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Abstract. In this paper, we introduce a stabilizer free weak Galerkin (SFWG) finite
element method for second order elliptic problems on rectangular meshes. With
a special weak Gradient space, an order two superconvergence for the SFWG finite
element solution is obtained, in both L? and H' norms. A local post-process lifts
such a P, weak Galerkin solution to an optimal order Py, solution. The numerical
results confirm the theory.
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1. Introduction

A new stabilizer free weak Galerkin method is developed to solve the following
second order elliptic problem:

—Au=f in Q, (1.1
u=g on 01, (1.2)

where Q is a bounded polygonal domain in R?, which can be subdivided into rectan-
gular meshes.

The weak Galerkin (WG) finite element methods introduced in [24, 25] provide
a general finite element technique for solving partial differential equations. The novelty
of the WG method is the introduction of weak function and its weakly defined deriva-
tives. The weak functions possess the form of v = {vg, v, } with v = vy representing the
value of v in the interior of each element and v = v, on the boundary of the element.
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The weak derivative Vv for a weak function v is defined as distributions. WG method
uses polynomials (P (T), Ps(e), [P,(T)]?) to approximate (vg, vy, V,v) accordingly. The
WG methods have been applied for solving various PDEs such as Sobolev equation, the
Navier-Stokes equations, the Oseen equations, time-dependent Maxwell’s equations,
elliptic interface problems, biharmonic equations, etc, [1,5-17,21-23,26,27,30].

For some special combinations of the WG element (Py(T), Ps(e), [P:(T)]%), stabi-
lizer is no longer needed in the corresponding weak Galerkin finite element formula-
tions, which leads to a stabilizer free weak Galerkin method. The stabilizer free weak
Galerkin method was first introduced in [28] on polygonal/polyhedral meshes and
then has been applied for the second order problems, the Stokes equations and the
biharmonic equation [2,18,29].

This paper has two purposes:

1. Developing a new SFWG method with an order two superconvergence for the
problem (1.1)-(1.2).

2. Providing necessary theory for a subsequent paper, order two superconvergent
conforming discontinuous Galerkin method on rectangular meshes.

A WG element (P (T), Pyy1(e), BDM[T]) on rectangular mesh is used in this sta-
bilizer free weak Galerkin finite element method. We prove that the SFWG method
converges to the true solution of (1.1)-(1.2) with a convergence rate two orders higher
than the optimal order in both an energy norm and the L? norm theoretically and nu-
merically. We further define a local post-process which lifts such a P, weak Galerkin
solution to an optimal order Py solution. It is proved and numerically verified.

2. The weak Galerkin finite element scheme

Let 75, be a partition of the domain (2 consisting of rectangles. Denote by &, the set
of all edges in 7, and let 5,? = &,\ 09 be the set of all interior edges. For every element
T € Ty, we denote by hr its diameter and the mesh size by A = maxrcr, hr for 7p,.

For a given integer k > 1, let V}, be the weak Galerkin finite element space associ-
ated with 7, defined as follows:

Vi, = {v = {vo,vp} : vo|r € Px(T),vp|le € Pry1(e),e COT, T € 771} (2.1)
and its subspace V! is defined as
V;? ={v:v € Vyuv =0 on 00Q}. (2.2)

We would like to emphasize that any function v € V}, has a single value v, on each edge
e €&y
On each rectangle T' € 7}, the BDM finite element space is defined by [4]

BDMj,q)(T) = P 1(T)? & curlz® 2y & curley®+2.
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For v = {vg, v} € V3, a weak gradient Vv is a piecewise vector valued polynomial
such that on each T' € 7, Vv € BDM,11(T) satisfies

(Vwv,q@)r = —(v0, V - Q)7 + (vp,q - m)or, Vq € BDM (7). (2.3)

For simplicity, we adopt the following notations:

(v,w), = Y (v,w)r = Z/vwdx

TeTh T€ETh
(v,w)aT;, = Z Z UV, W)e Z / vwds.
TET, eCOT TeT;, 7 OT

Algorithm 2.1 (Weak Galerkin algorithm). A numerical approximation for (1.1)-(1.2)
can be obtained by seeking u;, = {ug,us} € V}, satisfying u, = Qpg on 002 and the
following equation:

