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Abstract. The effect of the thickness of the dielectric boundary layer that connects
a material of refractive index n1 to another of index n2 is considered for the propagation
of an electromagnetic pulse. A qubit lattice algorithm (QLA), which consists of a spe-
cially chosen non-commuting sequence of collision and streaming operators acting on
a basis set of qubits, is theoretically determined that recovers the Maxwell equations to
second-order in a small parameter ǫ. For very thin but continuous boundary layer the
scattering properties of the pulse mimics that found from the Fresnel discontinuous
jump conditions for a plane wave - except that the transmission to incident ampli-
tudes are augmented by a factor of

√
n2/n1. As the boundary layer becomes thicker

one finds deviations away from the discontinuous Fresnel conditions and eventually
one approaches the expected WKB limit. However there is found a small but unusual
dip in part of the transmitted pulse that persists in time. Computationally, the QLA
simulations still recover the solutions to Maxwell equations even when this parame-
ter ǫ → 1. On examining the pulse propagation in medium n1, ǫ corresponds to the
dimensionless speed of the pulse (in lattice units).
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1 Introduction

For some time now [8–10, 15, 18, 19, 22–29, 32, 33], we have been developing qubit lat-
tice algorithms (QLAs) as a computational scheme to efficiently solve certain nonlinear
physics problems. QLA is a mesoscopic representation of a non-commuting set of in-
terleaved collision and streaming operators on a basis of qubits which in the continuum
limit perturbatively recovers the desired partial differential equations. To validate QLA,
we [23–25] considered the exactly soluble one dimensional (1D) nonlinear Schrödinger
equation (NLS)

i
∂ψ

∂t
+

∂2ψ

∂x2
+|ψ|2ψ=0.

In developing our QLA for 1D NLS we introduced 2 qubits, q0 and q1, per lattice site
to represent the wave function ψ. We then determined a sequence of interleaved non-
commuting unitary collision and streaming operators acting on this 2-qubit basis which
in the continuum limit recovered the 1D NLS to second-order in a perturbation parame-
ter ǫ. The unitary collision operator locally entangles the 2 qubits at that spatial site, while
the unitary streaming operator moves this quantum entanglement throughout the lattice.
In QLA simulations, the role of ǫ was the amplitude of the wave function ψ = q0+q1.
Because of the symplectic structure of the algorithm, long-time integration of QLA suc-
cessfully and with great precision [23–25] reproduced multiple soliton-soliton collision
induced phase shifts. Because of the unitary structure of QLA there is some hope that the
algorithm can be successfully encoded onto an error-correcting quantum computer, par-
ticularly when the quantum information science community solves the problem of how
to encode nonlinearities (which in our 1D NLS QLA is the |ψ|2-term).

Using the tensor products one can readily determine a QLA for the (non-integrable)
3D NLS and perform quantum turbulence simulations [26–28, 32, 33] for the time evolu-
tion of the ground state wave function for scalar Bose-Einstein Condensate (BECs). Like
its distant cousin, the lattice Boltzmann algorithm, QLA is ideally parallelized on classi-
cal supercomputers and so we could perform long time integration to examine the triple
energy cascade on a spatial grid of 57603, with 2 qubits/lattice site. Moreover, since QLA
places low memory demands, this spatial grid was readily handled by using 11276 cores
on a 2008 Cray supercomputer. It is interesting to note that the standard computational
fluid dynamic (CFD) codes to simulate the 3D Hamiltonian BEC quantum turbulence
required the introduction of a dissipative term (presumably to suppress numerical insta-
bilities). To recover energy conservation at each time step, the CFD codes then required
specific energy input terms at these time steps to counter the dissipative term. In con-
trast, the 3D BEC QLA algorithm preserved the Hamiltonian structure of the original
equations and remained numerically stable.

We [15, 18, 19, 22, 29] then generalized the QLA to consider non-Abelian quantum
vortices in spin-2 BECs. These spinor BECs consist of 5 coupled 3D Gross-Pitaevskii (i.e,
NLS-like) equations and required just 10 qubits/lattice site. The parallelization of our
QLA on Argonne’s MIRA supercomputer saw no saturation with cores, even up to the
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full 786, 432 cores of the machine at that time.
With this foundation, we now turn to developing a QLA for plasma physics applica-

tions [13,14,16,17,20,21]. As a first step, we turn to considering the initial value problem
of the propagation of an electromagnetic pulse in a dielectric media. Currently we are in
the era of noisy qubit machines [12] - with quite short coherence times. Because we are
performing time-evolution initial value simulations, the quantum qubits required for our
QLA seems decades down the road in quantum computer machines.

