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Abstract

In this work, a modified weak Galerkin finite element method is proposed for solving

second order linear parabolic singularly perturbed convection-diffusion equations. The

key feature of the proposed method is to replace the classical gradient and divergence

operators by the modified weak gradient and modified divergence operators, respectively.

We apply the backward finite difference method in time and the modified weak Galerkin

finite element method in space on uniform mesh. The stability analyses are presented

for both semi-discrete and fully-discrete modified weak Galerkin finite element methods.

Optimal order of convergences are obtained in suitable norms. We have achieved the same

accuracy with the weak Galerkin method while the degrees of freedom are reduced in our

method. Various numerical examples are presented to support the theoretical results. It

is theoretically and numerically shown that the method is quite stable.
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1. Introduction

In this paper, we propose a modified weak Galerkin finite element method (MWG-FEM)

for the following parabolic convection-diffusion problem:

∂tu− ε∆u+∇ · (bu) + cu = f in QT = Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u = u0 in Ω× {0},

(1.1)

where ε ∈ (0, 1] is a small parameter and Ω is a bounded polygonal domain in R2 with the

boundary ∂Ω, ∂tu = ∂u
∂t and u0 ∈ L2(Ω). For the well-posedness of the problem [24], we

assume that b, c and f are smooth functions, b ∈ [W 1,∞(Ω)]2 and for some constant a0 such

that

c+
1

2
∇ · b ≥ a0 > 0. (1.2)
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Convection-diffusion equations are commonly used to describe a wide range of differen-

tial equations arising from the mathematical modeling of real word problems in science and

engineering involving fluid, petroleum simulation, groundwater contamination and gas dynam-

ics [2,3,30], etc. Applications generally involve time-dependent convection-dominated problems

for the mathematical modeling of physical processes. It is well known that the solution of the

singularly perturbed convection-diffusion problems possess boundary or interior layers. It is

well known that these layers lead to unsatisfactory numerical solutions with non-physical oscil-

lations when the conventional numerical methods such as finite difference (FD) methods and

the standard finite element methods are applied. To recover these non-physical oscillations,

some stabilization methods have been proposed over the last decades, including streamline-

upwind Petrov-Galerkin (SUPG) methods proposed by Hughes and Brooks [4], local projection

stabilization method [15, 19] and the interior penalty method [35]. However, there are some

disadvantages of these methods for convection-dominated problems. For instance, the popular

SUPG methods have the stabilization term which includes many terms for the time dependent

problems. Moreover, they produce overshoots and undershoots near the layer region. A large of

papers has been devoted to the numerical methods for convection-diffusion problems on some

layer adapted meshes in the literature [18]. Unfortunately, the location of the layer must be

known in prior in order to use the layer adapted meshes. The layers may move as time varies

in the parabolic convection-diffusion problems. This leads to use fitted operator methods for

the numerical solutions of unsteady convection-diffusion-reaction equations.

Wang and Ye [32] first introduced the weak Galerkin finite element method (WG-FEM) and

analyzed for numerical solution of second order differential equations. The WG-FEMs intro-

duce a space of weak functions, weak gradient and weak divergence on the space of completely

discontinuous piecewise polynomials. The weak functions in WG-FEMs consist of the form

u = {u0, ub} with u = u0 inside of the element and u = ub on the boundary of the element. Later

on, WG finite element methods have further been presented for a large variety of PDEs in-

cluding the implementation results [21], parabolic problems [16], the Helmholtz equations

with high wave numbers in [22] and the time fractional reaction-diffusion-convection prob-

lems in [27]. The weak gradient and weak divergence operators have been introduced for

convection-dominated problems in [5] and [17]. The WG-FEM has been studied and analyzed

for time-dependent convection-diffusion equations with convection term in non-conservation

form based on these newly defined operators [34]. While the formulation of WG-FEM is simple

and parameter-free, it adds more degrees of freedom since it has two components for each func-

tion in the approximation space. In order to reduce the degrees of freedom in the formulation

of the WG-FEM, a modified WG-FEM (MWG-FEM) introduced in [31] eliminates ub from the

space of weak functions and uses the average {u0} of the u0 on the boundary of element. As a

result, the weak functions in the MWG-FEM of the form u = {u0, {u0}} and for simplicity we

denote by u. As the WG-FEM, the MWG-FEM is a parameter free method and it has the same

degrees of freedom as the discontinuous Galerkin (DG) methods. In other words, the MWG-

FEM inherits from the properties of the WG-FEM with the reduced number of unknowns in

the associated discrete systems. Compared to DG methods, the formulation of the MWG-FEM

is simple, symmetric and the resulting system is positive definite while they have the same same

finite element space and there is no need a large penalization parameter for the MWG-FEM.

MWG-FEMs have been further developed for a variety of PDEs such as convection-diffusion

problems [12], parabolic equations [11], Stokes equations [20,26], convection-diffusion problems

in one dimension [28] and in higher dimension with weakly imposed boundary condition [9].



1248 Ş. TOPRAKSEVEN AND F.Z. GAO

Superconvergence approximation of the MWG-FEM is also presented in [29]. This paper aims

to introduce a MWG-FEM for time dependent convection-diffusion problems. This modified

scheme has less the degree of freedom than WG-FEM proposed in [34] while the accuracy

remains the same. In this paper, we approximate the convection term by a modified weak

divergence operator and introduce a simple upwinding-type stabilizer for the convection term

and we do not require extra conditions on the convection coefficient.

The rest of this paper is organized as follows. In Section 2, a MWG-FEM is introduced

and semi-discrete MWG-FEM and fully discrete MWG-FEM are proposed. Stability analyses

of the semi-discrete and backward Euler difference time discrete MWG finite element schemes

are established. Some error equations are derived. Error analyses and an optimal convergence

result in the energy norm and a suboptimal order error estimate in L2-norm for both schemes

are given in Section 3. The optimal convergence order in L2-norm is established in Section 4.

Numerical results are given in Section 5 to verify the theoretical findings.

Throughout this article, we use C or with subscript such as C1, C2 for a generic constant

independent of ε, time step size δ and mesh step size h unless otherwise stated.

2. MWG-FEMs

We use the standard notation for Sobolev spaces H l(Ω) for any domain Ω ⊂ R2 with l ≥ 0.

The inner product, semi-norm and norm in H l(S) are given (·, ·)l,S , | · |l,S and ‖ · ‖l,S for

subset S ⊂ Ω, respectively. We sometimes skip the subset S when S = Ω and use the notation

| · |l and ‖ · ‖l. Moreover, we denote by ‖ · ‖∞ the norm on L∞(Ω) and ‖ · ‖ the norm on L2(Ω).

The variational form for the problem (1.1) is to seek u ∈ H1
0 (Ω), t ∈ [0, T ] such that the

following equations hold:

(∂tu, v) +A(u, v) = (f, v), ∀v ∈ H1
0 (Ω), t > 0,

u(x, 0) = u0(x), x ∈ Ω,
(2.1)

where A(u, v) = ε(∇u,∇v) + (∇ · (bu), v) + (cu, v) and (·, ·) is the standard inner product in

L2(Ω).

Let Th be a partition of the domain Ω consisting of polygons which are closed and simply

connected elements. The set of all edges in Th is denoted by Eh and the set of all interior edges

by E0
h = Eh\∂Ω. Denote by hT the diameter of elements T ∈ Th and h = maxT∈Th

hT . We

follow the shape regularity assumptions A1−A4 for the partition Th detailed as in [17].

Let T1, T2 be two adjacent triangles with common edge e and unit outward normal vectors

n1 and n2 on e associated with T1 and T2, respectively. The average {·} and jump [·] of a scalar

valued function u on e are defined by

{u}e =

{ 1

2
(u|T1 + u|T2), e ∈ E0

h,

u, e ∈ ∂Ω,
[u]e =

{

u|T1n1 + u|T2n2, e ∈ E0
h,

un, e ∈ ∂Ω.

Similarly, we define the average and jump operators for a vector valued function v

{v}e =

{ 1

2
(v|T1 + v|T2), e ∈ E0

h,

v, e ∈ ∂Ω,
[v]e =

{

v|T1 · n1 + v|T2 · n2, e ∈ E0
h,

v · n, e ∈ ∂Ω.

For a given integer k ≥ 1, we define the finite element space Sh(k) associated with Th as

follows:

Sh(k) = {u ∈ L2(Ω) : u|T ∈ Pk(T ), ∀T ∈ Th}, (2.2)
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and its subspace S0
h(k) as

S0
h(k) = {u ∈ Sh(k) : u|e = 0, e ∈ ∂Ω}, (2.3)

where Pk(T ) is the set of polynomials on T of degree at most k.

For any function u ∈ Sh(k), the modified weak gradient ∇wu ∈ [Pk−1(T )]
2 is defined on T

as the unique polynomial satisfying the following equation:

(

∇wu, τ
)

T
= −

(

u,∇ · τ
)

T
+
〈

{u}, τ · n
〉

∂T
, ∀τ ∈ [Pk−1(T )]

2, (2.4)

where n is the unit outward normal to ∂T and
(

·, ·
)

T
and

〈

·, ·
〉

∂T
are the L2 inner products on

T and ∂T , respectively.

For any function u ∈ Sh(k), the modified weak divergence ∇w · (bu) ∈ Pk−1(T ) related to b

is defined on T as the unique polynomial satisfying the following equation:

(

∇w · (bu), w
)

T
= −

(

bu,∇w
)

T
+ 〈{u},b · nw〉∂T , ∀w ∈ Pk−1(T ). (2.5)

Remark 2.1. This newly defined modified weak gradient is different from the weak gradient

operator defined in [10]. This modified definition replaces the values ub on the boundary by

the average operator {u} of u on the boundary of T . This reduces the degree of freedom for

the problem, that is, the unknown coefficients in the system are reduced.

Remark 2.2. If u is continuous in Ω, then we have

{u} = u on ∂T, ∀T ∈ Th.

We see from the definition of weak gradient in (2.4) that

∫

T

∇wuv dx = −

∫

T

u∇ · v dx+

∫

∂T

uv · n ds

=

∫

T

∇uv dx ∀v ∈ [Pk−1(T )]
2,

which implies the modified weak gradient in fact is the L2 projection of the classical gradient

operator on the space of polynomials. Thus, we have ∇wu = ∇u when u ∈ Pk(Ω).

Similarly, if u is continuous in Ω, then from the definition of modified weak divergence given

by (2.5), we have

∫

T

∇w · uw dx = −

∫

T

u∇w dx +

∫

∂T

uwn ds

=

∫

T

∇ · uw dx ∀w ∈ Pk−1(T ),

showing that the modified weak divergence is the L2 projection of the classical divergence

operator on the space [Pk(Ω)]
2. Thus we have ∇w · u = ∇ · u when u ∈ [Pk(Ω)]

2.

In order to analyze and investigate the proposed method, we introduce the local L2 projec-

tion. We first define the local projection Qh given by

Qh : L2(T ) → Pk(T ), (Qhq − q, p)T = 0, ∀p ∈ Pk(T ) (2.6)
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for each element T ∈ Th. The other projection is the L2 projection on the local weak gradient

space defined by

Qh : [L2(T )]2 → [Pk−1(T )]
2, (Qhτ − τ ,σ)T = 0, ∀σ ∈ [Pk−1(T )]

2 (2.7)

for each element T . The following error estimates are standard and the proof can be found

in [11].

