
East Asian Journal on Applied Mathematics Vol. 14, No. 1, pp. 47-78
doi: 10.4208/eajam.2022-304.070323 February 2024

A Diagonalization-Based Parallel-in-Time

Algorithm for Crank-Nicolson’s Discretization

of the Viscoelastic Equation

Fu Li and Yingxiang Xu*

School of Mathematics and Statistics, Northeast Normal University,

Changchun 130024, P.R. China.

Received 2 November 2022; Accepted (in revised version) 7 March 2023.

Abstract. In this paper, we extend a diagonalization-based parallel-in-time (PinT) algo-
rithm to the viscoelastic equation. The central difference method is used for spatial dis-
cretization, while for temporal discretization, we use the Crank-Nicolson scheme. Then
an all-at-once system collecting all the solutions at each time level is formed and solved
using a fixed point iteration preconditioned by an α-circulant matrix in parallel. Via
a rigorous analysis, we find that the spectral radius of the iteration matrix is uniformly
bounded by α/(1−α), independent of the model parameters (the damping coefficient
ǫ and the wave velocity

p
γ) and the discretization parameters (the time step τ and the

spatial mesh size h). Unlike the classical wave equation with Dirichlet boundary con-
dition where the upper bound α/(1−α) is very sharp, we find that the occurrence of
the damping term −ǫ∆yt , as well as the large final time T , leads to even faster conver-
gence of the algorithm, especially when α is not very small. We illustrate our theoretical
findings with several numerical examples.
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1. Introduction

In this paper, we consider the following viscoelastic equation:

yt t − ǫ∆yt − γ∆y = f , (x, t) ∈ Ω× J ,

y(x, t) = φ(x, t), (x, t) ∈ ∂Ω× J ,

y(x, 0) =ψ1(x), x ∈ Ω,

yt(x, 0) =ψ2(x), x ∈ Ω,

(1.1)
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where Ω ⊂ Rd (d = 1,2,3) is an open domain, J = (0, T ] is the time interval, ǫ ≥ 0 is the
damping coefficient and

p
γ is the wave velocity with γ > 0. The source function f , the

boundary function φ(x, t) and the initial functions ψ1(x) and ψ2(x) are all given. With-
out loss of generality, we assume that a homogeneous boundary condition is applied, i.e.
φ(x, t) = 0, to simplify the theoretical analysis.

Comparing with the classical wave equation, the viscoelastic equation uses a damping
term −ǫ∆yt to provide a more accurate model in many applications e.g. in the propagation
of vibration waves through viscoelastic media [26]. We refer the reader to [50] for more
applications in science and engineering. Recently, Gander et al. [14] numerically validated
that the viscoelastic damping −ǫ∆yt works much better than the first order damping term
−yt (which results in a telegrapher’s equation) for modeling the vibration of an elastic
string.

The well-posedness of the viscoelastic equation had been addressed a long time ago
[2, 39, 42]. However, like most PDEs in applications, it is very hard to find the analytical
solutions due to the complicated given data, or, the complex defining domain. As a result,
it is very essential to study the numerical methods for solving the viscoelastic equation.
In fact, all prevalent techniques for spatial discretization can be applied to the viscoelastic
equation. See, for example, [9,45] for finite element methods, [3,17,25,38] for mixed fi-
nite element methods, [20,54] for finite difference methods, [22,23] for generalized finite
difference methods (also known as finite volume element methods), [43] for discontinuous
Galerkin methods and [49] for weak Galerkin finite element methods. Recently, the mesh-
less methods also attract much attention in solving the viscoelastic equation (1.1), see for
instance [35,37].

However, most numerical methods for solving Eq. (1.1) are based on time stepping. For
example, the reader can refer to [30,53] for a Crank-Nicolson scheme, where an extrapo-
lation approach and a proper orthogonal decomposition technique are used to reduce the
degree of freedom. To speedup the computation, one can apply parallel computing tech-
nique at each time level due to the fact that the time discretization leads to a steady partial
differential equation. Amongst the various parallel computing methods, the domain de-
composition method attracts the most attention. The domain decomposition method origi-
nated from Schwarz’s seminal work [41] in 1870, and was developed in 1990 by Lions [28]
as a parallel solver, which finally leads to the optimized Schwarz methods — cf. [10] and
references therein. Other efficient domain decomposition methods include the restricted
additive Schwarz (RAS) method [47], the finite element tearing and interconnecting (FETI)
method [8], the balancing domain decomposition by constraints (BDDC) [6], etc. We refer
the reader to the monographs [7,47] for many other variants of the aforementioned meth-
ods in detail. An alternative to the domain decomposition method would be the multigrid
method, cf. for example [48]. Obviously, these methods can be straightforwardly applied
to the viscoelastic equation (1.1) after time discretization.

In order to use computing resources more efficiently, one can apply the parallel-in-time
(PinT) computation to further accelerate the solution of the viscoelastic equation (1.1). In
fact, Adey and Brebbia [1] proposed long ago to solve the viscoelastic equation in parallel in
the Laplace transformed plane by a finite element method, and then a least square colloca-
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tion method is applied to construct the whole solution in the time domain. However, except
for the above-mentioned work, we do not find any published articles concerning the parallel
computing of viscoelastic equations. While for other PDEs arising in science and engineer-
ing, the parallel algorithm has been extensively studied. In fact, the PinT approach can be
traced back at least to 1964 [34], and we refer the reader to [11] for a historical review.
Among the numerous PinT algorithms, the parareal method proposed by Lions et al. [27]
attracts the most attention. The parareal method is a prediction-correction method with
prediction generated by a coarse grid propagator and correction via a fine grid propagator.
It can be interpreted as a two-level multigrid method [15] and leads to a good convergence
for parabolic problems. However, the parareal method does not converge well for hyper-
bolic problems, though many efforts had been laid on improving the algorithm [33, 40].
Concerning the hyperbolic problems, the PinT algorithms based on diagonalization per-
form quite well. This method was proposed by Maday and Rønquist in [31] as a direct
PinT solver. The main idea is to collect the unknowns at all time levels as an all-at-once
system and to diagonalize the time stepping matrix while keeping the spatial discretiza-
tion matrices unchanged, which allows solving all time steps at once in parallel. To ensure
that the time discretization matrix is diagonalizable, Gander et al. proposed in [12] us-
ing variable non-uniform time steps. However, when the number of time points is large,
the algorithm is difficult to balance the discretization error and the rounding error. Very
recently, by borrowing the idea of preconditioning Toeplitz matrices with a circulant one
from Strang [44] and Olkin [36], Liu and Wu [29] proposed an iterative PinT algorithm
based on diagonalization for solving the wave equation, where the all-at-once system of
block Toeplitz structure is preconditioned with a block α-circulant matrix [4]. The analysis
for an implicit leap-frog time stepping and a central difference scheme for spatial discretiza-
tion shows that the non-unit eigenvalues of the preconditioned matrix P −1

α K all belong
to the annulus

Aα :=
n

z ∈ C :
α

1+α
≤ |z − 1| ≤ α

1−α

o

.

In addition, this result also holds when the Numerov scheme is applied for the time dis-
cretization, together with the compact finite difference in space, see [46]. Particularly, Wu
et al. [52] proved under a more general framework that this property holds if the time step-
ping scheme is stable under several mild assumptions, which, however, do not meet by our
algorithm. For a case where the non-unit eigenvalues of the preconditioned matrix P −1

α K
are not bounded from below, we refer the reader to [51] for the two-stage singly diagonally
implicit Runge-Kutta (SDIRK) method. For many other variants of diagonalization-based
PinT algorithms, we refer the reader to [13].

In this paper, we would like to solve the viscoelastic equation (1.1) using the afore-
mentioned diagonalization-based PinT algorithm. We use the Crank-Nicolson method for
temporal discretization since it is unconditionally stable, and choose the central difference
scheme as spatial discretization due to its second-order accuracy. Through rewriting the to-
tal unknowns at all time levels as an all-at-once systemK yh = bh, we solve it with a block
α-circulant preconditionerPα that could be inversed by a diagonalization technique in par-
allel. The spectral analysis shows that, because of the occurrence of the damping term in
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the viscoelastic equation, the spectral distribution of the preconditioned matrix P −1
α K is

somehow different from those for wave equations. More precisely, like for the wave equa-
tion, the non-zero eigenvalues of the preconditioned iteration matrixM = I −P −1

α K are
still bounded from above by a uniform bound of α/(1−α), independent of the damping
coefficient ǫ. However, unlike the wave equation, they are not bounded from below. Fur-
thermore, the upper bound α/(1−α) is not sharp unless ǫ = 0, that is to say, compared
to the wave equation, the damping term leads to even faster convergence of the precondi-
tioned iteration (2.4).

