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Abstract. A mixed virtual element discretization of optimal control problems governed
by the Darcy equation with pointwise control constraint is investigated. A discrete
scheme uses virtual element approximations of the state equation and a variational dis-
cretization of the control variable. A discrete first-order optimality system is obtained
by the first-discretize-then-optimize approach. A priori error estimates of the state, ad-
joint, and control variables are derived. Numerical experiments confirm the theoretical
results.
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1. Introduction

The aim of this work is to develop mixed virtual element approximations of optimal con-
trol problems governed by the Darcy equation. Let £2 C R? be a bounded convex polygonal
domain with the Lipschitz boundary I'. Besides, we also assume that I' admits a disjoint
partition I' = I} UT, with open subsets I; and I, such that |Iy], || # 0.

We consider an optimal control problem of the Darcy flow in a porous medium — viz.

1 1
minJ(p,y,u)== | (p—p)?d2+= | (y—y2de+L | w2da (1.1)
u€lUyq 2, 2/, 2,
subject to the following conditions:
divp=f+u in £, (1.2a)
p=-KVy in &, (1.2b)
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y=0 on I7, (1.2¢0)
p-n=0 on [, (1.2d)

where p is the velocity, y the pressure, J(p, y,u) a convex cost functional, K the permeabil-
ity of the medium, y > 0 a regularization parameter, and f € L?(£2) the source term. For
the sake of simplicity, we assume that K is a constant matrix and let ||[K™!|| be the matrix
norm of K~1. The ideal states p; and y,4 respectively belong to spaces L%(£2) := (L%(£2))?
and L2(£2), and the admissible control set U, is defined by

Uy = {u el?(2):a<u(x)<bae. in Q}

PDEs-constrained optimal control problems play increasingly important role in physics,
biology, medicine, and efficient numerical methods are the key to their successful appli-
cations. We note that there are numerous studies devoted to the development of numer-
ical methods and algorithms for such problems. In particular, the works [10-12,16] deal
with finite element methods (FEMs) and [15,21] with discontinuous Galerkin methods. In
various practical applications the cost functional often contains the gradient of the state
variable. Therefore, the accuracy of the gradient approximation of the state variable be-
comes an important issue. This enhances interest to mixed numerical methods, such as the
mixed finite element method [6]. In optimal control problems, mixed numerical methods
have been studied in various works. Thus for mixed finite element discretizations, a priori
and a posteriori error estimates of elliptic distributed optimal control problems are investi-
gated [7, 8], whereas the Dirichlet boundary optimal control problem and pointwise state
constrained optimal control problem are discussed in [13,14].

Recently, virtual element methods (VEMs) have attracted a considerable attention. Com-
pared with FEMs, the VEMs can handle general polygonal and polyhedral grids. Such
methods have been introduced in [1] in order to solve the elliptic problems. Mixed VEMs
have been considered [5], where VEM discretizations of H(div)-conforming vector fields
are introduced. Subsequently, mixed VEMs have been applied to general linear second-
order elliptic problems [2], Darcy and Brinkman equations [18], three-dimensional elliptic
equations of mixed formulation [9], the Laplacian eigenvalue problem [17], and optimal
control problem governed by elliptic equations [4,19,20].

In this paper, we apply a mixed virtual element method to the optimal control problem
for the Darcy equation with pointwise control constraints. The state equation is approxi-
mated by a mixed virtual element method and the control variable is implicitly discretized.
In order to guarantee the computability of the discrete scheme, a piecewise L? projection on
the discrete state p;, is used in the cost functional. A discrete first-order optimality system
is derived by using a first-discretize-then-optimize approach. A priori error estimates for
state, adjoint state and control variables are deduced. Two numerical examples are given
to illustrate the theoretical results.

The article is organized as follows. In Section 2, we recall auxiliary results related
to mixed virtual element methods and the continuous first-order optimality condition in
the optimal control problem for the Darcy equation. In Section 3, we consider a virtual
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element discrete formulation of the problem (1.1)-(1.2) and the discrete form of the first-
order optimality condition. Section 4 presents error estimates for auxiliary problems and a
priori error estimates for mixed virtual element approximations. The results of numerical
tests aimed to verify the theoretical analysis are shown in Section 5. Finally, Section 6
contains our concluding remarks.

Throughout the paper we use the following notation. If E is a bounded domain and s an
integer, then |-|; g and || - ||; g refer to the standard H*(E) semi-norm and norm, respectively.
The L2(E) scalar product and the norm are respectively denoted by (-, Yo and || - [lo g, and
the same notation is used for the scalar product and norm in the vector space L%(E). If E is
a Lipschitz-continuous domain 2, we usually omit the subscript. If k > 0 is an integer, we
denote by P,(E) the space of all polynomials on E of the degree at most k and by Py (E) the
vector space (P (E))?. Besides, the terms C with or without subscripts are generic constants,
which do not depend on the mesh size.

