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Abstract. In this paper, we calculate the sharp bound for the generalized m-linear n-
dimensional Hardy-Littlewood-Pélya operator on power weighted central and non-
central homogeneous Morrey spaces. As an application, the sharp bound for the
Hardy-Littlewood-Pélya operator on power weighted central and noncentral homo-
geneous Morrey spaces is obtained. Finally, we also find the sharp bound for the
Hausdorff operator on power weighted central and noncentral homogeneous Morrey
spaces, which generalizes the previous results.
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1 Introduction

As a multilinear generalization of Calderén operator, the m-linear n-dimensional Hardy-
Littlewood-Pélya operator is defined by
f1y) - fn(ym)

P(fi, -, fm)(x) = /]an max(|x|?, [y1|", -, [yn]™)™

Computation of the operator norm of integral operators is a challenging work in har-
monic analysis. In 2006, Bényi and Oh [3] proved that for n =1,

dyl t 'd]/m~ (1-1)

m m
Hp(flr' o ’fm)HLplx---XU“'”%LP = 2 H P;

i=1j=1, j#i
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In fact, they proved sharp bound for certain multilinear integral operators that includes
the Hardy-Littlewood-Pélya operator. In 2011, Wu and Fu [9] got the best estimate of
the m-linear p-adic Hardy-Littlewood-Pélya operator on Lebesgue spaces with power
weights. In 2017, Batbold and Sawano [2] studied one-dimensional m-linear Hilbert-type
operators that includes Hardy-Littlewood-Pélya operator on weighted Morrey spaces,
and they obtained the sharp bounds.

For the Hardy-Littlewood-P6lya operator over p-adic field, we refer to Fu et al. [5]
and Li et. al. [6].

Inspired by [2,3,9], we will investigate a more general operator which includes the
Hardy-Littlewood-P6lya operator as a special case and consider its operator norm on two
power weighted Morrey spaces and its central version.

In the paper we use the following notation: For any measurable function w over a set
E is given by

w(E) :/Ewdx.

In what follows, B(x, R) denotes the ball centered at x with radius R. Moreover, |B(x, R)]
denotes the Lebesgue measure of B(x, R). Also, B(0,R) denotes a ball of radius R cen-
tered at the origin.

We use this notation in the following definition of the weighted and weighted central
homogeneous Morrey spaces.

Definition 1.1. Let wy, w; : R" — (0, 00) are positive measurable functions, 1 < q < oo and
—1/q < A < 0. The weighted Morrey space L7 (R", w1, w;) is defined by

Lq,/\(Rn’ wl’w2) = {f e quoc : HfHL‘i/A(IR”,wl,wZ) < OO},

where

1/q
Il = s wn(Bla,R) O ([ f)n(x)ar)

aceR”, R>0

Remark 1.1. When w; = w, = 1, L‘V‘(IR”, w1, wy) is the classical Morrey spaces L‘V\(]R”)
and it was introduced by Morrey [8]. Note that L7~ 1/4(R") = LI(R"), L7°(R") = L®
and L9 (R") = {0} with A > 0. Based on the above reason, we only consider the case
-1/ <A <.

Definition 1.2. Let wy, wy : R" — (0, 00) are positive measurable functions, 1 < q < oo and
—1/q < A < 0. The weighted central homogeneous Morrey space M7 (R", wq,w5) is defined
by

MQ,A(IRV!, wl’ wZ) = {f S L?gc : ||fHMW\(R”,w1,w2) < OO},

where

1/q
I ey = S0 s (BOR) 10 ([ prnads) a2

R>0
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The weighted inhomogeneous central Morrey space M9 (R", wq, ws) is defined analogously with
the exception that the supremum over R > 0 is restricted to R > 1 in (1.2).

Obviously, MIM(R™, wy,w,) C MIM(R", wy, wy) for A > —1/gand1 < g < 0.

Remark 1.2. When w; = wy, = 1, M‘?'A(]R”,wl,wz) goes back to the classical homo-
geneous central Morrey spaces M7*(IR"), which was introduced by Alvarez, Guzmén-
Partida and Lakey [1]. Obviously, M7*(IR") reduces to {0} for A < —1/g, and it is true
that M7~1/9(R") = L1(R").

