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Abstract. A relaxed TTSCSP (RTTSCSP) iteration method for complex linear systems

is constructed. Based on the strong dominance and separability of linear and nonlinear

terms, Picard-RTTSCSP and nonlinear RTTSCSP-like iterative methods are developed

and applied to complex systems of weakly nonlinear equations. The convergence of

the method is investigated. Besides, optimal iterative parameters minimizing the upper

bound of the spectral radius are derived. Numerical examples show the effectiveness

and applicability of the methods to complex systems of weakly nonlinear equations.
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1. Introduction

Let D be an open convex subset of the n-dimensional complex linear space Cn and

φ : D → Cn a continuously differentiable nonlinear function. We consider the complex

weakly nonlinear system

Ax := (W + iT )x = φ(x), (1.1)

where W, T ∈ Rn×n are real symmetric positive definite matrices and i =
p
−1 the imaginary

unit. This system can be written as

F(x) := Ax −φ(x) = 0,

and in what follows, we mainly use this form of the Eq. (1.1).

If the linear part A is strongly dominant over in a specific norm, then the system (1.1)

is called weakly nonlinear — cf. [6, 10, 33]. Finding the solutions of systems (1.1) has

numerous applications in engineering, nonlinear partial differential equations, saddle point

problems in image processing and nonlinear optimization problems [5–7, 9, 16, 21]. As
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far as the general nonlinear equation F(x) = 0, the most popular solution method is the

second-order classical iteration Newton scheme — i.e.

xn+1 = xn − F
′
(xn)

−1F(xn), n= 0,1,2, . . . ,

where F : D→ Cn is a continuous differentiable function. Nevertheless, in practical com-

putations it is difficult to construct the Jacobian matrix and derive an exact solution of the

above equations. Therefore, the inexact Newton method

xn+1 = xn + sn,

F ′(xn)sn = −F(xn) + rn,

‖rn‖/‖F(xn)‖ ≤ ηn,

where ηn ∈ [0,1), attracted a substantial attention — cf. [1,3,15,20]. In particular, com-

bining the Newton method with inner solvers allowed to adjust various numerical methods

for linear systems to non-linear equations [1,4,8,12–14,23,26,28,29,31].

By adopting the HSS scheme as the internal solver, Bai [8] established a Newton-HSS

methods for solving nonlinear systems with large sparse positive definite Jacobian matri-

ces. Yang and Bai [10] proposed nonlinear HSS-like and the Picard-HSS iteration methods

for weakly nonlinear systems with specific properties. Considering weakly nonlinear equa-

tions with large sparse matrices, Pu and Zhu [22] improved algorithms for linear equa-

tions and used them to develop generalized nonlinear compound splitting iterative meth-

ods, named nonlinear GPHSS-like and Picard-GPHSS. The solution of Toeplitz systems of

weakly nonlinear equations have been studied by Zhu and Zhang [34], who developed

nonlinear CSCS-like and Picard-CSCS iterative schemes, which are nonlinear composite

iteration algorithms. Adopting the AIPCG iteration technique, Jiang and Guo [18] estab-

lished Picard-AIPCG algorithms for solving the equations of this type. A class of lopsided

PMHSS iteration methods and a nonlinear LHSS-like method converging to the unique

solution, have been proposed by Li and Wu [19]. Zeng and Zhang [30] constructed a

PTGHSS iteration scheme and two PTGHSS-based iteration methods for weakly nonlinear

systems. Chen et al. [11] applied nonlinear DPMHSS-like and Picard-DPMHSS methods,

based on double-parameter PMHSS iterative technique, to weakly nonlinear systems. Us-

ing an HSS scheme, Amiri [2] established a Jacobi-free HSS algorithm for weakly nonlinear

systems. Combining accelerated GSOR and preconditioned GSOR method, Wu and Qi [27]

introduced Picard-preconditioned GSOR and Picard-accelerated GSOR methods for weakly

nonlinear equations with complex matrices.

Taking into account excellent properties and efficient performance of HSS-like iterative

methods, Zheng et al. [32] applied a DSS iteration scheme to complex symmetric linear

equations. Xie and Wu [28] adjusted the Newton-DSS method to nonlinear systems with

large sparse complex symmetric Jacobian matrices. Besides, a complex Sylvester matrix

equation has been solved by Feng and Wu [17] by the Lopsided DSS iteration method. In

order to accelerate the DSS scheme, Siahkolaei et al. [24] established a two-parameter two-

step scale-splitting (TTSCSP) method, which was then used in the solution of systems of

weakly nonlinear equations by Siahkolaei et al. [25].
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The aim of the present work is to improve the efficiency of TTSCSP iteration method

and apply it to weakly nonlinear systems. Introducing a relaxation parameter ω, we can

speed up slowly convergent iteration methods and even make divergent iteration meth-

ods to converge. Moreover, relaxation parameters can make the iterative methods more

flexible. We start with a relaxed TTSCSP (RTTSCSP) iteration method for complex linear

systems and introduce a relaxation parameter to the TTSCSP iteration method. Besides, we

consider a class of RTTSCSP-based iteration methods, called Picard-RTTSCSP and nonlinear

RTTSCSP-like iteration methods, which are aimed to improve the efficiency of numerical

methods for complex weakly nonlinear systems.

