, 25000 points are sampled in (0, 0.1), respectively. For
standard PINN, we apply a random sampling in (0, 1).
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Less emphasis on layer regions. We notice that compared with ordinary equations, the

latent solutions of singular perturbation equations exhibit sharp scale variations in different

regions. In the narrow layer region the solution transits very rapidly, while in the wide

non-layer region the solution varies more flatly and slowly. We argue that such large scale

differences make PINNs difficult to balance the learning of collocation points from the layer

and non-layer regions. The final loss distribution in Fig. 3 shows the training losses for

samples close to the boundary layer are much larger than those in the non-layer domain,

which implies that the sharp layer domain may be too difficult for PINNs to learn.

In order to reduce the learning difficulty of PINN, we put forward the following exper-

iment. We only select samples from non-layer regions to build the training composed of

samples in (a, 1), where a is set to 0.05 and 0.1, respectively. It is surprising to observe from

Fig. 5 that such a brutal discarding of layer samples can result in an obvious improvement

for the training and prediction of PINN. Thereby, the above attempt inspires us that less

emphasis on difficult layer regions may help to raise the performance of PINNs in solving

singularly perturbed problems.

Of course, naively rejecting samples from the layer regions will inevitably result in the

loss of important physical information, thus cannot guarantee the high accuracy of the

prediction. Moreover, the location of the layers is usually not known in practice. Therefore,

in the next section, we are to present a curriculum learning algorithm that dynamically

estimates the location of layers and adaptively adjusts the importance of the samples close

to the layers.
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Figure 5: (a) Predictions of PINN after a rejection of the layer samples. (b) Training loss curves.
(c) Absolute errors in the layer region (0, 1e − 3). Here [a, 1] denotes the result after ignoring the
samples from the difficult region (0, a).

4. The Proposed Curriculum Learning

So far, we have demonstrated that the failure mode of PINN is due to large discrepancy

in sample difficulties between layer and non-layer regions. In this section, we are to provide

a curriculum learning algorithm that encourages the network to prioritize learning easier

non-layer regions. The complete process is illustrated in Fig. 6.

4.1. Surrogate for layer location

Since the learning difficulty in layer and non-layer regions differs significantly, the first
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Figure 6: The proposed learning framework. A sub-training set Xsub is employed to update the threshold
β(t) at the t-th iteration step. Then, the threshold β(t) is used to dynamically re-weight each training
sample, especially lightening the importance of the samples close to the layer regions.

key step is to estimate the location of the layers. According to Fig. 3, it can be found that

the layer region usually corresponds to a larger training loss. Therefore, we can take the

feedforward training loss as a proxy to estimate the location of the layers. A larger loss

implies that the corresponding sample is closer to the layer.

4.2. Importance reweighting

Recall that the optimization objective (2.1) is the average of the squared losses of all

samples

Lphys(θ) =
1

N

N
∑

i=1

r2
phys
(x i;θ),

which means that samples from different regions are of equal importance for learning.

In order to make PINNs place less emphasis on the samples from the layer regions, we

modify the optimization objective as follows:

Lphys(θ) =
1
∑N

i=1
w(x i)

N
∑

i=1

w(x i)r
2
phys
(x i;θ),

where w(x i) represents the importance of the sample. The closer the sample is to the layer,

the less weight it has.

As discussed in Section 4.1, we do not known the exact locations of the layers and shall

estimate them using the training losses that vary dynamically with iterations. Therefore,
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the weight of each sample should also be dynamically adjusted. To this end, we define

Lphys(θ) =
1
∑N

i=1 w(t, x i)

N
∑

i=1

w(t, x i)r
2
phys(x i;θ), (4.1)

where t denotes the iteration step. The sample weights in (4.1) can be determined by

w(t, x i) =









1, if r2
phys
(x i)≤ β(t),

β(t)

r2
phys
(x i)

, if r2
phys
(x i)> β(t),

(4.2)

where β(t) is a loss threshold to be updated adaptively with iterations.