1.1 Maxwell equations in a vacuum

There has been considerable interest in connecting the vacuum equations of electromag-
netism with a photonic wave function [1, 5, 7, 11]. For example, Majorana [6] postulated
that the vacuum Maxwell equations could be rewritten in the form of a Dirac equation
for the “wave function” F that is defined explicitly in terms of the electric and magnetic
fields E and B by (under appropriate normalization)

F=E−iB. (1.1)

This function F had been introduced earlier [2, 6] and is known as the Riemann-Silber-
stein-Weber (RSW) vector. The vacuum Maxwell equations can then be written in terms
of this RSW function

∂F

∂t
= i∇×F, ∇·F=0. (1.2)

Using the correspondence principle

E→ i
∂

∂t
, p→−i∇ (1.3)

Eq. (1.2) takes a quasi-Dirac form

(E−α·p)F=0, p·F=0, (1.4)

where the α are 3×3 Hermitian matrices, whose specific forms are not needed here. The
first part of Eq. (1.4) corresponds to the curl-parts of Maxwell equations while the second
part of Eq. (1.4) corresponds to the divergence equations.

Khan [4] introduced a 4-spinor Ψ using certain combination of the RSW vector

Ψ=











−Fx+iFy

Fz

Fz

Fx+iFy











, (1.5)

and showed that the two curl and the two divergence equations of Maxwell could be
written in a single 4-dimensional (4D) Dirac-like equation

∂Ψ

∂t
=−M·∇Ψ, (1.6)
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where the 4×4 vector matrices M are the tensor products of the Pauli spin matrices σ=
(σx,σy,σz) with the 2×2 identity matrix I2

M=σ⊗I2. (1.7)

Thus the M matrices are both unitary and Hermitian.
The vacuum 4-spinor Maxwell equation (1.6), written out explicitly, takes the form

∂

∂t









ψ0

ψ1

ψ2

ψ3









=− ∂

∂x









ψ2

ψ3

ψ0

ψ1









+i
∂

∂y









ψ2

ψ3

−ψ0

−ψ1









− ∂

∂z









ψ0

ψ1

−ψ2

−ψ3









, (1.8)

while the 4-spinor Dirac equation for a massless free particle is

∂

∂t









ψ0

ψ1

ψ2

ψ3









=
∂

∂x









ψ3

ψ2

ψ1

ψ0









+i
∂

∂y









−ψ3

ψ2

−ψ1

ψ0









+
∂

∂z









ψ2

−ψ3

ψ0

−ψ1









. (1.9)

Now Yepez [30,31] has introduced a sequence of interleaved non-commuting unitary col-
lision and streaming operators that perturbatively recover the Dirac equation to second-
order accuracy. We [13, 14, 16, 17, 20, 21] then generalized these non-commuting unitary
collision and streaming operators in order to generate a qubit lattice algorithm (QLA) for
the solution of the vacuum Maxwell equation (1.8). Interestingly, these QLA’s are fully
unitary and linear and so can, in principle, be readily encoded onto error-correcting qubit
quantum computers. Since we are interested in time evolution initial value algorithms for
Maxwell equations one will have to await the development of quantum qubit hardware
that has sufficiently long coherence times.

1.2 Maxwell equations in scalar dielectric media

Khan [4] has also extended his matrix representation of Maxwell equations to include
propagation in a scalar dielectric medium ε(x), with refractive index n(x)=

√

ε(x). The
medium inhomogeneity will couple the two possible electromagnetic pulse polarizations
leading us to introduce two 4-spinors

Ψ
±=











−F±
x ±iF±

y

F±
z

F±
z

F±
x ±iF±

y











(1.10)

with generalized RSW vectors

F±=
√

ǫE±i
B√
µ0

, (1.11)
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(µ0 is the vacuum magnetic permeability). The Maxwell equations, with no free sources,
are

∇.D=0, ∇.B=0,

∇×E=−∂B

∂t
, ∇×H=

∂D

∂t
(1.12)

with D = ε(x)E and B = µ0H. The evolution equations for the coupled 4-spinor RSW
vectors [4] are

∂

∂t

(

Ψ
+

Ψ
−

)

=−vph







M.∇−Σ.
∇ǫ

4ǫ
+iMzΣ.

