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Abstract

In recent years, the nuclear norm minimization (NNM) as a convex relaxation of the

rank minimization has attracted great research interest. By assigning different weights

to singular values, the weighted nuclear norm minimization (WNNM) has been utilized

in many applications. However, most of the work on WNNM is combined with the l2-

data-fidelity term, which is under additive Gaussian noise assumption. In this paper,

we introduce the L1-WNNM model, which incorporates the l1-data-fidelity term and the

regularization from WNNM. We apply the alternating direction method of multipliers

(ADMM) to solve the non-convex minimization problem in this model. We exploit the low

rank prior on the patch matrices extracted based on the image non-local self-similarity and

apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse

noise. Numerical results show that our method can effectively remove impulse noise.

Mathematics subject classification: 68U10, 94A08, 90C26, 15A03, 46N10.

Key words: Image denoising, Weighted nuclear norm minimization, l1-data-fidelity term,

Low rank analysis, Impulse noise.

1. Introduction

With the rapid development of technologies in image processing, many effective image de-

noising methods have been proposed based on the low rank matrix approximation (LRMA)
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that aims to restore a low rank matrix from its noisy or incomplete observation, e.g., in [1–3].

Generally, LRMA methods can be sorted into two categories: the nuclear norm minimization

(NNM) methods, see [4–7], and the low rank matrix factorization (LRMF) methods, see [1,2,8].

In this paper, we focus on the first type. The NNM methods aim to seek a low rank solution by

minimizing the nuclear norm and the work in [3] shows that many NNM-based problems can

be solved via the nuclear norm proximal (NNP) that is defined as

X̂ = arg min
X∈Rm×n

1

2
‖X − Y ‖2F + λ‖X‖∗, (1.1)

where Y ∈ R
m×n denotes the given observation, ‖ · ‖F denotes the Frobenius norm, ‖X‖∗ =∑l

i=1 σi(X) is the nuclear norm of X with σi(X) as the i-th largest singular value of X ,

l = min(m,n), and λ > 0 is the regularization parameter. According to the work in [9], X̂

defined in (1.1) has a closed form, which can be obtained by using a soft-thresholding operation

on the singular values of the observation matrix Y , that is,

X̂ = proxλ‖·‖∗
(Y ) = UDλ(Σ)V

T ,

where Y = UΣV T denotes the singular value decomposition (SVD) of Y , U and V are, respec-

tively, m× l and n× l matrices with orthonormal columns, Σ is an l × l diagonal matrix with

the main diagonal [σ1(Y ), σ2(Y ), · · · , σl(Y )]T , and Dλ : Rm×n → R
m×n is an operator which

applies the soft-thresholding on each element with parameter λ. Since all elements in Σ are

non-negative, we have

(Dλ(Σ))i,i = max (Σi,i − λ, 0) .

The main limitation of NNM methods is that all singular values are weighted equally, which

may not be reasonable in some applications. As an example in image denoising, larger singular

values are usually associated with the major image patterns and textures, while smaller singular

values are usually associated with random noise. Thus, when we use NNM as regularization,

the larger singular values should be weighted less in order to preserve major data components,

while the smaller singular values should be weighted more in order to remove noise. In [10, 11]

the weight nuclear norm ‖ · ‖ω,∗ was proposed, which is defined as follows:

‖X‖ω,∗ =

l∑

i=1

ωiσi(X),

where ω = [ω1, ω2, . . . , ωl]
T with ωi ≥ 0 for all i = 1, . . . , l includes all weights. Combined with

the l2-data-fidelity term, a weighted nuclear norm minimization (WNNM) model was further

proposed as follows:

X̂ = arg min
X∈Rm×n

1

2
‖X − Y ‖2F + ‖X‖ω,∗. (1.2)

The minimization problem defined in (1.2) is also called the weighted nuclear norm proximal

(WNNP) problem. Its solution is a low rank approximation to Y and can be obtained efficiently

as shown in [10, 11].

For the the l2-data-fidelity term used in (1.2), it potentially assumes that the noise in Y

is additive white Gaussian noise. However, in many applications different data-fidelity terms

are considered to remove non-Gaussian noise [12–15]. For example, the l1-data-fidelity term

is usually used to remove impulse noise like the salt-and-pepper noise and the Laplace noise

[12,16–19]. In this paper, we combine the weighted nuclear norm with the l1-data-fidelity term
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and propose a new WNNM model, called the L1-WNNM model. To solve the non-convex

optimization problem in the proposed model, we apply the alternating direction method of

multipliers (ADMM) [24] and study its convergence. According to the image non-local self-

similarity [20], patch matrices formed by non-local similar patches extracted from the image

should be low rank. Then we take advantage of this low rank prior and apply the L1-WNNM

model on patch matrices to restore the image corrupted by impulse noise. In addition, we

illustrate the performance of the new method for impulse noise removal through some numerical

experiments.

The rest paper is organized as follows. In Section 2, we investigate the L1-WNNM model

(2.1) in details, develop an optimization method to solve it and provide some convergence

results. In Section 3, we apply the L1-WNNM model to remove impulse noise. Experimental

results are presented in Section 4, and we conclude our paper in Section 5.

2. The L1-WNNM Model

In this section, we introduce an L1-WNNM model that can be used to remove impulse noise.

Then we develop an algorithm to solve the minimization problem in this model and provide

some convergence results.