2 Sharp bound for the generalized Hardy-Littlewood-Pélya
operator

In this section, we will study the generalized of m-linear n-dimensional Hardy-Littlewood-
Pélya operator. Let now K : R” x --- x R" — (0, %) be a measurable kernel such that

Cm:/ K@ ym Hlyz it ) gy Ly, < oo, 2.1)

where

i

d</\z‘/%0¢, qi%) = —nA;j+ — L. a4 - )\i+l
q q qi

and 1 < q1,92,- -+ ,qm < co are some arbitrary fixed indices. The m-linear operator T is
then defined by

T(fr - fu)(x) = /IR Ky, ym) fillxlyn) - - fu([xlym)dys - - dym, — (22)

where x € R"\{0} and f; is a measurable function on R" withi =1, .- ,m. Note that T
is in fact an integral operator having a homogeneous radial kernel K of degree —mmn,

T(fu - fm)(x) I/nmf(x,ylw-,ym)fl(yl)---fm(ym)dyl---dym, (2:3)

where N
K, y1, -+ ym) = [x| 7™ K (x| yr, - x| ym).

By inserting K, (2.1) can be rewritten as

Co= [ KLy vm) ]‘[|yl W ) gy, dyy < oo, (2.4)

Whena =0,n=1,7; =0and A; = —1/g; withj = 1,--- ,m, Bényi and Oh [3] proved
that
HTHL‘H XX LM 5[4 = Cun.
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Recently, Batbold and Sawano [2] showed that for « # —1 and n = 1, there holds

||TH 1 qmym = Cm

LA (Rx%,x T )Xo x LamAm (Rxx,x~ 9 )—LIA(R,x%,x7)

For more about sharp constants of multiple integral inequalities with homogeneous ker-
nel, we refer to Hong, Yang et al. [4,7]. In this paper, we will sightly modify the method
in [2,3] and extend their results to the n-dimensional setting. Our results can be read as
the following two theorems.
957

Theorem 2.1. Let m € IN, f; be radial functions in L7 (R", |x|%, |x| 7 ),1 < g < o, —1/q <
A<0,1<gi<oo1/q=1/q1+ - +1/quy=m1+ - +ymand =1/q; < A; <0 with
j=1,---,m. Then

m
ITCfre o f) | an (o e 2y < € 1—[||f]||L,7 Ui (2.5)
j=1

IR x| 57T

where Cy, is the constant defined by (2.1) or (2.4). Moreover, if a # —n, —1/q; < A; <0, and
gA = qjAjwithj=1,--- ,m, then Cy, is the sharp constant in (2.5).

Theorem 2.2. Assume that the real parameters m, a, Cy,, 7y, Yir 49, q; withj=1,---,mas same
as in Theorem 2.1. Then we have

ITCfr o f) o qren g ) < Cn LTI 0 (2.6)
j=1

M (R ]2, |x| T )

Furthermore, if x # —n, —=1/q; < A; < 0and gA = qjAjwithj =1,--- ,m, then the constant
Cy in (2.6) is best possible.

By letting A; — —1/4;,j =1,--- ,m, we recover the result on Lebesgue spaces, which
is of independent interest.

Corollary 2.1. Let m € N, 1 < g < oo, 1/g=1/1+ - +1/qguw vy =71+ "+ Ym
¥ > -—n1<gq; <ocoandy; <nq(—1/q;+ 1) withj =1,---,m. Assume that the kernel K

satisfying
_n_mn _n_am
D :/R Ky oym)lyal 7yl o dyy - dym <00 (27)

Then

T um amym = Dp.
LAC(RM, x| 7)< Lam (RP [x| 1) — L9 (R, [x[7)
In order to prove Theorems 2.1 and 2.2, we need some definitions and lemmas. The
following lemma discovers the scaling properties of the power weighted central and non-

central homogeneous Morrey space.
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Lemma2.l. Let1 < g <oo,—1/qg <A <Oanda,y € R.Ift > 0and f € L9*(R", |x|*, |x|7)
(or MAM(R", |x|%, |x|7)), then we have

A—Tia(A+l
et q)||f||W(w,\x\w,|x|v)/ (2.8a)

