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Abstract. This paper presents a specific network architecture for approximation of the
first Piola-Kirchhoff stress. The neural network enables us to construct the constitutive
relation based on both macroscopic observations and atomistic simulation data. In
contrast to traditional deep learning models, this architecture is intrinsic symmetric,
guarantees the frame-indifference and material-symmetry of stress. Specifically, we
build the approximation network inspired by the Cauchy-Born rule and virial stress
formula. Several numerical results and theory analyses are presented to illustrate the
learnability and effectiveness of our network.
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1 Introduction

Atomistic-based constitutive relation has played a critical role in multiscale modeling.
With a proper description of macroscopic stress in the form of atomistic information, we
can couple models based on continuum mechanics with models at microscopic scale [1],
such as molecular dynamics (MD) and molecular statics (MS). In the last few decades,
many research on the formulation [2–6], application [7–10] and simplification [11, 12] of
various kinds of atomistic stress has been done. Among these, a well known and widely
used atomistic-based stress for equilibrium and homogeneous system is the virial stress,
which is firstly studied by Clausius in 1870 [13]. Formally, the virial stress is a sum of
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the multiplications of atoms positions and force, which can be easily computed in the
molecular simulations. In practical multiscale modeling, however, we need to repeat
this interatomic calculation in each coarse-grained patch [9, 10]. As a consequence, an
easier-to-compute deformation-stress relation with atomic-level accuracy would make
the multiscale modeling even more efficient.

On the other hand, with recent development of deep learning (DL) in traditional arti-
ficial intelligence (AI) domains, such as face recognition in computational visual (CV) and
text classification in natural language processing (NLP), a lot of successes has also been
achieved in the application of DL to scientific computation [14], e.g., using deep learn-
ing in speeding up the MD simulations [15, 16], solving differential equations [17–21],
sampling equilibrium states in statistic mechanics [22], predicting multiphase flow [23],
and identifying the constitutive law [24]. A significant difference in the utilization of
DL in scientific computation from traditional AI problems is that, various constraints
informed by different physical laws or boundary conditions must be considered. As a
result, a physics-informed network is often wanted for the satisfaction of physical con-
straint. Furthermore, with a neural network enhanced by some physical knowledge, we
can use less data in the training procedure.

In this article, we would build a special physics-informed network architecture for
representation of the Piola-Kirchhoff stress (PK stress) in Lagrangian coordinates. Dif-
ferent from several existing works on the learning of constitutive relations with direct
or indirect observed data by continuum model [25–28], we learn the PK stress directly
from atomistic data driven by virial formulation, which supply the learning stress with
an atomic-level accuracy. Furthermore, by constructing the network with symmetric op-
erations in the crystallographic point symmetry group, this stress network is intrinsic
symmetric, in the sense that the frame-indifference and material-symmetry of stress is
exactly satisfied. In summary, our main contributions are as follows:

• We propose a novel deep neural network (DPK), for the representation of PK stress.

• The DPK stress is intrinsic symmetric and can be trained by virial stress.

• Several numerical results and theory analysis are given to illustrate the learnability,
transferability and effectiveness of DPK.

The rest of this paper is organized as follows. In Section 2 we first review the PK stress
and virial formulation, then propose the DPK stress and its simplification version. Sev-
eral theorems on the symmetry, approximation and learnability will also be presented.
After that, some numerical results will be shown in Section 3 to demonstrate the effec-
tiveness and transferability of the simplified DPK stress. Finally in Section 4 we will give
our main conclusions.
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2 Symmetric neural networks for PK stress

In continuum thermodynamics, for simple elastic material the first PK stress is defined
as the derivative of the Helmholtz free energy density Ψ(F,T) with respect to the defor-
mation tensor F:

P(F,T)=
∂Ψ(F,T)

∂F
. (2.1)

At zero temperature, the free energy density in above definition should be replaced as
the strain energy density [29]:

P(F)=
∂W(F)

∂F
. (2.2)

Two important constraints should be satisfied by these relations [30]:

P(QF)=QP(F), ∀Q∈SO(3), (2.3a)

P(F)=P(FH)HT, ∀H∈G, (2.3b)

where SO(3) stands for the proper orthogonal group and G refers to the material symme-
try group. The first constraint (2.3a) is due to the principle of material frame-indifference,
meaning that the constitutive relations should be invariant when the frame is changed.
The second constraint (2.3b) results from the material symmetry, which requires that the
response of the material should be unaltered if symmetric transformation was applied to
reference configuration before the deformation. The Group consists of such symmetric
transformations is defined as the material symmetry group G.

In the following sections, we will focus on the construction of deep symmetric net-
work Pθ(F) to represent the first PK stress (DPK). By symmetric we mean the network
can exactly satisfy the two constraints (2.3a) and (2.3b).

2.1 Cauchy-Born rule and virial stress

In order to design an intrinsic symmetric deep network to learn the stress, we first review
the definition of PK stress in atomic level and verify the constraints above. Consider a
material consists of N atoms, of which we denote the i-th atom’s reference position, de-
formed position and force as Xi, xi and fi respectively. For both pair-wise interatomic po-
tential and multi-body potential system (e.g., embedded atom method, EAM), the force
fi can be decomposed as the sum of pair force form:

fi =∑
j 6=i

fij, (2.4)

where the pair force fij is defined as the minus derivative of total potential V with respect
to rij =xi−xj:

fij =−
∂V(r12,··· ,rij,···)

∂rij
=−

∂V(r12,··· ,rij,···)
∂rij

rij

rij
. (2.5)
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Here we write the norm of rij as rij. According to the Cauchy-Born rule, when a small de-
formation F is applied to this system at zero temperature, the atoms will move uniformly
to the deformed states x = FX. Denote Xij = Xi−Xj and let Ω be the system volume in
reference configuration, the atomistic PK stress of current system can be calculated from
definition (2.2):

