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Abstract. A phase field fracture model for quasi-brittle material in 2D is implemented

in Abaqus software. The phase field damage variables 0 and 1 define undamaged and

damaged regions of the material and simplify crack surface tracking. On the other hand,

one has to use a fine spatial discretization for the smooth distribution of the phase field

variable regularized by a small length scale parameter, which makes the method com-

putationally expensive. At the fully damaged regions both the stiffness and stress reach

zero. The displacements and damage are determined by a staggered approach, and a few

standard benchmark fracture problems are used to demonstrate the work of the phase

field fracture model under consideration.

AMS subject classifications: 65M10, 78A48

Key words: Phase field method, fracture, sharp crack, staggered approach and nonlinear finite
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1. Introduction

Fracture in engineering materials and structures is one of the most common modes of

failure, and it is essential to check for a possible fracture and to prevent the progress of

cracks in the material while designing a structure. Therefore, it is important to understand

the failure behavior of various materials. Since experimental tests can be expensive and

sometimes impossible to do, numerical models have gained a lot of interest in recent years.

To predict the fracture failure, various numerical methods and approaches have been de-

veloped. Griffith [12] proposed a theory of brittle fracture, where the crack propagation is

determined based on the energy requirements to create new crack surfaces. Nevertheless,

this theory cannot predict the crack nucleation and other phenomena such as crack kinking

and branching.
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Numerical fracture models can be considered in continuous and discontinuous settings

by using the tools and methods of continuum damage mechanics, linear elastic fracture me-

chanics [12], and cohesive zone models [10]. Such approaches require additional criteria

for crack initiation and propagation [6] and for crack branching [7]. Recent developments

are focused on non classical theories, making use of length scale parameters to regular-

ize solutions. They have built-in criteria to predict the onset of crack and produce mesh

independent results for crack propagation. Hence, there is an increased interest and popu-

larity for approaches such as the phase field models [9,16] and peridynamic models [13].

The phase field models are based on the energy minimization principle and can automati-

cally predict the crack initiation, growth and coalescence. Such models can also show the

branching and merging of different cracks without using any additional criteria. The 2D

model considered in this paper can be easily extended to three-dimensional ones since nu-

merical implementation is straightforward in any dimension. Along with these advantages,

the method has a few drawbacks. In particular, it requires a fine mesh to accurately solve

the gradient terms present in the model, so that the computational cost is high. Besides, in

the case of dynamic loading, the problem of the crack tip leads to inaccurate prediction of

the crack velocity.

The first phase field model for modeling fracture – the isotropic second-order phase

field fracture model – has been developed by Francfort and Marigo [11] by considering

the regularized approximation given by Bourdin et al. [9]. Amor et al. extended it an ani-

sotropic model, where the elastic energy was split into volumetric and deviatoric parts in

order to prevent compressive loading cracks. A higher order phase field model proposed by

Borden et al. [8], improved the computational cost of numerical methods. Karthik et al. [14]

compared the phase field and gradient enhanced damage models. Kasirajan et al. [15]

applied a C1-continuous natural neighbor Galerkin method to the phase field models and

showed its advantages over the standard finite element method. An extension to solve the

dynamic loading in brittle materials using a hybrid phase field method [1] was studied by

Raghu et al. [17]. We also note an exhaustive literature on finite element methods used in

material phase field models given in [18].

Although the phase field method has been used by several authors for predicting crack

propagation, few of the standard functions are improvised to match the actual behaviour.

The degradation function for the strain energy g(φ) was taken as a linear (1 − φ) or

quadratic function (1−φ)2. But, in order to correct the energy degradation in actual com-

putations, we have considered a higher order polynomial — viz. (1−10φ3+15φ4−6φ5).

The use of this polynomial can be better explained by Fig. 1. It is known that for lower

damage values located in the interval [0,0.3], the degradation functions used in literature

show up to 50% in the energy reduction. It is not possible in actual scenario since only 10%

of energy can be reduced up to this point. However, such dynamics is correctly represented

by the degradation function chosen in this paper. A hybrid formulation is employed where

the computational time is reduced by considering the history parameter H in the phase field

evolution equation and the linear balance of momentum equation is retained for solution

of displacements. This also leads to the effective use of staggered algorithm for solving the

phase field method.



164 S. Karthik, A. Nasedkina, A. Nasedkin and A. Rajagopal

Figure 1: Energy degradation functions.

