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Abstract. A neural network method for fractional order diffusion equations with inte-

gral fractional Laplacian is studied. We employ the Ritz formulation for the correspond-

ing fractional equation and then derive an approximate solution of an optimization prob-

lem in the function class of neural network sets. Connecting the neural network sets with

weighted Sobolev spaces, we prove the convergence and establish error estimates of the

neural network method in the energy norm. To verify the theoretical results, we carry

out numerical experiments and report their outcome.
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1. Introduction

Fractional Laplacian operator [8, 14, 34] has been employed in various nonlocal mod-

els, including turbulence [6, 21, 22], quantum mechanics [26, 33], finances [12], statis-

tical physics [23], phase transitions [4, 5], material sciences [7], image processing [24],

geophysics [13], acoustic wave propagation in heterogeneous media [45] and anomalous

diffusion in porous media [35, 36]. Due to versatile applications and the ability to cap-

ture anomalous diffusion and model complex physical phenomena with long range inter-

action [16,39,42], many numerical methods have been developed — e.g. finite difference-

quadrature methods [18,19,30,32,37], finite element methods (FEM) [1,3,15,41], spectral

methods [28,29], mesh-free pseudospectral methods [10,40], the isogeometric collocation

method [43], and deep learning method [38]. We refer the readers to [8,14,34] for a re-

view of many definitions of fractional Laplacian and their numerical methods.

In this paper, we consider an n-dimensional fractional diffusion equation with Dirichlet

boundary condition — viz.

(−∆)
α
2 u= f (x), x ∈ Ω, α ∈ (0,2), (1.1)

u(x) = 0, x ∈ Ωc, (1.2)
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whereΩ andΩc are a domain and its complement inRn, n= 1,2,3, f (x) is a given function,

and the fractional Laplacian is defined by

(−∆)
α
2 u(x) = cn,α

∫

Rn

u(x)− u(y)

|x − y|n+α
d y, cn,α =

2αΓ ((α+ n)/2)

π
n
2 |Γ (−α/2)|

. (1.3)

The essential difficulties for the fractional diffusion equations are twofold:

(1) The most of the numerical methods mentioned exhibit a low convergence order and

accuracy because the solution has a singularity near the boundary inherited from the

kernel.

(2) For α ∈ (1,2), the complexity caused by the singular integral makes the correspond-

ing discretization challenging.

For special domains such as a disk in two-dimensional space or a ball in three-dimensional

space, one can construct very accurate high-order methods based on pseudo-eigenfunctions

of the fractional Laplacian operator [28]. For general domains any other higher order

methods are not known. The FEM proposed in [1] on a graded mesh can capture the

singularity near the boundary and recover the optimal convergence order for the piece-

wise linear polynomials. Nonetheless, the assembling the stiffness matrix is expensive,

and it is still under investigation for high-order polynomials. Therefore, here we turn our

attention to the current state-of-the-art neural network methods (NNMs). Neural network

methods have gained increased attention recently in the science and engineering [20,44].

The methods are powerful in approximation and have huge expressive power. Although

many numerical methods use meshes, which are often constructed in prior or posterior in

an adaptive way, they can be understood and classified into mesh-free methods. This make

it easy to capture boundary or corner singularities and recover boundary and transition

layers and the shocks encountered in hyperbolic problems. Their success for the integer-

order problems [20, 44] naturally motives us to apply the methods to the model problem

(1.1)-(1.2).

Compared to extensive research on integer-order local problems, there are limited re-

search on neural networks for fractional counterparts incorporating nonlocalities. Pang et

al. [38] applied the so-called FPINN method to a advection-diffusion equation with the frac-

tional Laplacian. They showed numerical convergence of the method without theoretical

analysis. Combining with the Monte Carlo numerical integration, Guo et al. [27] extended

the FPINN method to high-dimensional forward and inverse problems. We remark that

although their least-squares formulation works well for α ∈ (0,1), it experiences problems

if α ∈ (1,2). Since the solution does not have enough regularity to use the least-squares

form, numerical solution for α ∈ (1,2) was not reported in [38]. To resolve this issue we

use the energy formulation of the model problem (1.1)-(1.2). Note that it is called the deep

Ritz method in [20].

The main goal of this paper is the development of a more accurate neural network

method for the model problem. The neural network method is set up for the energy form
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of the model problem and transforms strong singularity in the energy form to a weaker sin-

gularity. We provide error estimates and the convergence order of the method. Numerical

tests support our theoretical results. Comparing our work with [38], we note the following

differences:

1. We study the energy formulation while [38] considers the least-squares formulation.

2. This work focuses on the great potential and the advantage of accuracy in terms of the

total number of parameters for neural networks methods applying them to forward

problems, while [38] puts emphasis on inverse problems.

3. The architecture of the neural networks here is different from that in [38].

We believe that the study in the current work provides a new insight into the application

of neural networks methods to fractional differential equations. For high-dimension prob-

lems, we refer the reader to [25], where the deep Ritz method is considered for spectral

fractional Laplacian equations using the Caffarelli-Silvestre extension. It should be noted

that (1.3) is a different definition of fractional Laplacian.