Lemma 2.1 ([17]). Let Th be a finite element partition of Ω satisfying the regularity require-

ments. Then, for any u ∈ H1+k(Ω) with k > 0, we have

∑

T∈Th

(‖u−Qhu‖
2
T + h2

T ‖∇(u−Qhu)‖
2
T ) ≤ Ch2(k+1)‖u‖21+k, (2.8)

∑

T∈Th

(‖∇u−Qh(∇u)‖2T + h2
T |∇u−Qh(∇u)|21,T ) ≤ Ch2k‖u‖21+k. (2.9)

Example 2.1 ([12]). Let T be the reference triangle element△ABC with nodesA(0, 0), B(1, 1)

and C(0, 1). Suppose that u|T = (1, 1) and u = 0 on Ω\T . Then we have {u}|ej = (12 ,
1
2 ) where

e1 = AB, e2 = BC and e3 = CA.

a. If k = 1, then we have ∇w · u|T = 0.

b. If k = 2 then we have ∇w · u|T = 6− 6x− 6y.

For the future reference, we use the following notations:

(

u, v
)

=
∑

T∈Th

(

u, v
)

T
=
∑

T∈Th

∫

T

uv dx,

〈u, v〉 =
∑

T∈Th

〈u, v〉∂T =
∑

T∈Th

∫

∂T

uv ds.

For L2− norm, we suppress the subscript and use the notation ‖ · ‖ in the sequel.

For uh, vh ∈ Sh(k), we define a bilinear form on Sh(k) as follows:

a(uh, vh) = ε
(

∇wuh,∇wvh
)

+
(

∇w · (buh), vh
)

+
(

cuh, vh
)

+ sc(uh, vh) + sd(uh, vh), (2.10)

where

sc(u, v) =
∑

T∈Th

〈b · n(u− {u}), v − {v}〉∂+T ,

sd(u, v) =
∑

e∈Eh

εh−1
e 〈[u], [v]〉e,

and

∂+T = {y ∈ ∂T : b(y) · n(y) ≥ 0}.

Remark 2.3. The stabilization terms sc(·, ·) and sd(·, ·) defined in this paper is different from

the stabilization terms defined in [12, 17].

We then propose the following modified weak Galerkin finite scheme:
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Algorithm 2.1. The Modified Weak Galerkin Scheme

A modified weak Galerkin solution to (1.1) is to find uh(t) ∈ S0
h(k) such that

(

∂tuh, vh
)

+ a(uh, vh) =
(

f, vh
)

, ∀v ∈ S0
h(k), t > 0,

uh(x, 0) = Qhu0(x), x ∈ Ω.
(2.11)

Let dim(Sh(k)) = M and dim(S0
h(k)) = N . If {φn(x) : n = 1, . . . , N,N +1, . . . ,M} is basis

functions of Sh(k) and {φn(x) : n = 1, . . . , N} is basis functions of S0
h(k), then the matrix form

of the MWG-FEM given by (2.11) can be written as

M
dC

dt
+AC = F, (2.12)

where M is the mass matrix given by

M =
(

φn, φm

)

, n,m = 1, . . . , N,

the stiffness matrix A

A = a(φn, φm), n,m = 1, . . . , N,

the forcing vector F

F =

[

−

M
∑

n=N+1

dcn
dt

(

φn, φ1) + (f, φ1), . . . ,−

M
∑

n=N+1

dcn
dt

(

φn, φN ) + (f, φN )

]T

and the constant vector C

C = [c1, c2, . . . , cN ]T

for the numerical approximation

uh(t) =
N
∑

n=1

cn(t)φn(x) +
M
∑

n=N+1

cn(t)φn(x).

2.1. Stability

The following multiplicative trace inequality will be useful in proving the error estimates.

Lemma 2.2 ([23]). Let T ∈ Th and e ∈ ∂T . For any φ ∈ H1(T ), the following trace inequality

holds

‖φ‖2e ≤ C
(

h−1
T ‖φ‖2T + hT ‖∇φ‖2T

)

. (2.13)

We also frequently use the following identity [20]:

〈

v − {v}, τ · n
〉

=
∑

e∈Eh

〈

[v], {τ}
〉

e
, (2.14)

which follows from the equality

〈

v, τ · n
〉

=
∑

e∈E0
h

〈

{v}, [[τ ]]
〉

e
+
∑

e∈Eh

〈

[v], {τ}
〉

e
.
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Next, we define an energy norm in S0
h(k): for vh ∈ S0

h(k)

|||vh|||
2
:= ‖vh‖

2
w + ‖vh‖

2
s, (2.15)

where

‖vh‖
2
w =

∑

T∈Th

ε‖∇wvh‖
2
T + s2d(vh, vh),

‖vh‖
2
s =

∑

T∈Th

‖|b · n|
1
2 (vh − {vh})‖

2
∂T + ‖vh‖

2.

An energy-like norm ||| · |||ε in the space S0
h(k) +H1(Ω) is defined for vh ∈ S0

h(k) +H1(Ω)

|||vh|||
2
ε = ‖vh‖

2
1,h + ‖vh‖

2
s, (2.16)

where

‖vh‖
2
1,h =

∑

T∈Th

ε‖∇vh‖
2
T + s2d(vh, vh).

Then, we will show that these two norms are equivalent in the next lemma.

Lemma 2.3. For any vh ∈ S0
h(k), we have the following

C|||vh||| ≤ |||vh|||ε ≤ C|||v|||.

Proof. Let vh ∈ S0
h(k). The definition of the modified weak gradient (2.4) and integration

by parts imply that

(

∇wvh,σ
)

T
=
(

∇vh,σ
)

T
+ 〈{vh} − vh,σ · n〉∂T , ∀σ ∈ [Pk−1(T )]

2. (2.17)

Choosing σ = ∇wvh in (2.17), we have

‖∇wvh‖
2
T =

(

∇vh,∇wvh
)

T
+ 〈{vh} − vh,∇wvh · n〉∂T .

Using the Cauchy-Schwartz inequality, the equality (2.14) and the multiplicative trace inequality

(2.2), we arrive at

‖∇wvh‖
2
T ≤ ‖∇vh‖T ‖∇wvh‖T + ‖[vh]‖∂T ‖∇wvh‖∂T

≤

(

‖∇vh‖T + Ch
−1/2
T ‖[vh]‖∂T

)

‖∇wvh‖T .

Therefore, we get

‖∇wvh‖T ≤ ‖∇vh‖T + Ch
− 1

2

T ‖[vh]‖∂T .

Taking square on both sides of the above inequality and summing up over all element T ∈ Th
leads to

ε‖∇wvh‖
2 ≤ C

(

ε‖∇vh‖
2 + sd(vh, vh)

)

.

As a result,

‖vh‖w ≤ C‖vh‖1,h. (2.18)
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Taking σ = ∇vh in (2.17), we have

‖∇vh‖
2
T =

(

∇vh,∇wvh
)

T
− 〈{vh} − vh,∇vh · n〉∂T .

Using the Cauchy-Schwartz inequality, the equality (2.14) and the multiplicative trace inequality

(2.2), we arrive at

‖∇vh‖
2
T ≤ ‖∇vh‖T ‖∇wvh‖T + ‖[vh]‖∂T ‖∇vh‖∂T

≤

(

‖∇wvh‖T + Ch
−1/2
T ‖[vh]‖∂T

)

‖∇vh‖T .

Hence, we obtain

‖∇vh‖T ≤ ‖∇wvh‖T + Ch
− 1

2

T ‖[vh]‖∂T .

Taking square on both sides of the above inequality and summing up over all element T ∈ Th
leads to

ε‖∇vh‖
2 ≤ C

(

ε‖∇wvh‖
2 + sd(vh, vh)

)

.

Then we have

‖vh‖1,h ≤ C‖vh‖w. (2.19)

From the inequality (2.18) and inequality (2.19), we arrive at

C‖vh‖w ≤ ‖vh‖1,h ≤ C‖vh‖w.

The definition of ||| · |||− norm and ||| · |||ε− norm conclude that

C|||vh||| ≤ |||vh|||ε ≤ C|||vh|||,

which completes the proof. �

We now prove that the bilinear form a(·, ·) is continuous and coercive with respect to the

||| · |||-norm defined by (2.15).

Lemma 2.4. For uh, vh ∈ S0
h(k), there exist positive constants C and γ such that

a(uh, vh) ≤ C|||vh||||||vh|||, (2.20)

a(vh, vh) ≥ γ|||vh|||
2
. (2.21)

Proof. Let uh, vh ∈ S0
h(k). It follows from the definition of the bilinear form a(·, ·) and the

Cauchy-Schwarz inequality that

a(uh, vh) ≤C
(

ε‖∇wuh‖
2 + ‖uh‖

2 + sd(uh, uh) +
〈

uh − {uh}, |b · n|(uh − {uh})
〉

)
1
2

·
(

ε‖∇wvh‖
2 + ‖vh‖

2 + sd(vh, vh) +
〈

vh − {vh}, |b · n|(vh − {vh})
〉

)
1
2

.

Then, we have (2.20) by the definition of ||| · |||-norm.

The definition of the modified weak divergence (2.5) and integration by parts lead to write

(

∇w · (buh), vh
)

= −
(

buh,∇vh
)

+ 〈{uh},b · nvh〉

=
(

∇ · buh, vh
)

+
(

bvh,∇uh

)

− 〈uh − {uh},b · nvh〉,
(2.22)
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and
(

∇w · (bvh), uh

)

= −
(

bvh,∇uh

)

+ 〈{vh},b · nuh〉

= −
(

bvh,∇uh

)

+ 〈{vh},b · n(uh − {uh})〉,
(2.23)

where we have used the fact that 〈b · n{uh}, {vh}〉 = 0 for uh, vh ∈ S0
h(k) in the last equality.

Summing up (2.22) and (2.23) and taking uh = vh, we obtain

(

∇w · (buh), uh

)

=
1

2

(

∇ · buh, uh

)

−
1

2
〈uh − {uh},b · n(uh − {uh})〉. (2.24)

Using (2.24), we get

a(uh, uh) = ε
(

∇wuh,∇wuh) +
(

(c+
1

2
∇ · b)uh, uh

)

−
1

2

〈

uh − {uh},b · n(uh − {uh})
〉

+ sc(uh, uh) + sd(uh, uh)

≥ ε‖∇wuh‖
2 + a0‖uh‖

2 +
1

2

〈

uh − {uh}, |b · n|(uh − {uh})
〉

+ sd(uh, uh) ≥ γ|||uh|||
2,

with γ = min{a0,
1
2}. This completes the proof. �

Lemmas 2.3 and 2.4 conclude that the bilinear form a(·, ·) is also coercive in the norm ||| · |||ε
defined by (2.16).

Lemma 2.5. For vh ∈ S0
h(k), there exists a positive constant α such that

a(vh, vh) ≥ α|||vh|||ε
2. (2.25)

Now, we consider the semi-discrete approximation of a parabolic problem formulated in

Algorithm 2.1. The following is a basic stability estimate for the continuous time semi-discrete

problem for Eq. (1.1).

Theorem 2.1. The MWG-FEM solution uh(t) to the problem stated in Algorithm 2.1 has the

following good stability inequality:

‖uh‖
2 + 2ε

∫ t

0

‖∇wuh)‖
2 dt ≤ 2C

∫ t

0

‖f‖2 dt+ ‖uh(0)‖
2. (2.26)

Proof. Choosing v = uh in Eq. (2.11), we have

(∂tuh, uh) + a(uh, uh) = (f, uh).