Hf”MM(]Rn,|x‘al|x|w)- (2.8b)

Hf(t')||LQr)‘(][{ﬂ,‘x|al‘x"y) =t
nA—T+a(A+1
Hf(t')HM‘?:/\(H{n,|x‘allx|7) =t 7 a( q)

Proof. We only prove the scaling in L9 (R", |x|?%, |x|7), and the other one is similar. We
compute that

1F N o (e, )
A1

q q
= su X "‘dx) </ tx) || x 7dx>
aEIR”,II:{)>O </B(u,R)’ | B(4,R) (e 1]
A1 1
=it sup ([ peax) (o)
acR",R>0 \/B(aR) B(ta,tR)

=1 1
:tn/\_%+“()‘+%) sup </ |x]”‘dx> ! </ \f(x)!‘7|x]7dx> i
ac€R",R>0 B(ta,tR) B(ta,tR)
n)\f%ﬂx()wr%)

=t F W o -

This finishes the proof of Lemma 2.1. O

For convenience of this paper, we define the dilation index in (2.8a) and (2.8b) by
0% 1
d()t,q,zx,’y):—n/\—kﬁ—oc /\+§ )

Unlike the weighted Lebesgue space L7(|x|7), the weighted Morrey space
L9A(R", |x|*, |x|7) contains |x|~#(*4%7) and the weighted central homogeneous Morrey
space M7 (IR", |x|*, |x|7) contains |x|~4(947) for & # —n. More precisely,
Lemma22. Let1 < g <o, —1/g <A <O0andw,v € Rwitha # —n. Then we have
[T € LINRY, |x|® [x[")  and - |x| 1A € MIMRY, |x]%, [x]7).
Moreover,
1
I AT e g gy < max{]S" 17, ST (gA + 1) 1+ alt), (29a)

1
I - I EMAR | o ey < 1S (gA+1) 77 |n + | (2.9b)
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Proof. First, we consider (2.9a). Writing out the norm fully, we have

I - 1A o (oo o)

=1
—  sup (/ |x‘¢xdx) 1 </ ’x’d()\,q,ﬂé,’Y)q+'de) !
a€R”, R>0 \/B(a,R) B(a,R)

Since —1/q < A < 0, there exist 1 +gA < t < 1 such thatt/(1+gA) > 1. Thus, using
Holder’s inequality, we have

—d (Mg,
I - 17E AR | Lo o e o)
gA+1
,)H% 1 An)»tl at T )
< su (/ |x]”‘dx> 7/ ™1 “dx]  |B(a,R)|7
serr k>0 \JB(@R) [B(a,R)] Js(ar)
(gA4+1)(1-t)

ngAt qt 1_gA+1
< sup </ |x]<%+1><1—f>dx> |B(a,R)|1 .
a€R",R>0 \/B(a,R)

If |a| > 2R, then |x| > R. For —1/4 < A < 0, we have

(gA+1)(1—t)

e finay) "B, R
B(H,R) 7

(gA+1)(1-t) qA

SRHA|B(IZ,R)|7’7’ +%7 thrl S ’Sn—]’—)\n/\‘
If |[a| < R, then B(a,R) C B(0,3R), we have

—d X,
- (A,qa’y)||L‘7f/\(IR",\x\”‘,|x|7)

A1 1
<sup </ ]x|"‘dx> ! (/ |x|—d(A,q,a,v)q+vdx> !
R>0 \’/B(03R) B(0,3R)

+n
q

Notice that
=0.

1
—(a+n) </\+ q) —d(A,q,a,7)+ i
Thus, by the scaling argument, we have

—d
- (A'WX"Y)||L‘7'A(R",\x\"‘/|x\")

—A—%
()" ()
B(0,1) B(0,1

1 —A=
:|Sn—1|—A </ rtx-l—n—ldr)
0

‘x’a(qAJrl)Jrnq)\dx) I

1
(/1 r(a+n)(qA+1)—1dr> "
0

Q= —
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Assume first that « + n > 0. In this case, we have

_1
1+ A4 o (o e oy < 18" HHGA+1) 0 (n+ ).
If « + n < 0, then we calculate the integral and obtain