The rest of the paper is organized as follows. In Section 2, we introduce mathematical

settings used in this work. In Section 3, we present the neural network method for the

model equation analyze its convergence and the errors. Section 4 is devoted to numerical

quadratures used in the discretization of the Ritz formulation and the implementation of

the method. Note that the derivation of the numerical quadrature is given in Appendix A.

We also carry out numerical experiments and report the corresponding numerical results.

Section 5 presents our conclusions and a discussion.

2. Preliminary

2.1. Function spaces

We use the standard notations for Sobolev spaces [2]. For a non-negative integer m let

W m,p(Ω) :=
�

v ∈ Lp(Ω) |Dβ v ∈ Lp(Ω), |β | ≤ m
	

,

where

‖v‖W m,p(Ω) =

 

m
∑

k=0

∑

|β |=k

‖Dβ v‖
p

Lp(Ω)

! 1
p

, 1≤ p <∞.

If p = 2, we let Hm(Ω) = W m,2(Ω). According to [2], the fractional order Sobolev space

Hs(Ω), 0< s < 1 is defined by

Hs(Ω) :=
�

v ∈ L2(Ω) : ‖v‖Hs(Ω) <∞
	

,

where

‖v‖Hs(Ω) =
�

‖v‖2
L2(Ω)

+ |v|2
Hs(Ω)

�
1
2

, (2.1)
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|v|Hs(Ω) =

�∫∫

Ω×Ω

(v(x)− v(y))2

|x − y|n+2s
d xd y)

� 1
2

.

The zero trace space Hs
0(Ω) can be defined as the closure of C∞c (Ω) in the norm (2.1).

It is well known that for 0 < s ≤ 1/2, the identity Hs
0(Ω) = Hs(Ω) holds. For s > 1, we

write s = m+σ, where m is the integer part of s and σ ∈ [0,1). Then

Hs(Ω) :=
�

v ∈ Hm(Ω) : |Dβ v| ∈ Hσ for any β such that |β |= m
	

(2.2)

with the norm

‖v‖Hs(Ω) =

�

‖v‖2
Hm(Ω)

+
∑

|β |=m

|Dβ v|2
Hσ(Ω)

� 1
2

. (2.3)

In this work, we are mainly interested in the case s < 2.

Next, we introduce weighted Sobolev spaces which is a tool for taking care of singular

solutions. Let δ(x) = dist(x ,∂Ω) be the distance function whose value is the distance to

the boundary of Ω. If s ∈ (m, m + 1) then following [1], we also consider the weighted

fractional Sobolev space equipped with the norm

‖v‖Hs
r(Ω)
=

 

‖v‖2
Hm(Ω)

+
∑

|β |=m

∫∫

Ω×Ω

|Dβ v(x)− Dβ v(y)|2

|x − y|n+2σ
δ2r(x , y) d yd x

!
1
2

, (2.4)

where r ≥ 0, σ = s−m and δ(x , y) =min{δ(x),δ(y)}.

Remark 2.1. It is evident that for v ∈ Hs(Ω), the following inequality holds:

‖v‖Hs
r (Ω)
≤ C‖v‖Hs(Ω)

with a constant C . However, the norms (2.3) and (2.4) are not equivalent.

2.2. Well-posedness

We also consider the solution space

V =
¦

v ∈ H
α
2 (Rn) : v = 0 in Ωc

©

equipped with the Hα/2(Rn) norm. For v ∈ V, the fractional Laplacian operator is closely

related to the with the regional the regional fractional Laplacian operator

(−∆)
α
2

Ω
v(x) = cn,α

∫

Ω

v(x)− v(y)

|x − y|n+α
d y.

More exactly,

(−∆)
α
2 v = (−∆)

α
2

Ω
v +ρ(x)v(x),
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where

ρ(x) = Cn,α

∫

Ωc

1

|x − y|n+α
d y ≈ δ−α(x), (2.5)

and cn,α is the constant defined in (1.3). If u and v vanish outside of Ω, the symmetry of

the power kernel function |x − y|−n−α yields

�

(−∆)
α
2

Ω
u, v

�

= cn,α

∫∫

Ω×Ω

(u(x)− u(y))v(x)

|x − y|n+α
d yd x

= cn,α

∫∫

Ω×Ω

(u(y)− u(x))v(y)

|x − y|n+α
d xd y

=
1

2
cn,α

∫∫

Ω×Ω

(v(x)− v(y))(u(x)− u(y))

|x − y|n+α
d yd x .

The variational formulation of the problem (1.1)-(1.2) is: Find u ∈ V such that

a(u, v) = ( f , v) for all v ∈ V, (2.6)

where

a(u, v) =
cn,α

2

∫∫

Ω×Ω

(u(x)− u(y))(v(x)− v(y))

|x − y|n+α
d yd x

+ cn,α

∫

Ω

ρ(x)u(x)v(x)d x . (2.7)

The bilinear form a(·, ·) is coercive and continuous [1]. Therefore, we can define the energy

norm

‖v‖V := a(v, v)
1
2 .