The coercivity property (2.21) of the bilinear form a(·, ·) implies that

a(uh, uh) ≥ |||uh|||
2.

Thus, we have

(∂tuh, uh) + |||uh|||
2 ≤ C‖f‖2 +

a0
2
‖uh‖

2.

Using the definition of |||uh|||, we get

(∂tuh, uh) +
1

2
|||uh|||

2 ≤ C‖f‖2. (2.27)

Then, integrating from t = 0 to T , the result follows. Thus we complete the proof. �
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Let δ be a time step size and tm = mδ with 0 ≤ m ≤ N and Nδ = T . We denote by

Um ∈ S0
h(k) the numerical approximation to uh(tm). A fully discrete MWG-FEM for the

problem (2.11) is to seek Um ∈ S0
h(k) such that U0 = Qhu0 and

(

∂̂tU
m, vh

)

+ a(Um, vh) =
(

f, vh
)

, ∀vh ∈ S0
h(k), (2.28)

where ∂̂tU
m = Um

−Um−1

δ is the backward Euler difference at time t = tm. Equivalently we can

rewrite this as follows:
(

Um, vh
)

+ δa(Um, vh) =
(

Um−1 + δf(·, tm), vh
)

, ∀vh ∈ S0
h(k), k = 1, 2, . . . ,

U0 = Qhu0.
(2.29)

Again using the coercivity property (2.21), we have with vh = Um

1

δ

(

Um, Um
)

+ a(Um, Um) ≥ Cγ |||U
m|||2, ∀Um ∈ S0

h(k),

where Cγ = min{a0 +
1
δ ,

1
2}. The existence and uniqueness of the problem (2.29) follow.

2.2. Error equations

The MWG-FEM lacks of consistency property since the exact solution does not satisfy the

numerical scheme (2.11). This property is the key for the Galerkin orthogonality in the conven-

tional finite element methods. Thus, the MWG-FEM does not have the Galerkin orthogonality.

In order to establish the error estimates without the Galerkin orthogonality, we will first derive

some error equations which will be useful in our later analysis.

Lemma 2.6. Let u be the solution of the problem (1.1). Then for vh ∈ S0
h(k),

− ε
(

∆u, vh
)

= ε
(

∇wQhu,∇wvh
)

− T1(u, vh), (2.30)
(

∇ · (bu), vh
)

=
(

∇w · (bQhu), vh
)

− T2(u, vh), (2.31)
(

cu, vh
)

=
(

cQhu, vh
)

− T3(u, vh), (2.32)

where

T1(u, vh) = ε〈{∇u−Qh(∇u)}, [vh]〉+ ε〈{Qhu} − u,∇wvh · n〉, (2.33)

T2(u, vh) =
(

u−Qhu, b · ∇vh
)

− 〈u − {Qhu}, b · nvh〉, (2.34)

T3(u, vh) = −
(

cu− cQhu, vh
)

. (2.35)

Proof. We start with proving Eq. (2.30). From the definition of the modified weak gradient

(2.4) and integration by parts, for vh ∈ S0
h(k), we obtain

(

∇w(Qhu),∇wvh
)

T
= −

(

Qhu,∇ · (∇wvh)
)

T
+ 〈{Qhu},∇wvh · n〉∂T

= −
(

u,∇ · (∇wvh)
)

T
+ 〈{Qhu},∇wvh · n〉∂T

=
(

∇u,∇wvh
)

T
− 〈u− {Qhu},∇wvh · n〉∂T

=
(

Qh(∇u),∇wvh
)

T
− 〈u− {Qhu},∇wvh · n〉∂T .

Then, we have

(

∇w(Qhu),∇wvh
)

=
(

Qh(∇u),∇wvh
)

+ 〈{Qhu− u},∇wvh · n〉. (2.36)
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Here, we use the fact that {u} = u as u is continuous function. It follows from the definition of

modified weak gradient and integration by parts that

(

Qh(∇u),∇wvh
)

T
= −

(

vh,∇ ·Qh(∇u)
)

T
+ 〈{vh},Qh(∇u) · n〉∂T

= (∇vh,Qh(∇u)
)

T
+ 〈{vh} − vh,Qh(∇u) · n〉∂T

= (∇vh,∇u
)

T
+ 〈{vh} − vh,Qh(∇u) · n〉∂T ,

which leads to

(

Qh(∇u),∇wvh
)

= (∇vh,∇u
)

+ 〈{vh} − vh,Qh(∇u) · n〉. (2.37)

Multiplying the term −∆u by the test function vh ∈ S0
h(k) yields

−
(

∆u, vh
)

=
(

∇u,∇vh
)

− 〈∇u · n, vh〉 (2.38)

=
(

∇u,∇vh
)

− 〈∇u · n, vh − {vh}〉, (2.39)

where we use the fact that 〈∇u · n, {vh}〉 = 0.

Combining altogether Eqs. (2.36), (2.37) and (2.38) and making use of the identity (2.14),

we get the desired result (2.30). Next, we prove Eq. (2.31). The definition of the modified weak

divergence (2.5) and integration by parts lead to

(

∇ · (bu), vh
)

T
=− (bu,∇vh

)

T
+ 〈u,b · nvh〉∂T

=−
(

bQhu,∇vh
)

T
−
(

u−Qhu,b · ∇vh
)

T
+ 〈{Qhu},b · nvh〉∂T

− 〈{Qhu},b · nvh〉∂T + 〈u,b · nvh〉∂T

=
(

∇w · (bQhu), vh
)

T
−
(

u−Qhu,b · ∇vh
)

T
+ 〈u− {Qhu},b · nvh〉∂T .

Summing up over all T ∈ Th gives that

(

∇ · (bu), vh
)

=
(

∇w · (bQhu), vh
)

− T2(u, vh),

which is Eq. (2.31). Eq. (2.32) is clear. Thus, we complete the proof. �

3. Error Analysis

We will present the error estimates in this section. First we will derive the a priori error

estimates for the semi-discrete MWG-FEM defined by (2.11) and then for the fully discrete

MWG-FEM scheme given by (2.29).

Let u be the exact solution of the problem (1.1) and uh be the solution of the semi-discrete

problem given by (2.11), respectively. Let e := Qhu−uh be the error between the L2 projection

of the true solution u and the MWG-FEM solution uh computed by (2.11). Then we have the

following error equation for e which will be needed in the error estimates.

Lemma 3.1. Let e = Qhu− uh ∈ Sh(k). For any vh ∈ S0
h(k) we have

(

∂te, vh
)

+ a(e, vh) = T1(u, vh) + T2(u, vh) + T3(u, vh) + sc(Qhu, vh) + sd(Qhu, vh). (3.1)

Proof. Multiplying (1.1) by the test function vh ∈ S0
h(k), we obtain

(∂tu, vh)− ε(∆u, vh) + (∇ · (bu), vh) + (cu, vh) = (f, vh). (3.2)
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By making use of Eqs. (2.30)-(2.32), we can write the above equation as

(∂tu, vh) + ε(∇wQhu,∇wvh) + (∇w · (bQhu), vh) + (cQhu, vh)

=(f, vh) + T1(u, vh) + T2(u, vh) + T3(u, vh). (3.3)

We add the terms sc(Qhu, vh) and sd(Qhu, vh) to both sides of Eq. (3.3) and we get

(∂t(Qhu), vh) + a(Qhu, vh)

=(f, vh) + T1(u, vh) + T2(u, vh) + T3(u, vh) + sc(Qhu, vh) + sd(Qhu, vh), (3.4)

where we use the fact that (Qh∂tu− ∂tu, vh) = 0 for vh ∈ S0
h(k) and the commutative property

of the L2 projection on the time derivative, that is, (Qh∂tu−∂tu, vh) = (∂t(Qhu)−∂tu, vh) = 0.

Subtracting (2.11) from (3.4) gives the error equation (3.1). Thus the proof of the lemma

is now complete. �

In order to obtain the error estimates, we need to have the error bounds for each term

Ti(u, vh), i = 1, 2, 3. The following lemma gives the bounds for these terms.

Lemma 3.2. If u is the exact solution of the problem (1.1), then for any vh ∈ S0
h(k) we have

the following estimates:

|T1(u, vh)| ≤ Cε
1
2hk|u|k+1|||vh|||, (3.5)

|T2(u, vh)| ≤ Chk+ 1
2 |u|k+1|||vh|||, (3.6)

|T3(u, vh)| ≤ Chk+1|u|k+1|||vh|||, (3.7)

|sc(Qhu, vh)| ≤ Chk+ 1
2 |u|k+1|||vh|||, (3.8)

|sd(Qhu, vh)| ≤ Cε
1
2hk|u|k+1|||vh|||. (3.9)

Proof. With the aid of the Cauchy-Schwartz inequality, the trace inequality (2.2) and

Lemma 2.1, we obtain

∑

T∈Th

∣

∣〈ε{∇u−Qh(∇u)}, [vh]〉∂T
∣

∣ ≤ C
∑

T∈Th

ε‖∇u−Qh(∇u)‖∂T ‖[vh]‖∂T

≤C
(

∑

T∈Th

hT ε‖∇u−Qh(∇u)‖2∂T

)
1
2
(

∑

T∈Th

h−1
T ε‖[vh]‖

2
∂T

)
1
2

≤Cε
1
2

(

∑

T∈Th

(‖∇u−Qh(∇u)‖2T + h2
T |∇u−Qh(∇u)|21,T )

1
2 s

1
2

d (vh, vh)

≤Cε
1
2hk|u|k+1|||vh|||.

Similarly, one can show that

∑

T∈Th

∣

∣ε〈{Qhu} − u,∇wvh · n〉∂T
∣

∣ ≤ Cε
1
2 hk|u|k+1|||vh|||.

Consequently, one has

|T1(u, vh)| ≤ Cε
1
2hk|u|k+1|||vh|||.

We next derive the error bound for the term T2(u, vh) in (3.6). Let bT be the constant value

of the average of b over the element T . Using the Cauchy-Schwartz inequality, Lemmas 2.1
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and 2.3, we have

(

u−Qhu,b · ∇vh
)

=
∑

T∈Th

(

u−Qhu, (b− bT ) · ∇vh
)

T

≤
∑

T∈Th

‖u−Qhu‖T‖b− bT ‖∞,T ‖∇vh‖T

≤ Chk+1|u|k+1|||vh|||.

Moreover, using the Cauchy-Schwartz inequality, the trace inequality (2.2) and Lemma 2.1,

one can obtain

〈u − {Qhu},b · nvh〉 = 〈u− {Qhu},b · n(vh − {vh})〉

≤ C
∑

T∈Th

‖u−Qhu‖∂T ‖|b · n|
1
2 (vh − {vh})‖∂T

≤ C
(

∑

T∈Th

(h−1
T ‖u−Qhu‖

2
T + hT ‖∇(u−Qhu)‖

2
T )
)

1
2

s
1
2
c (vh, vh)

≤ Chk+ 1
2 |u|k+1|||v|||,

where we use the fact that 〈u − {Qhu},b · n{vh}〉 = 0. As a result,

T2(u, vh) ≤ Chk+ 1
2 |u|k+1|||v|||.

Similarly we can prove (3.7).