The rest of this paper is organized as follows. In Section 2, we briefly introduce the
discretization scheme for the viscoelastic equation (1.1) and the corresponding all-at-once
system, as well as the diagonalization-based PinT algorithm for solving it. In Section 3, we
analyze in detail the spectral distribution of the preconditioned matrix P −1

α K and derive
a uniform upper bound. Especially, we lay our efforts on explaining how the damping
term affects the convergence behavior of the iterative method (2.4) in Section 4. We then
in Section 5 conduct several numerical examples to illustrate our theoretical findings and
finally draw conclusions in Section 6.

2. Diagonalization-Based PinT Algorithm

2.1. Discretization using Crank-Nicolson in time and central difference

in space

For given integers Nxi
, i = 1, . . . , d and Nt , we denote by hi = 1/(Nxi

+ 1) and τ =
T/Nt the spatial and temporal mesh sizes, respectively. We split the time interval [0, T ]

uniformly by the time points {tn = nτ}Nt

n=0. Let ∆h be the discrete Laplacian obtained
by using central difference, which gives a second-order approximation to the Laplacian ∆
with boundary conditions described in (1.1). More exactly, ∆h = (1/h

2
1)L for the 1D case,

∆h = (1/h
2
1)L ⊗ Ix2

+ Ix1
⊗ (1/h2

2)L for the 2D case, and ∆h = (1/h
2
1)L ⊗ Ix2

⊗ Ix3
+ Ix1
⊗

(1/h2
2)L ⊗ Ix3

+ Ix1
⊗ Ix2
⊗ (1/h2

3)L for the 3D case, with (1/h2
i
)L being the 1D discrete

Laplacian. Then, discretizing (1.1) temporally using Crank-Nicolson and spatially using
central difference, we arrive at the fully discrete scheme

Yn+1 − 2Yn+ Yn−1

τ2
− ǫ∆h

Yn+1 − Yn−1

2τ
− γ∆h

Yn+1 + 2Yn + Yn−1

4

=
Fn+1 + 2Fn + Fn−1

4
, (2.1)

where n = 1,2, . . . , Nt − 1, and Yn is a lexicographic ordered vector collecting the approxi-
mate solutions of y(·, tn) over all the space grids. Fn, Ψ0 and Ψ1 are similarly defined for f ,
ψ0 and ψ1, respectively. The initial value Y0 is directly given by the third equality in (1.1).
However, Y1 has to be determined by an approximation considering the discretization ac-
curacy. For example, the Taylor expansion

y(·,τ) = y(·, 0) +τyt(·, 0) +
τ2

2
yt t(·, 0) + O (τ3)
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suggests the following second-order approximation:

Y1 = Ψ0 +τΨ1 +
τ2

2
(F0 + ǫ∆hΨ1 + γ∆hΨ0),

since
yt t(·, 0) = f (·, 0) + ǫ∆h yt(·, 0) + γ∆h y(·, 0)

according to (1.1).
We comment here that our analysis also works in other discretization techniques. For

example, applying the implicit leap-frog method [29] leads to

Yn+1 − 2Yn+ Yn−1

τ2
− ǫ∆h

Yn+1 − Yn−1

2τ
− γ∆h

Yn+1 + Yn−1

2
= Fn. (2.2)

Obviously, the scheme (2.2) approximates the term −γ∆y differently, which leads to a dif-
ferent coefficient matrix in the all-at-once system (2.3), and still could be analyzed by our
methods. In addition, the different definition of the right-hand side of (2.2) does not affect
the analysis.

2.2. An all-at-once system

Let It ∈ RNt×Nt and Ix (Ix ∈ RNx×Nx in 1D, Ix ∈ RNx1
Nx2
×Nx1

Nx2 in 2D, and Ix ∈
R

Nx1
Nx2

Nx3
×Nx1

Nx2
Nx3 in 3D) be the identity matrices. Denote D = (ǫτ/2)∆h, E = (γτ2/4)∆h.

With these notations, we rewrite scheme (2.1) as the following all-at-once system:

K yh :=
1

τ2
(B1 ⊗ Ix − B2 ⊗ D − B3 ⊗ E)yh = bh, (2.3)

where

B1 =









1
−2 1
1 −2 1

...
. . .

. . .
1 −2 1









, B2 =









1
0 1
−1 0 1

...
. . .

. . .
−1 0 1









,

B3 =









1
2 1
1 2 1

.. .
. . .

. . .
1 2 1









, yh =









Y2

Y3
...

YNt−1

YNt









, bh =









b1

b2

b3
...

bNt−1









,

and

b1 =
1

4
(F0 + 2F1 + F2) +

2

τ2
(Ix + E)Y1 −

1

τ2
(Ix + D− E)Y0,

b2 =
1

4
(F1 + 2F2 + F3)−

1

τ2
(Ix + D − E)Y1,

bi =
1

4
(Fi−1 + 2Fi + Fi+1), i = 3,4, . . . , Nt − 1.
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Unlike to the all-at-once system for wave equations [29,46], we get an extra tensor term in
the coefficient matrix K due to the occurrence of the damping term −ǫ∆yt , which brings
difficulties to the convergence analysis in Section 3.

2.3. Fixed point iteration preconditioned by a block α-circulant matrix

The system (2.3) is of large scale and it is better to solve it with an iterative method. In
a generic form, the fixed point iteration for solving (2.3) can be written as

yk+1
h
= yk

h
+P −1

α rk (2.4)

with the residual rk = bh −K yk
h

and an initial guess y0
h
, where Pα is a preconditioner,

which should be determined such that the spectral radius of the iteration matrix M =

I −P −1
α K is as small as possible. In this paper, based on the idea of [29,46], we choose

the preconditioner Pα as the following block α-circulant matrix:

Pα =
1

τ2

�

C
(α)
1 ⊗ Ix − C

(α)
2 ⊗ D− C

(α)
3 ⊗ E
�

,

where

C
(α)
1 =









1 α −2α
−2 1 α

1 −2 1
...

. . .
. . .

1 −2 1









, C
(α)
2 =









1 −α 0
0 1 −α
−1 0 1

...
. . .

. . .
−1 0 1









,

C
(α)
3 =









1 α 2α
2 1 α

1 2 1
...

. . .
. . .

1 2 1









are Strang-type circulant matrices obtained by modifying the Toeplitz matrices B1, B2 and
B3, and α ∈ (0,1/2) is a free parameter. This idea of preconditioning a Toeplitz matrix with
a circulant matrix can be traced back to [36,44] and was applied to the all-at-once system
generated by the discretization of evolutionary PDE in [18,32].

Now we address how to solve (2.4) in a PinT pattern. Actually, the proposed precon-
ditioner Pα can be inverted — i.e. P −1

α r can be efficiently computed, in a PinT pattern
due to the fact that Cα1 , Cα2 and Cα3 are simultaneously diagonalizable. Consider discrete
Fourier matrix

F=
1
p

Nt − 1

�

ω(l1−1)(l2−1)
�Nt−1

l1,l2=1
, ω= e

2πi
Nt−1 , i =

p
−1

and the diagonal matrix

Γα = diag
�

1,α
1

Nt−1 , . . . ,α
Nt−2
Nt−1

�

.
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Then the α-circulant matrices Cα1,2,3 can be simultaneously diagonalized as

C
(α)
j
= V DjV

−1, j = 1,2,3,

where V = Γ−1
α F
∗ and D1,2,3 = diag(

p
Nt − 1FΓαC

(α)
1,2,3(:, 1)) with C

(α)
1,2,3(:, 1) being the first

column of C
(α)
1,2,3. Obviously, it holds that

Pα =
1

τ2
(V ⊗ Ix )(D1 ⊗ Ix − D2 ⊗ D − D3 ⊗ E)(V−1 ⊗ Ix ). (2.5)

Thus, for any input vector r, the inversion z :=P −1
α r can be implemented via the following

steps:

Step (a). S1 = (V
−1 ⊗ Ix )r.

Step (b). S2,n = τ
2(λ1,n Ix −λ2,nD −λ3,nE)−1S1,n, n= 1,2, . . . , Nt − 1.