The well posedness of the variational form is the direct consequence of the Lax-Milgram

theorem — i.e. if f belongs to the dual space V∗ of V, then there exists a unique solution

u ∈ V of the problem (2.6).

The equivalent Ritz formulation is to find u ∈ V such that

J(u) =min
v∈V

J(v), (2.8)

where

J(v) =
1

2
a(v, v)− ( f , v). (2.9)

Remark 2.2. The discussion throughout the paper can be readily extended to the case of

non-homogeneous boundary conditions by standard boundary homogenization techniques.

Let u(x) = g(x), x ∈ Ωc be given. Considering the zero extension

g̃(x) =

¨

0, x ∈ Ω,

g(x), x ∈ Ωc
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of g into interior domain Ω and setting ũ := u− g̃(x), we obtain

(−∆)
α
2 u= (−∆)

α
2 ũ+ (−∆)

α
2 g̃ = (−∆)

α
2 ũ+ cn,α

∫

Ωc

g(y)

|x − y|n+α
d y.

Thus u = ũ in Ω and ũ satisfies the boundary value problem with the homogeneous bound-

ary condition

(−∆)
α
2 ũ = f̃ := f − cn,α

∫

Ωc

g(y)

|x − y|n+α
d y, x ∈ Ω,

ũ= 0, x ∈ Ωc.

3. Neural Networks Method and Error Estimates

We consider neural networks with one hidden layer in one-dimensional space and two

hidden layers in two- or three-dimensional space. Using the rectified linear unit activation

function

ReLU(x) =max(x , 0), x ∈ R,

we introduce a set of neural networksM
(n)
N . The superscript n shows the dependence on the

spatial dimension. We write simplyMN if it causes no confusion. In the one-dimensional

space let

M
(1)
N
=

¨

N1
∑

i=1

a
(2)

i
ReLU

�

x − b
(1)

i

�

+ b(2) : a
(2)

i
, b
(1)

i
, b(2) ∈ R

«

.

Its total degrees of freedom are N = 2N1 + 1. For n= 2 or 3 let

M
(n)
N =

(

N2
∑

j=1

w
(3)

j
ReLU

�

N1
∑

i=1

w
(2)

j,i
ReLU

�

w
(1)

i
· x+ b

(1)

i

�

+ b
(2)

j

�

+ b(3)

)

,

where x,w
(1)

i
∈ Rn and w

(2)

j,i
, w
(3)

j
, b
(1)

i
, b
(2)

j
, b(2), b(3) are real numbers. It is clear that the

total degrees of freedom are N = (n + 1) ∗ N1 + N1 ∗ N2 + 2N2 + 1. We remark that the

architecture of the neural networks is motivated by [31].

Now we are ready to present the neural network method for fractional diffusion equa-

tions. The approximate minimization problem is to find uN ∈MN such that

J(uN ) = min
v∈MN

J(v). (3.1)

Note that the problem (3.1) has a solution sinceMN ⊂ V. In order to evaluate the error of

approximate solution we need the following result.

Theorem 3.1. If u and uN are respectively the solutions of the problems (2.8) and (3.1), then

‖u− uN‖V = min
v∈MN

‖u− v‖.
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Proof. Using (2.9) gives

J(uN )− J(u) =
1

2
a(uN ,uN )−

1

2
a(u,u) + ( f ,u− uN )

=
1

2
a(uN ,uN )−

1

2
a(u,u) + a(u,u− uN )

=
1

2
a(uN ,uN ) + a

�

u,
1

2
u− uN

�

=
1

2
a(uN ,uN − u) +

1

2
a(u,u− uN )

=
1

2
a(uN − u,uN − u).

Since the above relations holds onMN , we get

‖u− uN‖
2
V
= 2

�

J(uN )− J(u)
�

= 2
�

min
v∈MN

J(v)− J(u)
�

= min
v∈MN

2
�

J(v)− J(u)
�

= min
v∈MN

‖u− v‖2
V

.

The proof is complete.

Unlike the standard piecewise polynomial linear spaces in finite element methods or

orthogonal polynomial spaces in spectral methods, the approximation properties of neural

networks are not yet fully studied. It is worth mentioning that neural networks repre-

sent nonlinear approximations and the relevant function sets are not always linear spaces.

Nevertheless, they contain very rich sets or subspaces of functions. In order to show the

convergence of the method, we use the fact that the standard finite element spaces consti-

tute a subclass of neural networks. This helps to explain why the neural networks can be

applied to fractional order problems.