P(F)=
1
Ω

∂V(|FX12|,··· ,|FXij|,···)
∂F

=− 1
2Ω ∑

i
∑
j 6=i

fij⊗Xij. (2.6)

It is worth mentioning that in (2.5), the potential V depends only on C2
n =

N(N−1)
2 pair

distance rij,i<j with rji = rij. An alternative expression of the potential is:

Ṽ(r12,r21,··· ,rij,rji,···)=V
( (r12+r21)

2
,··· ,

(rij+rji)

2
,···
)

. (2.7)

In this way the stress (2.6) can be formulated as

P(F)=
1
Ω ∑

j 6=i

[∂Ṽ(|FX12|,··· ,|FXij|,···)
∂rij

1
rij

FXij⊗Xij

]
, (2.8)

where rij = |FXij|. An advantage of (2.7) is that we can explicitly express the symmetry
of the potential function: for any permutation τ of I=[1,2,··· ,N], we can define ψ(i, j)=
(τ(i),τ(j)) as an one-to-one map of I×I. With this notation, the symmetry of the potential
can be expressed as

Ṽ(··· ,rψ(ij),···)= Ṽ(··· ,rij,···).

We would use V (rather than Ṽ) to stands for the alternative expression in (2.7) here-
inafter unless otherwise stated.

The formula (2.6) is also known as the virial stress, which is commonly used in the
modeling of homogeneous system in equilibrium. With this expression we can model
the macro constitutive relations by using atomistic information. In addition to the ability
of computing stress with atomic-level accuracy, formula (2.6) (or equivalently formula
(2.8)) is exactly in conformity with the two constraints (2.3a) and (2.3b). More explicitly,
we have the following result:

Theorem 2.1 (Symmetry of virial stress). For a given crystal system with periodic boundary
condition, suppose the potential V is a symmetric function, let P(F) be the stress defined by
(2.8), then the constraint (2.3a) holds for any Q in SO(3), and (2.3b) holds for any H in the
crystallographic symmetry group (point symmetry group Gp, [30]).
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Proof. According to formula (2.8), for any Q in SO(3),

P(QF)=
1
Ω ∑

j 6=i

[∂V(|QFX12|,··· ,|QFXij|,···)
∂rij

1
rij

QFXij⊗Xij

]
=Q

1
Ω ∑

j 6=i

[∂V(|FX12|,··· ,|FXij|,···)
∂rij

1
rij

FXij⊗Xij

]
=QP(F). (2.9)

Which validate the constraint (2.3a).
Now consider any transformation H in the point symmetry group Gp. By defini-

tion the transformed configuration is invariant with the original one, namely we have
a one-to-one map φH such that HXi =XφH(i) holds for any i≤N, indicating that φH is a
permutation of the index set I=[1,2,··· ,N]. Furthermore we can define the permutation
map of I× I by ψH((i, j))=(φH(i),φH(j)), which satisfies that

HXij =XψH(ij). (2.10)

Applying this to right hand side of (2.3b) together with (2.8), we can obtain that

P(FH)HT =
1
Ω ∑

j 6=i

[∂V(··· ,|FHXij|,···)
∂rij

1
|FHXij|

FHXij⊗XijHT
]

=
1
Ω ∑

j 6=i

[∂V(··· ,|FXψH(ij)|,···)
∂rij

1
|FXψH(ij)|

FXψH(ij)⊗XψH(ij)

]
=

1
Ω ∑

j 6=i

[∂V(··· ,|FXij|,···)
∂rψH(ij)

1
rψH(ij)

FXψH(ij)⊗XψH(ij)

]
=P(F). (2.11)

The last two equalities are due to the facts that V is symmetric and ψH is a permutation
map of I× I respectively. Thus we have proved the second constraint (2.3b) holds for
(2.6).

Notice that different from the material symmetry group G mentioned in (2.3b), we
restrict the symmetry group in Theorem 2.1 to the point symmetry group Gp, according
to the hypothesis on crystalline solids given by BD Coleman [30]. This restriction is also
known as the Neumann’s Principle, which states that the symmetry of physical property
for crystal must include the point group of the crystal [31].

In the proof of Theorem 2.1, we can see that the symmetry of virial stress results
from the intrinsic symmetry of potential function and crystal structure, which leads to
the following heuristic network architecture.
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2.2 DPK: deep neural networks for PK stress

Inspired by the virial stress, we design the deep symmetry network as follows. For a
given crystal material, we denote the crystallographic point symmetry group as Gp. For
any finite 3-dimensional trainable weight vectors W = {w1,··· ,wN}, the symmetrized
weights W̃ is defined as the image set of Gp on W:

W̃={Hiwj|Hi∈Gp, wj∈W}. (2.12)

By construction W̃={w̃1,··· ,w̃M} is an invariant subset of Gp: for any H∈Gp, HW̃=W̃.
Namely H defines a permutation φH of [1,2,··· ,M] by

w̃φH(i)=Hw̃i. (2.13)

With this we can define the deep symmetry network as follows:

Definition 2.1 (DPK). Let W={w1,··· ,wN} be N trainable 3-dimensional weight vectors and
W̃ the symmetrized weights defined above, denote g(x;θ)=hn◦an−1◦···◦a1◦h1(x) as the classical
dense neural network (DNN) with linear functions hi(x;θi) and activation function ai(x), the
deep symmetric network for PK stress is defined as

Pθ,W(F)=F
M

∑
i=1

∂ f
∂xi

(|Fw̃1|,··· ,|Fw̃M|;θ)
1
|Fw̃i|

w̃i⊗w̃i, (2.14)

where
f (x,θ)=

1
M! ∑

τ∈SM

g(τ(x);θ)

with SM stands for all the permutations of [1,2,··· ,M].