From the Cauchy-Schwartz inequality, trace inequality (2.2) and Lemma 2.1, we infer that

sc(Qhu, vh) ≤
∑

T∈Th

∣

∣〈b · n(Qhu− {Qhu}), vh − {vh}〉∂+T

∣

∣

=
∑

T∈Th

∣

∣〈b · n(Qhu− u+ u− {Qhu}), vh − {vh}〉∂+T

∣

∣

≤
∑

T∈Th

∣

∣〈b · n(Qhu− u), vh − {vh}〉∂+T

∣

∣+
∑

T∈Th

∣

∣〈b · n({u−Qhu}), vh − {vh}〉∂+T

∣

∣

≤ C
(

∑

T∈Th

∥

∥|b · n|
1
2 (u−Qhu)

∥

∥

2

∂T

)
1
2

s
1
2
c (vh, vh)

≤ Chk+ 1
2 |u|k+1|||vh|||.

Similar argument shows that the estimate (3.9) holds true. Thus we complete the proof. �

We are now ready to state and prove an error estimate for the time continuous semi-discrete

modified WG-FEM approximation (2.11).

Theorem 3.1. Let u(x, t) and uh(x, t) be the exact solution of the problem (1.1) and the

solution of the semi-discrete modified WG-FEM given by (2.11), respectively. Assume that

u, ∂tu ∈ Hk+1(Ω). Then there is a positive constant C independent of ε and the mesh size h

such that

‖u− uh‖
2 ≤ C

(

‖u0 − u0
h‖

2 + h2k(h2‖u0‖
2
k+1 + (ε+ h)

∫ t

0

|u|2k+1 ds)

)

. (3.10)
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Proof. We aligned the error eh = u − uh = u − Qhu + Qhu − uh := θ + e. Lemma 2.1

provides the error estimate for the first term θ

‖θ‖ ≤ Chk+1|u|k+1. (3.11)

Thus, we will derive the error estimate for e. The coercivity property (2.21) of the bilinear

form implies that

a(e, e) ≥ γ|||e|||2.

Taking vh = e in the error equation (3.1) we have

(∂te, e) + a(e, e) = T1(u, e) + T2(u, e) + T3(u, e) + sc(Qhu, e) + sd(Qhu, e).

Combining two expressions above yields

(∂te, e) + γ|||e|||2 ≤ T1(u, e) + T2(u, e) + T3(u, e) + sc(Qhu, e) + sd(Qhu, e). (3.12)

Using the Young’s inequality and Lemma 3.2, we obtain

|T1(u, e)| ≤ Cγεh
2k|u|2k+1 +

γ

5
|||e|||2,

|T2(u, e)| ≤ Cγh
2k+1|u|2k+1 +

γ

5
|||e|||2,

|T3(u, e)| ≤ Cγh
2k+2|u|2k+1 +

γ

5
|||e|||2,

|sc(Qhu, e)| ≤ Cγh
2k+1|u|2k+1 +

γ

5
|||e|||2,

|sd(Qhu, e)| ≤ Cγεh
2k|u|2k+1 +

γ

5
|||e|||2,

Substituting the results above into (3.12) reveals

1

2

d

dt
‖e‖2 ≤ C(ε+ h)h2k|u|2k+1. (3.13)

Integrating (3.13) with respect to t over [0, t] we find

‖e‖2 ≤ C

(

‖e(0)‖2 + (ε+ h)h2k

∫ t

0

|u|2k+1 ds

)

. (3.14)

With the help of Lemma 2.1, we have

‖e(0)‖ ≤ ‖Qhu0 − u0‖+ ‖u0 − u0
h‖ ≤ Chk+1‖u0‖

2 + ‖u0 − u0
h‖. (3.15)

Substituting the estimate (3.15) into (3.14), we obtain

‖e‖2 ≤ C

(

‖u0 − u0
h‖

2 + h2k(h2‖u0‖
2
k+1 + (ε+ h)

∫ t

0

|u|2k+1 ds)

)

.

Combining the above estimate and the estimate (3.11) give the desired result (3.10). �
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Theorem 3.2. Let u(x, t) and uh(x, t) be the exact solution of the problem (1.1) and the

solution of the semi-discrete modified WG-FEM given by (2.11), respectively. Assume that

u, ∂tu, u0 ∈ Hk+1(Ω). Then there is a positive constant C independent of ε and the mesh size

h such that

∫ t

0

‖∂t(u − uh)‖
2 ds+

γ

4
|||u− uh|||

2

≤ C

(

|||u0 − u0
h|||

2 + h2k

(

‖u0‖
2
k+1 + (ε+ h)

×

(
∫ t

0

|u|2k+1 ds+

∫ t

0

|∂tu|
2
k+1 ds+

∫ t

0

|u0|
2
k+1 ds

)

))

. (3.16)

Proof. With the same notation as in the previous theorem, we estimate the error for e.

Taking vh = ∂te in the error equation (3.1) we get

(∂te, ∂te) + a(e, ∂te)

=T1(u, ∂te) + T2(u, ∂te) + T3(u, ∂te) + sc(Qhu, ∂te) + sd(Qhu, ∂te)

=
∂

∂t
T1(u, e)− T1(∂tu, e) +

∂

∂t
T2(u, e)− T2(∂tu, e) +

∂

∂t
T3(u, e)

− T3(∂tu, e) +
∂

∂t
sc(Qhu, e)− sc(Qh∂tu, e) +

∂

∂t
s(Qhu, e)− s(Qh∂tu, e).

Using Lemma 3.2 we have

‖∂te‖
2 +

1

2

d

dt
a(e, e)

≤C(ε
1
2 + h

1
2 )hk|∂tu|k+1|||e|||+

∂

∂t
T1(u, e)

+
∂

∂t
T2(u, e) +

∂

∂t
T3(u, e) +

∂

∂t
sc(Qhu, e) +

∂

∂t
sd(Qhu, e).

Integrating the last inequality with respect to t gives

∫ t

0

‖∂te‖
2 ds+

γ

2
|||e|||2

≤C

(

γ

2
|||e(0)|||2 + (ε

1
2 + h

1
2 )hk

∫ t

0

|∂tu|k+1|||e||| ds

+ T1(u, e) + T2(u, e) + T3(u, e) + sc(Qhu, e) + sd(Qhu, e)

− T1(u(0), e(0))− T2(u(0), e(0))− T3(u(0), e(0))

− sc(Qhu(0), e(0))− s(Qhu(0), e(0))

)

.

Again using Lemma 3.2 and the Young’s inequality we get

∫ t

0

‖∂te‖
2 ds+

γ

2
|||e|||2

≤ C

(

γ

2
|||e(0)|||2 + (ε+ h)h2k

(

∫ t

0

|u|2k+1 ds+

∫ t

0

|∂tu|
2
k+1 ds+

∫ t

0

|u0|
2
k+1 ds

)
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+
γ

4
|||e|||2 +

γ

2
|||e(0)|||2

)

.

Note that,

|||e(0)||| ≤ C(hk‖u0‖k+1 + |||u0 − u0
h|||).

Thus, we have
∫ t

0

‖∂te‖
2 ds+

γ

4
|||e|||2

≤C

(

|||u0 − u0
h|||

2 + h2k

(

‖u0‖
2
k+1 + (ε+ h)

(
∫ t

0

|u|2k+1 ds+

∫ t

0

|∂tu|
2
k+1 ds+

∫ t

0

|u0|
2
k+1 ds

)

))

.

The above estimate and the estimate for θ give the desired result (3.16). Thus, the proof is

completed. �

Next, we give the error estimates for the fully discrete MWG-FEM solution computed by

(2.28).

Theorem 3.3. Let u and Um be the exact solution of the problem (1.1) and the solution of

the fully discrete MWG-FEM given by (2.28), respectively. Assume that u, ∂tu, u0 ∈ Hk+1(Ω).

Then there is a positive constant C independent of ε and h such that for 0 < m ≤ N

‖u(tm)− Um‖2

≤C

(

‖u0 − U0‖2 + δ2
∫ tm

0

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

2

ds

+ h2k

(

h2

(

‖u0‖
2
k+1 +

∫ tm

0

‖∂tu‖
2
k+1 ds

)

+ δ(ε+ h)

m
∑

n=1

|un|
2
k+1

))

. (3.17)

Proof. We aligned the error emh = u(tm)− Um = θm + em where

θm = u(tm)−Qhu(tm), em = Qhu(tm)− Um.

We know from Lemma 2.1 that

‖θm‖ ≤ Chk+1|u(tm)|k+1 ≤ Chk+1

(

‖u0‖k+1 +

∫ tm

0

‖∂tu‖k+1 dt

)

. (3.18)

From the definition of Qh, we have for vh ∈ S0
h(k)

(

Qh∂tu(tm)− ∂̂tU
m, vh

)

=
(

Qh∂tu(tm)− ∂̂tQhu(tm), vh
)

+
(

∂̂t(Qhu(tm)− Um), vh
)

=
(

∂tu(tm)− ∂̂tu(tm), vh
)

+
(

∂̂t(Qhu(tm)− Um), vh
)

,

or, equivalently, using the definition of the projection Qh

(

∂̂t(Qhu(tm)− Um), vh
)

−
(

Qh∂tu(tm)− ∂̂tU
m, vh

)

=
(

∂̂tu(tm)− ∂tu(tm), vh
)

.

In what follows we will find an equivalent expression for the term (∂tu(tm)− ∂̂tU
m, vh). From

the variational formulation given in (2.1) and the fully discrete MWG-FEM scheme defined by

(2.28) we obtain

(∂tu(tm)− ∂̂tU
m, vh) = a(Um, vh)−A(u(tm), vh).
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Using the same argument in deriving the error equations in Lemma 2.6 for the semi-discrete

case, we have the following error equation for the term a(Um, vh)−A(u(tm), vh):

a(Um, vh)−A(u(tm), vh)

=−
(

a(Qhu(tm)− Um, vh)− T1(u(tm), vh)− T2(u(tm), vh)

− T3(u(tm), vh)− sc(Qhu(tm), vh)− sd(Qhu(tm), vh)
)

. (3.19)

Thus, we have the following error equation for the fully discrete MWG-FEM for any vh ∈

S0
h(k)

(

∂̂t(Qhu(tm)− Um), vh
)

+ a(Qhu(tm)− Um, vh)

=
(

∂̂tu(tm)− ∂tu(tm), vh
)

+ T1(u(tm), vh) + T2(u(tm), vh)

+ T3(u(tm), vh) + sc(Qhu(tm), vh) + sd(Qhu(tm), vh). (3.20)

Letting vh = em in the above equation (3.20), we have

(∂̂te
m, em) + a(em, em)

= (wm, em) + T1(u(tm), em) + T2(u(tm), em) + T3(u(tm), em)

+ sc(Qhu(tm), em) + sd(Qhu(tm), em),

where

wm = ∂̂tu(tm)− ∂tu(tm).

Using the similar argument in the semi-discrete case, one can show that

(∂̂te
m, em) + a(em, em) ≤ (wm, em) + C(ε

1
2 + h

1
2 )hk|u(tm)|2k+1|||e

m|||.