Intuitively, the formula (4.2) indicates that if the training loss of a sample is greater

than β(t), which implies that the collocation point is close to the layer, then we give this

sample a weight β(t)/r2
phys
(x ), which is less than 1. The larger the loss, the closer the

sample is to the layer, and the smaller the corresponding weight. In this way, we not only

emphasize the learning of easy non-layer region samples, but also maintain the necessary

physical information of the high-loss layer regions.

4.3. Calculate the threshold by a sub-training set

Since the training loss of a desirable network model will gradually descend with itera-

tions, then the threshold β(t) cannot be predetermined, but should be updated adaptively

with the training process. To save computational cost, this section will present a method to

compute β(t) based on the sub-training set.

First, notice that even with the same network structure, the amplitude of the training

loss can vary greatly from equation to equation. It is hard to select a threshold that applies

to all equations directly through training losses. However, we find that for singular pertur-

bation equations, the gradient of the loss curve is extremely steep around the layer (Fig. 3).

Therefore, we argue that indirectly determining the threshold β(t) by the gradient of the

loss curve can make the method have a better versatility.

More specifically, let X sub be a randomly selected subset from the training set, which

is fixed during the training process. Let G be a predefined hyperparameter. After the t-th

iteration, for each x ∈ X sub, if |∇x r2
phys
(x ;θ)| < G, which means that the collocation point

is on the outside of the layer region, then we store its training loss in a memory bank M .

Finally, the maximum loss value in M is chosen as the threshold β(t). In this way, β(t) can

be considered as an upper bound of the training losses of all non-layer samples. If the loss

of a sample exceeds this threshold, the sample is considered to be close to layer regions

and its weight needs to be reduced in the next training iterations.

Remark 4.1. Since the training loss usually does not change quickly, especially in later

training periods, to save computational cost, we employ an interval update strategy, where

the threshold β(t) is updated every K iterations. In our experiments, K is set as 50.
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Remark 4.2. The proposed approach falls under the category of curriculum learning [3,13],

which mimics human learning and suggests neural networks to prioritize learning easier

tasks. Our algorithm incorporates the properties of singularly perturbed equations and

therefore is distinctly different from those existing curriculum learning algorithms, which

are mainly developed for computer vision [12,32] and natural language processing [22,36].

The pseudo-code of the proposed approach is summarized in Algorithm 4.1.

Algorithm 4.1 Pseudo-Code of Curriculum Learning for Singularly Perturbed Problems

Require: Training set X t rain, subset X sub ⊂ X t rain, predefined constant G, balance param-

eter λ, and update frequency K .

1: Initialize the iteration step t = 0.

2: for each training step t do

3: if t is divisible by K then

4: Clean the memory bank M .

5: for each collocation point x ∈ X sub do

6: if |∇x r2
phys
(x ;θ)| < G then

7: Store the corresponding training loss into M .

8: Update the threshold β(t) by the maximum loss in the bank M .

9: Update the sample weights by (4.2).

10: Update the network parameters based on the loss functions (2.2) and (4.1).

11: t++.

5. Experiments

5.1. Experimental setup

To evaluate the performance of the proposed method, six benchmark convection-dif-

fusion-reaction equations, including one 1-dimensional example, three 2-dimensional ex-

amples, and one 3-dimensional example, are considered. In addition to the conventional

PINN, we also compare our approach with the residual-based adaptive refinement method

(RAR) [23], which updates the training dataset by refining collocation points with the

largest residual values. We implement our approach with PyTorch and run the experi-

ments on an Intel Xeon CPU E5-2650 v3 platform with 14GB ROM and an RTX 3060 GPU.

The balance weight λ in the optimization objective (2.3) is set to 1, the update frequency

K = 50, and the constant G is set to 10 in the one-dimensional case and to 50 in the

multidimensional cases. The subset X sub is 1/5 of the size of the entire training set.

We utilize six fully connected feedforward neural networks to solve different equations,

respectively. All networks employ the Tanh function as the activation unit. The training

process is performed using the Adam optimizer [20]. The specific network structures as

well as the training parameters are specified in Table 1.

For one dimensional equations, we employ a uniform sampling to construct a training

set. For the multi-dimensional problems, to ensure that there are a number of training
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Table 1: Structures of neural networks and learning parameters.