We assume that Ω̄ =
⋃

T∈Th
T , where Th is an admissible triangulation of Ω. The di-

ameter of the elements T is denoted by hT . Let ρT be the diameter of the largest ball

contained in T . Here we consider a graded mesh with a family of triangulations satisfying

the standard mesh regularity — i.e. there is a positive number σ such that

hT ≤ σρT

for all T ∈ Th. Let h =maxT∈Th
hT . If T

⋂

Ω 6= ;, then hT ≤ Chµ, otherwise

hT ≤ Chdist(T,∂Ω)
µ−1
µ ,

where µ = 2/(1+ 2ε) ∈ [1,2) for a positive number ε ∈ (0,1/2].

Next, we consider a discrete space of piecewise linear polynomials and present the error

estimate of the neural network method for the fractional Laplace equation. Let

VN :=
�

v ∈ V : v|T ∈ P1 for any T ∈ Th

	

,
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where N is the total number of degrees of freedom of the space which is approximately h−n.

Therefore h ≈ N−1/n and there exist constants C0 and C1 such that C0N−1/n ≤ h≤ C1N−1/n.

The approximation property for graded finite element method in weighted Sobolev spaces

was proved in [1,9].

Lemma 3.1 (cf. Acosta & Borthagaray [1] and Borthagaray [9]). If α ∈ (0,2), ε ∈ (0,1/2)

and v ∈ V∩H
1+α/2

α/2
(Ω), then

min
vN∈VN

‖v − vN‖V ≤ CN−
1
n

Æ

log N‖v‖
H

1+α/2

1/2−ε
(Ω)

.

The next lemma states that any finite element function can be approximated by a neural

network.

Lemma 3.2 (cf. He et al. [31, Corollary 3.1]). Given a locally convex and shape regular finite

element grid Th, any linear finite element function with N degrees of freedom can be written

as an ReLU-DNN with at most O (d) hidden layers. The number of neurons is at most O (dκN )

with a constant κ > 2 depending on the shape-regularity of Th. The number of the non-zero

parameters is at most O (dκd N ), where d refers to the dimension.

We are ready to establish an error estimate.

Theorem 3.2. Let u and uN be the solutions of the problems (2.8) and (3.1), respectively. If

u ∈ V∩H
1+α/2

α/2
(Ω), then for ε ∈ (0,1/2) we have

‖u− uN‖V ≤ CN−
1
n

Æ

log N‖u‖
H

1+α/2

1/2−ε
(Ω)

.

Proof. By Lemma 3.2, VN is a subset of MN1
, where N1 is bounded by CN with C

independent of N . Theorem 3.1 and Lemma 3.1 give

‖u− uN‖V ≤ min
v∈MN1

‖v − u‖V ≤ min
v∈VN1

‖v − u‖V ≤ CN
− 1

n

1

Æ

log N1‖v‖H1+α/2

1/2−ε
(Ω)

.

This completes the proof.

Remark 3.1. Note that the above convergence order depends on the dimension n, which

looks not so interesting compared to well-established graded finite element methods. How-

ever, such dependency is not necessary and we hope it can be removed.

The above results with continuous norm are used for a purely theoretical purpose. In

practice however we implement simulations using discretized formulations. Therefore we

analyze the effect of the discrete energy functional

Jh(v) =
1

2
ah(v, v)− fh(v),

where ah and fh are approximations of a and f by a numerical integration.
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Let uh
N

be the solution of the discrete optimization problem

Jh

�

uh
N

�

= inf
v∈VN

Jh(v). (3.2)

Using the equivalence of the energy norm and the energy functional difference along with

(3.2), we have





u− uh
N







2

V
= 2

�

J
�

uh
N

�

− J(u)
�

= 2
�

J
�

uh
N

�

− Jh

�

uh
N

�

+ Jh

�

uh
N

�

− Jh(uN ) + Jh(uN )− J(uN ) + J(uN )− J(u)
�

≤ 2
�

J
�

uh
N

�

− Jh

�

uh
N

�

+ Jh(uN )− J(uN ) + J(uN )− J(u)
�

≤ 2
�

�Jh(uN )− J(uN )
�

�+ 2
�

�Jh

�

uh
N

�

− J
�

uh
N

��

�+ ‖u− uN‖
2
V

. (3.3)

It follows from (3.3) that in order to exploit the great potential of the neural networks, we

should use proper numerical quadratures to balance the approximation error and numerical

differentiation/integration error. This fact will be taken into consideration when we carry

out numerical experiments — cf. Subsection 4.1.3.

4. Numerical Experiments

To illustrate the accuracy of the neural networks methods, we mainly test the one-

dimensional cases for simplicity. The corresponding numerical results are presented in

Subsection 4.1. To study the influence of the solution layers, we numerically test different

hidden layers and provide the comparison of their empirical performance in Subsection 4.2.

In the training, we use the popular Adam optimizer with 20 000 epochs and set the

learning rate 0.001 for α = 0.4 and α = 0.8, and 0.0001 for α = 1.8. In one-dimensional

cases with one-hidden layer, the biases bi play the role of grid-points. Therefore, we take

uniform grid-points for the biases as the initial setup. For the weights ai based on the

relation between the ReLU bases and the finite element bases [31], we use FEMs on a coarse

mesh with the half number of the neurons. In two-dimensional cases, we directly use the

random initialization of the Adam optimizer package. All experiments are run on Pytorch

platforms and are replicated three times to reduce the variability of numerical tests.