(Vwun, Vov) = (f,v0), Yo = {vg, v} € V. 2.4)

3. Well posedness
For any v € V}, a semi-H !-like semi-norm is defined as follows:
loll” = (Vuwv, Vi) (3.1
We introduce a discrete semi-H' norm as follows:
013, = (Yoo, Vo) 7;, + (b (vo — v), vo — Ub>a7—h- (3.2)
For any function ¢ € H'(T), the trace inequality holds true
lell2 < C (htlellz + hrlIVel7) - (3.3)
Next we will show that || - || also defines a norm for V0 by proving the equivalence of

Il - |l and || - ||1,5 in V3. For q € H(div,(2), by [4], we define a BDM interpolation IIj,
such that IT,q|r € BDM, (T’ for T' € T, satisfies

<(q - th) : n7pl<:+1>e = 07 Vpk—l—l € Pk‘-i—l(e)a e C aT, (34)
(g — kg, pr—1)r = 0, Vpr_1 € [Pe_1(T))*. (3.5)

Lemma 3.1 ([4]). Let q € H*2(Q)2.

la — hal| < ChF2|qlko, (3.6)
|V - (a—1q)|r < Ch?“lv |17 (3.7)
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Lemma 3.2. There exist two positive constants C7 and Cs such that
Cillolln < loll < Callollin, Vo € Vi (3.8)
Proof. We prove the upper bound first. By the definition of weak gradient (2.3),
letting w = Vv, we have
ol = " —(v0, V- Vo) 7 + (05, Voo - )y
TeT,

= Z (VUO, VwU)T + <Ub — o, va : n>8T
TETh

< > (Yoo, Vu)r + [los — vollor [ Vwvlor
T€Th

lop — vollar
<> <HVUO||T + 75— | [Vwollr < Cafv]linllvll;
TeT, Chy

where we applied the trace inequality (3.3) and the inverse inequality.

To prove the lower bound, we need to choose an appropriate q in the definition of
weak gradient (2.3) so that the above inequality can be reversed. Let q € BDM[;4.1)(T)
be defined, similar to the BDM interpolation IIj, in (3.4)-(3.5), by

(@ — Vv, pr—1)r =0, Vpy_1 € P (T)?, (3.9)
<q ‘n— h;l(vo — vb),pk+1>e =0, VYpg+1 € Prra(e), ecC OT. (3.10)

By (3.4)-(3.5), (3.9)-(3.10) define a unique q. Further, by finite dimensional norm
equivalence and scaling argument,

lall < Cllvl1,b- (3.11)
Using this q in (2.3), we have
[0l = (Yo, Vo), + (hz' (vo — vb), vo — Ub>a7-h
= (Vvo,q)7, + (vo — vp, q - n)arT;,
= (Vv )7, < [lollllall < Gy Hlvllloflp:

The lemma is proved. O

Lemma 3.3. The weak Galerkin finite element scheme (2.4) has a unique solution.
Proof. Let ug) and uf) be the two solutions of (2.4), then ¢, = ug) — uf) e VP
would satisfy the following equation:
(Vwen, Vuv) =0, Yo e VL.
Then by letting v = ¢, in the above equation, we arrive at
llenll* = (Vawens Vawen) = 0.

It follows from (3.8) that ||ep |1, = 0. Since || - |14 is @ norm in V)2, one has g5, = 0.
This completes the proof of the lemma. O
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4. Error estimates in energy norm

We start this section with a useful lemma. First let Qy and ), be the two element-
wise defined L? projections onto P;(T') and P, 1(e) on each T € 7Ty, respectively. De-
fine Qnu = {Qou, Qpu} € Vj,. Let Qy be the elementwise defined L? projection onto
BDM|j,41)(T') on each T' € Ty,.

Lemma 4.1. Let ¢ € H'(QQ), thenon any T € Ty,

Vu(@Qro) = QnVé. (4.1)

Proof. Using (2.3) and integration by parts, we have that for any q € BDM;4.1)(T),
asV-qe Py(T)and q-n € Pyiq(e),

(Vuw@Qné,a)r = —(Qod, V - a)r + (Qpd,q - n)or
—(¢,V-q)r + (6,9 - n)or
= (Vo,a)r = (QuVo,q)r,

which implies the Eq. (4.1). O

Next we derive an equation for the error e, = Qpu — uyp,.