Using the Cauchy-Schwartz inequality, the Young’s inequality and the coercivity of the bilinear

form, we estimate the two terms on the left hand side of the above inequality

∣

∣(∂̂te
m, em)

∣

∣ =
1

δ
(em − em−1, em) ≥

1

2δ

(

‖em‖2 − ‖em−1‖2
)

, (3.21)

and

a(em, em) ≥ γ|||em|||2. (3.22)

Combining (3.21) and (3.22) leads to

‖em‖2 + 2γδ|||em|||2 ≤‖em−1‖2 + δ‖wm‖2 + δ‖em‖

+ C
δ

8γ
(ε+ h)h2k|u(tm)|2k+1 + 2γδ|||em|||2.

Hence,

‖em‖2 ≤ ‖em−1‖2 + δ‖wm‖2 + δ‖em‖2 + C
δ

8γ
(ε+ h)h2k|u(tm)|2k+1.

By induction argument, one has

‖em‖2 ≤ ‖e0‖2 + δ

(

m
∑

n=1

‖wn‖2 +

m
∑

n=1

‖en‖2

)

+ C
δ

8γ
(ε+ h)h2k

m
∑

n=1

|u(tn)|
2
k+1. (3.23)
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We note that

wn =
u(tn)− u(tn−1)

δ
− ∂tu(tn) = −

1

δ

∫ tn

tn−1

(s− tn−1)
∂2u

∂t2
ds,

which gives

m
∑

n=1

‖wn‖2 ≤

m
∑

n=1

1

δ2

(

∫ tn

tn−1

(s− tn−1)
2 ds

)(

∫ tn

tn−1

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

2

ds

)

=
δ

3

∫ tm

0

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

2

ds. (3.24)

With the aid of Lemma 2.1, we have

‖e0‖2 ≤ Ch2k+2‖u0‖
2
k+1 + ‖u0 − U0‖2. (3.25)

Combining (3.18), (3.23), (3.25) and the discrete Gronwall inequality yield the desired result

(3.17). The proof is now complete. �

Theorem 3.4. Let u and Um be the exact solution of the problem (1.1) and the solution of

the fully discrete MWG-FEM given by (2.28), respectively. Assume that u, ∂tu, u0 ∈ Hk+1(Ω).

Then there is a positive constant C independent of ε and h such that for 0 < m ≤ N

|||u(tm)− Um|||2 ≤ C

(

|||u0 − U0|||2 + δ2
∫ tm

0

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

2

ds (3.26)

+ h2k

(

‖u0‖
2
k+1 + (ε+ h)δ

m
∑

n=1

|un|
2
k+1

))

.

Proof. Taking vh = ∂̂te
m in the error equation (3.20), we have

(

∂̂te
m, ∂̂te

m
)

+ a(em, ∂̂te
m)

=
(

wm, ∂̂te
m
)

+ T1(u(tm), ∂̂te
m) + T2(u(tm), ∂̂te

m)

+ T3(u(tm), ∂̂te
m) + sc(Qhu(tm), ∂̂te

m) + s(Qhu(tm), ∂̂te
m).

Observe that

(

∂̂te
m, ∂̂te

m
)

= ‖∂̂te
m‖2,

a(em, ∂̂te
m) =

1

δ

(

a(em, em)− a(em, em−1)
)

≥
1

δ

(

γ|||em|||2 − β|||em||||||em−1|||
)

≥
1

δ

((

γ −
β

2

)

|||em|||2 −
β

2
|||em−1|||2

)

=
C

δ

(

|||em|||2 − |||em−1|||2
)

,

where we use the continuity of the bilinear form a(·, ·) given by (2.20).

Using the Young’s inequality and Lemma 3.2, we have

|T1(u(tm), ∂̂te
m)| ≤ Cγεδ

−1h2k|u(tm)|2k+1 +
γ

5
δ−1

(

|||em|||2 + |||em−1|||2
)

,
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|T2(u(tm), ∂̂te
m)| ≤ Cγδ

−1h2k+1|u(tm)|2k+1 +
γ

5
δ−1

(

|||em|||2 + |||em−1|||2
)

,

|T3(u(tm), ∂̂te
m)| ≤ Cγεδ

−1h2k+2|u(tm)|2k+1 +
γ

5
δ−1

(

|||em|||2 + |||em−1|||2
)

,

|sc(Qhu(tm), ∂̂te
m)| ≤ Cγδ

−1h2k+1|u(tm)|2k+1 +
γ

5
δ−1

(

|||em|||2 + |||em−1|||2
)

,

|sd(Qhu(tm), ∂̂te
m)| ≤ Cγεδ

−1h2k|u(tm)|2k+1 +
γ

5
δ−1

(

|||em|||2 + |||em−1|||2
)

.

The Cauchy-Schwartz inequality implies that

δ‖∂̂te
m‖2 + C|||em|||2 ≤ C|||em−1|||2 +

δ

4
‖wm‖2 + δ‖∂̂te

m‖2 + C(ε+ h)h2k|u(tm)|2k+1.

By induction argument along with cancellation we are led to

|||em|||2 ≤ C|||e0|||2 +
δ

4

m
∑

n=1

‖wn‖2 + C(ε+ h)h2k
m
∑

n=1

|u(tn)|
2
k+1. (3.27)

Using Lemma 2.1 we obtain

|||e0||| ≤ Chk‖u0‖+ |||u0 − U0|||. (3.28)

Substituting the inequalities (3.28) and (3.24) in the above inequality (3.27) gives the desired

result. �

4. Optimal Order Error Estimates in L
2-norm

We have derived the optimal order of error estimate in H1-norm for both semi-discrete

and fully discrete MWG-FEM schemes in the previous section. In this section, we present the

optimal order of error estimate in L2-norm for semi-discrete and fully discrete MWG-FEM. For

this reason, similar to [33], we define an elliptic projection Rhu(t) of u on the space S0
h(k) as

follows. For each t ∈ [0, T ], Rhu(t) : H
1
0 (Ω) ∩H2(Ω) → S0

h(k) such that

a(Rhu, vh) = −ε(∆u, vh) + (∇ · (bu), vh) + (cu, vh), ∀vh ∈ S0
h(k). (4.1)

The projection Rhu(t) is well-defined since the bilinear form a(·, ·) is bounded and coercive by

Lemma 2.4. The following lemma will be useful in the sequel.

Lemma 4.1. Let u ∈ Hk+1(Ω) be the exact solution of problem (1.1). Then there is a positive

constant C such that

|||Rhu−Qhu||| ≤ C(ε
1
2 + h

1
2 )hk‖u‖k+1, (4.2)

‖Rhu−Qhu‖ ≤ C(ε−
1
2h

1
2 + ε−1 + 1)hk+1‖u‖k+1. (4.3)

Proof. From the definition of elliptic projection we have

(∂tu, vh) + a(Rhu, vh) = (∂tu, vh) +A(u, vh) = (f, vh), ∀vh ∈ S0
h(k). (4.4)

Testing (1.1) by vh ∈ S0
h(k) yields

(∂tu, vh)− ε(∆u, vh) + (∇ · (bu), vh) + (cu, vh) = (f, vh). (4.5)
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With the help of Lemma 2.6, Eq. (4.5) becomes

(∂tu, vh) + ε(∇wQhu,∇wvh) + (∇w · (bQhu), vh) + (cQhu, vh)

=(f, vh) + T1(u, vh) + T2(u, vh) + T3(u, vh).

We add sc(Qhu, vh) and sd(Qhu, vh) to both side of the equation above to obtain

(∂tu, vh) + a(Qhu, vh) = (f, vh) + T1(u, vh) + T2(u, vh) + T3(u, vh)

+ sc(Qhu, vh) + sd(Qhu, vh).
(4.6)

Let E := Qhu−Rhu. Subtracting (4.4) from (4.6) gives

a(E, vh) = T1(u, vh) + T2(u, vh) + T3(u, vh) + sc(Qhu, vh) + sd(Qhu, vh). (4.7)

Taking vh = E in (4.7) and using the coercivity of the bilinear form a(·, ·) and Lemma 3.2 we

have the desired result

|||E||| ≤ C(ε
1
2 + h

1
2 )hk|u|k+1,

which proves the estimate (4.2).

Next we will prove the estimate (4.3). We consider the following dual problem : Find

φ ∈ H1
0 (Ω) ∩H2(Ω) satisfying

−ε∆φ− b · ∇φ+ cφ = E in Ω, (4.8)

where c ∈ W 1,∞(Ω) and for some constant c0 such that c − 1
2∇ · b ≥ c0 > 0. The following

lemma is needed for the rest of the proof.

Lemma 4.2. Let φ ∈ H1
0 (Ω)∩H2(Ω) be the exact solution of the problem (4.8). Then for any

vh ∈ S0
h(k) we have the following estimates:

|T1(φ, vh)| ≤ Cε
1
2h|φ|2|||vh|||, (4.9)

|T2(φ, vh)| ≤ Ch
3
2 |φ|2|||vh|||, (4.10)

|T3(φ, vh)| ≤ Ch2|φ|2|||vh|||, (4.11)

|sc(Qhφ, vh)| ≤ Ch
3
2 |φ|2|||vh|||, (4.12)

|sd(Qhφ, vh)| ≤ Cε
1
2 h|φ|2|||vh|||, (4.13)

where Ti(u, v), i = 1, 2, 3 are defined by (2.33), (2.34) and (2.35), respectively.

Proof. The proof is similar to the proof of Lemma 3.2 and thus we omit the proof. �.

We assume that the following H2-regularity for the dual problem (4.8) holds

ε‖φ‖2 ≤ C‖E‖. (4.14)

To see this, an H1-energy estimate can be found very quickly and is

ε|φ|21,Ω + c0‖φ‖
2
L2(Ω) ≤ ‖E‖2L2(Ω). (4.15)

We now proceed with an H2-regularity estimate. Multiplying the dual problem by ∆φ and

integrating gives

−ε

∫

Ω

(∆φ)2 dx−

∫

Ω

b · ∇φ∆φdx +

∫

Ω

cφ∆φ dx =

∫

Ω

E∆φdx.
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We use integration-by-parts on the second and third terms on the left side as well as the BC’s

on φ so this becomes

−ε

∫

Ω

(∆φ)2 dx −

∫

Ω

(

c−
1

2
∇ · b

)

(∇φ)
2
dx ≤

∫

Ω

E∆φ dx+

∫

Ω

∇cφ∇φ dx, (4.16)

which leads to the inequality

ε|φ|22,Ω + c0|φ|
2
1,Ω ≤ ‖E‖L2(Ω)|φ|2,Ω + c2‖φ‖L2(Ω)|φ|1,Ω,

where ‖∇c‖L∞(Ω) ≤ c2. We now use Young’s inequality on each of the terms on the right side

of the equation

ε|φ|22,Ω + c0|φ|
2
1,Ω ≤

1

4ε
‖E‖2L2(Ω) +

ε

2
|φ|22,Ω +

4c22
c0

‖φ‖2L2(Ω) +
c0
2
|φ|21,Ω,

or

ε|φ|22,Ω + c0|φ|
2
1,Ω ≤

1

2ε
‖E‖2L2(Ω) +

8c22
c0

‖φ‖2L2(Ω).

Now, from our H1-regularity (4.15), we have c0‖φ‖
2
L2(Ω) ≤ ‖E‖2L2(Ω) and thus conclude ∃C > 0

dependent only on c0 and c2 so

ε|φ|22,Ω + c0‖φ‖
2
1,Ω ≤

C

ε
‖E‖2L2(Ω), (4.17)

which shows (4.14).