4.1. Numerical results in 1D

For the domain Ω= (0,1) and the right hand side function f ≡ 1 the exact solution is

u(x) =
(1− x2)

α
2

Γ (α+ 1)
,

cf. [29]. Unlike the integer-order differential operator, for fractional operators the numeri-

cal differentiation/integration are not trivial. In this subsection, we describe the numerical

integration of a continuous energy functional.
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To make the numerical integration error negligible, we use the mesh with M = 200 of

grid-points. Set h = 1/M and x i = ih and x i−1/2 = x i−h/2, i = 0,1,2, . . . M and discretize

the double integral by a second-order quadrature rule — viz.

1

2

∫ 1

0

∫ 1

0

(v(x)− v(y))2

|x − y|1+α
d yd x =

∫ 1

0

�∫ x

0

(v(x)− v(y))2

|x − y|1+α
d y

�

d x

≈
1

2
h1−α

M−1
∑

i=2

i−1
∑

j=1

b
(α)
i− j
(vi − v j−1)

2 +
1

2
h1−α

M−1
∑

i=2

i−1
∑

j=1

c
(α)
i− j
(vi − v j)

2

+
1

4
h1−α

M−1
∑

j=1

b
(α)
M− j
(vM − v j−1)

2 +
1

4
h1−α

M−1
∑

j=1

c
(α)
M− j
(vM − v j)

2

+ 4a
(α)
0

h1−α
M−1
∑

i=1

(vi − vi− 1
2
)2 + 2a

(α)
0

h1−α(vM − vM− 1
2
)2, (4.1)

where

a
(α)

k
=
(k + 1)2−α − k2−α

(2−α)
, b

(α)

k
=

a
(α)

k

(k + 1)2
, c

(α)

k
=

a
(α)

k

k2
,

see Appendix for a more detail.

In the one dimensional case, the term ρ(x) of (2.5) has the form ρ(x) = (x−α + (1−

x)−α)/α. Since the second integral in (2.7) contains ρ(x) an has a stronger singularity, we

use the standard Gauss Jacobi quadrature. For α < 1 we have

∫ 1

0

ρ(x)v2(x)d x =
1

α

∫ 1

0

�

x−α + (1− x)−α
�

v2(x)d x

≈
1

α

M
∑

i

�

v2
�

X
0,−α
i

�

W
0,−α
i

+ v2
�

X
−α,0
i

�

W
−α,0
i

�

,

where X β ,γ and Wβ ,γ are the standard Gauss-Jacobi nodes and weights related to the Jacobi

pair (β ,γ). However, if 1 ≤ α < 2, Gauss-Jacobi quadrature does not work since it only

applies to the Jacobi index greater than −1. To deal with this issue, we split the singular

term and apply the quadrature rule

∫ 1

0

ρ(x)v2(x)d x =
1

α

�
∫ 1

0

x1−α v2(x)

x
+

∫ 1

0

(1− x)1−α
v2(x)

1− x
d x

�

≈
1

α

M
∑

i

�

v2(X
0,1−α
i

)

X
0,1−α
i

W
0,1−α
i

+
v2(X

1−α,0

i
)

1− X
1−α,0

i

W
1−α,0

i

�

. (4.2)

We apply the mid-point rule to the linear term
∫ 1

0
f (x)v(x)d x in the energy functional.
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4.1.1. Test 1. Numerical solutions with different number of neurons

We first test the accuracy of the neural network methods for fractional orders α ∈ (0,1)

and α ∈ (1,2). Numerical results are reported through the relative error in the L2 norm

and the energy norm or Hα/2 seminorm — cf. Table 1. Besides, numerical approximations

versus exact solution are shown in Figs. 1 and 2 for α = 0.8 and α = 1.8, respectively.

Note that by using only 5 neurons, we achieve at most four percentages of L2 relative error

— cf. Fig. 1. If the number of neurons is doubled, the error drops dramatically in the

interior of the domain, but the error near the boundary dominates. By further doubling

the neuron numbers the error decreases only slightly, and we did not observe predicted

first-order convergence. Nevertheless, comparing the method with the finite difference

method [30] with the same degrees of freedom, we note a better accuracy — cf. Table 2.

Note that the continuous L2 norm and the energy functional J(u)− J(uN ) are computed by

the above described numerical quadrature. For the energy norm, we use the equivalence

‖u− uN‖
2
V
= 2(J(u)− J(uN )), while J(u) and ‖u‖V are calculated analytically [29].

For α= 1.8, we note the first order convergence in the energy norm, which agrees with

the theoretical results (see Fig. 2 and Table 1). The error is very small near the boundary

in the energy norm. It may come from the numerical integration (4.2) which requires the

vanishing boundary conditions for the integrand.

Table 1: Test 1. Relative error of NNM.