This paper is organized as follows. In Section 2, we construct an RTTSCSP iteration

scheme for complex linear systems and discuss its convergence. In Section 3, we intro-

duce Picard-RTTSCSP and nonlinear RTTSCSP-like iteration methods for complex weakly

nonlinear systems and establish their convergence. Section 4 is devoted to optimal param-

eters for these new iteration methods. The results of numerical experiments presented in

Section 5 support the theoretical findings. Finally, our conclusions are given in Section 6.

2. RTTSCSP Iteration Method

If φ(x) = b, b ∈ Cn, then (1.1) is the linear system

(W + iT )x = b

with symmetric positive definite matrices W, T ∈ Rn×n. For such systems, Salkuyeh and

Siahkolaei [24] introduced the so-called TTSCSP iteration method, which can be described

as follows. Let x0 ∈ Cn be an initial guess. For k = 0,1,2, . . ., determine the next iteration

value xk+1 from the equations

(αW + T )xk+1/2 = i(W −αT )xk + (α− i)b,

(βT +W )xk+1 = i(βW − T )xk+1/2 + (1− iβ)b,

until the iterative sequence {xk}∞k=0
⊂ Cn converges.

To improve the efficiency of this approach, we introduce a relaxation parameter and

call the corresponding scheme the RTTSCSP iteration method. More exactly, let x0 ∈ Cn

be an initial guess. For k = 0,1,2, . . ., find the next iteration value xk+1 from the equations

xk+1/2 = (1−ω)xk +ω(αW + T )−1
�

i(W −αT )xk + (α− i)b
�

,

xk+1 = (1−ω)xk+1/2 +ω(βT +W )−1
�

i(βW − T )xk+1/2 + (1− iβ)b
�

,

until the iterative sequence {xk}∞k=0
⊂ Cn converges.

Note that α,β are positive constants andω is a relaxation parameter. It is worth noting

that if ω = 1, the RTTSCSP method becomes an TTSCSP method. Simple manipulations

show that RTTSCSP iteration scheme can be represented in the form

xk+1/2 =
�

I +ω(i −α)(αW + T )−1A
�

xk +ω(α− i)(αW + T )−1 b,

xk+1 =
�

I +ω(iβ − 1)(βT +W )−1A
�

xk+1/2 +ω(1− iβ)(βT +W )−1 b,
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and then written as

xk+1 = Tα,β (ω)xk + Gα,β(ω),

where

Tα,β(ω) =
�

I +ω(βT +W )−1(iβ − 1)A
��

I +ω(αW + T )−1(i −α)A
�

= (βT +W )−1
�

(1−ω+ iβω)W + (β − βω− iω)T
�

× (αW + T )−1
�

(α−ωα+ iω)W + (1−ω− iωα)T
�

,

Gα,β(ω) =ω(βT +W )−1
�

(2α−ωα− i + iω− iαβ)W

+ (1+αβ −ωαβ + iωβ − 2iβ)T +ωα− iω
�

(αW + T )−1.

The following theorem describe the convergence of the RTTSCSP method.

Theorem 2.1. Let W, T ∈ Rn×n be symmetric positive definite matrices and µ j, j = 1,2, . . . , n

the eigenvalues of S =W−1/2TW−1/2. If the inequalities

(4ω2 −ω3 − 6ω+ 4)(α+µ j)
2(βµ j + 1)2 −ω(1−ω)2(β −µ j)

2(α+µ j)
2

>ω3(β −µ j)
2(1−αµ j)

2 +ω(1−ω)2(1−αµ j)
2(βµ j + 1)2 (2.1)

hold for all j = 1,2, . . . , n, then the RTTSCSP iteration method converges.

Proof. Direct calculation show that

Tα,β(ω) =W−1/2(βS + I)−1
�

(1−ω+ iβω)I + (β − βω− iω)S
�

× (αI + S)−1
�

(α−ωα+ iω)I + (1−ω− iωα)S
�

W 1/2.

Considering

T̃α,β(ω) = (βS + I)−1
�

(1−ω+ iβω)I + (β − βω− iω)S
�

× (αI + S)−1
�

(α−ωα+ iω)I + (1−ω− iωα)S
�

,

we note that the matrices Tα,β (ω) and T̃α,β(ω) are similar, so that they have the same

eigenvalues. Since W and T are real symmetric positive definite, the all eigenvalues of the

matrix S are positive. Therefore,

ρ
�

Tα,β (ω)
�

= ρ
�

T̃α,β(ω)
�

= max
µ j∈σ(S)

|λ(α,β ,ω,µ j)|,

where

λ(α,β ,ω,µ j) =
[1−ω+ iβω+ (β − βω− iω)µ j][α−ωα+ iω+ (1−ω− iωα)µ j]

(βµ j + 1)(α+µ j)
.