By combining the weighted nuclear norm with the l1-data-fidelity term, we introduce the

L1-WNNM model :

min
X∈C

m∑

i=1

n∑

j=1

|Xi,j − Yi,j |+ ‖X‖ω,∗, (2.1)

where Y ∈ R
m×n denotes the noisy image, C ⊆ R

m×n denotes a nonempty closed convex set

that describes feasible constraints on X , and the weight vector ω is sorted in a non-descending

order, that is, 0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωl, l = min(m,n). Since one of the main characteristics of

impulse noise is that it only corrupts part of the image, many denoising methods are equipped

with a noise detector, see [21–23]. In this case, associated with the noisy image Y ∈ R
m×n, the

convex set C can be chosen as

C = {X ∈ R
m×n : Xi,j = Yi,j with (i, j) ∈ U},

where U is a subset of {1, . . . ,m} × {1, . . . , n} that marks all noise-free pixels according to

a noise detection result. In other words, the convex set C can be described as

C = {X ∈ R
m×n : PU⊙X = PU⊙Y }, (2.2)

where PU ∈ R
m×n denotes an indicator matrix with element 1 on the pixels marked in U

and element 0 elsewhere, and ⊙ denotes the matrix pointwise multiplication. Under the same

constraint as defined in (2.2), the L1-WNNM model can also be used for image inpainting

problems.

In the L1-WNNM model (2.1), the l1-data-fidelity term is non-differentiable and the reg-

ularization term ‖ · ‖ω,∗ is non-smooth. And in this paper we do not consider equal weights,

which implies that ‖ · ‖ω,∗ is non-convex. Thus, it is very challenging to solve the minimization

problem in the model (2.1).

2.1. Optimization algorithm

To solve the non-convex non-smooth optimization problem in the model (2.1), we reformu-

late this model and apply the alternating direction method of multipliers (ADMM) [24].



1174 J. LU, Y.T. YE, Y.Q. DONG, X.X. LIU AND Y.R. ZOU

First, we transform the constrained problem (2.1) into an unconstrained problem by in-

troducing the indicator function ιC(X) of the nonempty closed convex set C. The resulting

unconstrained problem is

min
X∈Rm×n

m∑

i=1

n∑

j=1

|Xi,j − Yi,j |+ ‖X‖ω,∗ + ιC(X),

where the indicator function ιC(X) is defined as

ιC(X) =

{
0, X ∈ C,
+∞, X 6∈ C.

Then we split the data-fidelity term and the regularization term by introducing a new variable

E = Y −X , that is,

min
X,E∈Rm×n

m∑

i=1

n∑

j=1

|Ei,j |+ ‖X‖ω,∗ + ιC(X)

s.t. Ei,j = Yi,j −Xi,j for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. (2.3)

The corresponding augmented Langrange function is

Ψ(E,X,L, µ) =

m∑

i=1

n∑

j=1

|Ei,j |+ ‖X‖ω,∗ + ιC(X) + 〈L, Y −X − E〉+ µ

2
‖Y −X − E‖2F , (2.4)

where L ∈ R
m×n is the Lagrange multiplier, and µ > 0 is a penalty parameter that controls

the convergence speed of the ADMM algorithm.

By alternately minimizing the augmented Lagrangian function Ψ with respect to E and X

and then updating the Lagrange multiplier L, the ADMM iterations with an adaptive penalty

parameter µk are given by

Ek+1= argmin
E

Ψ(E,Xk, Lk, µk)

= argmin
E

m∑

i=1

n∑

j=1

|Ei,j |+
µk

2

∥∥∥∥Y +
1

µk
Lk −Xk − E

∥∥∥∥
2

F

, (2.5)

Xk+1= argmin
X

Ψ(Ek+1, X, Lk, µk)

= argmin
X
‖X‖ω,∗ + ιC(X) +

µk

2

∥∥∥∥Y +
1

µk
Lk − Ek+1 −X

∥∥∥∥
2

F

, (2.6)

Lk+1 = Lk + µk(Y −Xk+1 − Ek+1), (2.7)

µk+1= ρµk, (2.8)

where ρ > 1.

For the subproblem (2.5) to Ek+1, the solution has a closed form

Ek+1 = S 1

µk

(
Y +

1

µk
Lk −Xk

)
, (2.9)

where S 1

µk
: R

m×n → R
m×n is the soft-thresholding operator with the parameter 1

µk and

defined as (
S 1

µk
(X)

)

i,j
= max

(
|Xi,j | −

1

µk
, 0

)
· sign(Xi,j).
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For the subproblem to Xk+1, since the convex set C has the structure defined in (2.2), we

can rewrite (2.6) as

Xk+1 = PU ⊙ Y + (1− PU )⊙ argmin
X

{
‖X‖ω,∗ +

µk

2

∥∥∥∥Y +
1

µk
Lk − Ek+1 −X

∥∥∥∥
2

F

}
, (2.10)

where 1 denotes an all 1-element matrix with size ofm×n. Note that the minimization problem

in (2.10) is in the same form as (1.2), so according to the closed form solution to (1.2) given in

the following theorem we obtain the solution to (2.10).

Theorem 2.1 (Theorem 1 in [10]). Given Y ∈ R
m×n, let Y = UΣV T be the SVD of Y .