The architecture of this network is illustrated in Fig. 1. At first glance, formula (2.14)
is quite similar with the virial stress (2.8) in form. Indeed, we can view the symmetrized
trainable weights W̃ as configuration coordinates of some virtual atoms, and ∂ f

∂xi
as virtual

force between such atoms. Nevertheless, with the trainable parameters W and trainable
network g, there are at least three advantages to learning with such architecture:

• The DPK satisfies the symmetry constraints (2.3a) and (2.3b) exactly.

• The virial stress can be well approximated by DPK stress. Meanwhile, we can learn
the DPK stress by using data from both macroscopic observation and atomistic
modeling.

• By training DPK with enough data, we may expect to get a virtual system W̃ which
is much smaller than the atoms system in virial stress, resulting in a faster compu-
tation of stress compared with (2.6).
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Figure 1: The network architecture of DPK.

The first two statements is proved by following theorems, while the third statement will
be illustrated by the subsequent numerical results.

Theorem 2.2 (Symmetry of DPK). For a given crystal system with crystallographic symmetry
group Gp, let Pθ,W(F) be the DPK stress defined by (2.14), then the constraint (2.3a) holds for
any Q in SO(3), and (2.3b) holds for any H in Gp.

Proof. The proof is a reprise of the argument in Theorem 2.1. Actually, with the fact that
1

M! ∑τ∈SM
g(τ(x);θ) is a symmetric function of x and formula (2.13), we have

Pθ,W(QF)=QF
M

∑
i=1

∂ f
∂xi

(|QFw̃1|,··· ,|QFw̃M|;θ)
1

|QFw̃i|
w̃i⊗w̃i

=QF
M

∑
i=1

∂ f
∂xi

(|Fw̃1|,··· ,|Fw̃M|;θ)
1
|Fw̃i|

w̃i⊗w̃i

=QPθ,W(F) (2.15)

and

Pθ,W(FH)HT =F
M

∑
i=1

∂ f
∂xi

(|FHw̃1|,··· ,|FHw̃M|;θ)
Hw̃i⊗w̃iHT

|FHw̃i|

=F
M

∑
i=1

∂ f
∂xi

(|Fw̃φH(1)|,··· ,|Fw̃φH(M)|;θ)
w̃φH(i)⊗w̃φH(i)

|Fw̃φH(i)|

=F
M

∑
i=1

∂ f
∂xφH(i)

(|Fw̃1|,··· ,|Fw̃M|;θ)
w̃φH(i)⊗w̃φH(i)

|Fw̃φH(i)|
=Pθ,W(F). (2.16)

We complete the proof.
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In addition of symmetry, the DPK also has a good representation ability of the virial
stress under certain conditions. To show this, we first introduce the Sobolev space and
some existing result on the approximation of DNN, then a theorem on the DPK approxi-
mation will be presented.

Definition 2.2 (Sobolev space). Let n∈N and 1≤ p≤∞, the Sobolev space Wn,p on the M
dimensional region Ω is defined as

Wn,p(Ω)={ f ∈Lp(Ω)|‖Dα f ‖Lp(Ω)<∞, ∀α∈NM with |α|≤n} (2.17)

with the norm being defined as

‖ f ‖Wn,p =
(

∑
0≤|α|≤n

‖Dα f ‖p
Lp

)1/p
, 1≤ p<∞, (2.18a)

‖ f ‖Wn,∞ = max
0≤|α|≤n

‖Dα f ‖L∞ . (2.18b)

Lemma 2.1 ( [32, Corollary 4.2]). Let V∈Wn,p((0,1)M) with n>1, n∈N and 1≤ p≤∞. If
‖V‖Wn,p((0,1)M)≤ B for some B, then for any 0< ε< 1

2 and 0≤ s≤ 1 there exists a dense neural
network g(x) with ReLU as the activation function and constant c(M,n,p,B,s) independent of ε
such that

‖V−g‖Ws,p((0,1)M)≤ε, (2.19)

while the number of neurons K is bounded as

K≤ c(M,n,p,B,s)ε−M/(n−s) log2
2(ε
−n/(n−s)). (2.20)

Theorem 2.3 (Approximation of DPK). For a finite crystal system consists of N atoms with
symmetric potential V satisfying ‖Xij‖2 <1 for any j 6= i, if there exists some n>1, B<∞ such
that

‖V‖Wn,∞((0,1)N(N−1))<B,

then for any ε∈ (0,1/2) there exists a DPK function P0 such that

‖Pvirial(F)−P0(F)‖F≤ε, (2.21)

if ‖FXij‖2<1. Here ‖·‖F represents the Frobenius norm and Pvirial(F) is the virial stress defined
by (2.8).

Proof. To begin with, we denote M=N(N−1) and X̃(i−1)∗N+j =Xij for j 6= i. Thus

{X̃1,··· ,X̃M}={X12,··· ,XN−1,N}.