Writing the eigenvalues λ(α,β ,ω,µ j)

λ(α,β ,ω,µ j) =

�

1−ω+
iω(β −µ j)

βµ j + 1

��

1−ω+
iω(1−αµ j)

α+µ j

�

,
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we note that the real and imaginary parts of λ(α,ω,µ j) have the form

Re
�

λ(α,ω,µ j)
�

= (1−ω)2 −ω2
(β −µ j)(1−αµ j)

(α+µ j)(βµ j + 1)
,

Im
�

λ(α,ω,µ j)
�

=ω(1−ω)
�

1−αµ j

α+µ j

+
β −µ j

βµ j + 1

�

.

Therefore,

Re2
�

λ(α,ω,µ j)
�

+ Im2
�

λ(α,ω,µ j)
�

= (1−ω)4 +ω4
(β −µ j)

2(1−αµ j)
2

(α+µ j)
2(βµ j + 1)2

+ω2(1−ω)2
�

(1−αµ j)
2

(α+µ j)
2
+
(β −µ j)

2

(βµ j + 1)2

�

.

Hence, if the inequality (2.1) holds, the spectral radius of iteration matrix ρ(Tα,β(ω)) < 1.

This yields the convergence of the sequence of interest.

3. Iteration Methods for Weakly Nonlinear Systems

The linearization of nonlinear equations is one of the most attractive strategies in solv-

ing nonlinear systems. Since the linear term Ax has strong dominance over the nonlinear

term φ(x), we can use the Picard iterative method to obtain solutions of weakly nonlinear

systems (1.1). A linear system has to be solved in each Picard iteration step. Applying the

RTTSCSP method as an internal iteration for solving these linear equations, one can then

find approximations for the iteration xk.

3.1. The Picard-RTTSCSP iteration method

Assume that φ : D→ Cn is a continuous function, A ∈ Cn×n a positive definite matrix,

and W and T respectively denote the Hermitian and skew-Hermitian parts os A, i.e. W =

(A + A∗)/2 and iT = (A − A∗)/2. Choose an initial guess x0 ∈ D and determine xk+1,

k = 0,1,2, . . . by the method below until {xk} satisfies the stopping criteria.

(a) Let xk,0 := xk.

(b) If l = 0,1, . . . , lk − 1, determine xk,l+1 from the linear equations

xk,l+1/2 =
�

I +ω(i −α)(αW + T )−1A
�

xk,l +ω(α− i)(αW + T )−1φ(xk),

xk,l+1 =
�

I +ω(iβ − 1)(βT +W )−1A
�

xk,l+1/2+ω(1− iβ)(βT +W )−1φ(xk),

where α,β > 0 are given constants and ω is a relaxation parameter.

(c) Set xk+1 := xk,lk
.
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Applying the Picard-RTTSCSP iteration schemes yields

xk+1 = Tα,β (ω)
lk xk +

lk−1
∑

j=0

Tα,β(ω)
jGα,β(ω)φ(xk), k = 0,1,2, . . . ,

where Tα,β(ω) and Gα,β(ω) are above defined matrices.

If x∗ ∈ D is the exact solution of the system (1.1), then

x∗ = Tα,β (ω)
lk x∗ +

lk−1
∑

j=0

Tα,β(ω)
jGα,β(ω)φ(x∗),

so that

xk+1− x∗ = Tα,β(ω)
lk (xk − x∗) +

lk−1
∑

j=0

Tα,β(ω)
j Gα,β(ω)
�

φ(xk)−φ(x∗)
�

. (3.1)

Let a ∈ R. We denote by ⌊a⌋ the smallest integer greater than or equal to a.

Theorem 3.1. Assume that φ : D→ Cn is a G-differentiable function in a neighborhood D0

of an exact solution x∗ ∈ D of (1.1), φ′(x) is continuous, and set

µ(α,β ,ω) = ‖Tα,β (ω)‖, ω= ‖A−1φ′(x∗)‖, θ = ‖A−1‖.

If

l0 ≥
�

ln

�

1−ω
1+ω

�

/ ln
�

µ(α,β ,ω)
�

�

,

then for any initial guess x0 ∈ N and any positive integer sequence lk, k = 0,1, . . . , there exists

an open neighborhood N of x∗ in D0 such that the iteration sequence {xk}∞k=0
generated by

the Picard-RTTSCSP iteration method is well-defined and converges to x∗. More exactly,

lim sup
k→∞

‖xk − x∗‖1/k ≤ω+ (1+ω)µ(α,β ,ω)l0 , l0 = lim inf
k→∞

lk.

If limk→∞ lk =∞, the convergence speed is R-linear with the R-factor being at most ω, i.e.

lim sup
k→∞

‖xk − x∗‖1/k ≤ω.