Thus unlike linear and quadratic functions, the degradation function considered in this

paper, reduces the elastic energy only after a certain crack phase field value is reached. The

phase field models are based on the minimization of the free energy functional with respect

to displacement vectors uuu and the crack phase fieldφ to obtain partial differential evolution

equations. These governing equations are solved by finite element approximations in the

weak form to obtain residual vectors. The linearization of the residual vectors produces

a stiffness matrix. They are solved by the Newton-Raphson method.

The structure of the paper is as follows. Section 2 contains the phase field model pro-

posed. Section 3 is devoted to the numerical implementation and describe an algorithm for

solving phase field models. A few standard examples in Section 4 demonstrate the works

of the phase field model under consideration.

2. A Phase Field Model

Fig. 2 shows a body B with a sharp crack Γ and diffused crack Γℓ. The external vol-

ume boundary is denoted by ∂B . The crack propagation in the body is governed by the

minimization of the total energy functional

E(uuu, Γ ) =ψs +ψ f −P, (2.1)

where ψs, ψ f and P respectively denote the strain energy, fracture energy, and the energy

of external forces defined by

ψs =

∫

B

ψ0(ǫǫǫ) dV, ψ f =

∫

Γ

Gc dA, P=

∫

B

bbb ·uuu dV +

∫

∂B

ttt ·uuu dA, (2.2)

whereψ0 is the elastic energy density, Gc the Griffith’s critical energy release rate — cf. [19],

ǫǫǫ the strain, and bbb and ttt are the body and surface forces, respectively.
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2.1. Regularization of a sharp crack

Fig. 2 shows the crack phase field variable φ(xxx , t), which is used to trace the crack

propagation in the material such that the value φ = 0 represents the undamaged phase

and the valueφ = 1 represents the damaged phase (crack) and there is a smooth transition

between the two phases in the interface. The regularization of the sharp crack Γ to diffused

crack Γℓ is done as

Γℓ =

∫

B

γ(φ,∇φ) dV, γ(φ,∇φ) =
1

ℓ

�

φ2(1−φ)2 +
ℓ2

2
|∇φ|2
�

, (2.3)

where γ(φ,∇φ) is the energy density function for the crack surface per unit volume of the

body [16]. The length scale parameter ℓ defines the width of the diffused crack Fig. 2.

B

Γℓ ∂B

ℓ

ℓℓ
x

φ(x)

1

Figure 2: Crack phase field representation.

Considering the vanishing length scale ℓ→ 0, the regularized crack Γℓ converges to a sharp

crack Γ . For a sharp crack in the body, the crack phase field φ(xxx) is derived by minimizing

the diffused crack Γℓ with respect to the variable φ. This leads to the Euler equation with

Neumann boundary conditions — viz.

2φ + 4φ3 − 6φ2 − ℓ2△φ = 0, xxx ∈B ,

∇φ · nnn= 0, xxx ∈ ∂B .

Substituting the energy density function for crack surface γ(φ,∇φ) of (2.3) in the fracture

energy term ψ f of (2.2) yields

ψ f =

∫

Γ

Gc dA=

∫

B

Gcγ(φ,∇φ) dV. (2.4)

2.2. Governing differential equations

Since the phase field model uses a diffused crack smeared by the function φ(xxx), the

elastic energy density function in the Eq. (2.2) degrades with the evolution of phase field
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variable φ. This process can be modelled by introducing an energy degradation function

g(φ) such that

ψs =

∫

B

g(φ)ψ0(ǫǫǫ) dV, (2.5)

where

g(φ) = (1− 10φ3 + 15φ4 − 6φ5) + k, ψ0(ǫǫǫ) =
1

2
λ tr2(ǫǫǫ) +µ tr(ǫǫǫ2)

with the Lame’s constants λ, µ and a positive constant k that ensures a small stiffness value

of kψ0 when a fully damaged phase is reached for the phase field variable φ = 1.

The strain energy density functionψ0 in the Eq. (2.5) propagates the crack even under

compression. To facilitate the crack propagates under tension only, the elastic energy has

to be decomposed into tensile and compressive parts. In addition, the degradation of the

energy must be applied to tensile part of the elastic energy only — i.e.