By (2.8), the virial stress can be written as

Pvirial(F)=
1
Ω

F
M

∑
i=1

∂V
∂xi

(|FX̃1|,··· ,|FX̃M|)
1
|FX̃i|

X̃i⊗X̃i. (2.22)
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According to Lemma 2.1, given the potential function V∈Wn,∞((0,1)M) with norm bounded
by B, for any ε∈ (0,1/2), there exits a ReLU activated DNN g0(x;θ) such that

‖V−g0‖W1,∞≤εΩ/M. (2.23)

Consequently, for the symmetrized function

f0(x,θ)=
1

M! ∑
τ∈SM

g0(τ(x);θ),

we have

‖V− f0‖W1,∞ =

∥∥∥∥V− 1
M! ∑

τ∈SM

g0(τ(x);θ)
∥∥∥∥

W1,∞

=

∥∥∥∥ 1
M! ∑

τ∈SM

(V(τ(x);θ)−g0(τ(x);θ))
∥∥∥∥

W1,∞

≤ 1
M! ∑

τ∈SM

‖(V(τ(x);θ)−g0(τ(x);θ))‖W1,∞

≤εΩ/M. (2.24)

Consider the special DPK function with wi = X̃i and g= 1
Ω g0:

P0(F)=
1
Ω

F
M

∑
i=1

∂ f0

∂xi
(|FX̃1|,··· ,|FX̃M|;θ)

1
|FX̃i|

X̃i⊗X̃i, (2.25)

compared with the virial stress we can obtain

‖Pvirial(F)−P0(F)‖F =

∥∥∥∥ 1
Ω

F
M

∑
i=1

∂(V− f0)

∂xi
(|FX̃1|,··· ;θ)

1
|FX̃i|

X̃i⊗X̃i

∥∥∥∥
F

≤
M

∑
i=1

1
Ω

∥∥∥∥ FX̃i

|FX̃i|
⊗X̃i

∥∥∥∥
F
·
∣∣∣∣∂(V− f0)

∂xi

∣∣∣∣
≤

M

∑
i

‖X̃i‖2

Ω
·
∣∣∣∣∂(V− f0)

∂xi

∣∣∣∣ (2.26)

≤M
Ω
·‖V− f0‖W1,∞ (2.27)

≤ε, (2.28)

where we have used (2.24), condition ‖Xij‖2<1 and the fact ‖α⊗β‖F=‖α‖2‖β‖2 in (2.28),
(2.27) and (2.26) correspondingly.

It should be pointed out that Theorem 2.3 illustrates that the approximation error of
DPK can be arbitrarily small by construction. In practice, however, we will hope to get a
network with smaller size (in the meaning of W) and simpler architecture f than (2.25),
which can be calculated more efficiently.
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2.3 A simplified network inspired by harmonic approximation

The DPK architecture introduced above supplies us with a strong approximation tool
which can exactly satisfy the symmetry conditions. On the other hand, an overcompli-
cated architecture may lead to over-fitting and be hard to converge. More specifically, the
sum term

f (x,θ)=
1

M! ∑
τ∈SM

g(τ(x);θ)

with a large M introduce an intolerable computation complexity (for every x, we need
M! forward propagations of g to get the value of f (x)), which requires a large number of
calculations in both training and inference procedure. In this section we will introduce a
simplified architecture while keeping its symmetry and approximation capability.

In solid state physics, the quasi-harmonic approximation is a classical method to sim-
plify the calculation of free energy at finite temperature. By using Taylor expansion of the
potential function V around some uniform deformed state, the free energy can be written
as a sum over vibrational modes. At zero temperature, we can similarly take the Taylor
expansion of V(x) around the perfect state X=[X1;X2;··· ;XN ]:

V(F◦X)=V(X)+
1
2
(F◦X−X)TD(X)(F◦X−X), (2.29)

where F◦X = [FX1;FX2;··· ;FXN ] and D(X) is the force constant matrix. The first order
term vanishes since X is a stable state. Let u = F◦X−X and ξ be a point in the first
Brillouin zone B, by defining the Fourier transforms as

û(ξ)=
1√
N

N

∑
m=1

ume−iξ·Xm , D̂(ξ)=
1√
N

N

∑
m=1

Dm,1e−iξ·Xi , (2.30)

the quadratic term in (2.29) can be written as [12]

1
2

uTDu=
1
2 ∑

ξ∈B
û(ξ)TD̂(ξ)û(ξ). (2.31)

Thus we can approximate the potential V(F◦X) as

V(F◦X)=V(X)+
1
2 ∑

ξ∈B
û(ξ)TD̂(ξ)û(ξ), (2.32)

namely the potential can be decomposed as the sum over finite different virtual atoms
with displacement û(ξ) and single atom potential 1

2 û(ξ)TD̂(ξ)û(ξ).
Inspired by this decomposition, we could assume the virtual potential function f in

(2.14) as

f (x1,x2,··· ,xM;θ)=
M

∑
i=1

g(xi;θ), (2.33)
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where g(x) = hn◦an−1◦···◦a1◦h1(x) is the classical DNN function. Applying (2.33) to
(2.14), we can obtain the first simplification of DPK (denoted as DPK0) as:

PDPK0
θ,W (F)=F

M

∑
i=1

dg
dx

(|Fw̃i|;θ)
1
|Fw̃i|

w̃i⊗w̃i. (2.34)

In practice, however, the loss of this form is hard to be convergent since |Fw̃i| is in
the denominator, a small value of w̃i may lead to the inaccuracy and inefficiency in both
training and predicting. Furthermore, due to the fact that derivative of ReLU always
equals to zeros when x < 0, a well-known gradient vanishing phenomenon may occur
during the computation of dg

dx , which also makes the training hard to converge (as we will
see in the following numerical results). Consequently, we can embed this denominator
term and the derivative operation into the DNN function g̃ by representing

1
x

g′(x;θ)= g̃(x; θ̃),

where g̃(x; θ̃) is a new DNN function. In this case the new simplified DPK (denoted as
DPK2) can be written as:

Definition 2.3 (simplified DPK). Let W,W̃ be defined as in Definition 2.1 and g̃ be a DNN
function, the simplified DPK is defined as

PDPK2
θ,W (F)=F

M

∑
i=1

g̃(|Fw̃i|; θ̃)w̃i⊗w̃i. (2.35)

Notice that this formula is indeed much simpler than (2.14), in the sense that we
use the sum of an identical univariate function g̃(x;θ) to represent the potential. The
interatomic interactions are embedded in the virtual atoms wi. In the meanwhile, since
f (x) in (2.33) is symmetric, the simplified DPK still meets the symmetry constraints (2.3a)
(2.3b).