Step (c). z = (V ⊗ Ix )S2,

(2.6)

where λ j,n is the diagonal entries of Dj with the following explicit expressions:

λ1,n = 1− 2α
1

Nt−1 e
2(n−1)πi

Nt−1 +α
2

Nt−1 e
4(n−1)πi

Nt−1 ,

λ2,n = 1−α
2

Nt−1 e
4(n−1)πi

Nt−1 ,

λ3,n = 1+ 2α
1

Nt−1 e
2(n−1)πi

Nt−1 +α
2

Nt−1 e
4(n−1)πi

Nt−1 ,

and S j,n = S j((n− 1)Nx : nNx) denotes the n-th block of S j for j = 1,2.
Note that steps (a) and (c) can be computed efficiently via FFT. We then consider

step (b). Direct calculations show that λ1,n 6= 0 for α ∈ (0,1/2). As a result, one has
to solve the complex-shifted Laplacian systems

�

−∆h +
4λ1,n

2ǫλ2,nτ+ γλ3,nτ2
Ix

�

S2,n =
4τ2

2ǫλ2,nτ+ γλ3,nτ2
S1,n, n= 1,2, . . . , Nt − 1.

Actually, efficient numerical methods for such Helmholtz-like complex systems have been
extensively studied, see for example [5].

3. Spectral Analysis of P −1
α
K

To describe the convergence of the scheme (2.4), it is sufficient to analyze the spectral
distribution of the preconditioned matrix P −1

α K . We consider only the one-dimensional
case, where D = (ǫτ/2h2)L and E = (γτ2/4h2)L. Two- and three-dimensional situations
can be considered analogously. Denote

Q1 = Ix − D− E, Q2 = Ix + E, Q3 = Ix + D− E, Mi = ei ⊗ Ix ,
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where ei is the i-th column of the identity matrix It ∈ R(Nt−1)×(Nt−1). According to (2.3)
and (2.5), K and Pα have the following representations in terms of Q1, Q2 and Q3:

K = 1

τ2









Q1

−2Q2 Q1

Q3 −2Q2 Q1
. . .

. . .
. . .

Q3 −2Q2 Q1









,

Pα =
1

τ2









Q1 αQ3 −2αQ2

−2Q2 Q1 0 αQ3

Q3 −2Q2 Q1
. . .

. . .
. . .

Q3 −2Q2 Q1









.

Obviously, Pα is a low-rank perturbation of K ,

αR :=Pα −K =
α

τ2









0 · · · 0 Q3 −2Q2

0 · · · 0 Q3

0 · · · 0
...

...
0









=
1

τ2

�

M1 M2

�
�

αQ3 −2αQ2

0 αQ3

�
�

MNt−2 MNt−1

�T

=:
1

τ2
UGV T .

Lemma 3.1. The preconditioned matrixP −1
α K can be written asP −1

α K = I−K −1UZ−1V T

with I = It ⊗ Ix , Z = τ2G−1 + V TK −1U. Furthermore, P −1
α K has (Nt − 3)Nx eigenvalues

equal to 1 and the other 2Nx eigenvalues are the eigenvalues of the matrix (I2x + Y )−1, where

Y = (1/τ2)V TK −1UG.

Proof. The first assertion is obtained by using the well-known Sherman-Morrison-Wood-
bury formula [19], viz.

P −1
α K = (K +αR)−1K

=

�

K + 1

τ2
UGV T

�−1

K

= I −K −1U(τ2G−1 + V TK −1U)−1V T

= I −K −1UZ−1V T .

Noting the fact thatK is a block Toeplitz matrix of triangular form, we know thatK −1 has
the same structure and can be written as
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K −1 =









K−1
0

K−1
1 K−1

0
K−1

2 K−1
1 K−1

0
...

. . .
. . .

. . .
K−1

Nt−2 · · · K−1
2 K−1

1 K−1
0









.

Using this notation, a careful calculation gives thatP −1
α K has (Nt−3)Nx eigenvalues equal

to 1 and the other 2Nx eigenvalues are determined by its last block I2x − V TK −1UZ−1.
Further calculation shows

I2x − V TK −1UZ−1 = τ2G−1Z−1

= τ2G−1
�

G−1 + V TK −1U
�−1

=
�

(G−1 + V TK −1U)(τ2G−1)−1
�−1

=

�

I2x +
1

τ2
V TK −1UG

�−1

.

This ends the proof.

Lemma 3.1 shows that we need to analyze the eigenvalues of Y . To this end, we refor-
mulate the matrix K as

K = 1

τ2
(B1 ⊗ Ix − B2 ⊗ D− B3 ⊗ E) =

1

τ2
(It ⊗Q1)J , (3.1)

where

J =









Ix

−2Q−1
1 Q2 Ix

Q−1
1 Q3 −2Q−1

1 Q2 Ix

. . .
. . .

. . .
Q−1

1 Q3 −2Q−1
1 Q2 Ix









.

The block triangular Toeplitz matrix J is invertible and its inverse has the form

J −1 =







J−1
0

J−1
1 J−1

0
...

. . .
. . .

J−1
Nt−2 · · · J−1

1 J−1
0







,

where J−1
n represents the n-th diagonal block of J −1. Besides, it is easily checked that

{J−1
n }

Nt−2
n=1 satisfies the following recurrence relation:

J−1
n+1 = 2Q−1

1 Q2J−1
n −Q−1

1 Q3J−1
n−1, n= 1,2, . . . , Nt − 2 (3.2)

with J−1
0 = Ix and J−1

1 = 2Q−1
1 Q2. Solving (3.2), we get the solution

J−1
n
= Θ1rn

1 +Θ2rn
2 , n= 0,1,2, . . . , Nt − 1,
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where

r1 = Q−1
1 Q2 −
�

(Q−1
1 Q2)

2 −Q−1
1 Q3

� 1
2 ,

r2 = Q−1
1 Q2 +
�

(Q−1
1 Q2)

2 −Q−1
1 Q3

� 1
2 ,

and

Θ1 =
1

2

�

Ix −Q−1
1 Q2

�

(Q−1
1 Q2)

2 −Q−1
1 Q3

�− 1
2

�

,

Θ2 =
1

2

�

Ix +Q−1
1 Q2

�

(Q−1
1 Q2)

2 −Q−1
1 Q3

�− 1
2

�

.

Using (3.1) we getK −1 = τ2J −1(It ⊗Q−1
1 ), which implies that the n-th block diagonal

of K −1 satisfies K−1
n
= τ2J−1

n
Q−1

1 . This equality implies

Y =
1

τ2
V TK −1UG

=
1

τ2

�
K−1

Nt−3 K−1
Nt−4

K−1
Nt−2 K−1

Nt−3

��

αQ3 −2αQ2

0 αQ3

�

= α

�
J−1

Nt−3Q−1
1 Q3 −J−1

Nt−2

J−1
Nt−2Q−1

1 Q3 −J−1
Nt−1

�

=: αX .

Now it is sufficient to analyze the spectral distribution of the matrix X . We note that if there
is no damping, say ǫ = 0, then Q1 = Q3. Hence, the expression of X is quite simple and the
eigenvalues of X can be easily determined — cf. [46]. In particular, we use a diagonalization
technique. From the definitions of Q1, Q2 and Q3, one finds that there exists an orthogonal
matrix R diagonalizing Q i, i = 1,2,3, simultaneously

Q1 = RG1R−1, Q2 = RG2R−1, Q3 = RG3R−1,

where Gi, i = 1,2,3, are diagonal matrices. Hence,

Q−1
1 Q2 = RG−1

1 G2R−1 =: RΛ1R−1,

Q−1
1 Q3 = RG−1

1 G3R−1 =: RΛ2R−1.

Using R, we diagonalize the matrices J−1
n for n= Nt − 1, Nt − 2, Nt − 3, thus obtaining

Σn := R−1J−1
n

R=
1

2

�

Ix −Λ1

�

Λ
2
1 −Λ2

�− 1
2

��

Λ1 −
�

Λ
2
1 −Λ2

� 1
2

�n

+
1

2

�

Ix +Λ1

�

Λ
2
1 −Λ2

�− 1
2

��

Λ1 +
�

Λ
2
1 −Λ2

� 1
2

�n

. (3.3)