α = 0.8 α = 1.8

DOF
‖u−un‖L2(Ω)

‖u‖L2 (Ω)

‖u−un‖V
‖u‖V

|J(u)−J(uN )|

|J(u)|

‖u−un‖L2(Ω)

‖u‖L2(Ω)

‖u−un‖V
‖u‖V

|J(u)−J(uN )|

|J(u)|

10 0.035315 0.128593 0.016536 0.046187 0.201595 0.040641

20 0.016857 0.085550 0.007319 0.012615 0.090913 0.008265

40 0.012649 0.075684 0.005728 0.004022 0.042591 0.001814

Table 2: Test 1. Relative errors of NNM and FDM, α= 0.8.

NNM FDM

DOF
‖u−un‖L2(Ω)

‖u‖L2 (Ω)

‖u−un‖V
‖u‖V

|J(u)−J(uN )|

|J(u)|

‖u−un‖L2(Ω)

‖u‖L2(Ω)

‖u−un‖V
‖u‖V

|J(u)−J(uN )|

|J(u)|

10 0.035315 0.128593 0.016536 0.086952 0.233671 0.054602

20 0.016857 0.085550 0.007319 0.046912 0.164795 0.027157

40 0.012649 0.075684 0.005728 0.025335 0.117519 0.013811

4.1.2. Test 2. Accuracy of least-squares and energy formulations

To formulate a least-squares loss functional, we replace the continuous fractional operator

by the second-order fractional centered difference operator [30] and consider the following
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Figure 1: Left: Exact and numerical solutions of fractional Poisson equation, α = 0.8. Right: Error :=
|uex t − uapr |. Top row: N = 5. Middle row: N = 10. Bottom row: N = 20.

functional:

Jh(v) = h

M−1
∑

j=1

�

(−∆)
α/2

h
v(x j)− f (x j)

�2
,

where

(−∆h)
α
2 u(x) =:

1

hα

∑

j∈Z

a
(α)
j

u(x + jh), a
(α)
j
=

(−1) jΓ (α+ 1)

Γ (α/2− j + 1)Γ (α/2+ j + 1)
.

To control the numerical integration and differentiation error, we use the same number

M = 200 of grid-points, the same optimizer, and the same number of iterations. Two for-

mulations with different fractional orders are displayed in Figs. 3 and 4. Note that the

least-squares formulation demonstrates a slightly better performance than the Ritz formu-

lation for α = 0.8, but it does not perform well for α = 1.8, cf. Fig. 4.
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Figure 2: Left: Exact and numerical solutions of fractional Poisson equation, α = 1.8. Right: Error :=
|uex t − uapr |. Top row: N = 5. Middle row: N = 10. Bottom row: N = 20.

Figure 3: Left: Ritz formulation. Right: Least squares formulation. α = 0.8, N = 40.
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Figure 4: Left: Least squares formulation. Right: Ritz formulation. α = 1.8, N = 40.

4.1.3. Test 3: Influence of training and evaluation points.

We examine the influence of numerical quadratures on the training performance. Note

that in order to reduce a stronger singularity at the boundary into weaker, one usually

adopts the standard Duffy transform technique [17] and applies a nonuniform Gauss-Jacobi

quadrature to the resultant integrals, thus obtaining the discrete functional

JM (uN ) =
c1,α

2

M
∑

i, j=1

�

uN (X
0,1−α
i

)− uN (X
0,1−α
i

Z
1−α,0
j

)
�2

X
0,1−α
i

(1− Z
1−α,0

j
)2

W
0,1−α
i

W
1−α,0

j

+
c1,α

2α

M
∑

i

�

u2
N
(X

0,1−α
i

)

X
0,1−α
i

W
0,1−α
i

+
u2

N
(X

1−α,0
i

)

1− X
1−α,0

i

W
1−α,0
i

�

−

M
∑

i

f
�

X
0,0
i

�

uN

�

X
0,0
i

�

W
0,0
i

. (4.3)

The only difference between (4.1) and (4.3) is the treatment of the leading term in the

fractional semi-norm.

Here we use the same optimizer and maximum iteration number. The corresponding

numerical results are shown in Fig. 5. It is worth noting that the functional (4.1) performs

Figure 5: Performance of numerical quadratures. Left: Eq. 4.1. Right: Eq. 4.3.
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much better than (4.3). One of the possible reasons is that the nonuniform quadrature

(4.3) makes the non-convex functional even worse and leads to highly non-convex one

which is more difficult to train. Therefore, we must be careful when we use quadrature

rules for continuous energy functionals.

4.1.4. Test 4. Reaction-diffusion equation with sharp interior layer

Consider now the reaction-diffusion equation

εα(−∆)
α
2 u+ G(u) = f , x ∈ Ω.