Theorem 2.4 (Symmetry of simplified DPK). For a given crystal system with crystallographic
symmetry group Gp, let Pθ,W(F) be the simplified DPK stress defined by (2.35), then the con-
straint (2.3a) holds for any Q in SO(3), and (2.3b) holds for any H in Gp.

Proof. We have

Pθ,W(QF)=QF
M

∑
i=1

g̃(|QFw̃i|;θ)w̃i⊗w̃i

=QF
M

∑
i=1

g̃(|Fw̃i|;θ)w̃i⊗w̃i

=QPθ,W(F) (2.36)
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and

Pθ,W(FH)HT =F
M

∑
i=1

g̃(|FHw̃i|;θ)Hw̃i⊗w̃iHT

=F
M

∑
i=1

g̃(|Fw̃φH(i)|;θ)w̃φH(i)⊗w̃φH(i)

=Pθ,W(F). (2.37)

This completes the proof.

The approximation ability and effectiveness of (2.35) will be illustrated numerically
in the following section. Additionally, we can prove that the estimation error (general-
ization error) of (2.35) can be arbitrarily small with sufficient large number of training
samples, i.e., the simplified DPK function space defines a learnable hypothesis class.

Theorem 2.5 (Learnability of simplified DPK). LetA={Pθ,W} be the class of DPK functions
defined by (2.35) satisfying that g̃(x; θ̃) has l≥ 2 layers, Nw weights (bounded by V), Lipschitz
continuous activation function with Lipschitz coefficient L>1/V and each unit maps into [−b,b]
for some b>0. Given the training samples Sm={(F1,P1),··· ,(Fm,Pm)} according to independent
identical distribution D on [−1,1]3×3×[−1,1]3×3 and loss function

l( f (X),Y)=
1
9 ∑

i,j
l0( fij(X),Yij) for f ∈A, (2.38)

where l0(x,y)= |x−y|, then for any approximate sample error minimization (SME, [33]) algo-
rithm M and ε≤2max{b,V,

√
3V},δ>0, there exits some m0(ε,δ,A)<∞ such that ∀m>m0,

with probability at least 1−δ, M returns a function P∗∈A satisfying

E(x,y)∼D[l(P∗(x),y)]< inf
f∈A

E(x,y)∼D[l( f (x),y)]+ε. (2.39)

In practice, the conditions of g̃ are indeed satisfied since we will use the ReLU as acti-
vation function and bound the network weights by using an l1 regularization. The proof
of above theorem utilizes some classical tools in learning theory, such as fat-shattering di-
mension. In the appendix we will first list some existing results and then give our proof
of Theorem 2.5.

3 Numerical results

In this section several numerical results will be presented to verify the effectiveness of
our simplified DPK model (2.35). We chose two different crystalline systems, the α-Fe
and NiAl alloy to illustrate the learning ability of DPK.
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(a) P11 (b) P12

Figure 2: PK stress for α-Fe by using virial stress. The unit of the pressure is eV/Å3 (=160.212GPa).

3.1 Learning the virial stress of α-Fe

As our first example, we use a 15×15×15×2 BCC crystal system with periodic boundary
condition to calculate the PK stress. The training and testing data is generated by virial
formula (2.6). For the molecular simulation, the interatomic interaction is chosen as the
analytic EAM potential proposed by [34], which is C3 smooth. The input deformation
and output stress are set as

F=

1+a11 a12 0
0 1 0
0 0 1

, P=Pvirial(F), (3.1)

where a11 and a12 are random variables sampled from a unifrom distribution over
[−0.1,0.1]. In practice, we samples 20000 data by (3.1) and split it into training and testing
data equally. The target stress field is plotted in Fig. 2.

For the network architecture, we choose N (size of W) as 50, and the size of point
symmetry group for BCC crystal is 48, which include the symmetry operations gener-
ated by rotation, inversion and mirror transformation [30]. Thus the total number of
virtual atoms is 50×48=2400. The DNN network g̃(x, θ̃) consists of 8 hidden layers with
width being 50, 80, 60, 60, 50, 40, 30, 20 and ReLU as the active function. As to the opti-
mization procedure, we use the Adam algorithm in batch training with batch size being
40, and select the mean absolute error (MAE) together with an l1 regularization of net-
work weights as our optimization objective. In order to better illustrate the advantage of
simplified DPK (2.35) (denoted by DPK2) over (2.34) (denoted by DPK0), we also plot the
training result of DPK0 and the intermediate form DPK1 which is defined as

PDPK1
θ,W (F)=F

M

∑
i=1

g(|Fw̃i|;θ)
1
|Fw̃i|

w̃i⊗w̃i. (3.2)
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Figure 3: Training and testing error of DPK2. Left: log(error) for both training and testing error at every epoch.
Right: log(error) at each training epoch for different size of W.

Figure 4: Comparison between different version of simplified DPK. Left: log(error) for training procedure at
every epoch. Right: log(average norm of w̃i) at each training epoch.

According to the left part of Fig. 3, after 600 epochs the training loss of DPK2 con-
verges almost to 10−4 eV/Å3, and the testing error also descends to 10−3.75 eV/Å3 before
overfitting occurs. In the meanwhile, we can see from Fig. 4 that the DPK1 converges
much slower than DPK2, since it takes more time to train the parameter W̃ at the early
stage when the norm of W̃ is rather small, which makes the computation of loss and
training inaccurate. More seriously, the loss of DPK0 never converged due to the phe-
nomenon of gradient vanishing, which further implies the necessity of the simplification
in (2.35). Fig. 5 shows the learning result of stress field P11(F11,F12) and P12(F11,F12) at
epoch = 600, from which we can find the fitting error of DPK2 is rather small (the L1 norm
of the error function is around 10−4 eV/Å3) and the error of DPK1 is slightly larger than
DPK2, since the loss of DPK2 converges faster and better than DPK1 as we have seen in
Fig. 4.

