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Abstract. Lutwak showed the Busemann-Petty type problem (also called the Shep-
hard type problem) for the centroid bodies. Grinberg and Zhang gave an affirmation
and a negative form of the Busemann-Petty type problem for the L,-centroid bodies.
In this paper, we obtain an affirmation form and two negative forms of the Busemann-
Petty type problem for the general Lj-centroid bodies.
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1 Introduction

Let K" denote the set of convex bodies (compact, convex subsets with non-empty inte-
riors) in n-dimensional Euclidean space R”, for the set of convex bodies containing the
origin in their interiors and the set of origin-symmetric convex bodies, we write K and
K., respectively. Let S and S/, orderly denote the set of star bodies (about the origin)
and the set of origin-symmetric star bodies in R". Let S"~! denote the unit sphere in R",
denote by V(K) the n-dimensional volume of a body K, for the standard unit ball B in
R", write w, = V(B).

Centroid body was attributed by Blaschke to Dupin (see [6, 18]), its definition was
extended by Petty (see [17]). Let K is a compact set, the centroid body, I'K, of K is an
origin-symmetric convex body whose support function is given by (see [6])

hrr(u) = V(1K>/K\u-x|dx (1.1)
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forallu € S"1.

Centroid bodies are very important in Brunn-Minkowski theory. For decades, cen-
troid bodies have attracted increased attention (for example see articles [10,11,17,27] and
books [6,18]). In particular, Lutwak [11] showed an affirmation and a negative form of
the Busemann-Petty type problems for the centroid bodies as follows:

Theorem 1.1. For K € S]', L € P*,ifTK C I'L, then
V(K) < V(L),
and V(K) = V(L) ifand only if K = L. Here P* denotes the set of polars of all projection bodies.

Theorem 1.2. IfK € SP\'P* is infinite smooth, then there exists L € S!.\'P* is infinite smooth,
such that TK C T'L, but
V(K) > V(L).

In 1997, Lutwak and Zhang [15] introduced the notion of L,-centroid bodies. For each
compact star-shaped (about the origin) K in R" and real p > 1, the L,-centroid body, I'yK,
of K is an origin-symmetric convex body whose support function is defined by

1
p — -x |P
hFPK(u) = ey V(K) / | u-x|Pdx

1 n
“enp(n+p)V(K) /sn—l |u-o [P px(v)"Pdo (12)

for all u € S"~!. Here
Cn,p = wn-l—p/wanwp—l (13)

and dv is the standard spherical Lebesgue measure on S"~!. The normalization above is
chosen so that for the standard unit ball B in R”, we have I',B = B. For the case p = 1,
by (1.1) and (1.2), we see that I';K is the centroid body I'K under the normalization of
definition (1.2) and T1K = ¢, [TK (see [6]).

Further, Lutwak and Zha’ng [15] established the L,-centroid affine inequality. Where-
after, associated with the L,-centroid bodies, Lutwak, Yang and Zhang [14] proved the
Lp-Busemann-Petty centroid inequality which is stronger than the L,-centroid affine in-
equality. The L,-centroid bodies mean that the centroid bodies are extended from the
Brunn-Minkowski theory to the L,-Brunn-Minkowski theory. Regarding the studies of
the L,-centroid bodies, also see [1-3,7,21,22,24] and books [6,18]. In particular, Grinberg
and Zhang [7] gave the following the Busemann-Petty type problem for the L,-centroid
bodies.

Theorem 1.3. If K € S, L € P, then I',K C Iy L implies
V(K) < V(L),

and V(K) = V(L) if and only if K = L. Here P denotes the set of polars of all L,-projection
bodies.
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Theorem 1.4. If K € F2\L,, then there exists L € K such that T,K C TpL, but
V(K) > V(L).

Here F2 denotes the set of origin-symmetric convex bodies whose support functions are of C* and
have positive continuous curvature functions, and L, denotes the set of L,-balls (see [7]).

In 2005, Ludwig [9] introduced a function ¢ : R — [0, +00) by
p-(t) = [t| + Tt (1.4)

with a parameter T € [—1,1]. From (1.4), Ludwig [9] introduced the notions of general
Ly-projection bodies. Whereafter, Haberl and Schuster [8] derived a general L,-projection
body is the L,-Minkowski combination of two asymmetric L,-projection bodies, and es-
tablished the general L,-Petty projection inequality and the general L,-Busemann-Petty
centroid inequality.