It is well known that for small ε the nonlinear equation can have sharp interior transition

layers and their locals are unknown. In order to test problem, we choose the linear reaction

term G(u) = u and the Gaussian function u= exp(−|x−0.5|2/ε2) as fabricated solution on

the interval Ω= [0,1]. The corresponding right hand side has the form

f (x) = εα(−∆)
α
2 u+ u

where

(−∆)
α
2 u = µ1,α

1

εα
1F1

�

1+α

2
;

1

2
;−
|x − 0.5|2

ε2

�

, µ1,α =
2αΓ ((1+α)/2)

Γ (1/2)

and 1F1 is two-parameters hypergeometric function directly evaluated by the scipy.
special package.

In this case, the reaction term has to be added into the optimization functional — i.e.

J(u) =
c1,αε

α

2

∫ 1

0

∫ 1

0

|u(x)− u(y)|2

|x − y|1+α
d xd y

+ εαc1,α

∫ 1

0

ρ(x)u2(x)d x +
1

2

∫ 1

0

u2(x)d x −

∫ 1

0

f ud x .

In the numerical simulations, we take α = 0.8, ε = 0.03 and test N = 40 and N = 80

neurons. In the former case, the relative errors in L2 and energy norms are about 0.075833

and 0.17818, respectively. On the other hand, in the latter case the respective are 0.036144

and 0.135395. The corresponding numerical and exact solutions shown in Fig. 6. Note that

the numerical solution obtained by NNM with proper number of neurons can accurately

capture the sharp interior transition layer although its location was not known beforehand.

4.2. Numerical results in 2D

We now consider the two-dimensional equation

(−∆)
α
2 u = f
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Figure 6: Left: 40 Neurons. Right: 80 Neurons.

on the circular domain Ω := {x = (x1, x2) : x2
1+ x2

2 < 1} with the right-hand side f (x) = 1,

x ∈ Ω. According to [28], the solution of this problem is

u(x1, x2) =
(1− x2

1 − x2
2)
α
2

2α[Γ (α/2+ 1)]2
, Ω=

�

(x1, x2) : x2
1 + x2

2 < 1
	

.

To simplify the computation of integrals in the energy functional, we embed the disk into

the rectangular domain [0,1]2, i.e.

J(u) =
1

2

∫∫

Ω

u(−∆)
α
2 u d x −

∫∫

Ω

uf d x

=
1

2

∫ 1

−1

∫ 1

−1

ũ(−∆)
α
2 ũ d x −

∫ 1

−1

∫ 1

−1

ũ f d x ,

where ũ= 1Ωu is the zero extension of u outside of Ω.

We show the numerical results for α = 0.4 and α = 1.4. We test and compare the

performance for two different hidden layers but under the condition of the same degrees

of freedom (DOF=501). More precisely, consider the following situations:

Case 1. Two hidden layers with 20 neurons for each layers. The corresponding architecture

is referred to as 2-20-20-1.

Case 2. A one hidden layer with 125 neurons. The corresponding architecture is referred

to as 2-125-1.

Case 3. Three hidden layers with 10 neurons for the first and second hidden layers, and

30 neurons for the third hidden layer. The corresponding architecture is referred to as

2-10-10-30-1.

For the description of deep neural networks the reader can consult [11].

In this example, we use the fractional centered scheme [30] to discretize the high-

dimensional fractional derivatives. For the integrand v vanishing on the boundary, recall the
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trapezoidal quadrature rule with the relatively large numerical differentiation/integration

number N=200 in each direction,

∫ 1

−1

∫ 1

−1

v(x1, x2)d x1d x2 ≈

N−1
∑

i, j=1

v(x1,i, x2, j)h1h2, x1,i = ih1, x2, j = jh2.

For α = 0.4, numerical and exact solutions for Cases 1 and 2 are shown in Figs. 7 and

8, respectively. Note that the numerical solution mimics true solution quite well. To have

a closer look at the magnitude of the errors, we display the point-wise picture of them in

Fig. 9. It is worth mentioning that for the same number of parameters or the DOF, and the

same setup of the optimization training, the shallow neural networks perform much better

than the deep ones. Actually, we test more hidden layers and found that the conclusion is

still true — cf. Fig. 10, where the error for two-hidden layers is smaller than that for three

layers. When α= 1.4, the similar behavior has been observed in Figs. 11-14.

Figure 7: Left: Exact solution. Right: Numerical solution by two-hidden layers, Case 2-20-20-1, DOF=
501, α = 0.4.

Figure 8: Left: Exact solution. Right: Numerical solution by one-hidden-layer, Case 2-125-1, DOF=501,
α = 0.4.
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Figure 9: Numerical errors, DOF=501, α = 0.4. Left: two-hidden layers, Case 2-20-20-1. Right: One-
hidden layer, Case: 2-125-1.

Figure 10: Numerical errors, DOF=501, α = 0.4. Left: two-hidden layers, Case 2-20-20-1. Right: three-
hidden layers, Case 2-10-10-30-1.

Figure 11: Left: Exact solution. Right: Numerical solution by two-hidden layers, Case 2-20-20-1, DOF=
501, α = 1.4.
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Figure 12: Left: Exact solution. Right: Numerical solution by one-hidden-layer, Case 2-125-1, DOF=
501,α= 1.4.