ψs =

∫

B

g(φ)ψ+0 (ǫǫǫ) dV +

∫

B

ψ−0 (ǫǫǫ) dV. (2.6)

The terms ψ+
0

andψ−
0

are defined by the spectral decomposition of the strain tensor ǫǫǫ, viz.

ψ±0 (ǫǫǫ) =
1

2
λ〈tr(ǫǫǫ)〉2± +µ tr

�

ǫǫǫ2
±

�

,

where

ǫǫǫ± :=

δ
∑

i=1

〈ǫ i〉±nnn
i ⊗ nnni, 〈·〉± :=

�

(·)± | · |
�

/2,

and δ ∈ {1,2,3} is the dimension of the problem, tr(ǫǫǫ) =
∑δ

i=1 ǫii is the strain tensor trace

or its first invariant, whereas ǫ i and nnni are the principal strains and the principal strain

directions. We also note that 〈·〉± are the Macaulay brackets, so that 〈a〉+ is a filter for

positive a and 〈a〉− a filter for negative a.

Substituting the strain energy of (2.6), fracture energy of (2.4), and the energy related

to external forces of (2.2) into the total energy functional (2.1) yields

E(uuu,φ) =

∫

B

g(φ)ψ+0 (ǫǫǫ) dV +

∫

B

ψ−0 (ǫǫǫ) dV

+

∫

B

Gcγ(φ,∇φ) dV −

∫

B

bbb ·uuu dV −

∫

∂B

ttt ·uuu dA. (2.7)

Minimizing the total energy functional E(uuu,φ) from (2.7) with respect to the displace-

ment field uuu and the phase field φ leads to the evolution equations

∇ ·
�

g(φ)∂ǫǫǫψ
+
0 + ∂ǫǫǫψ

−
0

�

+ bbb = 0, (2.8)

Φφ − Gcℓ∇
2φ = 0, (2.9)
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where

Φ

�

φ,ψ+0
�

=
2Gc

ℓ
(2φ2 − 3φ + 1) + 30(2φ2 −φ3 −φ)ψ+

0
,

and ∂ǫǫǫ is the partial derivative with respect to the strain ǫǫǫ.

We observe that the tensile part of the elastic energy ψ+
0

drives the evolution of the

phase field φ. However, this form of the Eq. (2.9) does not ensure the increase of the phase

field variable φ along with the loading history. A history parameter H was introduced by

Miehe et al. [16] to enforce the irreversibility of cracking. This parameter presents the

maximum of the tensile part of the elastic energy in the loading history — i.e.

H(xxx , t) = max
t∈[0,T]

ψ+0 (ǫǫǫ). (2.10)

Replacing ψ+
0

in the Eq. (2.9) by the history parameter H, we write the phase field

evolution equation as

Φ(φ, H)φ − Gcℓ∇
2φ = 0. (2.11)

3. Numerical Implementation

The introduction of the history parameter H allows to decouple the evolution equa-

tions and use a staggered approach in approximation methods. However, the splitting of

the elastic energy density brings a non-linearity to the Eq. (2.8) and leads to a higher com-

putational time. In order to overcome this problem, a hybrid formulation is used, so that

the linear balance of momentum equation is retained for the evolution of displacement and

the evolution of the phase field φ is still driven by the tensile part of the elastic energy den-

sity ψ+
0

. As the result, the final strong form of the governing equation for displacements

can be written as

∇ ·
�

g(φ)∂ǫǫǫψ0

�

+ bbb = 0. (3.1)

We also note that in order to prevent the crack surface interpenetration, at any point xxx the

phase field φ should be set as zero if ψ+
0
<ψ−0 .

3.1. Weak form of governing equations

The weak form of the governing equations (3.1) and (2.11) is obtained by multiplying

them with weight functions (wu and wφ) and integrating over the bodyB , i.e.

∫

B

wu

�

∇ · [g(φ)∂ǫǫǫψ0] + bbb
	

dV = 0,

∫

B

wφ
�

Φ(φ, H)φ − Gcℓ∇
2φ
�

dV = 0.