—d(Aga,
1| (MM)HW(Rnw,\xp)

1 —/\—% 1 %
S‘Snfl‘f/\ (/ rternldr) </ r(zx+n)(qx\+1)1dr>
0 0
A1 1
_|Sn 1| —A lim (/1 r:x—b—n—lm,) ! (/1 r(oc+n)(ﬁ/\+1)—ldr> i
e—0 €

:‘Snfl‘f (q/\+ 1)-%‘?1 + “’Ahr%<€a+n N 1>—/\—%<€(a+n)(‘1)\+1) _ 1)%
e—

The relation

a

1
(1) =p sb’lds—lgb/ st=lds —1=0
0

-1
fora> 0,0 <b<1landt > 1implies

€(N+ﬂ)(q/\+1) 1= (1/6) (a+n)(gr+1) _ 1< (€a+n _ 1>q)t+1‘

Thus,

lim((—ZMLn - 1)—/\—%(€(a+n)(q/\+l) N 1)% <1.
e—0 -

Noting the definition of LI*(R", |x|%, |x|7), we are done.
Now, we start to consider (2.9b). Since

—d
11 7 g0 (o e,

=1 1
=sup (/ \x!"‘dx) i (/ ‘x’d()\,q,ﬂt,’ﬂ%’?dx) !
R>0 \’/B(O,R) B(O,R)

Thus, using above argument, inequality (2.9b) holds.

O

The proof of Theorem 2.1 and Theorem 2.2 are almost the same. For simplification,

we only prove Theorem 2.2.

Proof of Theorem 2.2. Set

g0 =g [ o xewr,
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where w, = 27"/2/T(n/2) and j = 1,---,m. Obviously, g; (j = 1,...,m) are radial
functions and T(gy,,- - -, gf, ) (x) is equal to

/nm K(y1, ,ym)g1(|x|y1)gm(|x’ym)dy1dym

— [ Ky ym H( f,(\xuijaj) dys - dyn

Rnm ]:1 g] ‘ 1

m

1
=i Lo o e KO ) TLA el - -dym) 4ey -y

/=1

- Rm K(y1,. o ’ym)fl(‘x‘yl) e 'fm(|x‘ym)d]/1 - 'd]/m

=T(fr,- -+ fu) (%)

Using the generalized Minkowski’s inequality and Holder’s inequality, for j =1, -- ,m,
we conclude that

757
Hg]”M"J N (R x| j /)

| -} ;
<—su / x"‘dx) / </ x| x dx) dc;
s ([ s (Lo il )
—A—
§</ |x\"‘dx>
B(O,R)

1 1
(o s D a0
—If

q ﬂ]'
M (R x| T

Therefore one has that

ITCfre o fon) Lo e o ) < T (81, s m)ll 1o (e, )
T2 11511 gy T (gl Ui '

MO (R x|, %) T ) M (R x| x| 7T )

This implies the operator T and its restriction to radial functions have the same op-
erator norm in M%*(IR", |x|*,|x|7). So, without loss of generality, we assume that fj,
j=1,---,m are radial functions in the rest of the proof.

By Minkowski’s inequality and Holder’s inequality, we have

ITCfr e fo) o qro e )

j=1

MOA(RY, x|, |x[7)

m
< [ K ) TGl s sy
j=1

M (R, ] || )
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Using Lemma 2.1, we can deduce that
ITCfre o fo) Lo g g )
< Jyu K0 Tt TT 5

<Cmn HHfJH 'm] :

MU (R x|, x| 7T

. i
M (R, 1], x| 7T

Now, we will show that the operator norm of T is equal to C;,. Taking

qivi
fi(x) = |x‘*d(/\j'qj/a,%), i=1--,m,
we calculate that
T(flr te rfm)(x) = Cm|x’7d(/\rq/“r’¥),
which yields
HT(fl,- .. ,fm)HM‘%A(Rn,‘x'a"x"y =Cu H Hf]H "ﬂ/ )

MO (R x[2, x| T )
This finishes the proof of Theorem 2.2. O

Proof of Corollary 2.1. Let ¢’ be the conjugate number of g and ¢ € L7 (R",|x|?). Using
duality identity and Holder’s inequality, and making a change of variables, we obtain
the following sequence of inequalities

</W| (ylf v Ym \/ )| fCxly)] - [fn([xym) [ x|V dxdys - - - dym
= o\
< [ KO ) I o T ( / il 1] dx) dyr - dym
i=1
_D HgHM (R™,|x|7) Hfl” LR | . Hmemm (R" x| nmn). (2'10)

This proves the first part of our theorem.