Proof. Set

E(x , x∗) = φ(x)−φ(x∗)−φ′(x∗)(x − x∗),

and write the Eq. (3.1) as

xk+1− x∗ =

�

Tα,β (ω)
lk (xk − x∗) +

lk−1
∑

j=0

Tα,β (ω)
jGα,β(ω)φ

′(x∗)

�

(xk − x∗)

+

lk−1
∑

j=0

Tα,β(ω)
j Gα,β(ω)E(xk, x∗)
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=
�

Tα,β(ω)
lk +
�

I − Tα,β (ω)
lk
�

A−1φ′(x∗)
�

(xk − x∗)

+
�

I − Tα,β(ω)
lk
�

A−1E(xk, x∗)

=
�

A−1φ′(x∗) + Tα,β(ω)
lk(I − A−1φ′(x∗))

�

(xk − x∗)

+
�

I − Tα,β(ω)
lk
�

A−1E(xk, x∗).

It follows that

‖xk+1− x∗‖ ≤
�




A−1φ′(x∗)




+




Tα,β(ω)
lk
�

I − A−1φ′(x∗)
�





�

‖xk − x∗‖

+ ‖I − Tα,β (ω)
lk‖‖A−1‖‖E(xk, x∗)‖

≤
�

ω+µ(α,β ,ω)lk(1+ω)
�

‖xk − x∗‖+ θǫ
�

1+µ(α,β ,ω)lk
�

‖xk − x∗‖,

where the last inequality is implied by the G-differentiability of φ(x), and ǫ is a sufficiently

small constant. Using induction gives

‖xk+1− x∗‖ ≤
�

ω+ (1+ω)µ(α,β ,ω)lk + θǫ
�

1+µ(α,β ,ω)lk
��k+1 ‖x0 − x∗‖.

Since ǫ can be chosen sufficiently small and the inequality (3.1) holds, we obtain

ω+ (1+ω)µ(α,β ,ω)lk + θǫ
�

1+µ(α,β ,ω)lk
�

< 1.

Therefore, limk→∞ xk = x∗, and

lim sup
k→∞

‖xk − x∗‖1/k ≤ω+ (1+ω)µ(α,β ,ω)l0 , l0 = lim inf
k→∞

lk.

In particular, if limk→∞ lk =∞, then it is easily seen that lim supk→∞ ‖xk−x∗‖1/k ≤ω.

3.2. A nonlinear RTTSCSP-like method

Let A and φ be as in Subsection 3.1. Given an initial guess x0 ∈ D, determine xk+1 for

k = 0,1,2, . . . from the equations

xk+1/2 =
�

I +ω(i −α)(αW + T )−1A
�

xk +ω(α− i)(αW + T )−1φ(xk),

xk+1 =
�

I +ω(iβ − 1)(βT +W )−1A
�

xk+1/2+ω(1− iβ)(βT +W )−1φ(xk+1/2)

until {xk} satisfies a stopping criteria. Note that α,β ,ω are given constants and if the exact

solution x∗ ∈ D is the exact solution of (1.1), we suppose that φ′(x) is continuous at this

point. Using the notations

G(x) =
�

I +ω(i −α)(αW + T )−1A
�

x +ω(α− i)(αW + T )−1φ(x),

H(x) =
�

I +ω(iβ − 1)(βT +W )−1A
�

x +ω(1− iβ)(βT +W )−1φ(x),

and

χ(x) = H
�

G(x)
�

,
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we can write the nonlinear RTTSCSP-like iteration method can as

xk+1 = χ(xk), k = 0,1,2, . . . .

Assuming that x∗ ∈ D is the exact solution of the system (1.1) and using the chain rule

gives

χ ′(x∗) = H ′(x∗)G
′(x∗)

=
�

I +ω(iβ − 1)(βT +W )−1A+ω(1− iβ)(βT +W )−1φ′(x∗)
�

×
�

I +ω(i −α)(αW + T )−1A+ω(α− i)(αW + T )−1φ′(x∗)
�

.

Theorem 3.2 (cf. Bai & Yang [10]). Assume that x∗ ∈ D is the exact solution of (1.1),

φ : D→ Cn is G-differentiable at x∗ and set

Tα,β(ω, x∗) =
�

I +ω(iβ − 1)(βT +W )−1A+ω(1− iβ)(βT +W )−1φ′(x∗)
�

×
�

I +ω(i −α)(αW + T )−1A+ω(α− i)(αW + T )−1φ′(x∗)
�

.

If the spectral radius ρ(Tα,β (ω, x∗))< 1, then x∗ ∈ D is a point of attraction of the nonlinear

RTTSCSP-like iteration.

Theorem 3.3. Let S = W−1/2TW−1/2. Assume that x∗ ∈ D is the exact solution of (1.1),

φ : D→ Cn is G-differentiable at x∗, and set

δ =max
�

‖(αW + T )−1φ′(x∗)‖,‖(βT +W )−1φ′(x∗)‖
	

,

a = ‖I +ω(i −α)(αW + T )−1A‖= max
µ j∈λ(S)

�

�

�

�

α−ωα+ iω+ (1−ω− iωα)µ j

α+µ j

�

�

�

�

,

b = ‖I +ω(iβ − 1)(βT +W )−1A‖= max
µ j∈λ(S)

�

�

�

�

1−ω+ iωβ + (β −ωβ − iω)µ j

βµ j + 1

�

�

�

�

,

R=ω

s

�Æ

1+ β2a−
p

1+α2 b
�2
+ 4
Æ

(1+α2)(1+ β2) +ω
�Æ

1+ β2a+
p

1+α2 b
�

.