Recently, motivated by Ludwig, Haberl and Schuster’s work, Feng, Wang and Lu [5]
defined the general L,-centroid bodies as follows: For K € S}, p > 1 and T € [—1,1], the
general Ly-centroid body, I' K, of K is the convex body whose support function is defined
by

h?;K(”) :WZ)V(K)/K(PT(“'X)MX

~on p(T)(n2+ p)V(K) /snﬂ ¢r(u - 0)'ok(0)" Pdo, (1.5)

where
Cnp(T) = cnpl(1+T)P + (1 —1)7]

and ¢, satisfies (1.3). The normalization is chosen such that F;B = B for every T €
[—1,1]. Obviously, if T = 0 then F;K = I',K. Further, let T = 1in (1.5), they [5] defined
the asymmetric L,-centroid body, I'; K, of K € S} by

2 .
) =5 i e
“eup(n +2p)V(K) /SH(“ o)l px (0)" Pdo, (1.6)

where (u - x); = max{u - x,0}. Besides, they [5] also defined I', K = I';} (—K).
According to the definitions of l"fK and (1.5), it is easy to verity that for K € S,
p>1,t€[-1,1andu € S*1,

(IS, u)P = fi(O(TEK ) + fo(0)h(T, K, u)?, (1.7)
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where
_ (o -y
MO =apra—or PO Grorra—or (18)
From (1.8), we easily know that
A(=1)=f(1),  fu(=7) = Ai(7), (1.9a)
fi(T) + fa(T) = 1. (1.9b)
Let T = 0 in (1.7), and combine with (1.8), we have for u € §" 1,
h(TpK,u)P = %h(F;K,u)” + %h(r;K,u)P. (1.10)

If T = £1in (1.7) and use (1.8), then
tlg _ 1t g _ -
I K=TI/K, I,’K=T,K

For the research results of general L,-centroid bodies, we can find in [5,16,23]. In this
paper, we research the Busemann-Petty type problem for the general L,-centroid bod-
ies. Our works belong to part of a new and rapidly evolving asymmetric L, Brunn-
Minkowski theory.

Let P, denote the set of polars of all general L,-projection bodies. We first prove an
affirmation form of the Busemann-Petty type problem for the general L,-centroid bodies.

Theorem 1.5. IfK € S}', p > 1,L € P, and T € [-1,1], then I K C T L implies
V(K) < V(L),
and V(K) = V(L) ifand only if K = L.

Obviously, if T = 0, then Theorem 1.5 gives Theorem 1.3. Further, we give a negation
form of the Busemann-Petty type problem for the general L,-centroid bodies.

Theorem 1.6. If L € S"\S" and p > 1, then for any T € (—1,1), there exists K € S (for
T=0,Ke S8}, fort #0 KeS)such that F;K - F;L, but

V(K) > V(L).
Let T = 0 in Theorem 1.6, we easily obtain the following.
Corollary 1.1. If L € Sy\Sj; and p > 1, then there exists K € S\, such that T ,K C T'yL, but
V(K) > V(L).

Corollary 1.1 shows a negation form of the Busemann-Petty type problem for the L,-
centroid bodies. Actually, we extend the scope of negation solutions in Corollary 1.1 from
K e 8 toK € S as follows:
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Theorem 1.7. If L € SJ\Sy; and p > 1, then there exists K € S} such that T,K C T',L, but
V(K) > V(L).
Finally, we give another negation form of the Busemann-Petty type problem for the
Ly-centroid bodies, it is the L,-analogues of Theorem 1.2.

Theorem 1.8. For p > 1. If K € Si\P; is infinite smooth and p is not an even integer, then
there exists L € Sy,\'Py, is infinite smooth, such that I ,K C T'pL, but

V(K) > V(L).

2 Some notions

2.1 Support function, radial function and polar body

If K € K", then its support function, hx = h(K,-) : R" — (—o00,+0c0), is defined by
(see [6])
h(K,x) = max{x-y:y € K}, x € R",

where x - y denotes the standard inner product of x and y. From the definition of support
function, we easily know that for ¢ > 0, h(cK,-) = ch(K,-), and h(K,-) = h(L,-) if and
only if K = L.

If K is a compact star-shaped (about the origin) in R", its radial function, px = p(K, -) :
R"\ {0} — [0, +00), is defined by (see [6])

p(K,x) =max{A >0:Ax € K}, x & R"\{0}.

If pk is positive and continuous, K will be called a star body (about the origin). Two star
bodies K and L are said to be dilates (of one another) if px(u)/pr(u) is independent of
uesnt.