For the second part, we will show that if the kernel K is nonnegative, then the operator
norm ||T|| of T is equal to D,,. For a positive integer N and i = 1, - - - ,m, we define the
sequences of functions gx and f; y by

n+y n_ 7

1
gn(x) = [x| 7 +”’NXB(01)( ) and finy=|x[ "% ¢ N XB(0,1) (%)- (2.11)

By a simple computation, we have

||
||gN||Lq (R7,[x|7) Hﬂ'NHLlﬂf(]Rn i,
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_HgNHLq (R™,|x|7) ||f1NH HmeH nm

L7 (R",|x \ Lm (R",|x| )
=N|[S" L.

Therefore, we have
HT(fl,N,'" , fmnN), 8N
= fon T [ Ky TL (el - dynt

i=1
m

_ — N 7/ K(ys, - N AN gy dy, d
=L oon L AR (E i dynd

i=1

L R R
_/01 x|~ "+N/ . Ky [T ™7 ™y dydx
m ,ﬁ,ﬁ+$
:—NS’H/ by / K(y1, - ym W iN gy dyy, | d
RV ((B(O,r))'” ey Ly, Y

n_ 7
NS [ Ky )|m|r_"7_7]+"%’“+n_ldr Cdr +iL» (2.12)
- 0 0 1, s 'm 1 j 1 m & ir .
j= 1=

where L; is defined as

L; =N|S"" 1\’”“/ r; N/ / (ri, -+ ,Tm)
] _

1

xl_{rj ANt drl- cdr; - drmdr;. (2.13)
]:

Here, dr; means that we do not integrate with respect to the variable r;. The last equality
follows from integration by parts and the observation that, if we let

W(Zl/ r,2 / / rl/ s )Hr] drl T dr}’l’l/

j=1
then
d
EW(X,' ,X)
oW x x (i) I /T BT
:Z (xl Ix)/ : K(7’1, , X, /rm)x % 1 q,N+n
i=1 azi 0 0
n 'yf 1
9; 49 ' gqiN -
X | |r]. ! ! drq---dry---dry,



38 Q. He, M. Wei and D. Yan / Anal. Theory Appl., 39 (2023), pp. 28-41

where the upper index (i) means that x replaces the variable r; in the i-th position. By
means of (2.12), we have

(TN, - --,f )gn>\

TN T Al gt = Wl

™)

1 U 7%77]+4N+ - i L;
f— n— m PR PR U ... —_—
=[8""| /0 /OK(T’L ) [ 17 dry drm+l;N\sn—1\' (2.14)

j=1
Let now E; denote the domain of integration in the integral L; defined by (2.13), that is,
Ei={(ri, -~ ,rm) €(0,00)" :1<7; <00, 0<1; <1y, j # i}

Taking into account that 1/41 + ---+1/g9, = 1/, we can bound the integrand of
L;/(N|S""1|) on E; as follows:

’,
1 m 7L,J+L+n,]
~ a q ' gqN
r; NK(ry, ,rm)l_[r].
j=1
~ e+ e gt
P1 pm
<r, K(ri, - rm) [ 1
j=1
- moo_n iy g
_, PN U
=r; "V K(r1, ,rm)Hr]
=1
1 WjJrnfl

For the integrand of the first term in (2.14) on [0, 1]™, we also have that

m ' m 71 7/+n 1
r1, Hr] <K rl, Hr]

j=1 j=1
The condition (2.1) of the kernel K is equivalent to
%) [ m ,1 'Yz+ 1
= |5n71|m/ .. / K(ry,- - Hrl " e dry, < oo (2.15)
0 0 il