If

δ <
2(1− ab)

R
, (3.2)

then

ρ
�

Tα,β (ω, x∗)
�

< 1.

Proof. Direct calculations give

Tα,β(ω, x∗) = Tα,β(ω) +ω(α− i)
�

I +ω(iβ − 1)(βT +W )−1A
�

(αW + T )−1φ′(x∗)

+ω(1− iβ)(βT +W )−1φ′(x∗)
�

I +ω(i −α)(αW + T )−1A
�

+ω2(1− iβ)(α− i)(βT +W )−1φ′(x∗)(αW + T )−1φ′(x∗)
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with Tα,β (ω) defined similar to the previous section

‖Tα,β (ω)‖ ≤ ‖I +ω(iβ − 1)(βT +W )−1A‖× ‖I +ω(i −α)(αW + T )−1A‖= ab.

Consequently,

‖Tα,β(ω, x∗)‖ ≤ ‖Tα,β (ω)‖+




ω(α− i)
�

I +ω(iβ − 1)(βT +W )−1A
�

(αW + T )−1φ′(x∗)






+




ω(1− iβ)(βT +W )−1φ′(x∗)
�

I +ω(i −α)(αW + T )−1A
�





+ ‖ω2(1− iβ)(α− i)(βT +W )−1φ′(x∗)(αW + T )−1φ′(x∗)‖

≤ ‖Tα,β (ω)‖+ω
p

1+α2‖I +ω(iβ − 1)(βT +W )−1A‖‖(αW + T )−1φ′(x∗)‖
+ω
Æ

1+ β2‖(βT +W )−1φ′(x∗)‖‖I +ω(i −α)(αW + T )−1A‖
+ω2
Æ

(1+α2)(1+ β2)‖(βW + T )−1φ′(x∗)‖‖(αW + T )−1φ′(x∗)‖

≤ ab+ω
�
Æ

1+ β2a+
p

1+α2 b
�

δ+ω2
Æ

(1+α2)(1+ β2)δ2.

Under the condition (3.2), we have

ab+ω
�Æ

1+ β2a+
p

1+α2 b
�

δ+ω2
Æ

(1+α2)(1+ β2)δ2 < 1.

Therefore,

ρ
�

T (α,β , x∗)
�

≤ ‖T (α,β ; x∗)‖< 1,

and the proof is complete.

4. Parameters Optimization

It is known that the convergence of the iterative method depends on two main factors

viz. the weak nonlinearity of the systems and the choice of an optimal parameters minimiz-

ing the spectral radius of the iterative matrix. The former is determined by the problem,

and the latter is discussed below. Calculations show that the spectral radius of the iteration

matrix Tα,β(ω) can be estimated as follows:

ρ
�

Tα,β(ω)
�

= max
µ j∈σ(S)

|λ(α,β ,ω,µ j)|

≤ max
µ j∈σ(S)

�

�

�

�

1−ω+
iω(β −µ j)

βµ j + 1

�

�

�

�

�

�

�

�

1−ω+
iω(1−αµ j)

α+µ j

�

�

�

�

≤

√

√

√

(1−ω)2 +ω2 max
µ j∈σ(S)

(β −µ j)
2

(βµ j + 1)2

√

√

√

(1−ω)2 +ω2 max
µ j∈σ(S)

(1−αµ j)
2

(α+µ j)
2

:= ̺(α,β ,ω).

Optimizing the upper bound ̺(α,β ,ω), we express optimal parameters as

(α∗,β∗,ω∗) = arg min
α,β ,ω

̺(α,β ,ω).
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Setting

fµ(α) =
1−αµ
α+µ

, gµ(β) =
β −µ

1+ βµ
,

we have

α∗ = arg min
α>0

max
µ j∈σ(S)

| fµ j
(α)|, β∗ = arg min

β>0
max
µ j∈σ(S)

|gµ j
(β)|.

Following the discussion in [24] gives

α∗ =
1−µminµmax +

p

(1−µminµmax)
2 + (µmin + µmax)

2

µmin+µmax

, β∗ =
1

α∗
,

so that

min
α>0

max
µ j∈σ(S)

| fµ j
(α)| =min

β>0
max
µ j∈σ(S)

|gµ j
(β)| =
�

�

�

�

1−α∗µmin

α∗ +µmin

�

�

�

�

=: A.

It follows that the optimal relaxation parameter is

ω∗ = arg min
ω

�

(1−ω)2 + A2ω2
	

=
1

A2 + 1
.