If the weights are sorted in a non-descending order, that is, 0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωl, l =

min(m,n), then the global optimum of WNNP problem (1.2) can be expressed as

X̂ = prox‖·‖ω,∗
(Y ) = UDω(Σ)V

T ,

where Dω(Σ) is the generalized soft-thresholding operator with the weight vector ω that applies

on diagonal matrix Σ and returns a diagonal matrix with the (i, i)-entry given by

(Dω(Σ))i,i = max (Σi,i − ωi, 0) .

Then, the closed-form solution to (2.10) is given by

Xk+1 = PU ⊙ Y + (1− PU )⊙ (UkΣk(V k)T ), (2.11)

where UkΛk(V k)
T
is SVD of the matrix (Y + 1

µkL
k − Ek+1) and Σk = D ω

µk
(Λk).

The overall algorithm for solving the minimization problem in the L1-WNNM model (2.1)

is given in Algorithm 2.1.

Algorithm 2.1. ADMM Algorithm for the L1-WNNM model (2.1)

1: Input: the noisy image Y and the weight vector ω

2: Initialize: X0 = Y , L0=0, µ0 > 0, θ > 0, ρ > 1, k=0.

3: repeat

4: Update Ek+1 via (2.9)

5: Update Xk+1 via (2.11)

6: Update Lk+1 via (2.7)

7: Update µk+1 via (2.8)

8: k ← k + 1

9: until: ‖Y − Ek+1 −Xk+1‖F/‖Y ‖F < θ

10: Output: the restored image Xk+1.

2.2. Convergence analysis

For convex models, ADMM based methods can ensure optimal solutions if the penalty

parameter µk is fixed or bounded [25]. However, for the proposed non-convex model, ADMM
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with a fixed µk may converge very slowly and rely heavily on the choice of µk [26]. Therefore,

in this paper, we consider an increasing sequence {µk} to improve the practical performance

and get some convergence results using the unboundedness of {µk}.
We first prove the boundedness of the sequences {Ek}, {Xk} and {Lk} generated by Algo-

rithm 2.1 in the following proposition.

Proposition 2.1. If the weights are sorted in a non-descending order, then the sequences {Ek},
{Xk} and {Lk} generated by Algorithm 2.1 are bounded.

Proof. First, we show that {Lk} is bounded. Recall that the SVD of the matrix (Y + 1
µkL

k−
Ek+1) at the (k + 1)-th iteration is defined as

Y +
1

µk
Lk − Ek+1 = UkΛk(V k)

T
, (2.12)

where Λk is the diagonal singular value matrix with non-negative elements, and Uk and V k are,

respectively, m× l and n× l matrices with orthonormal columns, l = min(m,n). Then, based

on the update of Lk+1 in (2.7) together with (2.12) and the update of Xk+1 in (2.11), we have

‖Lk+1‖F = µk

∥∥∥∥
1

µk
Lk + Y − Ek+1 −Xk+1

∥∥∥∥
F

= µk
∥∥∥UkΛk(V k)

T −
(
PU ⊙ Y + (1− PU )⊙ (UkΣk(V k)

T
)
)∥∥∥

F

≤ µk
∥∥∥UkΛk(V k)

T − UkΣk(V k)
T
∥∥∥
F
+ µk

∥∥∥PU ⊙ (Y − UkΣk(V k)
T
)
∥∥∥
F

= µk
∥∥Λk − Σk

∥∥
F
+ µk

∥∥∥∥PU ⊙
(
UkΛk(V k)

T
+ Ek+1 − 1

µk
Lk − UkΣk(V k)

T
)∥∥∥∥

F

= µk
∥∥∥Λk −D ω

µk

(
Λk

)∥∥∥
F
+ µk

∥∥∥∥PU ⊙
(
Ek+1 − 1

µk
Lk

)∥∥∥∥
F

+ µk
∥∥∥PU ⊙

(
Λk −D ω

µk
(Λk)

)∥∥∥
F
.

We note that

µk
∥∥∥PU ⊙

(
Λk −D ω

µk
(Λk)

)∥∥∥
F
≤ µk

∥∥∥Λk −D ω

µk
(Λk)

∥∥∥
F
≤ µk

√√√√
l∑

i=1

(
ωi

µk

)2

=

√√√√
l∑

i=1

(ωi)2. (2.13)

Since the update of Ek+1 has a closed form as (2.9), we have

∥∥∥∥PU ⊙
(
Ek+1 − 1

µk
Lk

)∥∥∥∥
F

=

∥∥∥∥PU ⊙
(
S 1

µk

(
Y +

1

µk
Lk −Xk

)
−
(
Y +

1

µk
Lk −Xk

))
+ PU ⊙

(
Y −Xk

)∥∥∥∥
F

=

∥∥∥∥PU ⊙
(
S 1

µk

(
Y +

1

µk
Lk −Xk

)
−
(
Y +

1

µk
Lk −Xk

))∥∥∥∥
F

≤ mn

µk
. (2.14)

Thus, we get

‖Lk+1‖F ≤ 2

√√√√
l∑

i=1

(ωi)2 +mn.
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Before showing that {Ek} and {Xk} are bounded, we show that {Ψ(Ek+1, Xk+1, Lk, µk)}
with Ψ defined in (2.4) is upper bounded. According to the update of Ek+1 in (2.5) and the

update of Xk+1 in (2.6), we have

Ψ(Ek+1, Xk+1, Lk, µk) ≤ Ψ(Ek+1, Xk, Lk, µk) ≤ Ψ(Ek, Xk, Lk, µk).