Lemma 4.2. For any v € V)2, the following error equation holds true:
(Vwen, Vo) = £(u,v), (4.2)

where
l(u,v) = (Vu—QpVu) - m, vy — Ub>87‘h‘

Proof. For v = {vg, vy} € VY, testing (1.1) by vy and using the fact that
<vu -1, Ub>8Th = Oa

we have
(VU, VUO)Th - <vu ‘1, v — /Ub>(97—h = (f’ UO)' (43)

It follows from integration by parts, (2.3) and (4.1) that

(vu? VUO)'Th = (thu? VUO)'Th
= —(vo, V- (QhVu))n + <Uo, QrVu - n>a7’h

= (QnVu, Vyv)7, + (vo — vy, QuVu - n)ar,
= (VwQnu, Vyv) + (vo — v, QuVu - n)or; . (4.4)

Combining (4.3) and (4.4) yields

(VuwQnpu, V) = (f,v0) + £(u,v). (4.5)
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The error equation follows from subtracting (2.4) from (4.5),
(Vwen, Vv) = L(u,v), Yo VL.
This completes the proof of the lemma. O
Next we will bound ¢(u, v).

Lemma 4.3. For any w € H*"3(Q) and v = {vo, vy} € V;, we have
|e(w,v)| < CRE 2wl 3]l (4.6)

Proof. Using the Cauchy-Schwarz inequality, the trace inequality (3.3), and (3.8),
we have

|€(U}, ’U)| = Z <(VU} - thw) -n, vy — vb>8T

TeTh

< IVw = QuVuwllar|lve — vellor
T€ETh
: :

< (3 wrlvw-@uvwle) (X it - wlr )

TeT T€Th
< CR* 2 wlisfoll-

We have proved the lemma. O

Theorem 4.1. Let u, € Vj be the SFWG finite element solution of (2.4). Assume the
exact solution u € H*+3(Q). Then, there exists a constant C such that

lQnu — unll < CH*2[uliys. (4.7)
Proof. By letting v = e, in (4.2), we have
leall* = (Vuwen, Vwen) = [€(u, en)]. (4.8)

It follows from (4.6) that
llenll? < CRF*2Juliisllenll,

which implies (4.7). O

5. Error estimates in L2 norm

The duality argument is used to obtain L? error estimate. Recall e, = {eq, e} =
Qnu — up,. The corresponding dual problem seeks ® € H} (1) satisfying

—A®d =¢; in Q. (5.1)
Assume that the following H?2-regularity holds:
[@]l2 < Clleoll. (5.2)



236 X. Ye and S. Zhang

Theorem 5.1. Let uy, € V), be the SFWG finite element solution of (2.4). Assume that the
exact solution v € H ’”3({2) and (5.2) holds true. Then, there exists a constant C such

that
1Qou — ug|| < CR**3|ulpys. (5.3)

Proof. Testing (5.1) by eg, we obtain
leol* = =(V - (V®), e0)
= (V®,Veo)r, — (VP -n,e0 —ep)a7;, (5.4)

where we have used the fact (V® - n,e;)s7, = 0. Setting u = ® and v = ¢}, in (4.4)
yields
(VCI), VeO)Th = (VthCI), Vweh) + (@hV‘I’ ‘n,ep — eb>8’7’h- (5.5)

Substituting (5.5) into (5.4) and using (4.2) give
||60H2 = (Vweh, vahq)) + <(@th) - vq)) ‘N, e — eb>a7-h
= (Vwen, VuQr®) — U(®,ep) = L(u, Qr®) — (D, ep). (5.6)

Using the triangle inequality, we obtain

0w, Qu®)| = | D ((Vu—QuVu) - n, Qo® — Qu®),,
TETh
< > Ve - QuVulorl|Qu® — Qu®|lor
TETh
< ( > hTHVU_thuH??)T> 2( > hit Qo - ‘I’H%T> G
TETh TeTh