For simplicity, we denote by Λ1 = diag(ζ1, . . . ,ζNx
),Λ2 = diag(ρ1, . . . ,ρNx

). Then the
eigenvalues of J−1

n for n = Nt − 1, Nt − 2, Nt − 3 can be determined from the Eq. (3.3)
as

µn, j =
1

2

�

1− ζ j

�

ζ2
j −ρ j

�− 1
2

��

ζ j −
�

ζ2
j −ρ j

� 1
2

�n
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+
1

2

�

1+ ζ j

�

ζ2
j
−ρ j

�− 1
2

��

ζ j +
�

ζ2
j
−ρ j

� 1
2

�n

, j = 1,2, . . . , Nx . (3.4)

Now, we are ready to calculate the eigenvalues of X . The following similarity transforma-
tion:
�

R−1 0
0 R−1

�

X

�

R 0
0 R

�

=

�

R−1 0
0 R−1

��
J−1

Nt−3Q−1
1 Q3 −J−1

Nt−2

J−1
Nt−2Q−1

1 Q3 −J−1
Nt−1

��

R 0
0 R

�

=

�

ΣNt−3Λ2 −ΣNt−2

ΣNt−2Λ2 −ΣNt−1

�

(3.5)

shows that we only have to calculate the eigenvalues of the right-hand side of (3.5). Noting
that each block entry is a diagonal matrix, one can then find a simple permutation matrix
P that transforms this matrix into a block diagonal one

P−1

�

ΣNt−3Λ2 −ΣNt−2

ΣNt−2Λ2 −ΣNt−1

�

P = blkdiag(Φ1,Φ2, . . . ,ΦNx
),

where

Φ j =

�

ρ jµNt−3, j −µNt−2, j

ρ jµNt−2, j −µNt−1, j

�

, j = 1,2, . . . , Nx

are 2× 2 matrices. Obviously, the two eigenvalues of Φ j are

ν±j =
1

2

�

ρ jµNt−3, j −µNt−1, j ±
Ç

(ρ jµNt−3, j +µNt−1, j)
2 − 4ρ jµ

2
Nt−2, j

�

. (3.6)

Along with Lemma 3.1, this leads to the following result.

Theorem 3.1. The spectrum of P −1
α K consists of (Nt − 3)Nx eigenvalues 1 and 2Nx eigen-

values located in the set

σ̂
�

P −1
α K
�

:=

¨

1

1+αν±
j

, j = 1,2, . . . , Nx

«

,

i.e.

σ
�

P −1
α K
�

= {1,1, . . . , 1
︸ ︷︷ ︸

(Nt−3)Nx

} ∪ σ̂
�

P −1
α K
�

.

In order to better understand the spectrum of P −1K , we have to further analyze
Eq. (3.6). From the recursion formula (3.2) one finds µn, j = 2ζ jµn−1, j − ρ jµn−2, j, which
simplifies (3.6) to

ν±j =
1

2

�

ρ jµNt−3, j −µNt−1, j ±
Ç

(ρ jµNt−3, j +µNt−1, j)
2 − 4ρ jµ

2
Nt−2, j

�

=
1

2

�

ρ jµNt−3, j − (2ζ jµNt−2, j −ρ jµNt−3, j)
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±
Ç

(ρ jµNt−3, j + (2ζ jµNt−2, j −ρ jµNt−3, j))
2 − 4ρ jµ

2
Nt−2, j

�

= (ρ jµNt−3, j − ζ jµNt−2, j)±
1

2

Ç

4(ζ jµNt−2, j)
2 − 4ρ jµ

2
Nt−2, j

= (ρ jµNt−3, j − ζ jµNt−2, j)±µNt−2, j

Ç

ζ2
j
−ρ j. (3.7)

It follows from (3.7) and (3.4) that in order to better understand the spectral distribution
ofP −1

α K , one has to study the values of ζ2
j
−ρ j, i.e. the eigenvalues of (Q−1

1 Q2)
2−Q−1

1 Q3.

Before going further, we make the following assumption.

Assumption 3.1. Any eigenvalue λ j(L) of L belongs to the interval (−4,0].

This assumption is quite reasonable, — cf. [46]. Assuming that Assumption 3.1 holds,
we investigate the eigenvalues of Q−1

1 Q2 and Q−1
1 Q3.

Proposition 3.1. For any given ǫ,γ ≥ 0,τ,h > 0, we have λ j(Q
−1
1 Q2) ∈ (−1,1] and

λ j(Q
−1
1 Q3) ∈ (−1,1].

Proof. Expressing Q1,Q2 and Q3 as

Q1 = Ix − D− E = Ix −
2ǫτ+ γτ2

4h2
L,

Q2 = Ix + E = Ix +
γτ2

4h2
L,

Q3 = Ix + D− E = Ix +
2ǫτ− γτ2

4h2
L,

we find

ζ j = λ j

�

Q−1
1 Q2

�

= λ j

��

Ix −
2ǫτ+ γτ2

4h2
L

�−1�

Ix +
γτ2

4h2
L

��

=
1+ γτ2/(4h2)λ j(L)

1− (2ǫτ+ γτ2)/(4h2)λ j(L)
, (3.8)

ρ j = λ j

�

Q−1
1 Q3

�

= λ j

��

Ix −
2ǫτ+ γτ2

4h2
L

�−1�

Ix +
2ǫτ− γτ2

4h2
L

��

=
1+ (2ǫτ− γτ2)/(4h2)λ j(L)

1− (2ǫτ+ γτ2)/(4h2)λ j(L)
. (3.9)

Since λ j(L) is non-positive according to Assumption 3.1, one easily finds

λ j

�

Q−1
1 Q2

�

≤ 1, λ j

�

Q−1
1 Q3

�

≤ 1.
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We show the lower bounds of λ j(Q
−1
1 Q2) and λ j(Q

−1
1 Q3) by contradiction. If λ j(Q

−1
1 Q2)≤

−1, then

1+
(ǫτ+ γτ2)/(2h2)λ j(L)

1− (2ǫτ+ γτ2)/(4h2)λ j(L)
≤ −1,

i.e.
2≤ ǫτ

2h2
λ j(L),

which contradicts the non-positivity of λ j(L). The estimate λ j(Q
−1
1 Q3) > −1 is obtained

analogously.

Remark 3.1. In fact, the j-th eigenvalues of Q−1
1 Q2 and Q−1

1 Q3 satisfy the following rela-
tion:

λ j

�

Q−1
1 Q2

�

= λ j

�

Q−1
1 Q3

�

+
(γτ2 − ǫτ)/(2h2)λ j(L)

1− (2ǫτ+ γτ2)/(4h2)λ j(L)
.

Checking the sign of γτ2 − ǫτ, one easily obtains that if τ > ǫ/γ, then λ j(Q
−1
1 Q3) >

λ j(Q
−1
1 Q2). The inequality still holds if we replace ‘>’ by ‘<’. While the equality holds

if τ = ǫ/γ, and this is exactly the case dealt with by [46], though no damping (ǫ = 0) is
considered in (1.1) there.

Using (3.8) and (3.9) we find

λ j

��

Q−1
1 Q2

�2 −Q−1
1 Q3

�

=
λ j(L)(γτ

2/h2 + (ǫτ/(2h2))2λ j(L))

(1− ((2ǫτ+ γτ2)/(4h2))λ j(L))
2

.

For ease of discussion on the ν±
j

shown in (3.7), we consider the following three situa-
tions:

Case I. λ j(L) > −
4h2γ

ǫ2
.

Case II. λ j(L) = −
4h2γ

ǫ2
.

Case III. λ j(L) < −
4h2γ

ǫ2
.