2. Preliminary

In this section, we first recall the variational form of the state equation (1.2) and then
define two virtual element spaces and projection operators. After that we review the con-
tinuous first-order optimality condition for the control problem (1.1)-(1.2).

We introduce the spaces

H:=1*), Q:=L*),
V.= {p €H(div;2):p-n=0o0n 1"2},

equipped with the norms

IIPII§I=J pI*de, IIyIIé=J yI?de,
9} 2

Iplly = J lpI*d2+ J |divp|*ds2.
n n

The variational form of Eq. (1.2) is to find (p, y) € V x Q such that

a(p,v)—b(v,y)=0 forall veV,

2.1)
b(p,w)=(f +u,w) forall weqQ,

where a(:,-) and b(:,-) are bilinear forms defined by
a(p,v) :=J Kp-vdR, p,vev,
2

b(v,y) :=J divw-yd2, vevV, yeqQ.
fo)

It was shown in [6] that:
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* The bilinear forms a(-,-) and b(-,-) are continuous — i.e.
la(p,v)I < llallllpllgllvlly forall p,veH,
b(v, ) < Ibllllvliivilyllp forall veV, yeQ,
where ||a|| depends on K and ||b|| is actually equal to 1.
* For the bilinear form a(:,-), there exists a constant a > 0 depending on K such that
a(p,p)Zallpll%I forall p €eH. (2.2)
* The bilinear form b(-,-) satisfies the inf-sup condition — i.e. there exists a constant
B > 0 depending on 2 such that

b
sup blv.y) > Bllyllq forall yeQ.
vev [Ivlly

Hence, the existence and uniqueness of a weak solution of Eq. (2.1) is the consequence of
the Babliska-Brezzi theory.

To define a virtual element space we consider a mesh partition {Z,}. The sequence
{2} is the decomposition of {2 into open non-overlapping polygonal elements E. For each
E € %, let hg be the diameter of the element E, h = supgeg hy the maximum size of the
elements E, and p, the length of the edge e of E. Furthermore, we assume that the mesh
satisfies the following conditions.

Condition 2.1. There exists a positive constant Co such that:
1. Every edge e of E satisfies the estimate p, = Coh.
2. E is star-shaped with respect to every point of a ball of radius C hg.
According to [5], the virtual element spaces are introduced as follows:
V= {pheV:phIEEVf forall Ee 9;1},
Q= {yh €Q: yylg €Pr_1(E) forall E e 9;1},
where
Vﬁ = {Ph € H(div; E) N H(rot;E) : (py, - n)|, € Pr(e)
for all e e JE,(divpy)|g € Pr_1(E), (rotpy)|x € ]P’k_l(E)}.

The degrees of freedom (d.o.f.) of V, are defined as follows:

-
Type 1. Py -nqds forall q € % (e), e € JE,
Je
.
Type 2. pr-Vqd2 forall qe B (E)\{1}, E<€Z,
JE
[
Type 3. rotpy -qd2 forall qe€ B_1(E), Ee Z,
J

E
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B(e) = {(x;exe)j, 0<j< k}

is the set of normalized monomials on JE with the midpoint x, and the length h,, and

By () = {(x;E"E)S, 0<ls| Sk—l}

is the set of k(k + 1)/2 normalized monomials on E with the barycenter x; and the non-
negative multi-index s = (s,5,), || =7 +$5, and x* =xsllx522.

According to [3], Type 3 d.o.f. can be replaced by

where

Jph-gdﬂ for all ge‘ﬁkL, Ee %,
E

where ‘ﬁkl is the orthogonal complement of ¥, = VP, in P,. The new d.o.f. is mainly
used in order to compute an L2- projection in numerical examples. The L2- projection are
much more difficult to determine if using the original degrees of freedom. In the present
paper, we consider lower order case k = 1.

To derive the error estimates, we also need an interpolant from [5]. More exactly, let
(p;,y1) € Vi, x Qy the interpolant of (p, y) defined by

f (y —_ yI)qO dnR=0 for all do S ]:[Do(E).
E

Note that we will write locally y; = IT°y, where IT° is the L2- projection operator on Py(E)
and globally y; = I1g, y, where I, is the L2- projection on Qj,.

For each p € V such that p € H(div;E)NL"(E) for an r > 2 and rotp € L'(E), we can
define its interpolant p; € V;, by

J(p —p;)-nqgds for all q € % (e), e € OE,

J(p—PI)-quQ forall g€ B (E)\{1}, E€Z,
E

Jrot(p—pl)-qdﬂ forall q € %,_1(E), Ee .
E
Obviously, if gy € Py(E), then the integration by parts gives
J div(p —p;)qod2=| (p—p;)-ngeds=0,
E OF

and since divp; € Py(E), this implies the commutative property
divp,; = 11°(divp).