From the assumption (2.15), we can use the Lebesgue Dominated Convergence theorem.
It implies that

lim =" ]’m[ e ar (2.16)
N N|S" 1] K- " Lo S

=
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and
; n—1m ! 1 - 7%7%+”71
I\ljlzgo|s | /O /O K(rl,...,rm)grj drl...drm
n_ 7
1 1 mo L in-1
:|S”_l|m/0 /0 K(ry,- - ,rm)Hrj ! dry -« drpy,. (2.17)
j=1

Furthermore, we have
m
01" (U Ei) = (0,0)",
i=1

and fori,j =1,---,m, any of the intersection sets [0, 1] N E;, E; " E;, i # j, has Lebesgue
measure zero in R™. Consequently, (2.14), (2.16) and (2.17) imply that

1Tl nn awm
LA(RY |x| T ) x Lim (R", [x| 4 )—LI(R",[x[7)
~ im (TN, o fuN) &)
N Ny o LN iy o Ul e
:Dm.
We are done. O

3 An application: sharp constant for the
Hardy-Littlewood-Pélya operator

By taking particular kernel K in operator T defined by (2.2) or (2.3), we can obtain sharp
bound for the Hardy-Littlewood-Pdlya operator on two power weighted central and non-
central homogeneous Morrey spaces. Our main results in this section are as followed.

i}
Theorem 3.1. Let m € IN, f; be radial functions in radial functions in LT (R", |x|*, |x| "7 ),
1 < g < co. Assume that m,a,q,q;, A, Ajwithj=1,--- ,mas same as in Theorem 2.1. Assume
also that

i 1
n/\—z—koc </\+1> <0 and n}\j—ﬁ—kzx <)\j+> > —n with j=1,---,m. (3.1)
q q q qj
Then P is bounded from T}, L9 (R™, |x|*, | x| ") to LY (IR™, |x|%, |x|7).
Furthermore, if & # —n, —1/qj < /\j and gA = qj/\j withj=1,---,m, then

1P

TIy L7 (R |, 1] )~ LaA (R x| x[7)

—|gn1pm mmngq I’”—[ a4,
—ngh+vy—a(gr+1) i nqqi(A; +1) —qid; +aq(q;A;j +1)
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Theorem 3.2. Assume that m, &, q,q;, A, Aj withj = 1,--- ,m are as same as in Theorem 3.1.
Then P is bounded from [TiL, M (R", |x|%, |x|77) to MIA(R™, |x|*, |x|7).
Furthermore, if x # —n, —1/5/]- <A and gA = s withj=1,---,m, then
1Pl

TIy M (R e, e )= M9 (R, ]2, x| 7)

=|gn-1)m mnq ﬁ q9; '
—ngh+vy—a(gh+1) i nqqi(Aj +1) —qiA; +aq(q;A; + 1)

Proof of Theorems 3.1 and 3.2. If we take the kernel

Ky1, -+ ym) = (max(1, |yal, - - [ym])) ™™

in Theorems 2.1 and 2.2, respectively, then all things reduce to calculating

1

Cm:/ i gy g
o ax (L, 1], ) mnn'% Vi dym.

Using the polar coordinates transformation, we obtain

[} (] 1 m_
_ n—1m L ]
Cm = |S | /O A (max(l,rl,- .. ,rm))mn HT’]

Since C;, was precisely calculated in [2, Lemma 3], we omit the details. Thus, we give the
sharp bounds in Theorems 3.1 and 3.2. O

4 A further result

In this section, we will give sharp bound for the n-dimensional Hausdorff operator on
weighted Morrey spaces.

Theorem 4.1. Let1 < g < oo, —1/qg < A < Oand a,y € R with a # —n. Assume that a
nonnegative function ® on R" satisfies

_ @)
F= R |y|n+A(a+n)+(a—'y)/qdy <

Then we have
e | L (e x| v) > LA (R, x|y = F
where the n-dimensional Hausdorff operator is defined by

Ho(F)(3) = [, T FCe/ Iyl
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Proof. The upper bound was obtained in Theorem 1.2 of [10]. To show the constant F is
best possible, we just need to take the test function

f(x) _ ’x|)\(a¢+n)+(a7'y)/q‘

By Lemma 2.2, Theorem 4.1 holds. O

Remark 4.1. Theorem 4.1 can be straightforwardly extended to the multilinear and the
product setting.
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