Multiplying the dual problem (4.8) by the test function E and using the Eqs. (2.30) and

(2.32), we obtain

‖E‖2 = −ε(∆φ,E)− (b · ∇φ,E) + (cφ,E)

= ε(∇wQhφ,∇wE)− (b · ∇φ,E) + (cQhφ,E)− T1(φ,E) − T3(φ,E). (4.18)

Integration by parts and the definition of the weak divergence reveal that

−(b · ∇φ,E)T = (φ,∇ · (bE))T −
〈

φ,b · nE
〉

∂T

= (Qhφ,∇ · (bE))T + (φ −Qhφ,∇ · (bE))T −
〈

φ,b · nE
〉

∂T

= (∇w · (bE), Qhφ)T − T ∗
2 (φ,E)T ,

where T ∗
2 (φ,E)T = (φ − Qhφ,∇ · (bE))T −

〈

{φ − Qhφ},b · nE
〉

∂T
. As a result, by summing

all over the element T ∈ Th we have

−(b · ∇φ,E) = (∇w · (bE), Qhφ)− T ∗
2 (φ,E). (4.19)

Combining Eqs. (4.18) and (4.19) leads to

‖E‖2 = ε(∇wE,∇wQhφ) + (∇w · (bE), Qhφ)

+ (cE,Qhφ) − T1(φ,E) − T ∗
2 (φ,E) − T3(φ,E)

= a(E,Qhφ)− sc(E,Qhφ) − sd(E,Qhφ)

− T1(φ,E) − T ∗
2 (φ,E) − T3(φ,E). (4.20)

From (4.7) with vh is replaced by Qhφ, we have

a(E,Qhφ) = T1(u,Qhφ) + T2(u,Qhφ) + T3(u,Qhφ)

+ sc(Qhu,Qhφ) + sd(Qhu,Qhφ). (4.21)
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Eqs. (4.20) and (4.21) imply that

‖E‖2 = T1(u,Qhφ) + T2(u,Qhφ) + T3(u,Qhφ)

+ sc(Qhu,Qhφ) + sd(Qhu,Qhφ)

− T1(φ,E)− T ∗
2 (φ,E)− T3(φ,E)

− sc(E,Qhφ)− sd(E,Qhφ). (4.22)

We will derive a bound for each term on the RHS of Eq. (4.22) separately.

We begin with the first term T1(u,Qhφ). It follows from the Cauchy-Schwarz inequality,

the trace inequality (2.13), and Lemma 2.1 that

∑

T∈Th

∣

∣

∣

〈

ε{∇u−Qh(∇u)}, [φ−Qhφ]
〉

∂T

∣

∣

∣

≤ C
∑

T∈Th

ε‖{∇u−Qh(∇u)}‖∂T ‖[φ−Qhφ]‖∂T

≤ C
(

∑

T∈Th

εhT ‖{∇u−Qh(∇u)}‖2∂T

)
1
2
(

∑

T∈Th

εh−1
T ‖[φ−Qhφ]‖

2
∂T

)
1
2

≤ Cε
1
2

(

∑

T∈Th

(‖∇u−Qh(∇u)‖2T + h2
T |∇u−Qh(∇u)|21,T )

)
1
2

|||φ−Qhφ|||

≤ Cε
1
2 hk|u|k+1ε

1
2h‖φ‖2 ≤ Cεhk+1|u|k+1‖φ‖2,

where we use the fact that [φ] = 0.

Similarly, one can show that

∑

T∈Th

∣

∣ε〈{Qhu} − u,∇wQhφ · n〉∂T
∣

∣ ≤ Cεhk+1|u|k+1‖φ‖2.

Consequently, one has

|T1(u,Qhφ)| ≤ Cεhk+1|u|k+1‖φ‖2. (4.23)

We next derive the error bound for the term T2(u,Qhφ). Let bT be the constant value of

the average of b over the element T . Using the Cauchy-Schwartz inequality, Lemma 2.1 and

the Poincare inequality, we have

(

u−Qhu,b · ∇Qhφ
)

=
∑

T∈Th

(

u−Qhu, (b− bT ) · ∇φ
)

T

−
∑

T∈Th

(

u−Qhu, (b− bT ) · ∇(φ −Qhφ)
)

T

≤
∑

T∈Th

‖u−Qhu‖T ‖b− bT ‖∞,T ‖∇φ‖T

+
∑

T∈Th

‖u−Qhu‖T‖b− bT ‖∞,T‖∇(φ−Qhφ)‖T

≤Chk+1|u|k+1‖φ‖1 + Chk+2|u|k+1‖φ‖2

≤Chk+1|u|k+1‖φ‖2.
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Moreover, using the Cauchy-Schwartz inequality, the trace inequality (2.13) and Lemma 2.1,

one can obtain

〈u− {Qhu},b · nQhφ〉

=〈u− {Qhu},b · n((Qhφ− φ)− {Qhφ− φ})〉

≤C
∑

T∈Th

‖u−Qhu‖∂T ‖|b · n|
1
2 (φ−Qhφ)‖∂T

≤Chk+2|u|k+1‖φ‖2,

where we use the facts that 〈u− {Qhu},b · n{Qhφ}〉 = 0 and {φ} = φ. As a result,

|T2(u,Qhφ)| ≤ Chk+1|u|k+1‖φ‖2. (4.24)

It follows from the Cauchy-Schwartz inequality and Lemma 2.1 that

|T3(u,Qhφ)| ≤ Chk+1|u|k+1‖φ‖2. (4.25)

From the Cauchy-Schwartz inequality, trace inequality (2.13) and Lemma 2.1, we infer that

|sc(Qhu,Qhφ)| ≤
∑

T∈Th

∣

∣〈b · n(Qhu− {Qhu}), Qhφ− {Qhφ}〉∂+T

∣

∣

=
∑

T∈Th

∣

∣〈b · n(Qhu− u+ u− {Qhu}), (Qhφ− φ+ φ− {Qhφ})〉∂+T

∣

∣

≤
∑

T∈Th

∣

∣〈b · n(Qhu− u), Qhφ− φ+ φ− {Qhφ}〉∂+T

∣

∣

+
∑

T∈Th

∣

∣〈b · n({u−Qhu}), Qhφ− φ+ φ− {Qhφ}〉∂+T

∣

∣

≤ C
(

∑

T∈Th

∥

∥|b · n|
1
2 (u−Qhu)

∥

∥

2

∂T

)
1
2
(

∑

T∈Th

∥

∥|b · n|
1
2 (φ−Qhφ)

∥

∥

2

∂T

)
1
2

≤ Chk+ 1
2 |u|k+1h

3
2 ‖φ‖2 = Chk+2|u|k+1‖φ‖2. (4.26)

Similarly one can show that

|sd(Qhu,Qhφ)| ≤ Cεhk+ 3
2 |u|k+1‖φ‖2. (4.27)

The estimates (4.9) and (4.2) imply that

|T1(φ,E)| ≤ Cε
1
2h‖φ‖2|||E||| ≤ Cε

1
2 (ε

1
2 + h

1
2 )hk+1|u|k+1‖φ‖2. (4.28)

Next we estimate the term T ∗
2 (φ,E). Let bT =

1

|T |
(b, 1)T . Then using the Cauchy-Schwartz

inequality we obtain

(φ−Qhφ,∇ · (bE)) =(φ−Qhφ, (∇ · b)E) + (φ −Qhφ,b · ∇E)

=
∑

T∈Th

(

(φ−Qhφ, (∇ · b)E)T + (φ−Qhφ, (b− bT ) · ∇E)
)

≤Ch2‖φ‖2|||E|||

≤Cε
1
2 (ε

1
2 + h

1
2 )hk+2|u|k+1‖φ‖2.
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The above estimate and the estimate (4.10) imply that

|T ∗
2 (φ,E)| ≤ C(ε

1
2 + h

1
2 )hk+ 3

2 |u|k+1‖φ‖2. (4.29)

Owing to (4.11), one can easily show that

|T3(φ,E)| ≤ C(ε
1
2 + h

1
2 )hk+2|u|k+1‖φ‖2. (4.30)

We also infer from the estimates (4.12) and (4.13) that

|sc(E,Qhφ)| ≤ C(ε
1
2 + h

1
2 )hk+ 3

2 |u|k+1‖φ‖2, (4.31)

and

|sd(E,Qhφ)| ≤ Cε
1
2 (ε

1
2 + h

1
2 )hk+1|u|k+1‖φ‖2. (4.32)

Combining altogether the estimates above (4.23)-(4.32) gives the desired result (4.3). Thus we

complete the proof. �

We aligned the error eh = u − uh = ν + E + ρ where ν = u − Qhu, E = Qhu − Rhu

and ρ = Rhu − uh. Now we are ready to state and prove the error estimates for semi-discrete

MWG-FEM in L2-norm and ||| · |||-norm in the following theorems.

Theorem 4.1. Let u ∈ Hk+1(Ω) and uh be the exact solution for the problem (1.1) and the

solution of the semi-discrete MWG-FEM given by (2.11), respectively. Assume that ∂tu, u0 ∈

Hk+1(Ω). Then there is a constant C such that

‖u− uh‖
2

≤C

(

‖u(0)− uh(0)‖
2 + (ε−

1
2 h

1
2 + ε−1 + 1)2h2k+2

(

‖u0‖
2
k+1 +

∫ t

0

‖∂tu‖
2
k+1 ds

))

. (4.33)

Proof. If we estimate the error ρ, then the desired results follows from the following obser-

vation:

‖u− uh‖ ≤ ‖ν‖+ ‖E‖+ ‖ρ‖. (4.34)

The first and second terms in (4.34) can be estimated by Lemma 2.1 and the estimate (4.3) as

follows:

‖ν‖ ≤ Chk+1‖u‖k+1, ‖∂tν‖ ≤ Chk+1‖∂tu‖k+1,

‖E‖ ≤ C(ε−
1
2 h

1
2 + ε−1 + 1)hk+1‖u‖k+1,

‖∂tE‖ ≤ C(ε−
1
2h

1
2 + ε−1 + 1)hk+1‖∂tu‖k+1.

(4.35)

In order to estimate ρ, by the definition we note that for vh ∈ S0
h(k)

(∂tρ, vh) + a(ρ, vh) = (Rh∂tu, vh) + a(Rhu, vh)− (∂tuh, vh)− a(uh, vh)

= (Rh∂tu, vh) + a(Rhu, vh)− (f, vh)

= (Rh∂tu, vh)− ε(∆u, vh) + (∇ · (bu), vh) + (cu, vh)− (f, vh)

= (Rh∂tu, vh) + (∂tQhu, vh)− (∂tQhu, vh)− (∂tu, vh)

= −(∂tE, vh)− (∂tν, vh). (4.36)
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Taking vh = ρ in (4.36) yields

(∂tρ, ρ) + a(ρ, ρ) = −(∂tE, ρ)− (∂tν, ρ), t > 0. (4.37)

Using the coercivity of the bilinear form, the Cauchy-Schwartz inequality and the Young’s

inequality we obtain

1

2

∂‖ρ‖2

∂t
+ γ|||ρ|||2 ≤ C

(

‖∂tν‖
2 + ‖∂tE‖2 + ‖ρ‖2

)

,

which gives after integration with respect to t

‖ρ‖2 ≤ ‖ρ(0)‖2 + C

(
∫ t

0

‖∂tν‖
2 ds+

∫ t

0

‖∂tE‖2 ds+

∫ t

0

‖ρ‖2 ds

)

. (4.38)

Using Lemma 4.1 we obtain

‖ρ(0)‖ = ‖uh(0)−Rhu(0)‖

≤ ‖uh(0)−Qhu(0)‖+ ‖Qhu(0)−Rhu(0)‖

≤ ‖uh(0)−Qhu(0)‖+ C(ε−
1
2 h

1
2 + ε−1 + 1)hk+1‖u0‖k+1

≤ ‖u0 − uh(0)‖+ ‖u0 −Qhu(0)‖+ C(ε−
1
2h

1
2 + ε−1 + 1)hk+1‖u0‖k+1

≤ ‖u0 − uh(0)‖+ Chk+1‖u0‖k+1 + C(ε−
1
2h

1
2 + ε−1 + 1)hk+1‖u0‖k+1

≤ ‖u0 − uh(0)‖+ C(ε−
1
2h

1
2 + ε−1 + 1)hk+1‖u0‖k+1. (4.39)

From (4.35) and (4.39) together with the Gronwall lemma, we have the desired result (4.33).