Let us recall the following error estimates.
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Lemma 2.1 (cf. Brezzi et al. [5]). For each E € J,, there exists a constant C > 0 depending
only on the C4 such that

lp—pillog < Chilplsp, 1<s5<2,
ly = yillog < Chilylsp, 0<s<1.

Definition 2.1. The L2-orthogonal projector H(l) : Vﬁ — P(E) is defined by
(H(l)vh —vh,q)O’E =0 forall v,eVE qeP(E).
The following approximation property holds for the above projection operator.

Lemma 2.2 (cf. Meng et al. [17]). There exists a constant C depending only on the C4 such

that for every E € &, and for each smooth enough function w on E the following estimate
holds:

|w—mw||,, < Chylwl,z, 0<s<2.

Finally, for the optimal control problem (1.1)-(1.2), we consider the continuous first-
order optimality condition

a(p,v)—>b(v,y)=0 forall vevV,

2.3
b(p,w)=(f +u,w) forall weQqQ, (2.3)
a(q,v)+b(v,2)=(p —py,v) forall vev, (2.4a)
b(g,w)=—(y —yq,w) forall weQq, (2.4b)
(yu+z,u—u)=>0 forall ueU,y, (2.5)

where q and g are the adjoint state variables — cf. [7]. Let
Py (W)= max{a, min{u,b}}

represent the pointwise projection onto the control set U,y. Therefore, Eq. (2.5) can be

simplified as
1
u="Py, (——z) .
Y

3. Virtual Element Approximation

3.1. Virtual element discrete scheme for state equation
The discrete scheme of the state equation is to find (p,(w), yx(u)) € V, x Qp, such that

ah(Ph(u),Vh) - b(vh,yh(u)) =0 forall v,eVy,

3.1)
b(ph(u), wh) =(f +u,wy) forall wy, €Qy,
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where
ap(pr(W),vy) == Z af(Ph(u),Vh)
E€Z,
= > (a®(Tpy(w), Tvy) + 1K IS (pa(u) — Fipy (), vy, — Tvy))-
E€Z,

Here the projector 1T is defined as follows.

Definition 3.1. For each E € J;, the projector 1I : Vﬁ Vs defined by
af(vy, —ﬁvh,Wh) =0 forall v,€V, wjpe VE,

where a® is the local version of the bilinear form a and

V' = {5, € VE: 9, =KVG, G € Py(E)}.

It was shown in [5] that the explicit computation of the projection IIv;, involves only
the degrees of freedom of vy,.

The stabilization term SE(p;,v}) can be any symmetric positive definite bilinear form
and there exist two positive constants ¢y and c; such that

coa”(Vp, vi) S KIS (v, vi) < cra® (v, vy) forall vy €V,
The stabilization term S¥ can be also defined via the r-th local degree of freedom — viz.

NE

¥ (pn(w) —Tp (W), v, —Tvy) = Z dof, (pj,(w) — Tpy(u)) dof, (v, — TIvy,),

r=1

where N* are the dimension of V}, cf. [1].

Proposition 3.1 (cf. Brezzi et al. [5]). For all w, € V' and v n € Vf, the bilinear form af
has the following properties:

1. Consistency
af(iv\h,vh) = aE(Wh,vh). (32)

2. Stability. There are a*, a, > 0 such that

a,a®(vp,v) < af (vi,vp) < afaf(vy, vy). (3.3)

The symmetry of a,, Eq. (3.3) and the continuity of a® yield the continuity of a, i.e.
for all wy,, v, € V} we have
1/2 1/2
af (Wi, vi) < (aE(wp,wy)) " (af (v, vi)
1/2 1/2
< ot (a(wp,wy)) " (¥ (Vi vi))

< a*llalllwpllo,ellvalio-
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On the other hand, for all w, v}, € VE, the following estimates hold:

a.a(vy,vy) < ap(vy,vy) < a*a(vp,vy), (3.4
ap(wy,vy) < alallllwpllgllvillg- (3.5)

Proposition 3.2 (cf. Meng et al. [17]). The discrete inf-sup condition holds — i.e. there is
{ > 0 such that

b(vy,,w
inf  sup | b(vy, wy) | >0
wi€Qn vy, [[Whllgllvally

3.2. Virtual element approximation for optimal control problem

The virtual element approximation for optimal control problem (1.1)-(1.2) consists in
finding a triple (py, yn, un) € Vi, X Qp x Uyq such that

1 Y
LT (P Yo tn) 1= E g —ya)P+= | 3.6
mm (P Ynrup) := J mp,—py) 2 L(J’h Ya) 7 Luh (3.6)

Eeﬂh

subject to
ay(Pp> Vi) — b(vy, yp) =0 forall v, eV,

b(pp,wy) =(f +up,wy) forall wp €Qy.

Here we employ the implicit discrete approach for the control variable — cf. [ 7]. The control
variable u;, belongs to the infinite dimensional set U, instead of the virtual element space
V;,. In order to guarantee the computability of the discrete adjoint problem, IT? 1P, in (3.6)
is replaced by py,.