From the trace inequality (3.3) we have
1

2
( S Qo - <1>||%T) < Ch Qo — & < ChID,
TeT),

1
2
( > hr||Vu - @hvuugT> < C||Vu — QpVaul| < CR*2|uljs.
TeTh

Combining the above two estimates with (5.7) gives

10, Qn®)| < CHE* a0 . (5.8)
It follows from (4.6) and (4.7),
6(®, en)| < Ch||®[|2flenl] < CP 3 |ulyy5]|®]2. (5.9)

Substituting (5.8) and (5.9) into (5.6) yields
lleol* < Ch*3|ulips]| @2

Using the estimate above and the regularity assumption (5.2), we obtain the error
estimate (5.3) of order two superconvergence. O
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6. A locally lifted P, , solution

In last section, we proved that the P, weak Galerkin solution is two-order super-
convergent, i.e., it converges at order k + 3 in L2 norm. We define a local post-process,
which lifts the P, solution to an optimal-order Py, o solution.

On each element 7', we compute a solution , € Ilpc, Pyyo(T) by

(Vip, — Vyup, Vo)r =0, Vv € Piyo(T) \ Po(T), (6.1)
(ﬂh — Ug, U)T =0, You € Po(T). (6.2)

We show next the uniqueness of the above square linear system of equations (6.1)-
(6.2). When u;, = 0, (6.1) implies ||Viy|/> = 0 and 1y is a constant on each T. By
(6.2), the constant is zero. As the linear system is square and finite dimensional, the
uniqueness implies the existence of solution.

Theorem 6.1. Let u € H}(Q) N H*3(Q) be the exact solution of (1.1)-(1.2). Let
up € Vj in (6.1)-(6.2) be the weak Galerkin finite element solution of (2.4). Let uy €
HreT, Pet2(T) be locally lifted solution of (6.1)-(6.2). Then there exists a constant C
such that

lw — tnllo < CRF3|ulgys. (6.3)

Proof. In the proof, we use II;, to denote the elementwise L? orthogonal projection
onto either Hye7, Py(T) or Hrer, [Pr(T))%. Eq. (6.2) means that

Moty = Mouy,

where Il is again the L? orthogonal projection onto Py(7"), on 7. We consider the
error in two parts

lw = @nllo < o (u — @n)llo + (1 — o) (u — @n)fo-
For the P, part of error, by (5.3) we have
Mo (u = ) llo = [ITo (M — up)llo < CMxu = upflo < CH**3Julpys.
For the Py-orthogonal error, we separate it further into two

1(I — o) (u — tp)|Jo < Ch|IV (u— ip)|lo
< Ch|IV(u — g rou)|lo + Ch|IV(Hgq2u — ap) o
< ChEF3\ulpys + Ch||V (gyou — p)]o-

By (4.1), i.e., Iz 1Vu = V,,Qpu, (6.1), i.e., Vi, = Vyup, and (4.7), letting
q= V(Hk-‘rQu - ZA/Jh)’
we get

IV (ppou — tp) 1§ = (V(ppou — u),q) + (Vo — i1 Va, @) + (V@i — Vs, q)
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< ([V(Mgpou — u)l|o + [|[Vu — g1 Vaullo + [|Qru — unll) lallo
< CH 2 g 3| V (2w — ) o-

Combining above three inequalities yields (6.3). O

7. Numerical experiments

Consider problem (1.1) with @ = (0,1)2. The source term f and the boundary
value g are chosen so that the exact solution is

u(z,y) = sin7x sin ry. (7.1)

Function f and ¢ in (1.1)-(1.2) cannot be valid to all functions for nonlinear PDEs. The
conditions for valid f and ¢ are discussed in [3,19, 20].

We use the uniform square meshes shown as in Fig. 1. The results of P;, P, P; and
Py WG methods are listed in Table 1. Two orders of superconvergence are obtained for
new element, in both L? and H!-like norms.

As we have order two superconvergence, we lift each P, weak Galerkin finite el-
ement solution wu, to a Py o solution 4, elementwise. From Table 2, the lifted Py o
solution converges at order k + 3 in L? norm, two orders above that of the original P,
solution (which is from solving a linear system of equations.)

Table 1: The error and the convergence rate for problem (7.1).