The condition in Case I implies λ j((Q
−1
1 Q2)

2 − Q−1
1 Q3) < 0, i.e. ζ2

j
− ρ j < 0. Let

a j =
Ç

ρ j − ζ2
j
. We have

µn, j =
1

2

�

1+
iζ j

a j

�
�

ζ j − ia j

�n
+

1

2

�

1−
iζ j

a j

�
�

ζ j + ia j

�n
. (3.10)

Hence, ν±
j

reads

ν±j = (ρ jµNt−3, j − ζ jµNt−2, j)±µNt−2, j

Ç

ζ2
j
−ρ j
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= (ρ jµNt−3, j − ζ jµNt−2, j)± ia jµNt−2, j. (3.11)

Using (3.10), one finds

ρ jµNt−3, j =
1

2
ρ j

�

1+
iζ j

a j

�
�

ζ j − ia j

�Nt−3
+

1

2
ρ j

�

1−
iζ j

a j

�
�

ζ j + ia j

�Nt−3
,

ζ jµNt−2, j =
1

2
ζ j

�

1+
iζ j

a j

�
�

ζ j − ia j

�Nt−2
+

1

2
ζ j

�

1−
iζ j

a j

�
�

ζ j + ia j

�Nt−2

=
1

2
ζ j

�

1+
iζ j

a j

�
�

ζ j − ia j

� �

ζ j − ia j

�Nt−3

+
1

2
ζ j

�

1−
iζ j

a j

�
�

ζ j + ia j

� �

ζ j + ia j

�Nt−3
,

ia jµNt−2, j =
1

2
ia j

�

1+
iζ j

a j

�
�

ζ j − ia j

�Nt−2
+

1

2
ia j

�

1−
iζ j

a j

�
�

ζ j + ia j

�Nt−2

=
1

2
ia j

�

1+
iζ j

a j

�
�

ζ j − ia j

� �

ζ j − ia j

�Nt−3

+
1

2
ia j

�

1−
iζ j

a j

�
�

ζ j + ia j

� �

ζ j + ia j

�Nt−3

=
(a j + iζ j)

2

2

�

ζ j − ia j

�Nt−3 −
(a j + iζ j)

2

2

�

ζ j + ia j

�Nt−3
.

Substituting these representations into (3.11) gives

ν±
j
=
�

a j ± iζ j

�2 �
ζ j ∓ ia
�Nt−3

=
�Ç

ρ j − ζ2
j
± iζ j

�2 �

ζ j ∓ i
Ç

ρ j − ζ2
j

�Nt−3
.

Thus it holds

�
�ν±

j

�
� =

�
�
�

Ç

ρ j − ζ2
j
± iζ j

�
�
�

2 �
�
�ζ j ∓ i
Ç

ρ j − ζ2
j

�
�
�

Nt−3
=
�
�ρ j

�
�
Nt−1 ≤ 1. (3.12)

Using (3.12), one finds for α ∈ (0,1/2) that

�
�
�
�

1

1+αν±
j

− 1

�
�
�
�
=

α|ν±
j
|

|1+αν±
j
| ≤

α

1−α . (3.13)

That is to say, in Case I those eigenvalues of P −1
α K described by 1/(1+αν±

j
) (see Theo-

rem 3.1) are contained in a disk centered at (1,0) with radius α/(1−α)

σ̂
�

P −1
α K
�

⊂
n

z ∈ C : |z − 1| ≤ α

1−α

o

, (3.14)

where the equality holds if and only ifρ j = 1 for some j, which is equivalent to max j λ j(L) =

0, this happens, for example, when periodic or Neumann boundary condition is imposed.
Note that for a well-posed problem one has in general λ j(L) 6= 0.
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Case II means ρ j − ζ2
j
= 0, which reduces (3.4) to µn, j = (ζ j)

n. Inserting it into (3.7),
we arrive for Case II at

ν±j = ρ jµNt−3, j − ζ jµNt−2, j = ρ jζ
Nt−3
j
− ζ jζ

Nt−2
j

= ζ
Nt−3
j

�

ρ j − ζ2
j

�

= 0.

We then get λ j(P −1
α K ) = 1. That is to say, (3.14) holds as well for Case II.

Case III is equivalent to ζ2
j
−ρ j > 0. Denoting by a j =

Ç

ζ2
j
−ρ j, one finds

µn, j =
1

2

�

1−
ζ j

a j

�
�

ζ j − a j

�n
+

1

2

�

1+
ζ j

a j

�
�

ζ j + a j

�n
. (3.15)

And ν±
j

simplifies to

ν±j = (ρ jµNt−3, j − ζ jµNt−2, j)±µNt−2, j

Ç

ζ2
j
−ρ j

= (ρ jµNt−3, j − ζ jµNt−2, j)± a jµNt−2, j . (3.16)

Using (3.15), we have

ρ jµNt−3, j =
1

2
ρ j

�

1−
ζ j

a j

�
�

ζ j − a j

�Nt−3
+

1

2
ρ j

�

1+
ζ j

a j

�
�

ζ j + a j

�Nt−3
,

ζ jµNt−2, j =
1

2
ζ j

�

1−
ζ j

a j

�
�

ζ j − a j

�Nt−2
+

1

2
ζ j

�

1+
ζ j

a j

�
�

ζ j + a j

�Nt−2

=
−2ζ3

j
+ ζ jρ j + 2a jζ

2
j

2a j

�

ζ j − a j

�Nt−3
+

2ζ3
j
− ζ jρ j + 2a jζ

2
j

2a j

�

ζ j + a j

�Nt−3
,

a jµNt−2, j =
1

2
a j

�

1−
ζ j

a j

�
�

ζ j − a j

�Nt−2
+

1

2
a j

�

1+
ζ j

a j

�
�

ζ j + a j

�Nt−2

=
−2ζ2

j
+ 2a jζ j +ρ j

2

�

ζ j − a j

�Nt−3
+

2ζ2
j
+ 2a jζ j −ρ j

2

�

ζ j + a j

�Nt−3
.

Substituting these identities into (3.16), we get using (3.15) and the definition of a j

ν±j =

�

1

2
ρ j

�

1−
ζ j

a j

�

−
−2ζ3

j
+ ζ jρ j + 2a jζ

2
j

2a

�
�

ζ j − a j

�Nt−3

+

�

1

2
ρ j

�

1+
ζ j

a j

�

−
2ζ3

j
− ζ jρ j + 2a jζ

2
j

2a j

�
�

ζ j + a j

�Nt−3 ± ia jµNt−2, j

=
2ζ3

j
− 2a jζ

2
j
− 2ζ jρ j +ρ ja j

2a j

�

ζ j − a j

�Nt−3

+
−2ζ3

j
− 2a jζ

2
j
+ 2ζ jρ j +ρ ja j

2a j

�

ζ j + a j

�Nt−3 ± ia jµNt−2, j

= −(ζ j ∓ a j)
Nt−1.
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Obviously, to understand the range of |ν±
j
|, we need to estimate the magnitude of |ζ j ∓

Ç

ζ2
j
−ρ j|. From the expressions of ζ j and ρ j, we get

1+ ζ j =
2− (ǫτ/(2h2))λ j(L)

1− ((2ǫτ+ γτ2)/(4h2))λ j(L)
>

−2− (ǫτ/(2h2))λ j(L)

1− ((2ǫτ+ γτ2)/(4h2))λ j(L)
= −(ζ j +ρ j),

which is equivalent to 1 + 2ζ j + ζ
2
j > ζ

2
j − ρ j, i.e. ζ j −

Ç

ζ2
j
−ρ j > −1. In addition, by

the definition of ζ j and the assumption of Case III, we have
Ç

ζ2
j
−ρ j > 0 ≥ ζ j − 1, i.e.

ζ j −
Ç

ζ2
j
−ρ j < 1. We therefore have |ζ j −

Ç

ζ2
j
−ρ j| < 1, i.e. |ν+

j
| < 1. On the other

hand, from the expressions of ζ j and ρ j, we get

1− ζ j =
−((ǫτ+ γτ2)/(2h2))λ j(L)

1− ((2ǫτ+ γτ2)/(4h2))λ j(L)
>

((ǫτ− γτ2)/(2h2))λ j(L)

1− ((2ǫτ+ γτ2)/(4h2))λ j(L)
= ζ j −ρ j.

Hence, we obtain
Ç

ζ2
j
−ρ j < 1 − ζ j , i.e. 1 > ζ j +

Ç

ζ2
j
−ρ j. Similarly, in this case we

have
Ç

ζ2
j
−ρ j > 0 > −1− ζ j . Hence, |ζ j +

Ç

ζ2
j
−ρ j| < 1 holds — i.e. |ν−

j
| < 1. Using

the result |ν±
j
| < 1, we find that (3.13) holds.

Integrating considerations in Cases I-III, we have the following theorem.

Theorem 3.2. The spectral radius of the preconditioned iteration matrixM = I −P −1
α K

is bounded from above by α/(1−α) for 0< α < 1, i.e.

σ(M ) ≤ α

1−α ,

where the equality holds if and only if max j λ j(L) = 0.

Remark 3.2. Note that the lower bound α/(1+α) of the non-zero eigenvalues ofM for
the classical wave equation does not hold for the viscoelastic equation (1.1) because of the
occurrence of the damping term −ǫ∆yt . How this term affects the convergence behavior
of the fixed point iteration (2.4) will be detailedly addressed in the next section.