If E is a nonempty set in R”, the polar set of E, E*, is defined by (see [6])

Ef={x:x-y<1,y€E} x € R". (2.1)
From (2.1), we easily know that (see [6]) for K € K7,
1

h(K,-) = EBE (2.2)

2.2 Lp-mixed volumes and Lp-dual mixed volumes

In 1993, Lutwak [12] defined the Lp—mixed volumes as follows: For K, L € K7, p > 1, the
L,-mixed volume, V,(K, L), of K and L is given by

1

V(K L) = /S B (u)ds,(K,u). 2.3)
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The measure S,(K, -) is called the L,-surface area measure.
Whereafter, Lutwak [13] introduced the L,-dual mixed volumes: For K, L € S} and

p > 1, the L,-dual mixed volume, V_p(K, L), of K and L is given by

_ 1 . _
V_,(K,L) = 0 o pK+p(u)pLP(u)du. (2.4)

From (2.4), it follows immediately that for each K € S and p > 1,

~ 1

V(K K) = /Sn_1 ol (u)du = V(K). 2.5)

The L,-dual Minkowski inequality can be stated that (see [13]): if K,L € S} and p > 1,
then

V_,(K,L) > V(K)5 V(L) (2.6)

2=

with equality if and only if K and L are dilates.

2.3 General Lp-harmonic Blaschke bodies

For K,L € 8}, p > 1, A,u > 0 (not both zero), the L,-harmonic Blaschke combination,
Ao Kq—py oL, of Kand L is given by (see [3])
p(hoKFppol, )"t ) p(K )" p(L )"
V(AoKE,uoL) v MV

(2.7a)

Let A = p = 1/2and L = —K in (2.7a), then the L,-harmonic Blaschke body, ﬁpK, of
K € 8] is written by

= 1 -1

Feng and Wang [4] defined the general L,-harmonic Blaschke bodies as follows: For
K€ S}, p>1land 1 € [-1,1], the general Ly-harmonic Blaschke body,

ViK = fi(t) o K¥pfa(7) 0 (—K)

of K is defined by
p(ﬁ’f[(l .)"+P K, - n+p —K,- n+p
LI A 1(T)M +f2(r)u (2.7b)
V(VIK) V(K) V(—K)
Here f1(7) and f»(7) satisfy (1.8). Obviously, if T = 0, then
V;K = V,K.
In addition, if T = 1 we write N
VK =V,K,

then
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2.4 General Ly-projection bodies and L ,-cosine transformations

In 2005, Ludwig [9] introduced the notion of general L,-projection body as follows: for
K e Ky, p > 1and T € [-1,1], the general L,-projection body, [T} K € Kf, of K whose
support function is given by

My (1) = i (7) /S ge(u-0)PdS,(K,0), 2.8)
where S, (K, -) is the L,-surface area measure of K, ¢(-) is given by (1.4),

2
n+p)enpwn[(14+1)P 4+ (1 —1)7]

Wn,p(T) = ( (2.9)
and c,, satisfies (1.3). For the general L,-projection bodies, some works have made in [19,
20,25,26].

If T = 0, then (2.8) and (2.9) yield the following L,-projection body I1,K of K, i.e.,

hlri[pl((u) = ( L

(1 + p)cnpwn /SM |u-0|PdS,(K,v), (2.10)

which is defined by Lutwak, Yang and Zhang (see [14]).
If K € K has L,-curvature function f,(K,v) : $"~! — R, then we have (see [13])

dS,(K,v) = fp(K,v)do,

where dv is the standard spherical Lebesgue measure on S"=1. From this, if K € K has
Ly-curvature function, then (2.10) can be written as

thIpK(u) = ( L

(n+ p)enpwn /s"—l -l fy (K v)do. (2.11)

Let C(S"~!) denote the set of all continuous functions on S"~!. For p > 1 and function
@ € C(S"1), the L,-cosine transformation, C,¢, of ¢ is defined by (see [6])

Cpp(u) = / 1 lu-v|Pp(v)dv, ue S" (2.12)
-
For the L,-cosine transformation, also see [6,14].
From (2.11) and (2.12), we easily see that for K € K has L,-curvature function and
allu € S"71,

1
P —
My (1) = CET ~Cpfy(K,u). (2.13)

In addition, according to (2.12) and (1.2), we have that for all u € sn1,
1

o n+
M) = ey Sk () (214)
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If F,G € C(S"1), write

(F,G) = - /SH F(u)G(u)du, (2.15)

then by (2.12), we have

(Cof.8) = 1, = [, [, ol flo)gupdude, .16)

For the L,-cosine transformation C,, we know the following fact (see [6]).