∇ǫ

2ǫ
αy

+iMzΣ
∗.
∇ǫ

2ǫ
αy M∗.∇−Σ

∗.
∇ǫ

4ǫ







(

Ψ
+

Ψ
−

)

, (1.13)

where vph=(ǫµ0)−1/2 is the pulse phase velocity, with the 4×4 matrices

α=

(

0 σ

σ 0

)

, Σ=

(

σ 0
0 σ

)

. (1.14)

The time evolution of the 8-spinor (Ψ+,Ψ−) is no longer fully Hermitian [6] - several of
the matrices (which depend on ∇ǫ) are anti-Hermitian. For 1D pulse propagation in the
z-direction, the 8-spinor system, Eqs. (1.13), reduces to

∂

∂t









ψ0

ψ1

ψ2

ψ3









=− 1

n(z)

∂

∂z









ψ0

ψ1

−ψ2

−ψ3









+
n′(z)

2n2(z)









ψ0−ψ7

−ψ1−ψ6

ψ2+ψ5

−ψ3+ψ4









,

∂

∂t









ψ4

ψ5

ψ6

ψ7









=− 1

n(z)

∂

∂z









ψ4

ψ5

−ψ6

−ψ7









+
n′(z)

2n2(z)









ψ4−ψ3

−ψ5−ψ2

ψ6+ψ1

−ψ7+ψ0









. (1.15)

To develop a QLA for the 1D z-propagation of a pulse in a dielectric medium we need
to determine the specific collision and streaming operators required so that Eqs. (1.15)
are recovered perturbatively to 2nd order accuracy. The collision operator must couple
two qubits at a given lattice site so that we have quantum entanglement, and then that
entanglement is spread throughout the lattice by the streaming. If we look at the time
evolution of any of the 8-spinor ψi in Eqs. (1.15), we find that it is coupled to the z-
derivative ∂ψi/∂z of the same spinor component ψi. Hence, for a QLA for z-propagation
we are forced into a 16-qubit representation. This coupling of the same spinor component
in ∂/∂t with ∂/∂z can be traced to the diagonal property of the Pauli σz matrix. This
does not occur in the QLA for x- or y-propagation of the 8-spinor since different spinor
components of ∂ψi/∂t couple with ∂ψj/∂x and ∂ψj/∂y, with j 6= i [13, 17, 20, 21]. Thus for
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x- and y-propagation we can directly work with an 8-qubit set that is just the 8-spinor
set of Khan’s Maxwell representation. To develop QLA for 2D and 3D simulations, the
interleaved sequence of collide-stream operators in each of the Cartesian directions will
act consecutively on the chosen qubit basis. It is thus more convenient to work with a
16-qubit basis by simply generalizing the 8-spinor set to the 16-qubit space.

1.3 QLA for 1D Propagation in the z-direction

We connect the 16-qubit field Q=(q0 . . .q15)
T to the 8-spinor field (ψ0 . . .ψ7)T by

ψ0=q0+q2, ψ1=q1+q3, ψ2=q4+q6, ψ3=q5+q7,

ψ4=q8+q10, ψ5=q9+q11, ψ6=q12+q14, ψ7=q13+q15. (1.16)

The QLA on the 16-qubit basis consists of an interleaved sequence of collision (C) and
streaming (S) operators

U=S−CS+C†.S+CS−C†,

U=S+C†S−C.S−C†S+C,
(1.17)

where C† is the adjoint of the collision C. The operator S+ streams the 8-qubit subset
[q0,q1,q4,q5,q8,q9,q12,q13] one lattice unit in the positive z-direction. Notice that these
qubits are each the first qubits on the right hand sides of Eqs. (1.16). S− streams these
8 qubits one lattice unit in the negative z-direction. Similarly for the streaming operator
S for the other 8 qubit which are the second qubits on the right hand sides of Eqs. (1.16).