By using the update of Lk, we obtain

Ψ(Ek, Xk, Lk, µk) =Ψ(Ek, Xk, Lk−1, µk−1)+〈Lk − Lk−1, Y −Xk − Ek〉

+
µk − µk−1

2
‖Y −Xk − Ek‖2F

=Ψ(Ek, Xk, Lk−1, µk−1) + 〈Lk − Lk−1,
1

µk−1
(Lk − Lk−1)〉

+
µk − µk−1

2
‖ 1

µk−1
(Lk − Lk−1)‖2F

=Ψ(Ek, Xk, Lk−1, µk−1) +
µk + µk−1

2(µk−1)2
‖Lk − Lk−1‖2F .

Thus,

Ψ(Ek+1, Xk+1, Lk, µk) ≤ Ψ(E1, X1, L0, µ0) + 4M

k∑

j=1

µj + µj−1

2(µj−1)2
,

where M is the upper bound of ‖Lk‖2F for all k = 1, 2, . . .. Recall that µk+1 = ρµk with ρ > 1

and µk > 0, then we get
∞∑

j=1

µj + µj−1

2(µj−1)2
<∞.

Hence, the upper boundedness of {Ψ(Ek+1, Xk+1, Lk, µk)} is proved.
Finally, we show that {Ek} and {Xk} are bounded. By definition of Ψ(Ek, Xk, Lk−1, µk−1),

we have

m∑

i=1

n∑

j=1

|Ek
i,j |+ ‖Xk‖ω,∗ + ιC(X

k)

= Ψ(Ek, Xk, Lk−1, µk−1) +
µk−1

2

(
1

(µk−1)2
‖Lk−1‖2F − ‖Y −Xk − Ek +

1

µk−1
Lk−1‖2F

)

= Ψ(Ek, Xk, Lk−1, µk−1)+
1

2µk−1

(
‖Lk−1‖2F − ‖Lk‖2F

)

≤ Ψ(Ek, Xk, Lk−1, µk−1) +
M

µ0
.

Since the right-hand side has been proved to be bounded, we directly get that {Ek} and {Xk}
are bounded. �

The boundedness of the sequences {Ek}, {Xk} and {Lk} implies the existence of accu-

mulation points of {(Ek, Xk, Lk)}. And the following theorem regarding the primal residual

convergence, meaning rk+1 = Y −Xk+1−Ek+1 → 0 as k →∞, implies that any accumulation

point of {(Ek, Xk, Lk)} is a feasible solution of the proposed model.
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Theorem 2.2. If the weights are sorted in a non-descending order, then the sequences {Ek}
and {Xk} generated by Algorithm 2.1 satisfy

(i) lim
k→∞

‖Ek+1 − Ek‖F = 0,

(ii) lim
k→∞

‖Xk+1 −Xk‖F = 0,

(iii) lim
k→∞

‖Y − Ek+1 −Xk+1‖F = 0.

Proof. (i) According to (2.7) and (2.9), we obtain

∥∥Ek+1 − Ek
∥∥
F

=

∥∥∥∥S 1

µk

(
Y +

1

µk
Lk −Xk

)
−
(
Y +

1

µk
Lk −Xk

)
+

1

µk
Lk +

1

µk−1
Lk − 1

µk−1
Lk−1

∥∥∥∥
F

≤mn

µk
+

1

µk
‖Lk‖F +

1

µk−1
‖Lk‖F +

1

µk−1
‖Lk−1‖F .

Recall that µk+1 = ρµk with ρ > 1 and µk > 0, and {Lk} is bounded. Let k go to infinity on

the both sides, then we get lim
k→∞

‖Ek+1 − Ek‖F = 0.

(ii) Based on the update of Lk+1 in (2.7), we have

Xk+1 = Y +
1

µk
Lk − Ek+1 − 1

µk
Lk+1.

By using (2.11), we get

‖Xk+1 −Xk‖F

=

∥∥∥∥Y +
1

µk
Lk − Ek+1 − 1

µk
Lk+1 −

(
PU ⊙ Y + (1− PU )⊙ (Uk−1Σk−1(V k−1)

T
)
)∥∥∥∥

F

≤
∥∥∥∥Y +

1

µk−1
Lk−1 − Ek − Uk−1Σk−1(V k−1)

T

∥∥∥∥
F

+
∥∥∥PU ⊙

(
Y − Uk−1Σk−1(V k−1)

T
)∥∥∥

F

+

∥∥∥∥E
k − Ek+1 +

1

µk
Lk − 1

µk
Lk+1 − 1

µk−1
Lk−1

∥∥∥∥
F

.