Equation Network depth Network width Optimizer Batch size Learning rate Iterations

5.1 3 20 Adam 50 0.001 1.5× 105

5.2 5 20 Adam 200 0.01 1.5× 106

5.3 3 20 Adam 200 0.01 1× 106

5.4 3 20 Adam 200 0.01 1× 106

5.5 3 20 Adam 200 0.005 1.5× 106

5.6 5 20 Adam 500 0.01 1× 106

Table 2: Number of training points for different equations.

Equation Interior samples Boundary samples

5.1 2.5× 103 2

5.2–5.5 2× 104 4× 102

5.6 3× 105 6× 104

points belonging to the layer regions, we adopt a non-uniform sampling. Specifically, we

first randomly sample half of the training points, and then add 0.05% of training samples

around the points whose feedforward losses exceed the threshold β(t) at every 50 itera-

tions, until the training set reaches the predefined size. The size of the training set for each

equation is listed in Table 2.

If the exact solution is known, we quantify the performance of the prediction by using

the normalized root-mean-squared error (NRMSE)

NRMSE=

q
∑n

i=1 |uθ (x i)− u(x i)|2
q
∑n

i=1 |u(x i)|2
,

where uθ (x) and u(x) represent the predicted and the exact solution, respectively, and n de-

notes the number of uniformly sampled test points, which is set to 1000 for one-dimensional

equation, and 5000 for multi-dimensional equations.

5.2. One-dimensional convection-diffusion equation

Consider the following two point problem:

−εux x + (x − 2)ux = f (x), x ∈ (0,1),

u(0) = u(1) = 0,
(5.1)

where the source term f (x) is chosen such that the exact solution

u(x) = cos

�

πx

2

�
�

1− exp

�

−2x

ε

��

.

The solution of (5.1) is characterized by a boundary layer at x = 0.
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We first plot the training loss curves of our approach, RAR and the common PINN in the

case of ε = 1e − 6. As demonstrated in Fig. 7(a), our method descends much faster than

PINN and RAR in the early stage of training, and the corresponding training loss approaches

0 after about 4000 iterations. In contrast, PINN and RAR fail to converge even after a long

period of iterations. It can be further observed from Fig. 7(b) that the prediction of our

approach captures the boundary layer well and fits the exact solution much better over

the entire computational domain, while the results of PINN and RAR differ significantly.

Moreover, it is obvious from Fig. 7(c) that our method is superior to the other two methods

in the difficult region, especially near the boundary layer point x = 0.

Further, we compare the normalized root-mean-squared errors of the two methods with

more diffusion coefficients. It is obvious from Table 3 that for non-singularly perturbed

case (ε = 1), all methods can produce satisfactory results of the same order of accuracy.

However, for singularly-perturbed cases, the errors of our method are 3 orders of magnitude

lower than those of PINN and RAR.

Table 3: Normalized root-mean-squared errors between predicted and exact solutions of Eq. (5.1) for
various diffusion coefficients.

Diffusion coefficient Ours RAR PINN

ε = 1 1.81× 10−4 1.77× 10−4 1.83× 10−4

ε = 1e− 3 1.41× 10−4 4.89× 10−1 4.45× 10−1

ε = 1e− 6 1.44× 10−4 4.92× 10−1 4.54× 10−1

ε = 1e− 9 1.47× 10−4 4.98× 10−1 4.47× 10−1

10

(a) Training loss curves (b) Predictions (c) Absolute errors in (0,ε)

Figure 7: Comparison of RAR, PINN, and our approach for 1D equation (5.1), ε = 1e− 6.

5.3. Two-dimensional convection-diffusion-reaction equation with boundary

layers

Consider the following two-dimensional problem [37]:

−ε∆u+ (3− x1 − x2)ux1
+ 1.5u= f , x ∈ Ω= (0,1)2,

u= 0, x ∈ ∂Ω,
(5.2)
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where f (x) is chosen such that the exact solution

u =

�

sin
πx1

2
− e−(1−x1)/ε − e−1/ε

1− e−1/ε

�

(1− e−x2/
p
ε)(1− e−(1−x2)/

p
ε)

1− e−1/
p
ε

.