Remark 3.3. In both two- and three-dimensional situations, Cases I-III lead to the same
results as illustrated in Theorem 3.2, including the spectral distribution of P −1

α K . Hence,
one would expect the convergence behavior of the preconditioned fixed point iteration
(2.4) similar to the 1D case.

4. Further Discussion

4.1. Influence of parameter α

Theorem 3.2 provides a uniform upper bound for the spectral radius of the iteration
matrix M , which does not depend on the mesh sizes τ and h, the damping coefficient ǫ
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and the wave velocity parameter γ and depends only on α

ρ(M ) = max
λ∈σ(P −1

α K )
|λ− 1| ≤ α

1−α , (4.1)

which is smaller than one for any α ∈ (0,1/2). Hence, one can determine how many iter-
ations would be required at most by the scheme (2.4) for reaching a prescribed tolerance.
Actually, let rk = P −1

α (bh −K yk
h
) denote the preconditioned residual vector at the k-th

iteration. Then, we have

‖rk+1‖ = ‖M rk‖= ‖M kr0‖ ≤ ‖M‖k‖r0‖. (4.2)

Using (4.1) and (4.2), one finds that the relative residual ‖rk‖/‖r0‖ < tol requires for
α ∈ (0,1/2)

� α

1−α

�k

≤ tol,

which gives

k = k(tol;α) :=
¡

ln(tol)

lnα− ln(1−α)

¤

. (4.3)

Here ⌈s⌉ represents the smallest integer greater than or equal to s. Indeed, the fixed point
iteration (2.4) intends to reach the tolerance tol with even fewer iterations, because of the
occurrence of the damping term, and/or the large final time T . This will be detailed in the
next subsection.

In addition, we find from (4.1) that the smaller the parameter α is, the faster the fixed
point iteration (2.4) converges. However, choosing an optimal α in practice is not as easy
as stated above. In fact, for a scheme mathematically equivalent to (2.4), the parameter α
should not be arbitrarily small, and has to be chosen by considering the roundoff error, see
Section 5.

4.2. Effect of the damping term

The damping term makes the viscoelastic equation advantageous in many applications
over the classical wave equation. However, with the uniform upper bound α/(1−α) one
cannot show how the damping term affects the convergence of the fixed point iteration
(2.4), which will be investigated in this subsection. To this end, we still consider the three
cases mentioned in the previous section.

In Case I, we have

ρ(M ) =max
j

�
�
�
�

1

1+αν±
j

− 1

�
�
�
�
≤max

j

α|ν±
j
|

1− α ,

which is α/(1−α) if and only if |ν±
j
| = 1 for some j, that is to say, λ j(L) = 0, and this

happens only for the Neumann or the periodic boundary conditions. Otherwise, we have
λ j(L) < 0 and the function ρ j defined in (3.9) is a decreasing function of ǫ with

lim
ǫ→0
ρ j = 1, lim

ǫ→+∞
ρ j = −1.
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As a result, one finds that |ν±
j
| = |ρ j|Nt−1, when regarding as function of ǫ, decreases first

and then increases to 1.
In Case II, the eigenvalues of M are all exactly zeros. In Case III, we have that if

λ j(L) < 0, then

�
�ν±j
�
�=

�
�
�ζ j ∓
Ç

ζ2
j
−ρ j

�
�
�

Nt−1

=

�
�
�
�
�
�

1+ (γτ2/(4h2))λ j(L)∓
Ç

(γτ2/h2)λ j(L) + (ǫτ/(2h2))2λ2
j
(L)

1− ((2ǫτ+ γτ2)/(4h2))λ j(L)

�
�
�
�
�
�

Nt−1

.

Similar to Case I, one can find that |ν±
j
| decreases first from 1 and then increases to 1 in ǫ.

Combining Cases I-III, we find when λ j(L) < 0 for all j that |ν±
j
| decreases from 1 first

in ǫ and then increases to 1. As a consequence, also noting that ρ(M ) ≤ (α/(1−α))|ν j|,
we conclude that the occurrence of the damping term will lead to faster convergence of
the fixed point iteration (2.4). Especially, there will be some values of ǫ such that where
the fixed point iteration (2.4) converges the fastest. However, for the Neumann or the
periodic boundary conditions, the performance of the fixed point iteration (2.4) would not
be affected by the damping coefficient ǫ.

In Fig. 1, we show the spectral radius ρ(M ) as function of ǫ, compared with the upper
bound α/(1−α), where, without loss of generality, we set γ = 1. Note that a Dirichlet
boundary condition is applied, and thus λ j(L) < 0 for all j. We find that around ǫ = 0.5 the
spectral radius ρ(M ) attains its minimum, which is about 1/7 the upper bound α/(1−α)
and could lead to a significant acceleration when α is not very small. To see the dependence
of the spectral distribution on the damping coefficient ǫ more clearly, we show in Fig. 2 the
eigenvalues of the preconditioned matrix P −1

α K for different values of ǫ. We find that for
the relatively large ǫ the eigenvalues are real. With the decreasing of ǫ, the eigenvalues
cluster more tightly and the complex eigenvalues are born. Finally, the eigenvalues scatter
and recover the spectral distribution for the case of the classical wave equation gradually,
where the non-unit eigenvalues have a lower bound α/(1+α) [46]. However, the spectral
radius ρ(M ) is exactly α/(1−α) when λ j(L) = 0 for some j. This phenomenon is well
illustrated by Fig. 3.

4.3. Speedup analysis

Concerning the speedup analysis for the three-step implementation (2.6), one can refer
to [46], where the analysis does not depend on the discrete matrix problem at each time
level and thus is still applicable in our algorithm. In fact, consider the following definition
of speedup:

speedup=
Tserial

Tparallel
,

where Tserial stands for the total cost for calculating the numerical solution in a time step-
ping fashion and Tparallel denotes the cost of obtaining the desired approximation using our



A Diagonalization-Based PinT Algorithm for the Viscoelastic Equation 65

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2
10-5

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2
10-5

Figure 1: Spectral radius ρ(M ) as function of ǫ. Left: α = 0.1. Right: α= 1e−5. The Dirichlet boundary
condition is applied. First row: 1D-case, Nt = 32, Nx = 31. Second row: 2D-case, Nt = 32, Nx = Ny = 15.
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Figure 2: Example 5.1. The eigenvalues – blue stars – of P −1
α
K (Dirichlet boundary condition, α= 0.1,

γ = 1, Nt = 32, Nx = 31) are compared with the upper bound α/(1−α) (red circle). In the last plot,
lower bound α/(1+α) for non-unit eigenvalues for the classical wave equation is shown in black.
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Figure 3: Example 5.3. The eigenvalues – blue stars – of P −1
α
K (Neumann boundary condition, α= 0.1,

γ = 1, Nt = 32, Nx = 31) are compared with the upper bound α/(1−α) (red circle). In the last plot,
lower bound α/(1+α) for non-unit eigenvalues for classical wave equation is shown in black.

algorithm. Clearly, we have Tserial = (Nt −1)M , where M is the total real floating point op-
erations (flops) for solving at each time level. Suppose that Nt−1 processors are available.
According to [46], the cost Tdiag for implementing the three-step algorithm (2.6) is

Tdiag = 8m+ 17m log2(Nt − 1) + 3m
�

⌊log2(Nt − 1)⌋+ log2(Nt − 1)mod 2
�

+ 2Tcomm + 4M,

where Tcomm is the communication cost in the FFT algorithm and m = N d
x for the D-

dimensional problem. Armed with these notations, one finds that the speedup for (2.6)
satisfies

speedup=
TSerial

Tparallel
=

TSerial

kTdiag
=
(Nt − 1)M

kTdiag
→ Nt − 1

4k
as M →∞,

where k is the number of iterations required by our algorithm to reach a given precision.
From the above asymptotic result, one finds that, for a fixed time step, a longer time interval
(0, T ) would lead to a larger speedup. We comment here that the speedup is not related to
the damping coefficient ǫ.

5. Numerical Results

In this section, we would like to provide several numerical examples to demonstrate our
theoretical results. All simulations are implemented using MATLAB_R2016b, with a ran-
dom initial guess and stop where the relative residual ‖rk‖/‖r0‖ is less than a given tol-
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erance tol. Without loss of generality, we choose γ = 1. We remark here that the Crank-
Nicolson method is unconditionally stable, then there is no requirement on the mesh to be
used for convergence.