As mentioned before, an advantage of the DPK method is that, we can use a smaller
virtual system (2400 virtual atoms, depicted by the right part of Fig. 6) to compute the
stress by forward network propagation, instead of the virial stress of a crystal system
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(a) PDPK1
11 (b) error of PDPK1

11

(c) PDPK2
11 (d) error of PDPK2

11

(e) PDPK1
12 (f) error of PDPK1

12

(g) PDPK2
12 (h) error of PDPK2

12

Figure 5: The numerical result of PK stress for α-Fe by using different version of simplified DPK. The unit of
the pressure is eV/Å3 (=160.212GPa).
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Table 1: The MAE at epoch = 600 and time cost of simplified DPK with different N.

N M MAE
(eV/Å3)

(batch) Time cost of
simplified DPK (s)

1 Time cost of
simplified DPK (s)

2 Time cost of
virial stress (s)2

10 480 3.04×10−4 7.9877×10−2 3.6315×10−2

30 1440 1.61×10−4 1.4544×10−1 3.6538×10−2 6.6123×10−1

50 2400 1.29×10−4 5.8815×10−1 3.9808×10−2

1 A batch inference (batch size = 1000) on Tesla P40 with 24GB memory.
2 A single calculation on Intel i7-6600U with 16GB memory.

with 6750 atoms (left part of Fig. 6), resulting in a faster calculation. Indeed, as illustrated
by Table 1, for a single calculation the average time cost of DPK is 16 times faster than
virial stress. Furthermore, with the power of parallel computation of GPU, the time cost
of DPK for a batch inference is even smaller than the average cost of a single calculation
of virial stress. On the other hand, as shown in the right part of Fig. 3, with a larger
size of W we can achieve a better approximation of virial stress after same training time.
In practice, however, a tradeoff between approximation and time cost should always be
considered in the choice of N.

3.2 Transfer learning to NiAl alloys

In this part, we will test the ability of transfer learning [35] of simplified DPK by approxi-
mating the virial stress for NiAl, which is a B2 type alloy. All the numerical setup are kept
as previous, expect the F11 and F12 of input deformation F are sampled uniformly from
[0.98,1.06] and [−0.04,0.04] respectively. We adopt the EAM potential studied in [36, 37]
in the molecular simulation. The stress field of training data is shown by Fig. 7.

In order to do the transfer learning as in natural language processing [38], we take
the fitting of stress for α-Fe as a pre-training task, while the learning of NiAl stress is
treated as a downstream fine-tuning task. More precisely, we first conduct the experiment

Figure 6: Configuration of atoms in stress calculation. Left: planform of perfect BCC crystal. Right: planform
of virtual atoms.
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(a) P11 (b) P12

Figure 7: PK stress for NiAl alloy system by using virial stress. The unit of the pressure is eV/Å3 (=160.212GPa).

Figure 8: Training error in the learning of virial stress for NiAl alloy system.

in previous section, and select W and the parameters of the first 3 layers in the DNN
function as initial parameters for the new learning task of NiAl. The motivation of this
setting is that due to the similarity in crystal structure (The α-Fe can also be regarded as a
complex B2 lattice with same basis atoms), we can expect that parameters in DPK trained
for α-Fe provides a better initial guess than random initialization.

As shown in Fig. 8, with pre-training the loss converges much faster, compared with
the learning process with random initialization. In fact, we can observe that the training
loss with pre-training decreases to 10−2.6 eV/Å3 after only 100 epochs, while this can not
be achieved until about 400 epochs if we initialize the network randomly. The learning
stress field of P11 and P12 after 500 epochs are plotted in Fig. 9 and Fig. 10 correspondingly.
As it presents, the fitting error with a pre-training is observably smaller in both cases.

4 Conclusions

We have proposed a novel neural network architecture (DPK) to learn the first Piola-
Kirchhoff stress. By introducing symmetric trainable weights, our network is intrinsic
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(a) PDPK2
11 with pretraining (b) PDPK2

11 without pretraining

(c) error of PDPK2
11 with pretraining (d) error of PDPK2

11 without pretraining

Figure 9: The numerical result of P11 for NiAl alloy system by using simplified DPK. The unit of the pressure
is eV/Å3 (=160.212GPa).

consistent with the physical constraints required by the frame-indifference and material-
symmetry. A further simplification of DPK is also presented to avoid an over complicated
computation in both training and inference. On the other hand, with some theory anal-
ysis and numerical examples, we have shown that this simplified DPK provides a learn-
able, transferable and efficient approximation tool for the representation of deformation-
stress relation with an atomic-level accuracy. Although the present work focuses on the
learning of PK stress for elastic simple materials, this structure can also be used to rep-
resent the conservative elastic part of the stress tensor for non-hyperelastic material. Be-
sides, the methodology in the constructing of DPK (Generating the symmetric structure
in the network based on the formulation of atomistic stress) can also be applied to more
general case, once the atomistic stress expression is available.

Appendix

The proof of Theorem 2.5 consists of two parts: firstly, we review the concept of fat-
shattering dimension and prove that simplified DPK owns finite fat-shattering dimen-
sion. Secondly, with a classical result claiming that function class with finite fat-shattering
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(a) PDPK2
12 with pretraining (b) PDPK2

12 without pretraining

(c) error of PDPK2
12 with pretraining (d) error of PDPK2

12 without pretraining

Figure 10: The numerical result of P12 for NiAl alloy system by using simplified DPK. The unit of the pressure
is eV/Å3 (=160.212GPa).

dimension is learnable, we can eventually prove the estimation error of our simplified
DPK can be sufficient small, given a large size of learning samples.