Figure 13: Numerical errors, DOF=501, α = 1.4. Left: Two-hidden layers, Case 2-20-20-1. Right: One-
hidden layer, Case 2-125-1.

Figure 14: Numerical errors, DOF=501, α = 1.4. Left: Two-hidden layers, Case 2-20-20-1. Right:
Three-hidden layers, Case 2-10-10-30-1.
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There is also another interesting phenomenon. For the shallow neural networks with

a one hidden layer, the larger point-wise errors seem to have clusters at the boundary. In

contrast, for more layers, the point-wise errors distribute mildly uniform near the boundary

except for few spikes. However, one would expect the same performance under the same

DOF. One possible explanation of the performance difference is that it may be caused by a

difficult and inadequate training of deep ones.

5. Conclusion and Discussions

We consider the neural network method based on the Ritz formulation for the fractional

diffusion equation. Connecting neural networks with piecewise linear polynomials, we

analyze its convergence and errors. Numerical experiments are used to verify the accuracy

of the method.

In this work, we only explore the rectified linear unit (ReLU) activation function. It is

possible to extend the theoretical results to other smooth activation functions such as the

power ReLU or radial basis functions. We remark that the current work mainly focuses on

the approximation error of the neural network method. Here, the error source consists of

three parts: discretization error, numerical integration error and optimization error.

Regarding the numerical quadrature of the fractional operator, for simplicity, we only

use the traditional 2D FDM operator in [30] for the numerical integration. Other efficient

and accurate numerical quadrature can also be explored, for example, the very recent work

by the kernel-based numerical quadrature [10] for the fractional Laplacian operator on the

general domain.

We did not compare the computational complexity of NNMs with traditional methods

but rather focus on the high order convergence and potential of method. In particular, we

showed that NNMs are more accurate than other traditional methods such as finite dif-

ference methods. Nevertheless, using the ADAM method as an optimizer for the neural

network training is still very expensive. Therefore, more efficient optimizer and initializa-

tion method are needed.

When the model equation contains asymmetrical fractional operators or a convection

term, the symmetric energy formulation considered in this work is not applicable. To ad-

dress this issue, one may introduce the artificial least-squares formulation. However, the

construction of efficient leas-squares formulations which can uncover the potential benefits

of the NNMs it still an open problem.

Appendix A

A.1 Numerical integration

Denote Φ(x , y) = (u(x)− u(y))2/|x − y|2. By the standard trapezoidal rule, we have

∫ 1

0

�∫ x

0

(v(x)− v(y))2

|x − y|1+α
d y

�

d x =

∫ 1

0

�∫ x

0

Φ(x , y)(x − y)1−αd y

�

d x
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= h

M−1
∑

i=1

∫ xi

0

Φ(x i, y)(x i − y)1−αd y +
h

2

∫ xM

0

Φ(xM , y)(xM − y)1−αd y + O
�

h2
�

, (A.1)

where x i = ih and h = 1/M . Splitting each weighted integral into two parts and respec-

tively using weighted trapezoidal and weighted mid-point rules yields

∫ xi

0

Φ(x i, y)(x i − y)1−αd y

=

i−1
∑

j=1

∫ x j

x j−1

Φ(x i, y)(x i − y)1−αd y +

∫ xi

xi−1

Φ(x i, y)(x i − y)1−αd y

=
1

2
h2−α

i−1
∑

j=1

a
(α)
i− j

�

Φ(x i, x j−1) +Φ(x i, x j)
�

+ a
(α)
0

h2−α
Φ(x i, x i− 1

2
) + O

�

h2
�

, (A.2)

where

a
(α)
i− j
= hα−2

∫ x j

x j−1

(x i − y)1−αd y =
(i − j + 1)2−α − (i − j)2−α

2−α
.

Substituting (A.2) into (A.1) and regrouping the terms gives the result.

A.2 Quasi-linear complexity of double summation

Writing the representation

M−1
∑

i=2

i−1
∑

j=1

(ui − u j−1)
2 b
(α)
i− j
=

M−1
∑

i=2

i−1
∑

j=1

(ui)
2 b
(α)
i− j
− 2

M−1
∑

i=2

i−1
∑

j=1

uiu j−1 b
(α)
i− j

+

M−1
∑

i=2

i−1
∑

j=1

(u j−1)
2 b
(α)
i− j

,

we can use the product of a Toeplitz matrix vector product and the standard fast Fourier

transform to accelerate the computation with quasi-linear complexity. For example, the

first term can be written as

M−1
∑

i=2

i−1
∑

j=1

u2
i b
(α)
i− j
=
�

u2
2,u2

3, . . . ,u2
M−1

�

















b
(α)
1

0 . . . . . . 0

b
(α)
2

b
(α)
1

0
...

...
... b

(α)
2

. . .
. . .

...
...

. . .
. . .

b
(α)
M−2

. . . . . . . . . b
(α)
1

























1

1
...

1









.
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