The spatial and time derivatives on the 8-spinor field are determined from U.UQ(t).
In particular, an appropriate 16×16 unitary collision operator C couples the qubits [q0−
q2, q1−q3], [q4−q6, q5−q7], [q8−q10, q9−q11], [q12−q14, q13−q15] and has 4×4 block diag-
onal structure

C(θ)=









C4(θ) 0 0 0
0 C4(θ)

T 0 0
0 0 C4(θ) 0
0 0 0 C4(θ)

T









(1.18)

with the 4×4 submatrix

C4(θ)=









cosθ 0 sinθ 0
0 cosθ 0 sinθ

−sinθ 0 cosθ 0
0 −sinθ 0 cosθ









, (1.19)

and collision angle θ

θ=
ǫ

4n(z)
(1.20)

for some small perturbation parameter ǫ. This sequence of collide-stream operators will
generate, in the continuum limit, the required first term ∂/∂z in Eqs. (1.15) to O(ǫ2).
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To recover the two n′(z) terms in the 8-spinor Eqs. (1.15) we introduce a particular
potential collision operator for each term. Since this first n′(z) term has exactly the same
couplings to the spinor-components as the ∂/∂t and ∂/∂z terms, the appropriate QLA
potential collision operator will again have this 4×4 diagonal block structure

P1Z(γ)=









P4(γ) 0 0 0
0 P4(γ) 0 0
0 0 P4(γ) 0
0 0 0 P4(γ)









(1.21)

with

P4(γ)=









cosγ 0 −sinγ 0
0 cosγ 0 −sinγ

−sinγ 0 cosγ 0
0 −sinγ 0 cosγ









(1.22)

for some collisional angle γ. It should be noted that since the matrix P4(γ) is symmetric,
the final 16×16 potential operator P1Z(γ) is Hermitian, but not unitary.

The second potential collision operator is unitary. It has diagonal structure in its two
8×8 matrices

P2Z(γ)=

[

P81(γ) P82(γ)
P82(γ) P81(γ)

]

, (1.23)

where

P81(γ)=

























cosγ 0 0 0 0 0 0 0
0 cosγ 0 0 0 0 0 0
0 0 cosγ 0 0 0 0 0
0 0 0 cosγ 0 0 0 0
0 0 0 0 cosγ 0 0 0
0 0 0 0 0 cosγ 0 0
0 0 0 0 0 0 cosγ 0
0 0 0 0 0 0 0 cosγ

























, (1.24)

and

P82(γ)=

























0 0 0 0 0 0 0 −sinγ
0 0 0 0 0 0 −sinγ 0
0 0 0 0 0 −sinγ 0 0
0 0 0 0 −sinγ 0 0 0
0 0 0 sinγ 0 0 0 0
0 0 sinγ 0 0 0 0 0
0 sinγ 0 0 0 0 0 0

sinγ 0 0 0 0 0 0 0

























. (1.25)

To recover the 8-spinor Eqs. (1.15) to O(ǫ2), we choose

γ= ε2 n′(z)
2n(z)2

. (1.26)
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1.4 Initial conditions for the 16 qubit QLA

We are given the initial electromagnetic field components of the pulse. From the RSW
transformation, Eq. (1.10), we then have the initial 8-spinor (ψ0 . . .ψ7). The initial condi-
tion for the 16-qubit Q(t=0) is then chosen

q0=q2=ψ0/2, q1=q3=ψ1/2, q4=q6=ψ2/2, q5=q7=ψ3/2,

q8=q10=ψ4/2, q9=q11=ψ5/2, q12=q14=ψ6/2, q13=q15=ψ7/2. (1.27)

1.5 Coding of the 16 qubit QLA

The final 16 qubit QLA that is used for the time evolution simulations is

Q(t+δt)=P2Z(γ).P1Z(γ).U.U.Q(t). (1.28)

The initial condition for the 16 qubit vector Q(t = 0) is determined as detailed in Sec-
tion 1.4. The unitary matrices U and U, Eq. (1.17), multiply this initial Q(t= 0). This is
then multiplied by the Hermitian matrix P1Z(γ) and the unitary matrix P2Z(γ). Eq. (1.28)
then yields the 16 qubit vector at t= 1 : Q(t= 1). Iterating this procedure till a specified
toutput, the original 8-spinor field (ψ0 . . .ψ7) is immediately obtained from

ψ0=q0+q2, ψ1=q1+q3, ψ2=q4+q6, ψ3−q5+q7,

ψ4=q8+q10, ψ5=q9+q11, ψ6=q12+q14, ψ7=q13+q15.

From these 8-spinors (ψ0 . . .ψ7) we can determine the E and B fields at time t= toutput.