Note that since ψ0 = (1/2)ǫǫǫ : C : ǫǫǫ, we have ∂ǫǫǫψ0 = C : ǫǫǫ, where C is a constitutive

matrix. Thus the final weak form is
∫

B

�

g(φ)∇wuC : ǫǫǫ +wubbb
�

dV = 0, (3.2)
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∫

B

�

Φ(φ, H)wφφ + Gcℓ∇wφ∇φ
�

dV = 0. (3.3)

3.2. Finite element approximations

The unknown displacement field and the phase field are approximated by the standard

Bubnov-Galerkin method with the same shape function for both variables. The domain B

is discretized into nel finite elements B e
0

and each element has n number of nodes. Note

that for each finite elementB e
0

we use the following approximations:

uuu=

n
∑

I=1

NNN I ·uuuI , φ =

n
∑

I=1

NIφI ,

ǫǫǫ =

n
∑

I=1

BBBu
I ·uuuI , ∇φ =

n
∑

I=1

BBB IφI ,

where NNN I is the shape function diagonal matrix having nodal shape functions NI as compo-

nents, BBBu
I the standard strain-displacement matrix, BBB I the derivative of the shape function,

and uuuI and φI are the displacement and phase field values at the nodes. Similar approxi-

mations are used for the weights wu and wφ and their gradients ∇wu and ∇wφ .

Substituting the above approximations in the Eqs. (3.2) and (3.3) leads to the residual

vectors

RRRu
I
=

nel

A
e=1

∫

B e
0

�

g(φ)(BBBu
I
)T :C : ǫǫǫ +NNN T

I
· bbb
�

dV,

RRR
φ
I =

nel

A
e=1

∫

B e
0

�

Φ(φ, H)N T
I φ + GcℓBBB

T
I φ
�

dV,

with the symbol A representing the assembling operator such that all local element data

are assembled from 1 to nel .

The stiffness matrices corresponding to uuu and φ are obtained by the linearization of the

residual vectors and have the form

KKKuu
I J =

∂RRRu
I

∂uuuJ

=

nel

A
e=1

∫

B e
0

�

g(φ)(BBBu
I )

T :C : BBBu
J

�

dV,

KKK
φφ
I J =

∂RRR
φ
I

∂ φJ

=

nel

A
e=1

∫

B e
0

�

Φ(φ, H)N T
I NJ + GcℓBBB

T
I : BBBJ

�

dV.

These stiffness matrices are symmetric and positive-definite, so that all eigenvalues are

positive [4]. The order of these matrices corresponds to the total unknowns in the complete

solution. The stiffness matrix should not be singular because in this case it is not possible

to construct the inverse matrix and obtain the solution.



Framework and Numerical Algorithm for a Phase Field Fracture Model 169

The linearized finite element system below, have to be solved by the Newton-Raphson

method
�

KKKuu 0

0 KKKφφ

��

∆uuu

∆φφφ

�

= −

�

RRRu

RRRφ

�

.

Although this method has been already applied to the above nonlinear system, the presence

of the gradient term requires the use of a fine mesh in the path of crack propagation and

increases the computational time. To speed up the convergence, one can exploit the Jacobi-

free Newton-GMRES method [2] or the Newton-HSS iteration method [3,5]. It has not been

done here but will be considered elsewhere.

3.3. Staggered algorithm

A robust staggered algorithm is used to solve the coupled equilibrium equations (3.1)

and the phase field evolution equation (2.11). We use the displacement, history parameter

and the crack phase field variable from the previous step n as the input, whereas at the

first step the initial values are employed. At the next step, we use the history parameter

Hn+1 obtained from the Eq. (2.10). As soon as the history parameter is updated, algebraic

equations

[KKKφφ]{∆φφφ} = −{RRRφ}

are solved by the iterative Newton-Raphson method until the phase field variable

φφφn+1 =φφφn +∆φφφ

converges. Establishing this phase field variable, we solve the algebraic equations

[KKKuu]{∆uuu}= −{RRRu}

by the Newton-Raphson iteration scheme and determine the displacement

uuun+1 = uuun +∆uuu.

Thus, the converged values of displacement and phase field variable are obtained for the

(n+ 1) step. The procedure is repeated until convergence. The final reaction force versus

displacement curve and fracture pattern based on crack phase field is plotted.

Algorithm 3.1 Staggered Approach.

Result: Compute un+1un+1un+1, Hn+1 and φn+1φn+1φn+1.

Initialize displacement ununun, history parameter Hn and phase field fracture φnφnφn.

while ST EP ≤ NST EP do

Update history field Hn+1.