We would like to illustrate the following theoretical results:

• The discretization is second-order accurate.

• The effect of the algorithm parameter α on the convergence behavior.

• The influence of the damping coefficient ǫ on the convergence behavior.

• The influence of the time interval (0, T ) on the convergence behavior.

5.1. 1D examples

In this subsection, we test our algorithm on several 1D examples with different proper-
ties. Noting that the solution to the viscoelastic equation decays exponentially in general,
see [21,42], we thus consider first the following 1D example modified from [24].

Example 5.1. Choose in the viscoelastic equation (1.1) Ω = (0,1), the initial conditions
y(x , 0) = sin(2πx), yt(x , 0) = − sin(2πx) and the source function

f (x , t) = (1− 4ǫπ2 + 4γπ2) sin(2πx)e−t .

The exact solution reads
y(x , t) = sin(2πx)e−t .

A suitable driving force would lead the viscoelastic equation to a driven oscillations
where the magnitude is not exponentially decay anymore. To test the performance of our
algorithm on such model, we consider the following example.

Example 5.2. Let Ω= (0,1), y(x , 0) = sin(πx), yt(x , 0) = 0 and the source function

f = (−1+ γπ2) sin(πx) cos(t)− ǫπ2 sin(πx) sin(t).

The exact solution is
y(x , t) = sin(πx) cos(t).

To see the influence of the non-zero eigenvalue of L on our algorithm, we use the
following example with Neumann boundary condition.

Example 5.3. Take Ω = (0,1), the initial conditions y(x , 0) = cos(πx), yt(x , 0) =
− cos(πx), the boundary condition ∂ y/∂ n= 0 and the source function

f (x , t) = (1− ǫπ2 + γπ2) cos(πx)e−t .

The exact solution now reads
y(x , t) = cos(πx)e−t .
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Unless otherwise specified, we consider situation T = 1. We list the number of iter-
ations required by our algorithm converging to a tolerance tol = 10−10, as well as the
corresponding errors and the numerical estimates of convergence order, in Table 1, with
ǫ = 0.5 for α = 0.1 and 0.01, respectively. We find that the second-order accuracy can be
obtained in both time and space simultaneously. Here the order of accuracy is estimated
by calculating the logarithmic ratio of the approximation errors between two successive
refined meshes: log2(e(h,τ)/e(2h, 2τ)).

We now test the effect of the algorithm parameter α on the convergence behavior. We
solve the three examples mentioned above with damping coefficient ǫ = 0.5 by the fixed
point iteration (2.4) and list the number of iterations required by converging to a toler-
ance tol = 10−10 in Table 2 for different α. As a comparison, we also list the number of
iterations predicted using (4.3). We find that the convergence is mesh independent, and

Table 1: Fixed point iteration (2.4). Examples 5.1, 5.2 and 5.3 with ǫ = 0.5, tol = 10−10 for α= 0.1 and
α = 0.01, respectively.

α = 0.1 α = 0.01

Nx Nt Ex Error Order k Error Order k

Ex 5.1 3.3974e-03 - 6 3.3974e-03 - 4

15 16 Ex 5.2 2.0250e-03 - 6 2.0250e-03 - 4

Ex 5.3 9.2623e-04 - 11 9.2623e-04 - 5

Ex 5.1 8.2769e-04 2.0372 6 8.2769e-04 2.0372 4

31 32 Ex 5.2 5.0312e-04 2.0090 6 5.0312e-04 2.0090 4

Ex 5.3 2.2851e-04 2.0191 11 2.2851e-04 2.0191 5

Ex 5.1 2.0561e-04 2.0092 6 2.0561e-04 2.0092 4

63 64 Ex 5.2 1.2567e-04 2.0013 6 1.2567e-04 2.0013 4

Ex 5.3 5.6894e-05 2.0059 11 5.6894e-05 2.0059 5

Ex 5.1 5.1312e-05 2.0026 6 5.1312e-05 2.0026 4

127 128 Ex 5.2 3.1409e-05 2.0004 6 3.1409e-05 2.0004 4

Ex 5.3 1.4201e-05 2.0023 11 1.4201e-05 2.0023 5

Table 2: Number of iterations required by fixed point iteration (2.4) when solving Example 5.1 (not
enclosed), Example 5.2 (in parentheses) and Example 5.3 (in brackets) with ǫ = 0.5 for different α,
tol = 10−10.

α

Nx Nt 0.1 0.01 10−3 10−4 10−5 10−6 10−7 10−8

31 32 6(6)[11] 4(4)[5] 3(3)[4] 3(3)[3] 2(2)[2] 2(2)[2] 2(2)[2] 2(2)[2]

63 64 6(6)[11] 4(4)[5] 3(3)[4] 3(3)[3] 2(2)[2] 2(2)[2] 2(2)[2] 2(2)[2]

127 128 6(6)[11] 4(4)[5] 3(3)[4] 3(3)[3] 2(2)[2] 2(2)[2] 2(2)[2] 2(2)[2]

255 256 6(6)[11] 4(4)[5] 3(3)[4] 3(3)[3] 2(2)[2] 2(2)[2] 2(2)[2] 2(2)[2]

511 512 6(6)[11] 4(4)[5] 3(3)[4] 3(3)[3] 2(2)[2] 2(2)[2] 2(2)[2] 2(2)[2]

k(tol;α) 11 6 4 3 2 2 2 2
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Figure 4: Example 5.1. Error reduction of fixed point iteration as function of the number of iterations
for different α, ǫ = 0.5, (Nx , Nt) = (255, 256). Left: Scheme (2.4). Right: Scheme (5.1).

depends only on the algorithm parameter α. In addition, the formula (4.3) predicts the
number of iterations for Example 5.3 very well, while for Examples 5.1 and 5.2 it over-
estimates the number of iterations for relative large α. This observation conforms well our
analysis: the upper bound α/(1−α) is sharp for problems using the Neumann boundary
conditions and the damping term −ǫ∆yt will lead to a smaller spectral radius of the itera-
tion matrixM when Dirichlet boundary conditions are applied. To further study the effects
of smaller algorithm parameter α, we plot the errors for solving Example 5.1 as function of
the iteration numbers for different α in the left panel of Fig. 4. From this plot we find that
the smaller α leads to faster convergence, and all errors finally stagnate at a level deter-
mined by the discretization error. Thus no compromise between the machine precision and
the discretization error is required as stated by [16]. However, if consider the following
more economic scheme:

yk+1
h
=P −1

α

�

αR yk
h + bh

�

, (5.1)

we find from the right plot of Fig. 4 that the roundoff error will pollute the numerical so-
lution when α is too small. Hence, in this case the optimal α should be determined by
compromising the discretization error with the machine precision, see [16] for more de-
tails. Note that mathematically the two iteration schemes (2.4) and (5.1) are equivalent,
thus the different numerical performance of these two schemes deserves further investiga-
tion. We also comment here that from our numerical results there is no need to choose α
extraordinarily small in practice.

To see the effect of the damping coefficient ǫ more clearly, we plot the number of it-
erations required by the scheme (2.4) converging to a tolerance tol = 10−10 as function
of ǫ in Fig. 5. Where we find that, when solving Examples 5.1 and 5.2, for α = 0.1 the
algorithm (2.4) converges much faster for ǫ = 0.5 than solving the classical wave equation
(ǫ = 0). We observe as well that when ǫ is large, the required number of iterations is almost
the same as for the classical wave equation. While this phenomenon does not happen for
Example 5.3 as expected. In addition, similar observation happens as well for α = 0.01,
but the difference is not significant anymore, even for ǫ = 0.5. This phenomenon is also
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Figure 5: Number of iterations required by fixed point iteration (2.4), with Nx = 31, Nt = 32, converging
to a tolerance tol = 10−10 as function of ǫ. Left column: Example 5.1. Middle column: Example 5.2.
Right column: Example 5.3. First row: α = 0.1. Second row: α = 0.01.
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Figure 6: Example 5.1. Error reduction of fixed point iteration (2.4), Nx = 255, Nt = 256, compared
with the prediction provided using the upper bound α/(1−α).

illustrated in Fig. 6 for Example 5.1 (similar plots can be obtained for Example 5.2) and
Fig. 7 for Example 5.3 from the perspective of error reduction, where the iterative error
finally stagnates at the level of the discretization error.