2 Effect of dielectric boundary layer thickness on reflection and

transmission of a 1D pulse

Our earlier QLA simulations [13, 20] of an electromagnetic pulse propagating from one
dielectric (with refractive index n1) to another (with refractive index n2) at normal in-
cidence were performed when the boundary layer thickness connecting the two media,
∆BL, was very much less than the width of the incident pulse ∆pulse: ∆BL ≪ ∆pulse. In
this case we found that the ratio of the reflected to initial field was the same as from
the Fresnel jump conditions for a boundary value problem of a plane wave normally incident
onto a dielectric discontinuity [3]. However, the transmitted to incident field amplitude
is augmented from the plane wave Fresnel results by a factor

√
n2/n1

Ere f l

Einc
=

n1−n2

n1+n2
,

Etrans

Einc
=

2n1

n1+n2

√

n2

n1
. (2.1)

As the QLA simulations repeatedly stamped out Eq. (2.1) for many different simulations
with various choices of n1 and n2 and different pulse geometries, we [13] developed
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a theory for Gaussian pulses that validates Eq. (2.1). A back-of-the-envelope argument
also shows that since the reflected pulse preserves all the reflected Fresnel plane wave
characteristics, the reflected pulse energy must be conserved. Since the total energy of the
scattering is conserved, then we must have the same conservation of transmitted energy.
However, the speed of propagation of the transmitted pulse and its width are reduced
by a factor of n2/n1. Hence, the amplitude of the transmitted pulse must increase by the
corresponding factor of

√
n2/n1.

2.1 Case 1 : ∆BL ≪∆pulse with ǫ=0.3

We consider the case of n1 =1 (for z<4990) and n2 =2 (for z>5010), with the boundary
layer to pulse width (see Fig. 1) of ∆BL/∆pulse = 0.1. The vertical dashed line in Fig. 1 is
the mid point of the boundary layer.

The perturbation parameter ǫ, introduced into the QLA collision angles Eqs. (1.2) and
(1.26), is chosen to be ǫ = 0.3. In the QLA simulation units, the time increment δt = 1,
Eq. (1.27).

As the pulse propagates into the boundary layer, part of it will be transmitted and
part of it will be reflected. Away from the boundary layer, asymptotically, the transmitted
amplitudes have By=(n2/n1)Ex, while the reflected amplitudes have By=−Ex>0 (Fig. 2).
From QLA simulations, we find

Ere f l

Einc
=−0.32,

Etrans

Einc
=0.94. (2.2)

This is in excellent agreement with Eq. (2.1), while the Fresnel plane wave boundary
conditions would yield Etrans/Einc = 0.67. Note that the width of the reflected pulse is
equal to that of the incident pulse, but twice that of the transmitted pulse ∆re f l =2∆trans,
and the transmitted pulse travels at half the speed of the reflected pulse.

(a) dielectric boundary layer (b) initial Ex,By profile

Figure 1: (a) A dielectric boundary layer connecting medium n1=1, for z<4990 to medium n2=2 for z>5010.
The vertical dashed line indicates the midpoint of the boundary layer, (b) The initial vacuum fields (in our units)
Ex =By with ∆pulse=200. Initially By =n1Ex and the two field profiles overlay each other. Ex - blue, By - red.
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(a) reflected and transmitted fields (b) blowup of the profiles

Figure 2: (a) The transmitted and reflected fields with ∆BL ≪∆pulse after 5000 time iterations. (i.e., at t =

5k). (b) A blowup showing the Gaussian nature of the reflected and transmitted profiles. Note there is no
disturbance between the reflected and transmitted profiles. Ex - blue, By - red.

2.2 Case 2 : ∆BL ≈∆pulse with ǫ=0.3

When the boundary layer thickness is on the order of the pulse width, Fig. 3 (a), both the
transmitted and reflected field amplitudes are significantly affected. In Fig. 3 (b), at time
t=4k much of the pulse is within this boundary layer 4900<z<5100. There is developing
characteristics of the n2 =2 region as the magnetic field amplitude is basically twice that
of the electric field amplitude for z>5000 while part of the pulse for z<5000 is showing
the characteristics of the n1=1 region with a significant range having Ex <0.

By t=5k, the reflected and transmitted pulses are approaching their quasi-asymptotic
state. The reflected pulse has a lower amplitude and greater width than that predicted
by the Fresnel plane wave conditions, Fig. 4 (a). Of some interest is the trailing edge of
the transmitted pulse which exhibits a slight dip with both By < 0 and Ex < 0, but with
By/Ex ≈2, Fig. 4 (b).