Theorem 2.1. If p > 1, then Cp, : C,(S" ) — Co(S"~1) is injective if and only if p is not an
even integer. Here C,(S"~1) denotes the set of all even continuous functions on 5"~

3 Busemann-Petty type problem for the general L,-centroid
bodies

In the section, we will research Busemann-Petty type problem for the general L,-centroid
bodies. Associated with the general L ,-projection bodies and general L,-centroid bodies,
Feng, Wang and Lu [5] gave that

Lemma3.1. IfKe K!, L e S/, p>1land T € [-1,1], then
Vy(K,T5L) _ V_,(L,IT/°K)
Wy V(L)
Here IT," K denotes the polar of general L,-projection body TT K.

(3.1)

According to Lemma 3.1, we give an extension of Theorem 1.5 as follows:
Theorem 3.1. For K,L € 8", p > land 7t € [—1, 1], if TyK C TFL, then for any Q € P,
p(KQ) _ Vop(L,Q)
V(K) N V(L)
with equality in (3.2) if and only if K = L.

Proof. Since Q € Py, thus there exists R € K such that Q = IT;"R, by (2.3) and (3.1),
we get

(3.2)

)/V(L) T
Vp(K,Q)/V(K) V(K II7*R)/V(K) V(R TFK)
Jua B(TEL, u)PdS, (R, u)
Jon1 H(T3K, u)PdS (R, u)’

From this, if T;K - T;L, then (3.2) is obtained.
Obviously, by L,-dual Minkowski inequality (2.6), we know that equality holds in
(3.2) if and only if K = L. O
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Note that the case T = 0 of Theorem 3.1 was given by Grinberg and Zhang [7].
Proof of Theorem 1.5. Since L € P,", thus taking Q = L in Theorem 3.1, and combining
with (2.5) and inequality (2.6), we get

n+p

V(K) > V_,(K,L) > V(K) = V(L) n,

I

ie., V(K) < V(L).
According to the equality condition of (3.1), we see that V(K) = V(L) if and only if
K=1L. U
The proof of Theorem 1.6 requires the following two lemmas.

Lemma3.2. If K€ S, p>land v € [-1,1], then
V(VIK) > V(K). (3.3)

For T € (—1,1), equality holds if and only if K is origin-symmetric. For T = £1, (3.3) becomes
an equality.
Proof. From (2.7b) and (2.4), we have that for any Q € S,

‘7—19 (6;K1 Q)

V(K Q) V,(—K,Q)
V(ViK) '

:fl(T)W+f2(T) V(—K)

This together with inequality (2.6) and equality (1.9b) yields

V*P(ﬁzK/ Q)
V(V3K)

P
n

I=
SIS

>f(T)V(K)V(Q)™n + f(1)V(K) V(Q)~

14
n

=V(K)"v(Q) .

Let Q = 6;1( in above inequality and use (2.5), we obtain
V(ViK) > V(K).

For T € (—1,1), according to the equality condition of inequality (2.6), we see that equal-
ity holds in (3.3) if and only if K and V;K, —K and V;K both are dilates, i.e., K and

—K are dilates. This means that K is origin-symmetric. For T = %1, by 6?1( = Kand
6;1( = —K, we know that (3.3) becomes an equality. O

Lemma3.3. IfKe€ S}, p>1land T € [-1,1], then
+OTK —
I} VIK =K, (3.4a)
I, VIK=T,K. (3.4b)
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Proof. By (1.6), (1.9b) and (2.7b), we have that for all u € "1,

2
P (u) = _ u-0) oe. (v)"Pdo
F;V;K( Cnp(n—l—p)V(V;K) /5”71( )+prK( )
pk(0)" p-k(0)""F
oy [ Oy P e |
=AML (1) + H (O g (1)
=f(Oh () + fo(T)hy ( ) = Mgy (1)
This immediately gives (3.4a). Similarly, we know that for all u € §"~1,
p — P
h]"p V"(K( ) - hr;TK(u)‘
This yields (3.4b). O

Proof of Theorem 1.6. Since L is not origin-symmetric and 7 € (—1,1), thus by Lemma
3.2, we know V(V}L) > V(L). From this, choose 0 < & < 1such that K = (1 —¢)V}L
(fort=0,K e S; for T # 0, K € S') satisfies

V(K) =V((1-¢)V}L) > V(L).

But by (3.4a), (3.4b) and notice that l"rjch = CF;,IEK (¢ > 0), we orderly have
TIK=T,(1-¢)ViL=(1-¢I/ViL=(1-¢}LCT}L,
I,K=T,(1-¢ViL=(1-¢l,ViL=(1-¢l,"LCT,"L.