Now, we study how robust our algorithm is on the time interval (0, T ). To this end, we
plot in Fig. 8 the number of iterations required by our algorithm converging to a tolerance
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Figure 7: Example 5.3. Error reduction of fixed point iteration (2.4), Nx = 255, Nt = 256, compared
with the prediction provided using the upper bound α/(1−α).
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Figure 8: Number of iterations required by fixed point iteration (2.4) as function of T for different α,
ǫ = 0.5, tol = 10−10, h= τ= 1/128.

tol = 10−10 as function of T with parameters ǫ = 0.5, h = τ = 1/128. We find that our
algorithm is very robust in T for all examples. In particular, for Examples 5.1 and 5.2, when
α is relatively large, the longer the time interval is, the faster the algorithm converges, this
is because larger T (correspondingly larger Nt for fixed time step size) will lead to smaller
spectral radius of the iteration matrix. However, for Example 5.3, the spectral radius is
exactly α/(1−α) due to the Neumann boundary condition, hence the number of iterations
does not vary with the time interval (0, T ).

Next, we test how a non-smooth initial condition will affect the performance of our
algorithm. To this end, we consider the following model problem [14], which gives a more
realistic description of a plucked string.

Example 5.4. Let Ω= (0,1), f = 0,

y(x , 0) =

¨

2x , 0< x ≤ 1/2,

2− 2x , 1/2< x < 1,



72 F. Li and Y. Xu

and yt(x , 0) = 0. The exact solution is

y(x , t) =
∑

1≤n<M

sin(nπx)e−αn t
�

an cosh(µnt) + bn sinh(µn t)
�

+
∑

n>M

sin(nπx)e−αn t
�

an cos(µnt) + bn sin(µnt)
�

+χM=[M] sin(Mπx)e−αM t(aM + bM t),

where

αn =
ǫn2π2

2
, µn =

nπ

2

Æ

ǫ2n2π2 − 4γ,

an =
8

n2π2
sin
�

nπ

2

�

, bn =
αnan

µn

, M =
2
p
γ

ǫπ

and

χM=[M] =

¨

1, if M = [M],

0, otherwise

with [M] being the integer part of M .
The solution to Example 5.4 has a low regularity due to the non-smooth initial condi-

tion. Hence, the central difference scheme cannot reach its second-order accuracy. Par-
ticularly, at the initial stage, it is very hard to damp the error. We then consider only the
numerical results at late stage T = 1. In the left panel of Fig. 9, we find that it is hard
to reduce the error, especially for very small or very large damping coefficient ǫ. Inter-
estingly, when ǫ is relatively small, say near ǫ = 0.1, the scheme performs very well. This
observation is further convinced by the right plot of Fig. 9. We comment here that the above
phenomena are essentially determined by the discretization method, not related to our iter-
ation scheme (2.4). In fact, we observe exactly the same results when solving Example 5.4
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Figure 9: Example 5.4. Maximum error and convergence order at T = 1 as function of ǫ with α = 0.1.
Left: Maximum errors correspond to different mesh sizes. Right: Convergence order calculated from
the numerical results with τ= 1/64 and 1/128.
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Figure 10: Example 5.4. Number of iterations required by fixed point iteration (2.4) converging to
tol = 10−10 as function of T , ǫ = 0.05, h= τ= 1/128.

using the time stepping scheme (2.1). We now test the performance of our algorithm.
When solving Example 5.4 for ǫ = 0.05 and T = 1 with varying α, we obtain results very
similar to those reported in Table 2, except where for each column the iteration numbers
are replaced by 9,5,4,3,2,2,2,2, which show that our algorithm is still mesh independent
and depends only on α. For varying T , we plot our results in Fig. 10, which shows a result
similar to Example 5.1.

5.2. A 2D example

As a 2D example [24], we choose in the viscoelastic equation (1.1) Ω = (0,1)2, T = 1,
the initial condition

y(x1, x2, 0) = sin(2πx1) sin(2πx2),

yt(x1, x2, 0) = − sin(2πx1) sin(2πx2),

and the source function

f = (1− 8ǫπ2 + 8γπ2) sin(2πx1) sin(2πx2)e
−t .

We find that the exact solution is

y(x1, x2, t) = sin(2πx1) sin(2πx2)e
−t .

Experiments similar to those for Example 5.1 are performed and we list the results in
Tables 3 and 4, as well as Fig. 11. Results similar to the 1D case can be concluded, we
hence omit the details.
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Table 3: Fixed point iteration (2.4) for 2D viscoelastic equation, ǫ = 0.5, tol = 10−10.

α= 0.1 α= 0.01

(Nx , Ny ) Nt Error Order k Error Order k

(15,15) 16 3.3847e-03 - 6 3.3847e-03 - 4

(31,31) 32 8.1233e-04 2.0589 6 8.1233e-04 2.0589 4

(63,63) 64 2.0098e-04 2.0150 6 2.0098e-04 2.0150 4

(127,127) 128 5.0113e-05 2.0038 6 5.0113e-05 2.0038 4

Table 4: Number of iterations required by fixed point iteration (2.4) for 2D viscoelastic equation (1.1),
ǫ = 0.5, tol = 10−10.

α

(Nx , Ny ) Nt 0.1 0.01 10−3 10−4 10−5 10−6 10−7 10−8

(15,15) 16 6 4 3 3 2 2 2 2

(31,31) 32 6 4 3 3 2 2 2 2

(63,63) 64 6 4 3 3 2 2 2 2

(127,127) 128 6 4 3 3 2 2 2 2

k(tol;α) 11 6 4 3 2 2 2 2
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Figure 11: Number of iterations required by fixed point iteration (2.4) converging to a tolerance tol =
10−10 as function of ǫ for 2D viscoelastic equation (1.1), Nx = Ny = 31, Nt = 32. Left: α = 0.1. Right:
α = 0.01.

5.3. A 3D example

To test a 3D example, we choose Ω= (0,1)3, T = 1, the initial condition

y(x1, x2, x3, 0) = sin(2πx1) sin(2πx2) sin(2πx3),

yt(x1, x2, x3, 0) = − sin(2πx1) sin(2πx2) sin(2πx3),

and the source function

f = (1− 12ǫπ2 + 12γπ2) sin(2πx1) sin(2πx2) sin(2πx3)e
−t .
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Table 5: Fixed point iteration (2.4) for 3D viscoelastic equation with ǫ = 0.5, tol = 10−10 .

α= 0.1 α = 0.01

(Nx , Ny , Nz) Nt Error Order k Error Order k

(7,7,7) 8 2.0123e-02 - 6 2.0123e-02 - 4

(15,15,15) 16 3.4354e-03 2.5503 6 3.4354e-03 2.5503 4

(31,31,31) 32 8.1015e-04 2.0842 6 8.1015e-04 2.0842 4

Table 6: Number of iterations required by fixed point iteration (2.4) for 3D viscoelastic equation (1.1),
ǫ = 0.5, tol = 10−10.

α

(Nx , Ny , Nz) Nt 0.1 0.01 10−3 10−4 10−5 10−6 10−7 10−8

(7,7,7) 8 6 4 3 3 2 2 2 2

(15,15,15) 16 6 4 3 3 2 2 2 2

(31,31,31) 32 6 4 3 3 2 2 2 2

k(tol;α) 11 6 4 3 2 2 2 2

In this case the exact solution is

y(x1, x2, x3, t) = sin(2πx1) sin(2πx2) sin(2πx3)e
−t .

The numerical results listed in Tables 5 and 6 imply again the observations in the 1D
case.

6. Conclusion

In this paper, we extend a diagonalization-based PinT algorithm to solve the viscoelas-
tic equation efficiently. Taking an algebraic system obtained by discretizing the viscoelastic
equation via the Crank-Nicolson and the central difference schemes as an example, we pro-
pose to solve it using a fixed point iteration preconditioned by a block α-circulant matrix.
A rigorous analysis shows that the spectral radius of the preconditioned iteration matrix is
uniformly bounded from above by α/(1−α), an upper bound independent of the model
parameters and the discretization parameters, which means the smaller the algorithm pa-
rameter α is, the faster the algorithm converges. Unlike the classical wave equation with
Dirichlet boundary conditions, the upper bound is not sharp anymore, hence the damp-
ing term, as well as the large time interval (0, T ), leads to even faster convergence. The
proposed algorithm can be easily extended to the algebraic problems resulting from other
discretization schemes.
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