Based on (2.12), Uk−1Λk−1(V k−1)
T

is SVD of the matrix (Y + 1
µk−1L

k−1 − Ek) in the k-th

iteration, thus

‖Xk+1 −Xk‖F

≤
∥∥∥∥PU ⊙

(
Uk−1Λk−1(V k−1)

T
+ Ek − 1

µk−1
Lk−1 − Uk−1Σk−1(V k−1)

T
)∥∥∥∥

F

+
∥∥∥Λk−1 −D ω

µk−1
(Λk−1)

∥∥∥
F
+
∥∥Ek − Ek+1

∥∥
F
+

∥∥∥∥
1

µk
Lk − 1

µk
Lk+1 − 1

µk−1
Lk−1

∥∥∥∥
F

≤
∥∥∥PU ⊙

(
Uk−1(Λk−1 − Σk−1)(V k−1)

T
)∥∥∥

F
+
∥∥∥Λk−1 −D ω

µk−1
(Λk−1)

∥∥∥
F

+

∥∥∥∥PU ⊙
(
Ek − 1

µk−1
Lk−1

)∥∥∥∥
F

+
∥∥Ek − Ek+1

∥∥
F
+

∥∥∥∥
1

µk
Lk − 1

µk
Lk+1 − 1

µk−1
Lk−1

∥∥∥∥
F

.
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Recall the result from (2.13) and (2.14), then we obtain

‖Xk+1 −Xk‖F

≤2

√∑l

i=1 ω
2
i

µk−1
+

mn

µk−1
+
∥∥Ek − Ek+1

∥∥
F
+

∥∥∥∥
1

µk
Lk − 1

µk
Lk+1 − 1

µk−1
Lk−1

∥∥∥∥
F

.

Since lim
k→∞

1
µk = 0, combining with the first result of (ii), we get

lim
k→∞

‖Xk+1 −Xk‖F = 0.

(iii) By the update of Lk+1 in (2.7), we have Y − Xk+1 − Ek+1 = 1
µk (L

k+1 − Lk). Since

‖Lk+1‖F is bounded and lim
k→∞

1
µk = 0, we obtain

lim
k→∞

‖Y −Xk+1 − Ek+1‖F = lim
k→∞

1

µk
‖Lk+1 − Lk‖F = 0.

�

3. Application of the L1-WNNM Model to Impulse Noise Removal

Impulse noise widely occurs in digital images due to pixel failures in the camera sensors,

timing errors in analog-to-digital conversion, and errors in data transmission and data storage

[27]. Impulse noise removal is a fundamental step to the subsequent image processing tasks,

such as object recognition and image segmentation. Thus, we are motivated to remove impulse

noise by applying the L1-WNNM model (2.1) that consists of an l1-data-fidelity term that has

been shown suitable for impulse noise removal [12], a weighted nuclear norm regularization

term that aims to approximate low rank solutions and a set constraint that aims to identify

the noisy pixels. In this section, inspired by the work introduced in [10], we take advantage of

the non-local self-similarity (NSS) of natural images and apply the L1-WNNM model on patch

matrices to remove impulse noise.

Algorithm 3.1. L1-WNNM Impulse Noise Removal

1: Input: the noisy image Y .

2: Noise detection: Use a noise detector to detect noise and save the indices of all

noise-free pixels in U .
3: Initialize X̂0 = Y and θ > 0.

4: for k = 1, 2, · · · ,K do

5: Calculate Y k = X̂k−1 + θ(Y − X̂k−1)

6: for each patch ys in Y k do

7: Find similar patches via block matching and stack patches as the matrix Ys.

8: Estimate the weight vector ωs via (3.2)

9: Estimate Xs by solving the L1-WNNM model (3.1) via Algorithm 2.1

10: end for

11: Aggregate all similar patches {Xs} to obtain the restored image X̂k.

12: end for

13: Output: the restored image X̂K .
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According to NSS, for a local patch ys ∈ R
p of size

√
p × √p at position s in image Y ,

we can always find enough non-local patches within a local window that share similar patterns

with ys using block matching [20, 28–31], in which the similarity is measure in terms of the

Euclidean distance. By stacking all non-local similar patches, we obtain a matrix Ys ∈ R
p×q,

where p and q denote the number of pixels in each patch and the number of similar patches,

respectively. To remove impulse noise, we apply the L1-WNNM model on the non-local similar

patch matrix Ys instead of the whole image Y , and estimate the corresponding clean low rank

patch matrix Xs that preserves image details (i.e., textures and structures). After solving

the L1-WNNM model for each patch matrix, we aggregate all the estimated patch matrices

Xs, meaning averaging the estimated values for each pixel that may belong to several patch

matrices, and obtain the restored image X . In practice, we repeat these procedures several

times to improve the denoising performance. The whole denoising algorithm is summarized in

Algorithm 3.1 and some details of the proposed algorithm are discussed below.

In Algorithm 3.1, the L1-WNNM model in terms of patch matrices is

min
Xs∈Cs

p∑

i=1

q∑

j=1

|(Xs)i,j − (Ys)i,j |+ ‖Xs‖ωs,∗, (3.1)

where Cs := {Xs ∈ R
p×q : (Xs)i,j = (Ys)i,j with (i, j) ∈ Us} marks all noise-free pixels in the

similar patches. The weight vector ωs plays an important role, which should be determined in

advance. From the general prior knowledge, the smaller singular values of Xs are less important

than the larger ones in the application of image denoising. Therefore, the weight vector is chosen

to be in a non-descending order defined as

(ωs)i =
c

σi(X∗
s ) + ε

, (3.2)

where c is a compromising constant that is adjusted manually in our experiments, ε is a small

positive number to avoid dividing by 0, and X∗
s is a low rank solution that approximates the

given noisy patch matrix Ys. In particular, we compute X∗
s explicitly using the following lemma

in [10] with Y = Ys and X∗ = X∗
s .