To derive the discrete first-order optimality system, we consider the following Lagran-
gian functional:

(3.7)

ZL(Pn> Y D> 20> Un)
=J(Pp Ynoup) + (f +up,2n) —an(Pr-qn)
+b(qp, yn) — b(Pp,21)-

Differentiating £ in py, Y, Qx> %n, Up leads to a discrete first-order optimality condition for
the problem (3.6)-(3.7), viz.

ap(Pp, Vi) —b(Vy, y) =0 forall v, €V,
b(py,wp) = (f +up, wp) forall wj, €Qy, (3.8)
an(qp, Vi) + b(vp,2) = Z (Ph—pPa MYvy),, forall vy, eV,

EcT, (3.9)
b(qn,wn) =—(¥n — Ya,wn) forall wy €Qy,
(yup +2p, U0y —uy) =0 forall u, € Uy. (3.10)

In the next section, we derive a priori error estimates for the discrete virtual element
scheme.
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4. A Priori Error Estimates

In order to derive a priori error estimates, we consider the following auxiliary problems
for the pairs (v, wy) € V), X Qp:

an(qn(),va) + b(vaza(¥)) = Z (p —Pd,ﬂ(l)vh)o’E ) (4.1a)
E€Z,

b(Qh(}’),Wh):_(y_J’d,Wh), (41b)

and

ah(qh(u)5vh) + b(vh,zh(u)) = Z (ph(u) _pd5H(1)vh)0,E 5
E€T, “4.2)

b(qn(), wn) = —(y(W) — ya, wn)-
Consequently, the errors p —py, ¥ — Yn, ¢ —qp and 2 — 2, can be represented in the form

p—pr=p —Pir(w) +prW)—py,
Y=Yn =Y —Ya() + ya(W) =y,
9—9,=9—9,(y)+q,(y)—qp,
z—zp =2 —24(y) +2,(¥) — 2p-
It is easily seen that (p(u), y,(u)) and (q4(¥),2,(y)) are the virtual element approxima-

tions of (p,y) and (q,2), respectively. Therefore, using results from [5], we obtain the
following error estimates.

Lemma 4.1. If (p,y) and (py(w), yn(u)) are respective unique solutions of the continuous
and discrete schemes Egs. (2.3) and (3.1), then

Ip —pu@lly < Ch(lIpll o +1If +ulliq),
Iy = y@llg < Ch(lIplla +lI¥llLe)-

Lemma 4.2. If (q,2) and (qx(y),2,(y)) are respective solutions of the Eqs. (2.4) and (4.1),
then there exists a positive constant C independent of the mesh size h such that

lg —qx(lly < Ch(liglli 0 +1Ip —Pallia + 1y = Yallia),
Iz — 2z, (¥)llg < Ch(||2||1,g +glli 0+l —Pd||1,n)-
Proof. Before proving Lemma 4.2, we establish the inequalities
g —ar ()l < C1(llg =gl + g —q -llg +X), (4.3)
llzr =21 (3)llg < Ca(llg — g1l +11g =g -l +X), (4.4)

where q; is the interpolant of q, z; the interpolant z, and q , the piecewise approximation

. oE . . . .
of g in V". Besides, C; is a constant depending only on K, a*, a,, whereas C, is a constant
depending only on K, a*, {, and

R=|I(p—pa)——pa)||y-
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We define
on:=qn(y)—q;. (4.5)

It follows from the Eq. (4.1) that divq,(y) = —I,, (¥ — ¥4)- Noting that
divq; = I, divq = —Ig, (¥ — ¥a),

we obtain that
divé, =0 (4.6)

and ||6,]|y = ||6x||g. Consequently,

a,allépll? < an(8r,61) = an(qn(y), 61) —an(q;,85) (use (4.1) and (4.6))
= Z (p —pd,H(l)Sh) - Z af(qI,Sh) (use Definition 2.1 and £q ;)

E€g, E€g,

= > (1% —pa).61)— . (af(q;— a5 60) +af(q,.64)) (use (3.2))
E€T, E€g,

= Z (I(p —p ), &) — Z (a;(@;—q6,) +a"(q,,6,) (use £q)
E€T, E€T,

= Z (H(l)(p _pd))6h)_ Z (a}El(qI_qﬂ:)6h)+aE(q7r _q)6h))
E€T, E€T,

—a(q,06) (use (2.4) with (4.6))

= > (1p—pa)— (P —Pa): 64)os — (@, — 4, 64) —a"(q. —q,83)).
EeZ,

The continuity of a” and af’ yields

16,012 < C(llg; —q,llg +1g — g llg +X)164]5,

and (4.3) follows from the triangle inequality.
We turn next to the proof of (4.4). According to [5], for 2* := z,(y) — 2; there exists
w;} € Vy such that divw, = z* and

lwpllg < Cllz*llq = Cllzn(y) — 2llo-
Since divw} € Qp,, we can use the definition of z;, (2.4a) and (4.1a) to obtain
llzn(¥) —Zz||<22 = (zn(y) —z;, divw}) = (z,(y) — 2, divw )
— b(wj,3()) — b(w},2)
=—ay(qu(y),wi)+a(q,w})