The solution of (5.2) is characterized by the presence of three boundary layers, one at

x1 = 1, and two at x2 = 0 and x2 = 1.

It can been observed from Fig. 8 and Table 4 that our method still performs well in

capturing the behavior of the layers. The predictions only have a little oscillation at the

boundary layer location. In contrast, the RAR shows certain deviations from the truth in

layer regions, and the PINN deviates even more.

Table 4: Normalized root-mean-squared errors between predicted and exact solutions of Eq. (5.2) for
various diffusion coefficients.

Diffusion coefficient Ours RAR PINN

ε = 1e− 3 4.67× 10−4 8.58× 10−3 3.37× 10−2

ε = 1e− 6 5.38× 10−4 2.42× 10−2 5.31× 10−1

ε = 1e− 9 5.35× 10−4 2.87× 10−2 5.30× 10−1

(a) Training loss (b) Absolute errors of ours (c) Absolute errors of RAR (d) Absolute errors of PINN

(e) Exact solution (f) Our prediction (g) RAR prediction (h) PINN prediction

Figure 8: Comparison of RAR, PINN, and our approach for Eq. (5.2), ε = 1e− 9.

5.4. Two-dimensional convection-diffusion equation with interior layers

This section is devoted to assessing the performance of the proposed approach in the

presence of interior layers. To this end, consider

−ε∆u+ b · ∇u= 0, x ∈ Ω= (0,1)2,

u=









1, if x2 = 0,

1, if x1 = 0, x2 ≤ 1/5,

0, elsewhere on ∂Ω,

(5.3)
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where the convection coefficient b = (1/2,
p

3/2)T [2]. The latent solution of Eq. (5.3)

presents both internal and external boundary layers. For most traditional numerical meth-

ods, non-physical oscillations are often observed near the interior layer caused by the joints

of the conflicting discontinuous boundary conditions.

As Fig. 9 shows, the internal layers are sharply captured by our approach with almost

no overshooting/undershooting, while RAR shows slight overshooting/undershooting over

there. In contrast, common PINN performs poorly and its predictions are highly oscillatory.

Moreover, in this example, our method is stable with respect to various ε. When ε changes

from 1e− 3 to 1e− 9, there is no obvious oscillation appearing in the prediction results.

(a) Our prediction (ε= 10−3) (b) Our prediction (ε= 10−6) (c) Our prediction (ε= 10−9)

(d) RAR prediction (ε= 10−3) (e) RAR prediction (ε= 10−6) (f) RAR prediction (ε= 10−9)

(g) PINN prediction (ε= 10−3) (h) PINN prediction (ε= 10−6) (i) PINN prediction (ε= 10−9)

Figure 9: Comparison between our approach, RAR and PINN for Eq. (5.3) under various diffusion
coefficients.

5.5. Rotational flow

Consider the following rotational flow problem:

−ε∆u+∇ · (bu) = 0, x ∈ Ω= (0,1)2, (5.4)
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where the convection coefficient b = (1/2− x2, x1 − 1/2)T , and the solution is prescribed

along the slit 1/2× [0,1/2] as follows:

u(1/2, x2) = sin2(2πx2), x2 ∈ [0,1/2],

cf. Ref. [19]. The above equation describes the convection of a single component in a ro-

tating flow field, where the axis of rotation passes through the center of the square domain.

Fig. 10 shows that our method yields satisfactory predictions, while the results of PINN

and RAR have unreasonably negative values near the boundary corners.

(a) Our prediction (ε= 10−3) (b) Our prediction (ε= 10−6) (c) Our prediction (ε= 10−9)

(d) RAR prediction (ε= 10−3) (e) RAR prediction (ε= 10−6) (f) RAR prediction (ε= 10−9)

(g) PINN prediction (ε= 10−3) (h) PINN prediction (ε= 10−6) (i) PINN prediction (ε= 10−9)

Figure 10: Comparison between our approach, RAR and PINN for rotational flow (5.4) under various
diffusion coefficients.