Lemma 3.1. Let Y = UΣV T be SVD of Y . Suppose that the regularization parameter c is

positive and the positive value ε is small enough to make the inequality ε < min(
√
c, c

σ1(Y ) ) hold.

Then the sequence {Xk} generated by

Xk+1 = argmin
X

1

2
‖Y −X‖F + ‖X‖ωk+1,∗

with the reweighted formula

ωk+1
i =

c

σi(Xk) + ε

and initial estimation X0 = Y , converges to the closed-form solution: X∗ = U Σ̃V T , where Σ̃

is a diagonal matrix whose (i, i)-entry is given by Σ̃i,i = σi(X
∗),

σi(X
∗) =




0, if di < 0,

ci +
√
di

2
, if di ≥ 0,

ci = σi(Y )− ε and di = (σi(Y ) + ε)2 − 4c.



Impulse Noise Removal by L1 Weighted Nuclear Norm Minimization 1181

4. Numerical Results

In this section, we show the numerical results on restoring images corrupted by two types

of impulse noise, i.e., the salt-and-pepper noise (SPN) and the random-valued impulse noise

(a) Lena (b) Monarch (c) Barbara (d) Cameraman

Fig. 4.1. The test images.

Fig. 4.2. The restored results for “Lena” from the noise level r = 20%, 40%, 60%, 80% (top to bottom).

The first column: the noisy images; the second column: the results from L1-TV; the third column: the

results from L0-TV; the fourth column: the results from F2TV; the fifth column: the results from our

method.
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Fig. 4.3. The restored results for “Monarch” from the noise level r = 20%, 40%, 60%, 80% (top to

bottom). The first column: the noisy images; the second column: the results from L1-TV; the third

column: the results from L0-TV; the fourth column: the results from F2TV; the fifth column: the

results from our method.

(RVIN). In our experiments, we use 256 × 256 8-bit grayscale images “Lena”, “Monarch”,

“Barbara” and “Cameraman” as test images, which are shown in Fig. 4.1. In order to evaluate

the performance of the proposed method, we utilize the peak signal-to-noise ratio (PSNR) and

the structural similarity index (SSIM) [32] to evaluate the results. All the experiments are

performed under Windows 7 and MATLAB 7.6 (R2017a) running on a PC equipped with an

Intel(R) Pentiun(R) CPU G645 at 2.90 GHz.

4.1. Removal of the salt-and-pepper noise

The salt-and-pepper noise (SPN) can be considered as a special case of the random-valued

impulse noise, where the noise value only can be the minimum or the maximum of the intensity

range [dmin, dmax]. The noise level r of SPN denotes the probability that a pixel is corrupted by

the noise, and the value of the noisy pixel is either dmin or dmax with the same probability 1/2.

In the numerical experiments, we compare our proposed method with the L1-TV, L0-TV

and F2TV methods proposed in [33], [34], and [35] respectively. All of them are two-stage
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Fig. 4.4. The restored results for “Barbara” from the noise level r = 20%, 40%, 60%, 80% (top to

bottom). The first column: the noisy images; the second column: the results from L1-TV; the third

column: the results from L0-TV; the fourth column: the results from F2TV; the fifth column: the

results from our method.

methods, i.e., first noisy pixels are detected, then total-variation-based variational methods are

applied to restore the noisy pixels. In all three methods, we use the adaptive median filter

(AMF) [27] as noise detector. And we test all the methods on the test images corrupted by

SPN with the noise levels r = 20%, 40%, 60% and 80%.

In Algorithm 2.1, we set ρ = 1.05, and set θ = 0.02 for the noise level r ≤ 50%, and

θ = 0.0001 for r > 50%. In Algorithm 3.1, the patch sizes are set by experience respectively

6 × 6 for the cases of r ≤ 20%, 7 × 7 for 20%< r ≤ 60%, and 8 × 8 for r > 60%; and the

maximum iteration number K is set as 18 for r ≤ 60% and 25 for r > 60%, respectively.

In Figs. 4.2-4.5, we show the restored results from the image corrupted by SPN with different

noise level. It is clear that all four methods are effective for removing the noise, and our method

preserves the details, especially the textures, much better, see the textures on the butterfly in

“Monarch” and in the scarf in “Barbara”. In Table 4.1, we list the PSNR and SSIM values

from all four methods. It is obvious that the PSNR values from our method are higher than

the other three. Taking “Lena” as an example, we can see that the improvements of PSNR
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Fig. 4.5. The restored results for “Cameraman” from the noise level r = 20%, 40%, 60%, 80% (top to

bottom). The first column: the noisy images; the second column: the results from L1-TV; the third

column: the results from L0-TV; the fourth column: the results from F2TV; the fifth column: the

results from our method.

values are 0.07dB to 1.78dB. For “Barbara”, PSNR from our method is even more than 2dB

larger than others in every noise level. The main reason here is that there are clear pattern

structures like on the scarf and trousers in “Barbara”, and it is perfectly fit for applying the

proposed patch-based method.

4.2. Removal of Random-Valued Impulse Noise

The random-valued impulse noise (RVIN) can randomly take values from the intensity range

[dmin, dmax]. The noise level r of RVIN denotes the probability of each pixel being corrupted

by noise, and the noise value is uniformly distributed on [dmin, dmax].

In the numerical experiments, we compare our method with other two methods. One is the

fast total-variation-based two-phase denoising (F2TV) method introduced in [35], where, as well

as in our method, we use marked/known noisy pixels. The other is the L0-TV method [34],
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Table 4.1: The comparison of different methods for removing the salt-and-pepper noise with different

noise levels.