Definition A.1 (Fat-shattering dimension [33]). Let F be a function set mapping from X to R,
for a given sample set S={s1,··· ,sm}⊂X and positive real number ε, if there exits real numbers
r1,··· ,rm such that ∀b∈{0,1}m, ∃ fb∈F satisfying

fb(si)≥ ri+ε if bi =1, fb(si)≤ ri−ε if bi =0, i=1,··· ,m, (A.1)

we say that S is ε-shattered by F. Furthermore, we define the fat-dimension f atF(ε) as the maxi-
mum cardinality of sampling sets S shattered by F.

Lemma A.1 ([33, Theorem 14.9]). For each dense neural network has l ≥ 2 layers and Nw
weights of which the ‖·‖1 norm are bounded by some V > 0, suppose the activation function is
Lipschitz continuous with the Lipschitz coefficient L > 1/V, and there exists some b such that
each unit maps into [−b,b], then for any ε≤2b,

f atF(ε)≤16Nw

(
l ·ln(LV)+2ln(32Nw)+ln

( b
ε(LV−1)

))
. (A.2)
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Lemma A.2 ([39, [Theorem 3]). Let ε > 0, k ≥ 2, u : [−1,1]k→ [−1,1] be uniformly con-
tinuous and A1,A2,··· ,Ak be function classe including f : Ω→ [−1,1], then there exist 0 <
α(u,k,ε),β(u,k,ε)<∞ such that

f atu(A1,···,Ak)(ε)≤α
k

∑
i=1

f atAi(β), (A.3)

where
u(A1,··· ,Ak),{u( f1(x),··· , fk(x))| fi∈Ai, i=1,··· ,k}.

With Lemmas A.1 and A.2, we can prove that each component function Pij
θ,W(F) has

a finite fat-shattering dimension:

Theorem A.1. Let

Pij =
{ 1

M
eT

i Pθ,W(F)ej : [−1,1]3×3→R
}

be the function space generated by the (i, j) component function of DPK defined by (2.35), if g̃ has
l≥2 layers and Nw weights of which the ‖·‖1 norm are bounded by some V <1, ‖w̃i‖1 <V for
i=1,··· ,M, suppose the activation function is Lipschitz continuous with the Lipschitz coefficient
L > 1/V, and there exists some b < 1 such that each unit of g̃ maps into [−b,b], then for any
ε≤2max{b,V,

√
3V}, ∃c(ε,M,L,V,b)<∞ such that

f atPij(ε)≤ c(ε,M,L,V,b). (A.4)

Proof. For each i, j,

Pij =
1
M

M

∑
k=1

g̃(|Fw̃k|)·(eT
i Fw̃k⊗w̃kej).

Under above conditions, we have Pij∈ [−1,1]. By defining

h1(F)=Fw̃k, a1(x)= x2, h2(x)=
3

∑
i=1

xi, a2(x)=
√

x,

we may write g̃(|Fw̃k|) as
g1(F)= g̃◦a2◦h2◦a1◦h1(F), (A.5)

which can be regarded as an element in the new network spcae with two more layers.
Notice that ‖w̃k‖1 <V indicate that the ‖·‖1 norm of additional layers are bounded by
V1=max{V,3},

‖a1◦h1(F)‖∞≤‖F‖∞‖w̃k‖2
1<V2<V,

|a2◦h2◦a1◦h1(F)|=‖Fw̃k‖2≤
√

3‖a1◦h1(F)‖∞ <
√

3V,
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shows the range of additional units are bounded by b1=max{b,V,
√

3V}. Thus g1 meets
the condition in Lemma A.1, and we have for any ε≤2b1,

f atg1(ε)≤16Nw(g1)(l(g1)ln(LV1)+2ln
(

32(Nw(g1))+ln
( b1

ε(LV1−1)

))
, (A.6)

where Nw(g1) and l(g1) stands for the number of weights and number of layers for g1.
Similarly, let h3(x)= xiw̃

j
k, a3(x)= x, we can represent eT

i Fw̃k⊗w̃kej as

g2(F)= a3◦h3◦a3◦h1(F),

which also satisfies the condition in Lemma A.1 while the computation unit and l1 norm
of weights are bound by b2=V, V2=V, respectively. Thus for any ε≤2b2,

f atg2(ε)≤16Nw(g2)
(

l(g2)ln(LV2)+2ln(32(Nw(g2))+ln
( b2

ε(LV2−1)

))
. (A.7)

Now considering the uniformly continuous function u(x,y)= xy with

A1={g1|g1(F)= g̃◦a2◦h2◦a1◦h1(F)} and A2={g2|g2(F)= a3◦h3◦a3◦h1(F)},

according to Lemma A.2, for any ε≤2b2<2b1, there exit 0<α1(u,2,ε),β1(u,2,ε)<∞ such
that

f atu(A1,A2)(ε)≤α1

2

∑
i=1

f atAi(β1)≤α1

2

∑
i=1

16Nw(gi)
(

ln
322bi(LVi)

l(gi)Nw(gi)
2

β1(LVi−1)

)
. (A.8)

Further more, notice that for different k=1,··· ,M, g̃(|Fw̃k|) and (eT
i Fw̃k⊗w̃kej) share

the same network architecture, by using Lemma A.2 again with

ū(x1,··· ,xM)=
1
M

M

∑
i=1

xi,

we can obtain that there exits 0<α2(ū,M,ε),β2(ū,M,ε)<∞ such that

f atPij(ε)≤α2

M

∑
k=1

f atu(A1,A2)(β2(ū,M,ε))