+ >, (p—poMw;)—(p—pg.w;).
E€g,
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Taking into account Definition 2.1, and using the Eq. (3.2), we can further write

lzn() =212 = D (—af (qu(0),w;) +af (g, w]))

E€Z,
+ >, (I —p)—(—pa).w;)

E€g,

C S (e @) anw) el arw)

E€g,
+ > (M —pa)—(p—pa).w})

E€g,

<C(lgn(y) —qrlly +lg —qllg + X)Wl
< C(”qh(J’) —q-llgtllg—q-llag+ N)”Zh(J’) —z1llq-

Thus (4.4) is obtained by the triangle inequality. Applying Lemmas 2.1 and 2.2 to (4.3)
and (4.4) finishes the proof. O

Theorem 4.1 (A Priori Error Estimates). Assume that (p,y,q,z,u) and (P, Yn,Qn>2n, Un)
are the solutions of the Egs. (2.3)-(2.5) and (3.8)-(3.10), respectively. If y,z,u € H'(Q) and
p.q € (H'(Q))? then

llu—uypllg < Ch,
llp —prlly +1lg —qylly < Ch,
Iy = ynllg + llz —zpllg < Ch.

Proof. It follows from Lemma 4.1 that

llp —pr(wlly < Ch,
ly = yn@llg < Ch.

Using the governing equation of (pj,(u), y,(u)) and (py, yi,) gives

ah(Ph(u) —Ph> Vh) - b(vh:J’h(u) —J’h) =0, (4.7a)
b(Ph(u) —Ph,Wh) = (u—up, wp). (4.7b)

Taking into account Proposition 3.2, we write

bV, Yn (W) = Y1) a,(p() = P1, v4)
Cllyn(@) = yullg < sup h> Jh h) _ r(Ph W Vh
VhEVY ”vh”V VLEV), ”vh”V

It follows from (3.5) that

ay(pr (W) —pp,vi) < @*llallllpy) = pallgllvilig-
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Consequently, we have
lyn(@) = yullq < Cllpp(w) — pylla-

Choosing vy, = pp,(w) —pp, wi, = yu(u) — yp, and using (2.2) and (3.4) yields

a.allpyw)—paully < a.a(py(w) —prpr(W) —py)
< ap(pp(u) — Py, Pr(u) — py)
= (u—up, ya(w) — yp)
< Cllu —upllllyn(@) = yallo
< Cllu—upllgllpp(w) — ppllg-
This implies

lpr(@) = phlla < Cllu—ugllo,
lyn(@) = ynllg < Cllu—ugllo-

Substituting wj, = div(p,(u) — pp,) into (4.7b), we obtain

Idiv(p, (W) — plly = b(pn(w) — pp, div(p(w) — py))
= (u—uy, div(p,(W) —py))
< Cllu—uyllglldiv(p(w) — pp)llo-
Therefore,
ldiv(ps(w) —ppllo < Cllu —uyllo-

Taking into account the above inequalities, we arrive at the estimates

Ip —pally < C(h+llu—uyllg),
Iy = ullq < C(h + llu—uyllg).

Now we consider error estimates for adjoint variables. It follows from Lemma 4.2 that

llg —q,(lly < Ch,
llz —2zx(¥)llq < Ch.

In order to evaluate the residues q;(y)—q;, and 2;,(y)—2;, we employ the following equa-
tions:

an(an () — Vi) + b(vioz(y) —2) = Z (p—pr Mvy), 5
E€Y, ’ (4.8)

b(qn(¥) —qpwn) =~y = yn i),
which can be obtained from (4.1) and (3.9). Using (3.5) and Definition 2.1 shows that

b(viozn(¥) —21) = an(qn — qa(y), Vi) + Z (p—pn H(l)vh)o,E
E€g,

< a'lallllgn(y) = qnllalvalle + Clip = pullallvalla,
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and recalling Proposition 3.2 gives

b(vi, 2,(y) —2)
Czn(y) —zpllg < sup —20 L
VhGVh ”vh”V

< C(llgn() —qullg +1Ip —pallg)s

so that
llzr(y) —2znllq < C(”Qh(}’) —qullg +1p _ph”H)~

Further, choosing v, = q,(¥) —qp, Wy = 2,(¥) — 2, in (4.8), and using (2.2) and (3.4)
yields
a,allgn(y) —gqul < a,a(qn(y) =45, 9x() —q1)
< ay(q4() — 41,91 (¥) — q1)

= > (p—Pr TG ()~ 1)) + (v — Y20 () —2,)
E€g,

< C(llp = Pullallgn() —anllm + 1y = yulllizn(y) = 24lle)-

Consequently, using the above estimate for ||z,(y) —2yllq and the Young’s inequality we
first obtain

lgn () —anllg < C(llp —prllg + 11y = y4ll3),

and then

lgn() —qulla < C(h+llu—ullg),
l2r(3) —2nllq < C(h + llu—uyllg).