In Fig. 5 we see the asymptotic profiles for the reflected and transmitted pulses.
Ere f l/Einc =−0.12 while the Fresnel plane wave solution yields −0.33. Around z≈ 5210
one finds a section of the transmitted pulse that has By < 0,Ex < 0 with the magnetic to
electric field peaks being in the 2:1 ratio, as might be expected in the n2 = 2 dielectric
region. This feature is asymptotically stable and will continue traveling as a part of the
transmitted pulse. It is not present when ∆BL ≪∆pulse, Fig. 2 (b).

2.3 Case 3: ∆BL ≪∆pulse with ǫ=0.3

We now consider the case when the boundary layer thickness ∆BL≈2000, and ∆pulse≈200,
Fig. 6 (a). As the pulse propagates, Figs. 6 (b)-8 (b), the peak amplitude ratio of By/Ex

basically scales as the value of the local refractive index at that point. In essence, the time
evolution of the pulse is similar to WKB. There is a very low order reflected pulse - but
its peaks are 2 orders of magnitude less than the transmitted pulse (Fig. 8 (b)).
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(a) thicker dielectric boundary layer (b) pulse overlapping the boundary layer

Figure 3: (a) The dielectric boundary layer now extends 4900< z<5100, with ∆BL≈∆pulse. (b) At t=4k, the
pulse is overlapping the boundary layer. The basic 2:1 ratio of the transmitted magnetic to transmitted electric
field is being established for z>5000. Ex - blue, By - red. In the reflected pulse, a significant portion already
has Ex <0 since n1<n2.

(a) pulse at t=5k (b) blowup of pulse at t=5k

Figure 4: (a) The transmitted and reflected fields when ∆BL≈∆pulse. The reflected amplitude is almost a factor

of 3 lower than the reflected Fresnel plane wave solution and the reflected pulse is significantly broader. (b) A
blowup showing asymmetry in both the reflected and transmitted profiles. There is a small region within the
transition layer at which the transmitted pulse exhibits the unusual behavior of Bz<0 and Ez<0. Ex - blue, By

- red.

(a) pulse at time t=6k (b) blowup of the pulse at t=6k

Figure 5: (a) The transmitted and reflected fields with ∆BL≪∆pulse. Ex - blue, By - red. (b) A blowup showing
the asymmetric nature of the reflected and transmitted profiles. At the back end of the transmitted pulse we
observe a small region in which both By <0 and Ex <0 and with By ≈2Ex.
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(a) refractive index with ∆BL ≫∆pulse (b) pulse at t=2k

Figure 6: (a) The refractive index for the case when ∆BL≈2000 and ∆pulse≈200. (b) By 2k iterations the pulse
has moved into a slightly non-vacuum dielectric state, as seen by the amplitude peak in By ebing greater than
that in Ex. Ex - blue, By - red.

(a) pulse at t=4k (b) pulse at t=6k

Figure 7: (a) Pulse at t=4k, with larger effects of the non-vacuum dielectric on the fields. (b) By 6k iterations
the pulse has moved into a more dielectric region, as seen by the amplitude peak in By being greater than that
in Ex. Ex - blue, By - red.

(a) pulse at t=10k (b) blow-up of the pulse at t=10k

Figure 8: (a) By 10k iterations the pulse has moved into the constant n2 state, as seen by the amplitude peak
in By being greater than that in Ex. Ex - blue, By - red. (b) A blow-up of the fields at t= 10k, showing the
very weak WKB-like reflection of the pulse Ex - blue, By - red.
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2.4 Case 4 : ∆BL ≈∆pulse with ǫ=1.0

QLA is a perturbation theory, based on the parameter ǫ introduced into the various col-
lision operators, Eqs. (1.20) and (1.26). Moreover, QLA recovers the Maxwell equations
only to errors O(ǫ2). In our earlier QLA for solitons [9, 10, 23–25] the perturbation pa-
rameter was related to the amplitude of the wave function ψNLS. Since the evolution
equations for solitons/quantum vortices involve a |ψNLS|2 nonlinearity, we [16] found
that QLA simulations strongly deviated away from the exact nonlinear soliton dynamics
if ǫ was chosen too high - typically ǫ≈0.45. These deviations took the form of background
turbulent noise along with distorted and disintegrating soliton shapes.