Compute KKKφφ and RRRφ .
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if |RRRφ | > tolerance then

Solve for φφφ using [KKKφφ]{∆φφφ} = −{RRRφ};

φφφn+1 =φφφn +∆φφφ;

else

φφφn+1 =φφφn.

end if

Compute KKKuu and RRRu.

if |RRRu| > tolerance then
Solve for uuu using [KKKuu]{∆uuu} = −{RRRu};

uuun+1 = uuun +∆uuu;
else

uuun+1 = uuun.

end if

end while

4. Phase Field Fracture Model

To demonstrate the work of the proposed phase field model, a standard benchmark

problem has been considered. We consider a plane strain plate specimen having a single

edge crack at one side in the first example and a plate with an asymmetric double edge crack

on both sides in the second example to show the different types of failure encountered.

4.1. Plate with single edge crack

A plate specimen with dimensions of 1×1mm is considered having a single edge crack

at the center of length 0.5mm is subjected to tensile loading as shown in Fig. 3.

Figure 3: Geometry of the plate with single edge crack.
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Figure 4: Mesh pattern of the plate with single edge crack.

The material properties taken are Young’s modulus E = 210 kN/mm2, Poisson’s ratio µ =

0.3 and Gc = 0.0027 kN/mm. A sufficiently refined unstructured mesh of 18,868 elements

is considered for the analysis as shown in Fig. 4. The reaction force versus the displacement

graph is plotted for various length scales with the displacement and time steps constant

as shown in Fig. 5. Two different length scales l = 0.0025mm and l = 0.015mm were

considered for the analysis. It is observed that in the reaction force versus displacement

plot the peak reaction force values are decreasing with increasing length scale and also the

displacement at failure is decreasing. The crack paths are as shown in Figs. 6 and 7 for the

various length scales considered. The contour index for the damage variable φ is provided
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Figure 5: Reaction force-Displacement plot for the plate with single edge crack.
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Figure 6: Crack propagation in plate with single edge crack for l = 0.0025mm.

Figure 7: Crack propagation in plate with single edge crack for l = 0.015mm.

next to the figures. The contour value of 1 indicates the crack. It can be observed that

the width of the crack increases with increasing length scale in conjunction with the crack

phase field regularization as described in Section 2.

4.2. Plate with asymmetric double edge crack

Consider the 40×40mm plate with the edge cracks of length 8mm on both sides having

an eccentricity of 2mm between them at the center and subjected to the tensile loading as

in Fig. 8. As far as the material characteristics are concerned, we use the Young’s modulus

E = 210 kN/mm2, the Poisson’s ratio µ = 0.3, and Gc = 0.0027 kN/mm. The refined
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Figure 8: Geometry of the plate with asymmetric double edge crack.

unstructured mesh of 27,720 elements shown in Fig. 9, and the graphs of reaction force

versus displacement for various length scales with constant displacements and time steps

are presented in Fig. 10. We note that this trend is similar to the one in the previous

example. However, at higher length scales the peak force and the displacement at failure

are almost the same. The crack paths for various length scales are shown in Figs. 11-13, with

the contour index for the damage variable φ attached to the corresponding figures. Similar

effects concerning the crack width are also visible. In addition, example demonstrates the

crack merging simulation.

Figure 9: Mesh pattern of the plate with asymmetric double edge crack.
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Figure 10: Reaction force-Displacement plot for plate with asymmetric double edge crack.

Figure 11: Crack propagation in plate with asymmetric double edge crack for l = 0.2mm.

5. Conclusion

A thermodynamically consistent nonlocal phase field model for fracture has been pre-

sented. The solution of phase field models requires mathematical and numerical tech-

niques. We use variational calculus to minimize the total energy functional and obtain

the governing differential equations. The equations are solved by a finite element scheme.

The fracture energy term consists of a gradient term which has a length scale parameter

as a coefficient. This makes it a nonlocal model and leads to a better regularization of the

fracture problem. The minimization of the total energy functional with respect to displace-

ments produces an equilibrium equation. Besides, the minimization of the total energy
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Figure 12: Crack propagation in plate with asymmetric double edge crack for l = 0.3mm.

Figure 13: Crack propagation in plate with asymmetric double edge crack for l = 0.4mm.

functional with respect to phase field variable yields the Allen-Cahn evolution equation for

crack propagation.

The performance of the phase field fracture model is illustrated by numerical examples.

We note that this model is able to predict crack deviations. Merging up of two cracks into

one is also been demonstrated.
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