Substituting wj, = div(q,(y) —q;,) into (4.8) yields
I1div(gn(y) —aullf = b(an(y) — a1 9 —a1)

= (yp — 3, div(gn(y) —q3))
< Clly — yallolldivign(y) — gp)llo,

so that
Idiv(g () —gw)llo < Clly — yallg < C(h + llu—upllg)-

Consequently, we obtain
lg() = qully < C(h+llu—upllg)-

Combining the above estimates gives

llg —qplly < C(h+Ilu—ullg)s
llz —24llq < C(h+ ||U—Uh||Q)-
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Note that the state and adjoint state estimates depend on the control variable. Therefore,
we have to evaluate the norm ||u —uyl|y. Setting

W@ —u) = f (yu+2,(W)@—u)dx,

Q

we can show that
Fp (@@ —u) = J, @)@ —u) = yl[d—ull3. (4.9)

In fact
Jp (@)U —u) — Jy(W)(@ —u)

= J (yﬂ+ 2, () —yu —zh(u))(ﬂ— u)dx

Q
= yf (T —u)? dx +J (zh(ﬂ)—zh(u))(ﬂ—u)dx.
Q Q

Taking into account the Eq. (3.1), we write

f (2(@) — 2, (W) (@ —u) dx
Q

= b(px(@) — pj (W), 2z, (@) — 2,(w))
= > (pa@— P4, M (p1 (@ — p4(),

E€g,
— ap(qx(@ — g, (W), p (@ — pp (W)

= > (10 4(@ — Py, T(p4(@ — p4(D), 5
E€g,

— ap(qx(@ — q,(w), p5 (@) — pyW)).

Besides, the Egs. (3.1) and (4.2) give

an(pr(@ —pp(w), q ;@ — g5 W)
= b(q,(@ — q W), y» (@ — yr(w))
= —(yp(@ — YW, y» (@) — yr(w)) < 0.

Recalling Definition 2.1, we deduce

J (20 (@ — 2,(W) (@ —u)dx > 0,
Q

and the inequality (4.9) implies

Yllu—upll? < Jp @) —up) = ()@ — )
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= J (yu + 24(u) — yup —24(up))(w —up) dx
Q

=(yu+z,u—uy)+ J (yuh + zh(uh))(uh —u)dx
Q

+ f (zh(u) —z)(u —up)dx
Q

<0+0 +J (zn(w) —2)(w —up) dx
Q
< Cllzn(w) = zllgllu — upllg-

Now we have to estimate the norm ||z, (u) — z|. Writing

zp(u) —2z = z,(u) —z,(y) +24(y) —2

and recalling Lemma 4.2 gives
llzn(y) —=llq < Ch.

Subtracting (4.1) from (4.2), we write

an(qn@W) —qn(¥),vi) + b(va 2w —2zp(y)) = Z (pr@ —P,H?Vh)O,E,
EeZ,

b(qr (W) —qr(¥), wn) = —(ya(W) — y, wy).

The terms q,,(y) —qp and 2;,(y) —2;, can be estimated analogously. In particular,

llzn (W) =2, (¥)llq < Ch,

so that
llu—upllo < Cllzp(w) —zllq < Ch.

Combining the above estimates finishes the proof. O

5. Numerical Experiments

We consider two examples with the domain Q = [0,1] x [0,1] aimed to verify the
theoretical results.

We display the errors between of the numerical solutions (py,, Y1, 91> 2h, Up) to confirm
the convergence results. Note that err(y,L?), err(z,L?), and err(u, L?) denotes the cor-
responding errors in the L? norm. Since inside of the related elements the VEM solutions
(pn»qp) are not known, we replace the projection errors by numerical solution errors. Anal-
ogously, the differences between the IT (1) P11 ?qh and the exact solutions p,q evaluated in
the || - ||y norm are denoted by err (p, V) and err(q, V).
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In numerical examples, we consider the following optimal control problem:
. 1 2 1 2 1 2
minJ(p,y,u)=5 | (p—py)"d2+- | (y—yg)d2+5 | u"dQ,
u€Uyq 2 Q 2 Q 2

0
divp = f +u, p=—Vy,

divg =—(y —ya), q=Vz+(p—pa);
and use three different mesh sequences — viz.
1. Voronoi meshes (Lloyd).
2. Square meshes (Square).

3. Distorted quadrilateral meshes (Distorted Square).

(a) Lloyd (b) Square (c) Distorted Square

Figure 1: Basic sample meshes on the square domain Q.