Here we are developing a QLA for the linear Maxwell equations and find that the ba-
sic Maxwell equations are still being modeled accurately to ǫ=1.0. The essential physics
is retained (Fig. 9) but there is a slight deviation in the pulse propagation speed. Indeed
ǫ is nothing but the (dimensionless) pulse speed in medium 1, i.e., the (dimensionless)
speed of light in medium 1. Of course, for higher ǫ the corresponding integration time
tint is reduced, with ǫ tint= const. For ǫ=0.15, in 20k time steps the pulse peak location is
delayed by 7 lattice units. For ǫ= 0.3, by t= 10k, the pulse peak is delayed by 16 lattice
units. This delay increases for increasing ǫ: for ǫ=0.6, the peak is off by 45 lattice units,
and by 125 lattice units for ǫ=1.0.

(a) ǫ=0.3, t=20k (b) ǫ=1.0, t=6k

Figure 9: (a) A blowup of the reflection-transmission pulses for the case ∆BL ≈ ∆pulse at t = 20k and with

ǫ= 0.3. (b) The corresponding pulses but now for ǫ= 1.0 and at t= 6K. For this higher ǫ there is a slight
decrease in the QLA pulse propagation speed. Ex - blue, By - red.

3 Summary and conclusions

In this paper we have examined the effect of the boundary layer thickness on the 1D nor-
mal propagation of a pulse in a dielectric medium. For very sharp boundary layers con-
necting the two dielectric regions, our initial value QLA simulations give reflected and
transmitted electromagnetic fields in agreement with the boundary value Fresnel plane
wave conditions - except that the ratio of the transmitted to incident field amplitudes is
augmented by a factor

√

(n2/n1). As the thickness of the boundary layer, ∆BL, increases
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the reflected pulse becomes more and more modified. It becomes smaller in amplitude
as well as increasing in width till we approach the WKB-like solution when ∆BL≫∆pause.
A somewhat unsuspected feature was seen in the trailing edge of the transmitted pulse.
We noticed a region in the n2 dielectric in which both By<0 and Ex <0. This ‘dip’ is sta-
ble and propagates away undistorted from the boundary layer along with the rest of the
transmitted pulse. We have also performed a QLA run in which n1=2>n2=1. In region
n1 we initially have By = 2Ex. The transmitted pulse now has By = Ex, but again with
a ‘dip’ in the transmitted fields with By=Ex <0. The Poynting flux has been determined
for each of the QLA runs, and we find energy is conserved with normalized variations
on the order of 1.35×10−3.

Our interest in the effects of the boundary layer thickness on scattering stems from
some of our 2D QLA simulations [16] where we have considered a plane 1D electromag-
netic pulse scattering from a small dielectric cylinder. For ∆BL ≪∆pulse we have found
quite complicated structures being emitted from the dielectric cylinder due to the inter-
nal bouncing from the cylinder walls. For example, in Fig. 10, we have a 1D plane pulse
propagating to along the x-axis. In the middle of the plane is a 2D dielectric cylinder

Figure 10: The scattering from a dielectric cylinder centered at x=L/2,z=L/2 of a plane 1D pulse propagating
along the x-axis. L is the number of lattice sites in each direction. Plotted is the electric field Ey(x,z,t) at time
t=20k. The multiple circular ring disturbances arise from the internal scattering and then transmission out of
the dielectric cylinder regime.
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of internal refractive index n2 = 3 whose diameter ≫∆pulse. The pulse speed within the
dielectric cylinder is reduced by a factor of 3 with respect to the speed in the vacuum.
However, within the cylinder the pulse will bounce and then undergo reflection and
transmission at the dielectric cylinder boundaries. This accounts for the multiple circular
wave fronts for the electric field being emitted at various times in the QLA simulation.
Fig. 10 is a snapshot of Ey(x,z) at time t= 20k. The 1D pulse can be seen as a dark thin
strip to the right of the dielectric cylinder.

Finally we comment on the fact our QLA is not fully unitary. This loss of full unitarity
is not a consequence of the QLA itself, but something inherent to the RSW representation
of Maxwell equations in an inhomogeneous medium [4]. The offending potential colli-
sion operator in QLA is a sparse Hermitian matrix and there is significant research in the
quantum information community on how to handle such sparse Hermitian matrices in
qubit architecture.
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