5. Numerical Results

In order to verify the theoretical finding for the nonlinear RTTSCSP-like and Picard-

RTTSCSP methods, we use examples from [11,19]. All computations are made using MAT-

LAB Version R2019b with 16.00 GB RAM and 1.60 GHz Intel Core i5 CPU. In particular,

we compare Picard-RTTSCSP and Picard-LPMHSS methods, Picard-DPMHSS and Picard-

TTSCSP methods in terms of CPU and iteration time. In addition, a nonlinear LPMHSS-like

method, nonlinear DPMHSS-like method, and nonlinear TTSCSP-like method are compared

with the nonlinear RTTSCSP-like method. We chose the initial guess x0 = 0, and the stop-

ping criteria for external iterations as

‖F(xk)‖
‖F(x0)‖

≤ 10−6.

In all the internal iteration, the stopping criterion is

‖F ′(xk)s(k,lk)
+ F(xk)‖

‖F(xk)‖
≤ η,

where a given internal tolerance η is adopted to control the accuracy of all inner iterations.

Note that in what follows, Picard-RTTSCSP, Picard-LPMHSS, Picard-DPMHSS, Picard-

TTSCSP and nonlinear RTTSCSP-like, nonlinear LPMHSS-like, nonlinear DPMHSS-like,

nonlinear TTSCSP-like methods are respectively abbreviated as P-RTTSCSP, P-LPMHSS,

P-DPMHSS, P-TTSCSP and NL-RTTSCSP, NL-LPMHSS, NL-DPMHSS, and NL-TTSCSP.
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Example 5.1. Let Ω = (0,1) × (0,1) and ∂Ω refer to the boundary of Ω. Consider the

weakly nonlinear equation

−(α1 + iβ1)(ux x + uy y) + qu= (α2 + β2u)eu for (x , y) ∈ Ω,

u(x , y) = 0 for (x , y) ∈ ∂Ω,
(5.1)

where α1 = β1 = 1, α2 = β2 = 1, and q is a positive constant. Discretizing the prob-

lem (5.1) on an equidistant grid and using central finite difference method with the step

width h= 1/(N + 1) leads to the weakly nonlinear system

F(x) = Ax −φ(x) = Ax − h2(α2 + β2 x)ex = 0,

where

A= qh2 In + (α1 + iβ1)(AN ⊗ IN + IN ⊗ AN ),

and AN = tridiag(−1,2,−1) is tridiagonal matrix, N the matrix dimension, ⊗ the Kronecker

product, and n= N × N . The Jacobian matrix has the following form:

F
′
(x) = A− h2(α2 + β2 + β2 x)ex .

Note that in actual computations, we employ the experimental optimal values α,β , and ω

minimizing the CPU time of the methods. These parameters are shown in Tables 1-3.

Tables 4-6 show the iteration and CPU times for various N , q, and internal tolerance η.

In addition, they also present the numbers of inner iterations, outer iterations, and the sum

of iterations, which are respectively denoted by ITint, ITout, and IT. In the sense of satisfying

precision, it can be ascertained from the experimental results in Tables 4-6 that all of these

iterative methods can give an approximate solution to the weakly nonlinear systems in Ex-

ample 5.1. In particular, the Picard-RTTSCSP is significantly superior to Picard-DPMHSS

and Picard-LPMHSS in respect of computing time and iteration step. We note that the sum

of iterations in Picard-DPMHSS method is 4 times of that in Picard-RTTSCSP method, and

that on average Picard-DPMHSS method requires approximately 3.8 times more computing

time Picard-RTTSCSP method. For the same set of problem parameters our method requires

least iterations and computing time than the Picard-TTSCSP method. If the matrix dimen-

sion N increases, the required CPU time in Picard-TTSCSP method increases faster than in

our method. Especially, when η= 0.1, q = 1, from N = 80 to N = 100, the Picard-TTSCSP

method multiplies calculation time with 4.7 times, while the Picard-RTTSCSP method in-

creases CPU time with only 2.6 times. Thus the Picard-RTTSCSP method is more suitable

for solving high matrix dimensional problems than other methods. We also observed that

both outer and inner iteration steps in the Picard-RTTSCSP approach remain stable when

the size of the problems grows, suggesting the extendibility of the method.

From experimental results shown in Table 7, the nonlinear RTTSCSP-like method is

significantly predominant to the nonlinear LPMHSS-like and the nonlinear DPMHSS-like

methods. The iteration times of nonlinear DPMHSS-like method are 4 to 7 times of non-

linear RTTSCSP-like method, and the average computing time of nonlinear DPMHSS-like

method roughly equal 5 times that of nonlinear RTTSCSP-like method. Likewise, the calcu-

lation speed of the nonlinear RTTSCSP-like method is faster than the nonlinear TTSCSP-like
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Table 1: Experimental optimal values α,β ,ω for η = 0.1.