Example 5.1. Set I = {(x;,x5) : x; =0,1;0 < x5 < 1} and choose the following func-

tions:

y = sin(mx;) cos(mx,),
z = sin(27x;) cos(27mx,),
u = max(—z,0),
f=2n%y—u,
Yi= —8m2z + Y,
_ ( —1t cos(7tx,) cos(mxs) )
Pa= .

7 sin(7wx; ) sin(7tx,)

Let NE and h denote the number of the mesh elements and the mesh size, respectively.
The corresponding numerical results for variables p,q, y,z, and u are shown in Tables 1-6.
Figs. 2-5 demonstrate the numerical and exact solutions p;, y,, and u,. Since the nu-
merical solution y; and u;, are obtained by using piecewise constant approximations, the

corresponding graphs look discontinuous.
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Table 1: Example 5.1. Lloyd mesh: Errors and convergence rates.

NE h err(p,V) rate err(q,V) rate
100 | 1.000e-01 | 1.43184e-01 - 2.58594e-01 -

400 | 5.000e-02 | 7.04590e-02 | 1.02 | 1.29739e-01 | 1.00
900 | 3.333e-02 | 4.66296e-02 | 1.02 | 8.70785e-02 | 0.98
1600 | 2.500e-02 | 3.52747e-02 | 0.97 | 6.54631e-02 | 0.99

Table 2: Example 5.1. Lloyd mesh: Errors and convergence rates.

NE h err(y, L?) rate err(z, L) rate err(u, L?) rate
100 1.000e-01 | 1.28923e-01 - 2.58216e-01 - 8.89665e-02 -

400 | 5.000e-02 | 6.35910e-02 | 1.02 | 1.27136e-01 | 1.02 | 4.49469e-02 | 0.99
900 3.333e-02 | 4.23962e-02 | 1.00 | 8.50062e-02 | 0.99 | 2.98367e-02 | 1.01
1600 | 2.500e-02 | 3.17756e-02 | 1.00 | 6.37588e-02 | 1.00 | 2.23150e-02 | 1.01

Table 3: Example 5.1. Square mesh: Errors and convergence rates.

NE h err(p,V) rate err(q,V) rate
100 | 1.000e-01 | 1.43630e-01 - 2.61038e-01 -

400 | 5.000e-02 | 7.20185e-02 | 1.00 | 1.30791e-01 | 1.00
900 | 3.333e-02 | 4.81139e-02 | 1.00 | 8.71645e-02 | 1.00
1600 | 2.500e-02 | 3.61120e-02 | 1.00 | 6.62046e-02 | 1.00

Table 4: Example 5.1. Square mesh: Errors and convergence rates.

NE h err(y, L?) rate err(z, L) rate err(u, L?) rate
100 1.000e-01 | 1.28804e-01 - 2.57846e-01 - 9.13153e-02 -

400 5.000e-02 | 6.41997e-02 | 1.00 | 1.28800e-01 | 1.00 | 4.55379e-02 | 1.00
900 3.333e-02 | 4.27733e-02 | 1.00 | 8.56728e-02 | 1.01 | 3.02882e-02 | 1.01
1600 | 2.500e-02 | 3.20729e-02 | 1.00 | 6.42002e-02 | 1.00 | 2.26982e-02 | 1.00

Table 5: Example 5.1. Distorted Square mesh: Errors and convergence rates.

NE h err(p,V) rate err(q,V) rate
100 | 1.000e-01 | 2.02417e-01 - 3.08795e-01 -

400 | 5.000e-02 | 9.93049e-02 | 1.03 | 1.56118e-01 | 0.98
900 | 3.333e-02 | 6.74900e-02 | 0.95 | 1.05325e-01 | 0.97
1600 | 2.500e-02 | 5.03964e-02 | 1.02 | 7.89470e-02 | 1.00

Table 6: Example 5.1. Distorted Square mesh: Errors and convergence rates.

NE h err(y, L?) rate err(z, L?) rate err(u, L?) rate
100 | 1.000e-01 | 1.49095e-01 - 3.04757e-01 - 1.00776e-01 -

400 5.000e-02 | 7.32200e-02 | 1.03 | 1.48529e-01 | 1.04 | 5.04830e-02 | 1.00
900 3.333e-02 | 4.89895e-02 | 0.99 | 9.91443e-02 | 1.00 | 3.38778e-02 | 0.98
1600 | 2.500e-02 | 3.66600e-02 | 1.01 | 7.41133e-02 | 1.01 | 2.52909e-02 | 1.02
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Figure 2: Example 5.1. Lloyd mesh. Left: Numerical solution p,,. Right: Exact solution p;.
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Figure 5: Example 5.1. Lloyd mesh. Left: Numerical solution u,. Right: Exact solution u.
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Example 5.2. Set I} = {(x1,x2) : x;1 =0,0 < x5 <1} U {(x1,x5): 0<x; <1,x, =0} and

choose the following functions:

y = (x1 + x9)sin(27x) sin(27x,),

2z = 5(x; + x9)sin(27x;) sin(27x,),

u = max(—z,0),

f =—4mcos(2mx;)sin(2mx,) — 47 sin(27x;) cos(27mx,) + 812y —u,

X. Wang, Q. Wang and Z. Zhou

¥4 = 207 cos(27mx;) sin(27x,) 4+ 207 sin(27x;) cos(27x,) + y(1 — 407?),

el

The corresponding numerical results for variables p,q, y, 2z, and u are shown in Tables 7-12,

—27(xq + x5) cos(2mxq) sin(27wxy) — sin(27wx;) sin(27wx;)
—27(xq + x5) sin(27x; ) cos(27xy) — sin(27x ) sin(27wxy) )°

whereas numerical and exact solutions p;, y, and uy, in Figs. 6-9.