The proof is now complete. �

We now give an error estimate for the fully discrete MWG-FEM in the next theorem.

Theorem 4.2. Let u ∈ Hk+1(Ω) and Um be the exact solution of the problem (1.1) and the so-

lution of the fully discrete MWG-FEM approximation computed by (2.28), respectively. Assume

also that ∂tu, u0 ∈ Hk+1(Ω). Then we have the following error estimate:

‖um − Um‖ ≤ C

(

‖u0 − U0‖+ δ

∫ tm

0

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

ds+
(

ε−
1
2h

1
2 + ε−1 + 1

)

hk+1

×

(

‖u0‖k+1 +

∫ tm

0

‖∂tu‖k+1 ds

)

)

. (4.40)

Proof. Similar to the previous proof, we again write

‖u(tm)− Um‖ = ‖u(tm)−Qhu(tm) +Qhu(tm)−Rhu(tm) +Rhu(tm)− Um‖

≤ ‖u(tm)−Qhu(tm)‖+ ‖Qhu(tm)−Rhu(tm)‖+ ‖Rhu(tm)− Um‖

=: ‖νm‖+ ‖Em‖+ ‖ρm‖. (4.41)

Lemmas 2.1 and 4.1 imply that

‖νm‖ ≤ Chk+1‖um‖k+1 ≤ Chk+1

(

‖u0‖k+1 +

∫ tm

0

‖∂tu‖k+1 ds

)

, (4.42)

‖Em‖ ≤ C(ε−
1
2h

1
2 + ε−1 + 1)hk+1‖um‖k+1

≤ C(ε−
1
2h

1
2 + ε−1 + 1)hk+1

(

‖u0‖k+1 +

∫ tm

0

‖∂tu‖k+1 ds

)

. (4.43)
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To estimate ρm, we note that for ∀vh ∈ S0
h(k)

(∂̂tρ
m, vh) + a(ρm, vh) = (∂̂tRhu

m, vh) + a(Rhu
m, vh)− (∂̂tU

m, vh)− a(Um, vh)

= (∂̂tRhu
m, vh) + a(Rhu

m, vh)− (f(tm), vh)

= (∂̂tRhu
m, vh)− ε(∆um, vh) + (∇ · (bum), vh)

+ (cum, vh)− (f(tm), vh)

= (∂̂tRhu
m, vh)− (∂tu

m, vh)

= −(∂̂tE
m, vh)− (∂̂tν

m, vh)− (∂tu
m − ∂̂tu

m, vh).

Thus we have

(∂̂tρ
m, vh) + a(ρm, vh) = −(∂̂tE

m, vh)− (∂̂tν
m, vh)− (wm, vh), (4.44)

where

wm = ∂tu
m − ∂̂tu

m.

Taking vh = ρm in (4.44), we find

(∂̂tρ
m, ρm) ≤ (‖∂̂tE

m‖+ ‖∂̂tν
m‖+ ‖wm‖)‖ρm‖.

Thus we have

‖ρm‖2 − (ρm−1, ρm) ≤ δ(‖∂̂tE
m‖+ ‖∂̂tν

m‖+ ‖wm‖)‖ρm‖,

which is equivalent to

‖ρm‖ ≤ ‖ρm−1‖+ δ(‖∂̂tE
m‖+ ‖∂̂tν

m‖+ ‖wm‖).

Induction argument gives

‖ρm‖ ≤ ‖ρ0‖+ δ
m
∑

n=1

(T n
1 + T n

2 + T n
3 ), (4.45)

where

T n
1 = ‖∂̂tE

n‖, T n
2 = ‖∂̂tν

n‖, T n
3 = ‖wn‖.

As in (4.39), we find the following estimate for ρ0 = ρ(0):

‖ρ0‖ ≤ ‖u0 − uh(0)‖+ C(ε−
1
2 h

1
2 + ε−1 + 1)hk+1‖u0‖k+1.

From (3.24), we also have

δ

m
∑

n=1

T n
3 ≤

m
∑

n=1

∥

∥

∥

∥

∥

∫ tn

tn−1

(s− tn−1)
∂2u

∂t2
ds

∥

∥

∥

∥

∥

≤ δ

∫ tm

0

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

ds. (4.46)

Observe that by the definition

∂̂tE
n = ∂̂tQhu(tn)− ∂̂tRhu(tn) = −

1

δ

∫ tn

tn−1

(Qh −Rh)∂tu ds,

−∂̂tν
n = −(∂̂tu(tn)− ∂̂tQhu(tn)) = −

1

δ

∫ tn

tn−1

(I −Qh)∂tu ds.
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From Lemmas 2.1 and 4.1, we get

δ

m
∑

n=1

T n
1 ≤ C(ε−

1
2h

1
2 + ε−1 + 1)hk+1

∫ tm

0

‖∂tu‖k+1 ds,

δ
m
∑

n=1

T n
2 ≤ Chk+1

∫ tm

0

‖∂tu‖k+1 ds.

(4.47)

Combining (4.42), (4.43) ,(4.46) and (4.47), we have the desired result (4.40). This completes

the proof. �

Although the numerical experiments in the next section show that the optimal order rate in

L2-norm of order O(hk+1), the optimal order error estimates in L2-norm in Theorems 4.1 and

4.2 are of order O((ε−
1
2h

1
2 + ε−1 + 1)hk+1) which deteriorates for small ε ≪ h2. To overcome

this issue, we imitate the ideas in [6, 7] to get optimal weighted error estimates if ε ≤ h2. The

improved optimal order estimates hold for for triangulations Th made of simplexes T satisfying

the simple flow conditions with respect to b

Each simplex T has a unique outflow face with respect to b, e+T .

Each interior face e+T is included in an inflow face with respect to b

of another simplex.

(4.48)

We first introduce a weight function. For simplicity we assume b = (1, 0). Accordingly, we

set, for fixed x0, y1 and y2,

Ω0 = ((−∞, x0]× [y1, y2]) ∩Ω

and construct a function ω satisfying

C1 ≤ ω(x, y) ≤ C2 for (x, y) ∈ Ω0,

|ω(x, y)| ≤ C2e
−

(x−x0)
Mρ for x ≥ x0 + h,

|ω(x, y)| ≤ C2e
−

(y−y2)
Mσ for y ≥ y2 + h,

|ω(x, y)| ≤ C2e
−

(y1−y)
Mσ for y ≤ y1 − h.

Here ρ ≥ 0, σ ≥ 0 are parameters that will depend on the mesh size h and ε. We say that ρ

is the size of the upwind layer and σ is the size of the crosswind layer. The positive constants

C1, C2 and M are fixed.

We will use two projections defined as follows:

(Π±u− u, v)T = 0 for all v ∈ Pk−1(T ), (4.49)

〈Π+u− u,w〉e+
T
= 0 for all w ∈ Pk

(

e+T
)

, (4.50)

〈Π−u− u,w〉e−
T
= 0 for all w ∈ Pk

(

e−T
)

. (4.51)

Using the properties of the projections and results from [8], we have the following result.

Lemma 4.3. If the triangulation Th satisfies the flow condition (4.48), the projections Π±

given by (4.49) are well defined. Moreover, if the triangulation Th is shape-regular, then, on

each simplex T ∈ Th we have

‖ω(Π±u− u)‖L2(T ) ≤ Chk+1|ωu|Hk+1(T ),

where C only depends on k and the shape regularity constant.
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Theorem 4.3. Assume that ǫ ≤ h and that the triangulation Th is quasi-uniform, that is,

assume that there is a parameter κ > 0 such that

max
T∈Th

{hT } ≤ κ min
T∈Th

{hT } .

Assume Th satisfies the flow conditions (4.48) with respect to b. If u ∈ Hk+1(Ω) and uh are

the exact solution for the problem (1.1) and the solution of the semi-discrete MWG-FEM given

by (2.11), respectively, then we have

‖ω (u− uh)‖L2(Ω) ≤ C

∫ t

0

Lε(u−Π+u) ds.

Here,

L2
ε(u) =

(

1 +
ǫ

1
2

h

)

‖ωu‖L2(Th) + ǫ
1
2 ‖ω∇u‖L2(Th) + hǫ

1
2

∥

∥ωD2u
∥

∥

L2(Th)
, (4.52)

where ω is given above with ρ = log( 1h)h, σ = h1/2 and M is a sufficiently large fixed constant.

Proof. The proof is rather technical and longer, hence we only sketch the main ideas. Note

that for any suitable function v, we have

∫ t

0

(∂tv, ω
2v)L2(Ω) =

1

2
(‖ωv‖2 − ‖ωv(0)‖2). (4.53)

Mimicking the analyses in [14], one can prove that

a(uh, ω
2uh) ≤ CM−1|||uh|||

2
ω + CL2

ε(u−Π+u), (4.54)

where

|||uh|||
2
ω =

∑

T∈Th

‖ω∇uh‖
2
T + s2d(ωvh, ωvh) + ‖ωuh‖

2
s.

First, we aligned the error as u−uh = u−Π+u+Π+u−uh =: η+Eh and Lemma 4.3 gives

the bound for the term ωη. Thus we only need to estimate Eh.

From (4.53) and (4.54), we have, for sufficiently large M ,

‖ωEh‖
2 ≤ ‖ωEh(0)‖

2 + C

∫ t

0

L2
ε(u−Π+u) ds.

Since Eh(0) = 0, we conclude the result. �

The result immediately implies that optimal error estimates can be achieved when ε ≤ h2.

This result and the numerical experiments in the next section demonstrate that the optimal

error estimate is of order O(hk+1) in L2-norm.

5. Numerical Experiments

We present various numerical examples to show the performance and efficiency of the MWG-

FEM in this section. The error is computed for the backward Euler MWG-FEM solution in
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the following norms:

‖u(tm)− Um‖2 =
∑

T∈Th

∫

T

|u(tm)− Um|2 dx,

|||u− uh|||
2 = δ

N
∑

n=0

|||u(tn)− Un|||2,

where δN = T and the triple-norm defined by (2.15).

Example 5.1 (Smooth Solution). We first consider the problem (1.1) in QT = [0, 1]2×(0, 1]

and b = (1, 1)T with the different value of small parameter ε. We choose f and u0 such that

the true (smooth) solution is

u(x, y, t) = exp(−t) sin(2πx) sin(2πy).