Notice that T € (—1,1) is equivalent to —7 € (—1,1), this means that I’y K C T';L and

IyKCT,"Limply ;K C TjLand T, K C T}L forany T € (—1,1), respectively. Hence,
together with (1.7) and (1.9b), we easily obtain that for all u € S"~1,

h(ToK, u)P =fi(T)h(T, K, u)?P + fo(T)h(T, K, u)?
<A(OhTLL,u)P + fo(t)h(T L, u)?
=h(I',L,u)?,
ie.,
IK CTL
This completes the proof. U
In order to prove Theorem 1.7, we require the following a lemma.

Lemma34. IfKe S, p>1,1€[-1,1], then

T,ViK=T,K. (3.5)
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Proof. From (1.7), (1.9a), (1.9b) and (1.10), we obtain that for K € S” and all u € S"~!,
1 1
) + 0 ()

:% [fl(T)hliz;K(u) +f2(T)h1’f;K(u)] +% [fl(—r)hl’f;K(u) +f2(—T)h1;2;K(u)}

:% [fl(T)h%K(M) +f2(T)hI’fV,K(u)] +% [fz(r)hl?fﬂ(u) +f1(7)h13,;1<(”)}

1 1
:Eh?;K(u) + Ehﬁ;;K(u) - h?pK(u). (3.6)

Thus, by (1.10), (3.4a), (3.4b) and (3.6), we have that for all u € §"~!,

1
P _lpp P
r,ﬁ;K(u) 2 r;%;K(u) Ehrgﬁfk(”)

1 1
:Ehlg;K(u) + Eh%rK(”) = hlgpk(”)

So (3.5) is obtained. m

Proof of Theorem 1.7. Since L is not origin-symmetric and 7 € (—1,1), thus by Lemma
3.2, we know V(VEL) > V(L). From this, choose 0 < & < 1 such that

V((1—¢)ViL) > V(L).

Let K = (1— e)@ﬁL, then K € S} and V(K) > V(L). But by (3.5) and notice that
I'ycK = cI',K (¢ > 0), we have

T,K=T,(1—¢)VjL=(1—-¢),ViL=(1—¢),L CT,L.

This completes the proof. U
Finally, we give the proof of Theorem 1.8.

Proof of Theorem 1.8. Let C°(S"~1) denote the set of all even and infinite smooth func-
tions on §"~!. Because of K € Sy \P; is infinite smooth, thus px € C*(S"'). By Theo-
rem 2.1, we know that there exists ¢ € C(S"!) when p > 1 and p is not even integer,
such that pgp = Cp¢. Since L is not the polar of L,-projection body, hence function ¢ < 0.
Otherwise, if ¢ > 0 and notice ¢ € C°(S ”_1), it follows from Minkowski’s existence the-
orem that there exists a body Q € K7 has L,-curvature function such that

@ = [cnp(n+p)wn] ' f,(Qu) for ueS"
From this, we know that

Cpp = [Cn,p<” + P)Wn]ilcpfp(Qr”%
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this together with (2.13) yields
P _ hP
Pk I1,Q

this and (2.2) give K = H;;Q. But K ¢ P}, this leads to contradiction.

Therefore, choose F € C°(S"~!) and is not identically zero, such that F < 0 when
¢ < 0; F = 0when ¢ > 0. From this, we have

(F,p) = ! /sn ) F(v)gp(v)dv > 0. (3.7)

And according to F € C(S""1) and notice p is not an even integer, then by Theorem 2.1,
we know that there exists ¢ € C°(S" 1), such that F = C,g. Because of px > 0 (K € SZ),
thus there exists € > 0, such that

[(n+ plen,p V(K)o " —eg > 0.

Notice that
(1 + p)en, V(K)o P —eg € C(S"Y),

then there exist 4 > 0 and L € SJ; is infinite smooth, such that
por " = [(n+ p)en, VK] ox P — g
This yields
Coor " Cupk”
n+p)enp V(L) (n+p)enpV(K)

u(n+p)enpV(L) ( —eCp8.

Thus, let (1 + p)c,,p V(L) = 1 and together with (2.14), we obtain
P _ P
hr,, L= hrp x — ¢F.

Since F < 0 and p > 1, it follows that I';K C I',L. But by (2.4), (2.5), (2.15), (2.16) and
(3.4a), we have

V(K) — V_,(L,K) = V_,(K,K) — V_,(L,K)

K oh) = (01 ") =

(k"= o1 0"

(o
( AL PL+p Cp(P) (Cppln<+p CPPIZ—HJ/ oy
(hIEK rL/‘P)—(EF/(P):E(F/<P)>0-

This and inequality (2.6) yield

P

= whp _r
V(K) > V_,(L,K) > V(L) ™ V(K)"~,
ie, V(K) > V(L). Clearly, by Theorem 1.3, we see L & P,,. O
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