N Method Parameter q = 1 q = 10 q = 100

50 P-LPMHSS α 1.06 1.12 1.12

P-DPMHSS (α,β) (1.9,0.7) (1.6,0.8) (0.5,1.2)

P-TTSCSP (α,β) (1.6,0.6) (0.7,0.7) (3.1,0.7)

P-RTTSCSP (α,β ,ω) (1.5,0.6,0.91) (1.2,1.3,1.07) (3.1,0.7,1.03)

80 P-LPMHSS α 1.16 1.00 1.00

P-DPMHSS (α,β) (1.4,0.7) (1.3,0.7) (0.8,1.4)

P-TTSCSP (α,β) (1.4,0.7) (1.0,0.6) (3.0,0.7)

P-RTTSCSP (α,β ,ω) (1.4,0.6,0.92) (1.3,1.4,1.06) (3.0,0.7,1.04)

100 P-LPMHSS α 1.10 1.04 1.24

P-DPMHSS (α,β) (1.5,0.9) (1.3,0.8) (0.7,1.8)

P-TTSCSP (α,β) (1.5,0.7) (1.5,0.9) (3.0,0.7)

P-RTTSCSP (α,β ,ω) (1.4,0.7,0.89) (1.2,1.3,1.04) (3.0,0.7,1.03)

Table 2: Experimental optimal values α,β ,ω for η = 0.2.

N Method Parameter q = 1 q = 10 q = 100

50 P-LPMHSS α 1.25 1.12 1.14

P-DPMHSS (α,β) (1.8,0.7) (1.3,1.2) (0.7,1.3)

P-TTSCSP (α,β) (1.7,0.8) (2.1,0.7) (3.1,0.7)

P-RTTSCSP (α,β ,ω) (1.2,0.6,0.95) (1.2,1.2,1.05) (3.0,0.7,1.08)

80 P-LPMHSS α 1.00 1.00 1.00

P-DPMHSS (α,β) (1.5,0.8) (0.8,1.3) (0.8,1.2)

P-TTSCSP (α,β) (1.6,0.8) (1.2,0.6) (3.5,0.9)

P-RTTSCSP (α,β ,ω) (1.2,0.6,0.87) (1.1,1.3,1.05) (3.0,0.7,1.03)

100 P-LPMHSS α 1.11 1.10 1.08

P-DPMHSS (α,β) (1.1,0.8) (1.5,0.8) (0.9,1.6)

P-TTSCSP (α,β) (1.7,0.8) (1.5,0.7) (3.0,0.7)

P-RTTSCSP (α,β ,ω) (1.2,0.7,0.92) (1.3,1.3,1.06) (3.0,0.7,1.06)

Table 3: Experimental optimal values α,β ,ω of nonlinear-like methods.

N Method Parameter q = 1 q = 10 q = 100

N = 50 NL-LPMHSS α 1.0 1.0 1.07

NL-DPMHSS (α,β) (1.0,1.0) (0.7,1.1) (0.5,1.1)

NL-TTSCSP (α,β) (1.0,1.0) (1.1,0.7) (1.2,0.2)

NL-RTTSCSP (α,β ,ω) (0.9,1.1,0.92) (1.1,0.8,0.94) (1.2,0.2,1.07)

N = 80 NL-LPMHSS α 1.02 1.15 1.01

NL-DPMHSS (α,β) (1.0,1.0) (0.8,1.1) (0.7,1.4)

NL-TTSCSP (α,β) (1.0,1.0) (1.1,0.7) (1.3,0.2)

NL-RTTSCSP (α,β ,ω) (1.0,1.0,0.95) (1.0,0.7,1.01) (1.3,0.2,1.07)

N = 100 NL-LPMHSS α 1.05 1.24 0.98

NL-DPMHSS (α,β) (1.0,1.0) (0.9,0.8) (0.8,1.2)

NL-TTSCSP (α,β) (1.0,1.0) (1.0,0.7) (1.1,0.2)

NL-RTTSCSP (α,β ,ω) (1.0,1.0,0.95) (1.1,0.8,0.97) (1.2,0.2,0.95)
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Table 4: Example 5.1. Experimental results, N = 50.

Method Results
η= 0.1 η= 0.2

q = 1 q = 10 q = 100 q = 1 q = 10 q = 100

P-LPMHSS I Tint 6.3333 6.3333 6 4.6250 4.6250 4.3750

I Tout 6 6 6 8 8 8

I T 38 38 36 37 37 35

CPU(s) 3.8367 3.7518 3.5300 3.6179 3.7333 3.5973

P-DPMHSS I Tint 4 4 3.6667 3 3 3

I Tout 6 6 6 7 8 7

I T 24 24 22 21 24 21

CPU(s) 3.1086 3.1397 2.8732 3.0925 3.3940 2.9684

P-TTSCSP I Tint 1 1 1 1 1 1

I Tout 5 5 5 5 5 5

I T 5 5 5 5 5 5

CPU(s) 1.5388 1.0454 1.0038 0.9458 0.9706 0.9590

P-RTTSCSP I Tint 1 1 1 1 1 1

I Tout 5 4 5 5 4 5

I T 5 4 5 5 4 5

CPU(s) 0.8366 0.6879 0.8399 0.8817 0.6785 0.8612

Table 5: Example 5.1. Experimental results, N = 80.