We first test the temporal convergence of the backward Euler MWG-FEM (2.29). The numerical

experiments are carried out on the uniform triangulation mesh with 64× 64 elements and the

quadratic polynomials k = 2 for the time step δ = 2−n, n = 3, 4, 5, 6. We show the history

of convergence results in the L2− norm estimates and the order of convergence (OC) for the

MWG-FEM solution uh at the final time in Table 5.1. The result shows that the method

converges in L2− norm of first order in time which confirms the theoretical analysis stated in

(3.17).

Table 5.1: L2− norm errors and OC of the backward Euler MWG-FEM for Example 5.1 at the final

time for a fixed triangular mesh h = 1/64 using P2 element.

ε = 1 ε = 10−3 ε = 10−9

δ ‖u(tm)− Um‖ OC ‖u(tm)− Um‖ OC ‖u(tm)− Um‖ OC

1/8 3.4278e-02 - 5.5438e-02 - 6.7543e-02 -

1/16 1.9352e-02 0.8248 3.1692e-02 0.8067 3.8717e-02 0.8028

1/32 1.0249e-02 0.9169 1.6721e-02 0.9224 1.9825e-02 0.9656

1/64 5.1206e-03 1.0010 8.3011e-03 1.0102 9.8686e-03 1.0064

The uniform triangles meshes are employed with M ×M elements for M = 2, 4, 8, 16, 32, 64.

The uniform meshes are used for the time discretization with the time step δ = 0.0001 which

is sufficiently small to ensure the convergence. We report the errors and OC in Tables 5.2 and

5.3 for the different values of the diffusion coefficient ε = 10−r, r = 0, 3, 9 using polynomials of

order k = 1, 2 for the fixed time δ = 0.0001. We observe that the optimal order of O(hk+1)

error in L2− norm and the optimal order of O(hk+1/2) error in ||| · |||ε norm which confirms the

error estimation in the theoretic results.

Example 5.2 (Boundary Layer). We next consider the following BVP with boundary layers

to show the efficiency of the MWG-FEM:

∂tu− ε∆u+∇ · (bu) + cu = f(x, y, t) in QT = Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u = u0(x, y) in Ω× {0},
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Table 5.2: L2− norm errors and OC of the MWG-FEM for Example 5.1 at the final time for a fixed

δ = 0.0001 using P1 and P2.

ε = 1 ε = 10−3 ε = 10−9

k M ‖u(tm)− Um‖ OC ‖u(tm)− Um‖ OC ‖u(tm)− Um‖ OC

1

2 9.5869e-01 - 9.9742e-01 - 9.9851e-01 -

4 2.5436e-01 1.9145 2.6562e-01 1.9088 2.6516e-01 1.9129

8 6.5283e-02 1.9530 7.1837e-02 1.9440 7.1839e-02 1.9121

16 1.6502e-02 1.9839 1.7456e-02 1.9835 1.8610e-02 1.9486

32 4.1593e-03 1.9883 4.4431e-03 1.9740 4.4561e-03 2.0286

64 1.0378e-03 2.0028 1.1094e-03 2.0017 1.1094e-03 2.0248

2

2 4.7654e-01 - 5.8564e-01 - 5.9853e-01 -

4 5.1046e-02 3.2227 6.2451e-02 3.2292 6.3681e-02 3.2324

8 6.1869e-03 3.0445 7.5580e-03 3.0466 7.7362e-03 3.0411

16 7.8354e-04 2.9811 9.5438e-04 2.9853 9.7743e-04 2.9845

32 9.8466e-05 2.9923 1.1987e-04 2.9930 1.2234e-04 2.9980

64 1.2353e-05 2.9947 1.5001e-05 2.9983 1.5298e-05 2.9994

Table 5.3: ||| · |||ε− norm errors and OC of the MWG-FEM for Example 5.1 at the final time for a fixed

δ = 0.0001 using P1 and P2.

ε = 1 ε = 10−3 ε = 10−9

k M |||u − uh|||ε OC |||u− uh|||ε OC |||u− uh|||ε OC

1

2 8.5869e+00 - 5.1672e-01 - 7.2436e-01 -

4 5.4213e+00 0.6634 2.1241e-01 1.2825 3.1048e-01 1.2222

8 3.0638e+00 0.8233 1.0241e-01 1.0524 1.1562e-02 1.4251

16 1.5638e+00 0.9702 4.9879e-02 1.0378 3.8873e-03 1.5725

32 7.6294e−01 1.0354 2.1932e-02 1.1853 1.2457e-03 1.6418

64 3.7059e−01 1.0417 9.5848e-03 1.1942 4.0139e-04 1.6338

2

2 4.2543e+00 - 2.1241e-01 - 2.3657e-01 -

4 1.0230e+00 2.0561 4.8256e-02 2.1380 4.1532e-02 2.5099

8 2.2375e−01 2.1928 1.1001e-02 2.1330 6.5521e-03 2.6641

16 5.1268e−02 2.1257 2.5282e-03 2.1214 1.1486e-03 2.5120

32 1.1879e−02 2.1096 5.7639e-04 2.1329 2.0241e-04 2.5045

64 2.7094e−03 2.1323 1.3255e-04 2.1205 3.5087e-05 2.5282

where Ω = (0, 1)2,b = (1, 1)T , T = 1 and c = 1. We choose the initial function u0(x, y) and the

forcing function f(x, y, t) such that the exact solution

u(x, y, t) = (1− exp(−t))β(x)β(y),

where β(z) = (exp(−1/ε) − 1)z − exp(−1/ε) + exp(−(1 − z)/ε). The solution exhibits two

boundary layers of width O(ε) along the sides x = 1 and y = 1.

We divide the domain Ω into M ×M squares. Then the triangular mesh is constructed by

partitioning the each square into triangles by a diagonal line. Let h = 1/M be the mesh size for

the number of elements M in each direction. Linear finite elements are employed on uniform

meshes both in the space and in the time discretization with the time step δ = 1/N with N

mesh intervals in the time direction. We plot the exact solution and MWG-FEM solution in

Figs. 5.1 and 5.2 with ε = 10−3 and ε = 10−9.
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Fig. 5.1. The exact solution and the MWG-FEM solution of Example 5.2 with ε = 10−3 using linear

elements over a mesh of 64× 64 at δ = 0.01.
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The exact solution with ε = 10−9

Fig. 5.2. The exact solution and the MWG-FEM solution of Example 5.2 with ε = 10−9 using linear

elements over a mesh of 64× 64 at δ = 0.01.

We report the errors and the order of convergence (OC) in L2− norm and ||| · |||ε norms in

Table 5.5 and Table 5.6. From these results, we see that the optimal order of convergence of

O(hk+1) in L2 norm for ε = 10−r, r = 0, 3, 9. On the other hand, we achieve numerically the

optimal convergence order of O(hk) and O(hk+1/2) in the energy norm |||eh|||ε for ε = 10−3

and ε = 10−9, respectively, which confirms theoretical results obtained in this paper.

Table 5.4: L2− norm errors and OC of the backward Euler MWG-FEM for Example 5.2 at the final

time for a fixed triangular mesh h = 1/64 using P2 element.

ε = 1.0 ε = 10−9

δ ‖u(tm)− Um‖ OC ‖u(tm)− Um‖ OC

8.00e − 02 7.4384e-06 - 1.0467e-03 -

4.00e − 02 3.6241e-06 1.0373 4.9768e-04 1.0725

2.00e − 02 1.7380e-06 1.0601 2.3851e-04 1.0611

1.00e − 02 8.6539e-07 1.0060 1.1923e-04 1.0003

Example 5.3 (Rotating pulse). We next consider the following variable coefficient convec-

tion diffusion equation:

∂tu− ε∆u+∇ · (bu) + cu = f in Ω× (0, π/4],

u = 0 on ∂Ω× (0, T ],

u = u0 in Ω× {0},

(5.1)
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Table 5.5: L2− norm errors and OC of the MWG-FEM for Example 5.2 at the final time for δ =

M−(k+1), k = 1, 2 using P1 and P2.

ε = 1 ε = 10−3 ε = 10−9

k M ‖u(tm)− Um‖ OC ‖u(tm)− Um‖ OC ‖u(tm)− Um‖ OC

1

2 2.9874e-04 - 5.7435e-03 - 8.9851e-03 -

4 7.3218e-05 2.0286 1.4345e-03 2.0013 2.2926e-03 1.9705

8 1.8056e-05 2.0197 3.5440e-04 2.0170 6.0102e-04 1.9314

16 4.5101e-06 2.0012 8.8591e-05 2.0001 1.5214e-04 1.9820

32 1.0672e-06 2.0793 2.1948e-05 2.0130 3.8407e-05 1.9859

64 2.6591e-07 2.0048 5.4679e-06 2.0050 9.5546e-05 2.0071

2

2 1.5347e-05 - 1.4617e-04 - 2.5012e-04 -

4 1.9562e-06 2.9718 1.7969e-05 3.0240 3.4935e-05 2.8398

8 2.4101e-07 3.0208 2.2172e-06 3.0186 4.3814e-06 2.9952

16 3.0042e-08 3.0040 2.7698e-07 3.0008 5.4520e-07 3.0065

32 3.5189e-09 3.0937 3.3607e-08 3.0429 6.7391e-08 3.0161

64 4.3502e-10 3.0159 4.1612e-09 3.0137 8.3072e-09 3.0201

Table 5.6: ||| · |||ε− norm errors and OC of the MWG-FEM for Example 5.2 at the final time for

δ = M−2 using P1.

ε = 10−3 ε = 10−9

M Error OC Error OC

2 3.2650e+00 - 3.3540e+00 -

4 1.5846e+00 1.0429 1.11865e+00 1.4990

8 7.8234e−01 1.0182 4.1912e−01 1.5000

16 3.8639e−01 1.0177 1.4402e−01 1.5097

32 1.9068e−01 1.0189 5.0810e−02 1.5030

64 9.1846e−02 1.0538 1.7924e−02 1.5032

where u = u(x, y, t), f = f(x, y, t) and Ω = (− 1
2 ,

1
2 )

2. Let the convection field be a pure rotation

b = [−4y, 4x], f = c = 0 and the initial function u0 be given as (see also Fig. 5.3)

u0(x, y) = exp

(

−
(x+ 0.2)2 + y2

2(0.1)2

)

.

In Figs. 5.4 and 5.5, we plot the exact solution u and numerical solution uh of the convection

diffusion problem (5.1) with the rotating pulse for ε = 10−2 and ε = 10−4 over a uniform 64×64

bilinear mesh with the time step δ = 0.01.

We note that the proposed MWG-FEM presents poor convergence at the boundary layer

when ε = 10−3, however, it converges very good in the case when ε = 10−9. Discontinuous

Galerkin or SUPG converges poorly in the case when the diffusion parameter is in the inter-

mediate regimes (for example, ε = 10−3 see [1]). The numerical experiments show that the

MWG-FEM is a stable numerical method.
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Fig. 5.3. Initial function u0: Rotating pulse.
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Fig. 5.4. The exact and MWG-FEM solutions of the problem (5.1) with ε = 10−2 using linear elements

over a mesh of 64× 64 at t = π/4.
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Fig. 5.5. The exact and MWG-FEM solutions of the problem (5.1) with ε = 10−4 at t = π/4.

We emphasize that we use uniform triangulation in all computations for the purpose of

ease of construction of meshes. However, one can use polygonal meshes generated by Poly-

Mesher [25]. Polygonal meshes can be defined on rectangular domains and on L-shaped domains

as well. For more details, we refer the reader to [25].
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