Img Level
Noisy L1TV L0TV F2TV Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

20% 12.15 0.1331 36.42 0.9797 36.73 0.9805 36.92 0.9812 37.30 0.9808

40% 9.12 0.0610 32.04 0.9507 32.53 0.9514 32.66 0.9543 32.73 0.9499

Lena 60% 7.40 0.0316 29.12 0.9097 28.98 0.9051 29.39 0.9118 30.76 0.9218

80% 6.14 0.0147 25.56 0.8116 25.30 0.8070 25.72 0.8139 26.45 0.8210

20% 12.33 0.1890 35.68 0.9869 35.89 0.9874 36.23 0.9888 36.33 0.9861

Monarch 40% 9.28 0.0943 30.27 0.9612 31.27 0.9618 31.92 0.9699 32.05 0.9649

60% 7.48 0.0512 27.44 0.9249 27.32 0.9242 28.00 0.9335 29.46 0.9445

80% 6.26 0.0241 23.25 0.8246 23.00 0.8225 23.51 0.8432 24.86 0.8483

20% 12.43 0.1580 33.22 0.9736 33.11 0.9731 33.36 0.9748 38.76 0.9865

Barbara 40% 9.40 0.0713 28.78 0.9255 28.61 0.9242 28.89 0.9290 34.33 0.9637

60% 7.62 0.0345 25.86 0.8482 25.67 0.8429 25.93 0.8529 32.24 0.9400

80% 6.35 0.0156 23.59 0.7233 23.41 0.7102 23.61 0.7283 25.46 0.7667

20% 12.01 0.1330 33.22 0.9745 33.32 0.9746 33.46 0.9750 35.29 0.9750

Camera. 40% 9.06 0.0664 28.82 0.9387 29.15 0.9403 29.53 0.9437 31.10 0.9382

60% 7.31 0.0364 26.05 0.8868 25.92 0.8855 26.21 0.8913 28.25 0.9025

80% 6.02 0.0166 23.12 0.7905 22.96 0.7909 23.18 0.8022 24.20 0.8035

Table 4.2: The comparison of different methods for removing the random-valued impulse noise with

different noise levels.

Img Level
Noisy L0TV F2TV Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

20% 15.54 0.2372 27.62 0.8983 36.54 0.9795 37.84 0.9805

Lena 40% 12.60 0.1244 24.92 0.7818 32.88 0.9540 33.96 0.9545

60% 10.81 0.0709 21.94 0.7099 29.43 0.9083 31.46 0.9302

80% 9.58 0.0340 18.69 0.5445 25.77 0.8195 26.53 0.8341

20% 15.85 0.3021 24.38 0.8937 36.30 0.9885 37.70 0.9882

Monarch 40% 12.83 0.1719 22.17 0.7256 31.83 0.9692 33.34 0.9699

60% 11.13 0.1022 19.38 0.6447 27.68 0.9337 30.36 0.9550

80% 9.85 0.0504 16.34 0.4717 23.17 0.8410 24.85 0.8657

20% 16.12 0.2899 25.67 0.8362 33.74 0.9761 40.49 0.9885

Barbara 40% 13.21 0.1546 22.76 0.7281 29.21 0.9306 35.47 0.9688

60% 11.35 0.0822 21.25 0.6155 25.92 0.8520 32.24 0.9400

80% 10.06 0.0413 19.82 0.4758 23.75 0.7274 27.83 0.8507

20% 15.55 0.2312 23.77 0.8697 33.94 0.9762 36.01 0.9774

Camera. 40% 12.47 0.1278 22.17 0.7887 29.22 0.9422 31.59 0.9382

60% 10.65 0.0715 19.86 0.6898 26.27 0.8892 28.77 0.9093

80% 9.37 0.0353 17.20 0.5522 23.45 0.8058 23.85 0.7976
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Fig. 4.6. The restored results for “Lena” from the noise level r = 20%, 40%, 60%, 80% (top to bottom).

The first column: the noisy images; the second column: the results by applying the L0-TV method; the

third column: the results by applying the F2TV method; the fourth column: the results by applying

our method.

where does not use noise detection for random-valued impulse noise. Since in RVIN the noise

can be any values in the intensity range and some of it can be very close to the original values,

RVIN is much more difficult to detect, especially under high noise levels. However, the capability

of the two-phase method strongly depends on the accuracy of the noise detection. Here, we

test both methods on the test images corrupted by RVIN with the noise level 20%, 40%, 60%

and 80%.

In Algorithm 2.1, we set ρ = 1.05, θ = 0.02 for the noise level r ≤ 50%, and θ = 0.0001 for

r > 50%. In Algorithm 3.1, the patch sizes are set by experience respectively 7×7 for r ≤ 60%,
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Fig. 4.7. The restored results for “Monarch” from the noise level r = 20%, 40%, 60%, 80% (top to

bottom). The first column: the noisy images; the second column: the results by applying the L0-TV

method; the third column: the results by applying the F2TV method; the fourth column: the results

by applying our method.

and 12 × 12 for r > 60%; and the number of the iterations K is set as 18 for r ≤ 60% and 22

for r > 60%, respectively.