Table 7: Example 5.2. Lloyd mesh: Errors and convergence rates.

NE

h

err(p,V) rate err(q,V) rate
100 | 1.000e-01 | 2.58459e-01 - 2.57837e-01 -
400 | 5.000e-02 | 1.31584e-01 | 0.97 | 1.31110e-01 | 0.98
900 | 3.333e-02 | 8.76309e-02 | 1.00 | 8.74036e-02 | 1.00
1600 | 2.500e-02 | 6.52741e-02 | 1.02 | 6.52263e-02 | 1.02

Table 8: Example 5.2. Lloyd mesh

: Errors and convergence rates.

NE h err(y,L?) rate err(z, L?) rate err(u, L?) rate
100 | 1.000e-01 | 2.57168e-01 - 2.58241e-01 - 4.57624e-01 -
400 | 5.000e-02 | 1.28500e-01 | 1.00 | 1.28652e-01 | 1.01 | 2.27478e-01 | 1.01
900 | 3.333e-02 | 8.53369e-02 | 1.01 | 8.53819e-02 | 1.01 | 1.51916e-01 | 1.00
1600 | 2.500e-02 | 6.35928e-02 | 1.02 | 6.36119e-02 | 1.02 | 1.14344e-01 | 0.99
Table 9: Example 5.2. Square mesh: Errors and convergence rates.
NE h err(p,V) rate err(q,V) rate
100 1.000e-01 | 2.67876e-01 - 2.65872e-01 -
400 5.000e-02 | 1.33825e-01 | 1.00 | 1.33522e-01 | 1.00
900 | 3.333e-02 | 8.88719e-02 | 1.01 | 8.88702e-02 | 1.00
1600 | 2.500e-02 | 6.67404e-02 | 1.00 | 6.67394e-02 | 1.00
Table 10: Example 5.2. Square mesh: Errors and convergence rates.
NE h err(y, L?) rate err(z, L) rate err(u, L?) rate
100 | 1.000e-01 | 2.61063e-01 - 2.61087e-01 - 4.65368e-01 -
400 | 5.000e-02 | 1.30122e-01 | 1.00 | 1.30259e-01 | 1.00 | 2.32445e-01 | 1.00
900 | 3.333e-02 | 8.65876e-02 | 1.00 | 8.66288e-02 | 1.01 | 1.54590e-01 | 1.01
1600 | 2.500e-02 | 6.48956e-02 | 1.00 | 6.49130e-02 | 1.00 | 1.15839e-01 | 1.00
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Figure 9: Example 5.2. Lloyd mesh. Left: Numerical solution u,. Right: Exact solution u.
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Table 11: Example 5.2. Distorted Square mesh: Errors and convergence rates.

NE h err(p,V) rate err(q,V) rate
100 | 1.000e-01 | 3.07429e-01 - 2.99900e-01 -

400 | 5.000e-02 | 1.56848e-01 | 0.97 | 1.53022e-01 | 0.97
900 | 3.333e-02 | 1.06155e-01 | 0.96 | 1.03295e-01 | 0.97
1600 | 2.500e-02 | 7.96413e-02 | 1.00 | 7.75268e-02 | 1.00

Table 12: Example 5.2. Distorted Square mesh: Errors and convergence rates.

NE h err(y, L?) rate err(z, L?) rate err(u, L?) rate
100 1.000e-01 | 3.31522e-01 - 3.36504e-01 - 5.68256e-01 -

400 5.000e-02 | 1.51435e-01 | 1.13 | 1.52066e-01 | 1.15 | 2.77831e-01 | 1.03
900 | 3.333e-02 | 9.97310e-02 | 1.03 | 9.99264e-02 | 1.04 | 1.85581e-01 | 1.00
1600 | 2.500e-02 | 7.41774e-02 | 1.03 | 7.42598e-02 | 1.03 | 1.38719e-01 | 1.01

6. Conclusion

We solve the control constrained optimal control problem for the Darcy equation by
a mixed virtual element method. A priori error estimates are derived for the state, adjoint
state, and control variables. Compared with mixed finite element method, the mixed virtual
element method is more flexible with respect to the mesh refinement. Adaptive mixed
virtual element methods for optimal control problem can be also investigated.
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