Grid | |Qnu — us|| | Rate | [|Quu — || | Rate
The P, weak Galerkin element

6 0.770E-06 | 4.00 0.170E-03 3.00
0.482E-07 | 4.00 | 0.213E-04 | 3.00
8 0.301E-08 | 4.00 | 0.266E-05 | 3.00
The P, weak Galerkin element
5 0.600E-06 | 4.99 | 0.112E-03 | 3.99
6 0.188E-07 | 5.00 0.703E-05 4.00
7 0.586E-09 5.00 0.440E-06 4.00
The P; weak Galerkin element
4 0.170E-05 5.98 0.221E-03 4.98
5 0.267E-07 | 5.99 | 0.693E-05 | 5.00
6 0.419E-09 | 5.99 | 0.217E-06 | 5.00
The P, weak Galerkin element
3 0.160E-04 | 6.93 | 0.138E-02 | 5.94
4 0.127E-06 | 6.98 | 0.218E-04 | 5.99
5 0.995E-09 6.99 0.341E-06 6.00

N
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Table 2: The errors of P, WG solution u; and lifted Pyyo solution 4, and the convergence rate for

problem (7.1).

Grid | |lu—usnl| | Rate | |ju—sl | Rate
P; WG solution | Lifted P; solution

6 0.175E-02 | 2.00 | 0.102E-05 | 4.00
7 0.438E-03 | 2.00 | 0.636E-07 | 4.00
8 0.109E-03 | 2.00 | 0.397E-08 | 4.00
P, WG solution | Lifted P, solution

5 0.271E-03 | 3.00 | 0.674E-06 | 4.99
6 0.339E-04 | 3.00 | 0.211E-07 | 5.00
7 0.424E-05 | 3.00 | 0.659E-09 | 5.00
P3; WG solution | Lifted Ps5 solution

4 0.237E-03 | 3.98 | 0.176E-05 | 5.98
5 0.149E-04 | 4.00 | 0.275E-07 | 6.00
6 0.930E-06 | 4.00 | 0.432E-09 | 5.99
P, WG solution | Lifted Py solution

3 0.700E-03 | 4.95 | 0.161E-04 | 6.93
4 0.221E-04 | 4.99 | 0.128E-06 | 6.98
5 0.691E-06 | 5.00 | 0.100E-08 | 6.99

Acknowledgments

Figure 1: The first three levels of square grids used in the computation.

Xiu Ye was supported in part by National Science Foundation Grant DMS-1620016.

References

[1] A. AL-TAWEEL, S. HUSSAIN, X. WANG, AND B. JONES, A Py — Py weak Galerkin finite ele-
ment method for solving singularly perturbed reaction—diffusion problems, Numer. Methods

Partial Differ. Eq. 36 (2017), 213-227.

[2] A. AL-TAWEEL, X. WANG, A note on the optimal degree of the weak gradient of the stabilizer-

free weak Galerkin finite element method, Appl. Numer. Math. 150 (2020), 444-451.



240
[3]

[4]
[5]

[6]
[7]
[8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]

[25]

X. Ye and S. Zhang

C. ALVES, G. ERCOLE, M. DANIEL, H. BOLANOS, Ground state solutions for a semilinear
elliptic problem with critical-subcritical growth, Adv. Nonlinear Anal. 9 (2020), 108-123.
F. BREZZI AND M. FORTIN, Mixed and Hybrid Finite Elements, Springer-Verlag, 1991.

G. CHEN, M. FENG, AND X. XIE, A robust WG finite element method for convection—dif-
fusion-reaction equations, J. Comput. Appl. Math. 315 (2017), 107-125.

M. CuUI AND S. ZHANG, On the uniform convergence of the weak Galerkin finite element
method for a singularly-perturbed biharmonic equation, J. Sci. Comput. 82 (2020), 5-15.
B. DEKA AND P. ROy, Weak Galerkin finite element methods for parabolic interface problems
with nonhomogeneous jump conditions, Numer. Funct. Anal. Optim. 40 (2019), 259-279.
F. GAo, J. Cul, AND G. ZHAO, Weak Galerkin finite element methods for Sobolev equation,
J. Comput. Appl. Math. 317 (2017), 188-202.