≤α2

M

∑
k=1

α1

2

∑
i=1

f atAi(β1(u,2,β2(ū,M,ε)))

≤Mα1α2

2

∑
i=1

f atAi(β1(u,2,β2(ū,M,ε)))

≤16Mα1α2

2

∑
i=1

Nw(gi)
(

ln
322bi(LVi)

l(gi)Nw(gi)
2

β1(LVi−1)

)
. (A.9)

We complete the proof.
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Lemma A.3 (see the proof of Theorem 19.1 in [33]). Let A be a class of functions map-
ping from X to [0,1] with finite fat-shattering dimension. Given the training samples Sm =
{(x1,y1),··· ,(xm,ym)} according to distribution D and loss function l( f (x),y) for f ∈A, for
any ε,δ>0, there exists

m0(ε,δ)=
256
ε2

(
18 f atA

( ε

256

)
ln2
(128

ε

)
+ln

(16
δ

))
, (A.10)

such that ∀m>m0:

P
({

Sm

∣∣∣∃ f ∈A,
∣∣∣E(x,y)∼D[l( f (x),y)]− 1

m

m

∑
i=1

l( f (xi),yi)
∣∣∣≥ ε

2

})
≤ δ

2
. (A.11)

Corollary A.1. LetA be a class of functions mapping from X to [−1,1] with finite fat-shattering
dimension. Given the training samples Sm ={(x1,y1),··· ,(xm,ym)} according to distribution D
and loss function l( f (x),y)= | f (x)−y|, let u(x)= x+1

2 , then for any ε,δ>0 there exists

m0(ε,δ)=
256
ε2

(
18 f atu(A)

( ε

256

)
ln2
(128

ε

)
+ln

(16
δ

))
, (A.12)

such that ∀m>m0:

P
({

Sm

∣∣∣∃ f ∈A,
∣∣∣E(x,y)∼D[l( f (x),y)]− 1

m

m

∑
i=1

l( f (xi),yi)
∣∣∣≥ ε

2

})
≤ δ

2
. (A.13)

Proof. The proof is a combination of Lemmas A.2 and A.3. Let B={ f+1
2 | f ∈A}, accord-

ing Lemma A.2, B forms class of functions mapping to [0,1] with finite fat-shattering
dimension

f atB(ε)= f atu(A)(ε)<∞.

The rest follows from Lemma A.3 if we consider the new regression problems with func-
tion class B, samples

S̃m =
{(

x1,
y1+1

2

)
,··· ,

(
xm,

ym+1
2

)}
and loss function l̃( f (x),y)=2| f (x)−y|. This completes the proof.

Now we can give the proof of the learnability of simplified DPK as follows:

Proof of Theorem 2.5. For fixed 1≤i, j≤3, considering the scaled real-valued function space
Aij = { 1

M Pij|P∈A} (A is defined in Theorem 2.5) which maps from [−1,1]3×3 to [−1,1].
According to Theorem A.1, for any ε≤2max{b,V,

√
3V}, f atAij(ε) is finite, then by Corol-

lary (A.1), ∀ε≤2max{b,V,
√

3V},δ>0, ∃m0 defined by (A.12) such that ∀m>m0,

P
({

Sm :∃ f ∈Aij,
∣∣∣E(X,Y)∼D

[
l0
(

f (X),
Yij

M

)]
− 1

m

m

∑
k=1

l0
(

f (Xk),
Yk

ij

M

)∣∣∣≥ ε

6M

})
≤ δ

18
. (A.14)
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As a consequence,

P
({

Sm :∃ f ∈A,
∣∣∣E[l( f (X),Y)]− 1

m

m

∑
k=1

l( f (Xk),Yk)
∣∣∣≥ ε

6

})
≤P
({

Sm :∃ f ∈A,
1
9 ∑

i,j

∣∣∣E[l0( fij(X),Yij)]−
1
m

m

∑
k=1

l0( fij(Xk),Yk
ij)
∣∣∣≥ ε

6

})
≤P
(⋃

ij

{
Sm :∃ f ∈A,

∣∣∣E[l0( fij(X),Yij)]−
1
m

m

∑
k=1

l0( fij(Xk),Yk
ij)
∣∣∣≥ ε

6

})

≤∑
i,j

P
({

Sm :∃ f ∈Aij,
∣∣∣E[l0( f (X),

Yij

M

)]
− 1

m

m

∑
k=1

l0
(

f (Xk),
Yk

ij

M

)∣∣∣≥ ε

6M

})
≤9δ

18
≤ δ

2
. (A.15)

On the other hand, for the given ε, by definition the approximate-SME algorithm M
returns P∗ such that

1
m

m

∑
k=1

l(P∗(Xk),Yk)< inf
f∈A

1
m

m

∑
i=1

l( f (Xk),Yk)+
ε

3
. (A.16)

Meanwhile, use the definition of infimum, we can find P̄∈A satisfying

E[l(P̄(X),Y)]≤ inf
f∈A

E[l( f (X),Y)]+
ε

3
. (A.17)

Combining the result of (A.15)-(A.17), we can deduce that with probability at least 1−δ,

E[l(P∗(X),Y)]≤ 1
m

m

∑
i=1

l(P∗(Xk),Yk)+
ε

6
(by (A.15))

≤ inf
f∈A

1
m

m

∑
i=1

l( f (Xk),Yk)+
ε

2
(by (A.16))

≤ 1
m

m

∑
i=1

l(P̄(Xk),Yk)+
ε

2
(definition of infimum)

≤E[l(P̄(X),Y)]+
2ε

3
(by (A.15))

≤ inf
f∈A

E[l( f (X),Y)]+ε. (by (A.17))

Thus we have proved that for m>m0, the conclusion in Theorem 2.5 holds.
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