5.6. L-shaped domain

Consider the convection-diffusion-reaction problem

−ε∆u+ b · ∇u+
�

3+ sin(2πx1 x2)
�

u= 1− (x1 + x2)/2, x ∈ Ω,

u = 0, x ∈ ∂Ω
(5.5)

on the L-shaped domain Ω= (−1,1)2/(−1,0)2 with

b = −
�

1+ 1/2 sin(2πx1), 2− cos(2πx2)
�T

,

cf. Ref. [24]. It results in boundary layers occurring at x1 = 0,−1 and x2 = 0,−1.
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From Fig. 11, we can find that the boundary layers are well captured by our approach,

with very slight overshooting/undershooting. In contrast, RAR and regular PINN perform

very poorly and their predictions are highly oscillatory. It is also noticeable that in this

example, our method seems to slightly degrade in performance as ε gets smaller.

(a) Our prediction (ε= 10−3) (b) Our prediction (ε= 10−6) (c) Our prediction (ε= 10−9)

(d) RAR prediction (ε= 10−3) (e) RAR prediction (ε= 10−6) (f) RAR prediction (ε= 10−9)

(g) PINN prediction (ε= 10−3) (h) PINN prediction (ε= 10−6) (i) PINN prediction (ε= 10−9)

Figure 11: Comparison of RAR [23], PINN, and our approach for Eq. (5.5) with various diffusion
coefficients on L-shaped domain.

5.7. Three-dimensional singularly perturbed convection-diffusion problem

For traditional numerical methods, the singular perturbation equations in three spatial

dimensions are difficult to solve due to the huge computational cost. On the contrary,
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neural network are more powerful in dealing with high-dimensional problems. To this

end, consider the following three-dimensional convection-diffusion problem:

−ε∆u+ b · ∇u= f , x ∈ Ω,

u = 0, x ∈ ∂Ω,
(5.6)

where Ω = (0,1)3, b = [1,2,1]T , and f (x) is chosen such that the exact solution is given

by

u= sin(x1)(1− e−(1−x1)/ε)(1− x2)
2(1− e−x2/ε)(1− x3)(1− e−x3/ε).

The solution of (5.6) has three exponential layers at x1 = 1, x2 = 0 and x3 = 0, respectively.

We compare the errors of our approach with RAR and PINN for solving a three-dimen-

sional equation (5.6). As can be seen from Table 5, our method obtains about two orders

of magnitude lower error than the normal PINN under various ε.

Table 5: Normalized root mean squared error and computational time of our approach for Eq. (5.6).

Diffusion coefficient Ours RAR PINN

ε = 1e− 3 4.37× 10−3 8.91× 10−2 2.58× 10−1

ε = 1e− 6 4.46× 10−3 1.16× 10−1 4.68× 10−1

ε = 1e− 9 4.43× 10−3 1.12× 10−1 4.72× 10−1

5.8. Sensitivity analysis

In our approach, there is an important hyperparameter G, which is used to quantify

the magnitude of the gradients of the samples in the subset X sub, and further helps to

determine the threshold β(t) for reweighting. In this subsection, we will study the effect

of this hyperparameter. To this end, we take the Eq. (5.1) with ε = 1e− 9 as an example,

and then apply our approach using G = 1,10,20,30, respectively.

From Fig. 12, we can find that the approach is stable with respect to a large parameter G.

Whether G = 10,20 or 30, the training process converges well, and the corresponding

(a) Training loss curves (b) Predictions

Figure 12: Sensitivity studies for the hyperparameter G.
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predictions are almost identical. On the contrary, G = 1 results in an unstable training

and larger prediction errors, which implies that a too small G cannot well distinguish the

gradients from layer or non-layer regions.

6. Conclusion

PINNs fail to learn accurate approximations when dealing with singularly perturbed

convection-diffusion-reaction problems whose solutions contain sharp boundary/interior

layers. We studied this failure mode from a regional distribution perspective and revealed

that the network fails to converge due to the extreme multiscale discrepancy in the un-

derlying solutions between regions. We demonstrated that the widely used approach that

prioritizing high-loss regions does not help in training. A curriculum learning approach was

then developed that emphasizes learning of easier non-layer regions, thereby significantly

improving the prediction accuracy of PINNs. Our study indicates for the first time that pay-

ing less attention to high-loss regions can be a feasible strategy for accurately learning the

difficult equations with strong multiscale characteristics.
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