X. Hu, L. Mu, AND X. YE, A weak Galerkin finite element method for the Navier-Stokes
equations on polytopal meshes, J. Comput. Appl. Math. 362 (2019), 614-625.

W. HUANG AND Y. WANG, Discrete maximum principle for the weak Galerkin method for
anisotropic diffusion problems, Commun. Comput. Phys. 18 (2015), 65-90.

H. L1, L. MU, AND X. YE, Interior energy estimates for the weak Galerkin finite element
method, Numerische Mathematik 139 (2018), 447-478.

R. LIN, X. YE, S. ZHANG, AND P. ZHU, A weak Galerkin finite element method for singularly
perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal. 56 (2018), 1482—
1497.

J. L1u, S. TAVENER, AND Z. WANG, Lowest-order weak Galerkin finite element method for
Darcy flow on convex polygonal meshes, SIAM J. Sci. Comput. 40 (2018), 1229-1252.

J. LU, S. TAVENER, AND Z. WANG, The lowest-order weak Galerkin finite element method
for the Darcy equation on quadrilateral and hybrid meshes, J. Comput. Phys. 359 (2018),
317330.

X. L1iu, J. LI, AND Z. CHEN, A weak Galerkin finite element method for the Oseen equations,
Adv. Comput. Math. 42 (2016), 1473-1490.

L. Mu, Pressure robust weak Galerkin finite element methods for Stokes problems, SIAM J.
Numer. Anal. 42 (2020), B608-B629.

L. Mu, J. WANG, AND X. YE, A least-squares based weak Galerkin finite element method for
second order elliptic equations, SIAM J. Sci. Comput. 39 (2017), A1531-A1557.

L. Mu, X. YE, AND S. ZHANG, A stabilizer free, pressure robust and superconvergence weak
Galerkin finite element method for the Stokes equations on polytopal mesh, SIAM J. Sci.
Comput. 43 (2021), A2614-A2637.

N. PAPAGEORGIOU, V. RADULESCU, AND D. REPOVS, Nonlinear Analysis — Theory and Meth-
ods, Springer Cham, 2019.

H. QUOIRIN AND K. UMEZU, An elliptic equation with an indefinite sublinear boundary
condition, Adv. Nonlinear Anal. 8 (2019), 175-192.

S. SHIELDS, J. LI, AND E. A. MACHORRO, Weak Galerkin methods for time-dependent
Maxwell’s equations, Comput. Math. Appl. 74 (2017), 2106-2124.

L. SONG, S. ZHAO, AND K. L1U, A relaxed weak Galerkin method for elliptic interface prob-
lems with low regularity, Appl. Numer. Math. 128 (2018), 65-80.

C. WANG AND J. WANG, Discretization of div-curl systems by weak Galerkin finite element
methods on polyhedral partitions, J. Sci. Comput. 68 (2016), 1144-1171.

J. WANG AND X. YE, A weak Galerkin finite element method for second-order elliptic prob-
lems, J. Comput. Appl. Math. 241 (2013), 103-115.

J. WANG AND X. YE, A weak Galerkin mixed finite element method for second-order elliptic
problems, Math. Comp. 83 (2014), 2101-2126.



WG Finite Elements 241

[26]
[27]
[28]
[29]

[30]

J. WANG, X. YE, AND S. ZHANG, Numerical investigation on weak Galerkin finite elements,
Int. J. Numer. Anal. Mod. 17 (2020), 517-531.

J. WANG, Q. ZHAI, R. ZHANG, AND S. ZHANG, A weak Galerkin finite element scheme for
the Cahn-Hilliard equation, Math. Comp. 88 (2019), 211-235.

X. YE AND S. ZHANG, A stabilizer-free weak Galerkin finite element method on polytopal
meshes, J. Comput. Appl. Math. 372 (2020), 112699.

X. YE AND S. ZHANG, A stabilizer free weak Galerkin method for the biharmonic equation
on polytopal meshes, SIAM J. Numer. Anal. 58 (2020), 2572-2588.

T. ZHANG AND T. LIN, A posteriori error estimate for a modified weak Galerkin method
solving elliptic problems, Numer. Methods Partial Differ. Eq. 33 (2017), 381-398.