In Figs. 4.6-4.9, we show the denoising results from all the methods. It is obvious that our

method provides the best results visually, especially to the images full of textures under high

noise level, e.g., “Monarch” and “Barbara”. In Table 4.2, we list the PSNR and SSIM values

for both methods to restore different images corrupted by RVIN with the noise level 20% to

80%. We can see that the PSNR values from our method are much higher than those from the
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Fig. 4.8. The restored results for “Barbara” from the noise level r = 20%, 40%, 60%, 80% (top to

bottom). The first column: the noisy images; the second column: the results by applying the L0-TV

method; the third column: the results by applying the F2TV method; the fourth column: the results

by applying our method.

L0-TV and F2TV methods. For example, for “Barbara”, the improvement of the PSNR values

by using our method reaches to 4dB to 15dB.

5. Conclusions

In this paper, we introduce a new variational model, L1-WNNM, which combines the l1-data-

fidelity term with the weighted nuclear norm for removing impulse noise in images. Furthermore,

we propose a numerical algorithm for solving the minimization problem in the L1-WNNM
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Fig. 4.9. The restored results for “Cameraman” from the noise level r = 20%, 40%, 60%, 80% (top to

bottom). The first column: the noisy images; the second column: the results by applying the L0-TV

method; the third column: the results by applying the F2TV method; the fourth column: the results

by applying our method.

model, and study its convergence. Since the new model is non-convex, we only provide the

primal residual convergence results. Through numerical experiments, we show that the method

can provide better denoising results in terms of PSNR and SSIM values as well as visually.
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Birkhüser, Boston-Basel, 1983.

[17] C. Clason, B. Jin and K. Kunisch, A Duality-Based Splitting Method for L1-TV Image Restoration

with Automatic Regularization Parameter Choice, SIAM Journal on Scientific Computing, 32

(2009), 1484–1505.

[18] J. Yang, Y. Zhang and W. Yin, An Efficient TVL1 Algorithm for Deblurring Multichannel Images

Corrupted by Impulsive Noise, SIAM Journal on Scientific Computing, 31 (2009), 2842–2865.

[19] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,

Physica D, 60 (1992), 259–26.,

[20] A. Buades, B. Coll and J. M. Morel, A Non-Local Algorithm for Image Denoising, Computer

Vision and Pattern Recognition, 2:7 (2005), 60–65.

[21] R.H. Chan, C.W. Ho and M. Nikolova, Salt-and-pepper noise removal by median-type noise detec-

tors and detail-preserving regularization, IEEE Transactions on Image Processing, 14:10 (2005),

1479–1485.



Impulse Noise Removal by L1 Weighted Nuclear Norm Minimization 1191

[22] R.H. Chan, C. Hu and M. Nikolova, An Iterative Procedure for Removing Random-Valued Impulse

Noise, IEEE Signal Processing Letters, 11:12 (2012), 921–924.

[23] R. H. Chan, Y. Dong and M. Hintermüller, An efficient two-phase L1-TV method for restoring

blurred images with impulse noise, IEEE Transactions on Image Processing, 19:7 (2010), 1731–

1739.

[24] Y. Wang, W. Yin and J. Zeng, Global Convergence of ADMM in Nonconvex Nonsmooth Opti-

mization, Journal of Scientific Computing, 78:1 (2015), 29–63.

[25] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed Optimization and Statistical

Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine

Learning, 3:1 (2005), 1–122.

[26] Z. Lin, R. Liu and H. Li, Linearized alternating direction method with parallel splitting and

adaptive penalty for separable convex programs in machine learning, Machine Learning, 99:2

(2015), 287–325.

[27] R. Gonzalez and R. Woods, Digital Image Processing, Addison-Wesley, Boston, 1993.

[28] D. Zoran and Y. Weiss, From learning models of natural image patches to whole image restoration,

Proceedings of the IEEE International Conference on Computer Vision, (2011), 479–486.

[29] A. Levin, B. Nadler, F. Durand and W. T. Freeman, Patch Complexity, Finite Pixel Correlations

and Optimal Denoising, Proceedings of the European Conference on Computer Vision, (2012),

73–86.

[30] H. Talebi and P. Milanfar , Global Image Denoising, IEEE Transactions on Image Processing,

23:2 (2014), 755–768.

[31] P. Chatterjee and P. Milanfar, Patch-Based Near-Optimal Image Denoising, IEEE Transactions

on Image Processing, 21:4 (2012), 1635–1649.

[32] Z. Wang, A. Bovik, H. Sheikh and E. Simoncelli, Image Quality Assessment: From Error Visibility

to Structural Similarity, IEEE Transactions on Image Processing, 13:4 (2004), 600–612.

[33] C. A. Micchelli, L. Shen, Y. Xu and X. Zeng, Proximity algorithms for the L1/TV image denoising

model, Advances in Computational Mathematics, 38:2 (2013), 401–426.

[34] G. Yuan and B. Ghanem, L0TV: A Sparse Optimization Method for Impulse Noise Image Restora-

tion, Advances in Computational Mathematics, 41:2 (2019), 352–364.

[35] J.F. Cai, R.H. Chan and M. Nikolova, Fast two-phase image deblurring under impulse moise,

Journal of Mathematical Imaging and Vision, 36:1 (2010), 46–53.

[36] T. Chen and H. R. Wu, Adaptive impulse detection using center-weighted median filters, IEEE

Signal Processing Letters, 8:1 (2001), 1–3.