Method Results
η= 0.1 η= 0.2

q = 1 q = 10 q = 100 q = 1 q = 10 q = 100

P-LPMHSS I Tint 6.3333 6.3333 6.3333 4.6250 4.6250 4.5000

I Tout 6 6 6 8 8 8

I T 38 38 38 37 37 36

CPU(s) 26.0478 24.4820 23.5740 24.0914 24.0309 22.8621

P-DPMHSS I Tint 4 4 4 3 3 3

I Tout 5 6 5 7 7 7

I T 20 24 20 21 21 21

CPU(s) 15.5405 18.6687 15.7676 17.0327 16.6299 16.7125

P-TTSCSP I Tint 1 1 1 1 1 1

I Tout 5 5 5 5 5 5

I T 5 5 5 5 5 5

CPU(s) 7.2819 7.1629 7.0755 7.8725 6.9885 7.2249

P-RTTSCSP I Tint 1 1 1 1 1 1

I Tout 5 4 5 5 4 5

I T 5 4 5 5 4 5

CPU(s) 6.0021 4.5820 5.7505 5.8577 4.6065 5.8432
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Table 6: Example 5.1. Experimental results, N = 100.

Method Results
η= 0.1 η= 0.2

q = 1 q = 10 q = 100 q = 1 q = 10 q = 100

P-LPMHSS I Tint 6.3333 6.3333 6.1667 4.5000 4.5000 4.5000

I Tout 6 6 6 8 8 8

I T 38 38 37 36 36 36

CPU(s) 53.0981 60.7824 64.9580 58.4438 67.8453 65.6291

P-DPMHSS I Tint 4 4 3.8333 3 3 3

I Tout 6 6 6 7 8 7

I T 24 24 23 21 24 21

CPU(s) 56.4398 53.0125 48.9155 47.3042 54.6676 47.7330

P-TTSCSP I Tint 1 1 1 1 1 1

I Tout 5 5 5 5 5 5

I T 5 5 5 5 5 5

CPU(s) 34.4898 23.3807 25.4346 28.7855 21.5386 24.5502

P-RTTSCSP I Tint 1 1 1 1 1 1

I Tout 5 4 5 5 4 5

I T 5 4 5 5 4 5

CPU(s) 15.5631 12.7213 16.7814 18.1893 12.9676 18.7534

Table 7: Example 5.1. Numerical results of the nonlinear-like methods.

Method Results q = 1 q = 10 q = 100

N = 50 NL-LPMHSS IT 38 37 34

CPU 3.9312 3.7292 3.3958

NL-DPMHSS IT 20 21 20

CPU 1.5535 1.7274 1.6513

NL-TTSCSP IT 3 3 5

CPU 0.3371 0.3842 0.6599

NL-RTTSCSP IT 3 3 5

CPU 0.2808 0.2803 0.5796

N = 80 NL-LPMHSS IT 38 37 35

CPU 22.4534 23.9697 22.1354

NL-DPMHSS IT 20 20 19

CPU 11.5838 11.9269 11.7739

NL-TTSCSP IT 3 3 5

CPU 2.8161 2.7186 4.4193

NL-RTTSCSP IT 3 3 5

CPU 2.2851 2.3699 3.7452

N = 100 NL-LPMHSS IT 38 37 35

CPU 62.3784 61.2079 56.7236

NL-DPMHSS IT 20 21 22

CPU 34.3859 35.8757 38.4331

NL-TTSCSP IT 3 3 5

CPU 10.3123 7.3587 15.0742

NL-RTTSCSP IT 3 3 5

CPU 6.7434 5.7396 10.0318
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method. Also, it is a certitude that the performance of nonlinear RTTSCSP-like method is

preferable than Picard-RTTSCSP method.

Example 5.2. Let Ω be the same domain as in Example 5.1. Consider the two-dimensional

nonlinear convection-diffusion equation

ut − (α1 + iβ1)(ux x + uy y ) + qu

= (α2 + iβ2)ueu + sin
Ç

1+ u2
x + u2

y in (0,1]×Ω,

u(0, x , y) = u0(x , y) in Ω,

u(t, x , y) = 0 on (0,1]× ∂Ω,

(5.2)

where α1 = β1 = 1,α2 = β2 = 0.5, and q is a normal constant that controls the ampli-

tude of the reaction term. The corresponding weakly nonlinear system can be obtained by

discretizing the Eq. (5.2) at each time step by an implicit scheme on the equidistant grid

∆t = h= 1/(N + 1),

F(x) = Ax −φ(x) = 0,

where

A= h(1+ q∆t)In + (α1 + iβ1)(AN ⊗ IN + IN ⊗ AN ).

AN is the same tridiagonal matrix as in Example 5.1 and n= N × N .

In actual computations, we adopt the same method as in Example 5.1 to select param-

eters α,β ,ω for the iteration methods — cf. Tables 8-9. The corresponding numerical

Table 8: Experimental optimal values α,β ,ω for each Picard-based methods.

Method Parameter
η= 0.1 η= 0.2

q = 1 q = 10 q = 1 q = 10

N = 60 P-LPMHSS α 1.3 1.2 1.1 1.2

P-DPMHSS (α,β) (0.7,1.7) (0.8,1.9) (4.3,0.9) (0.8,1.1)

P-TTSCSP (α,β) (1.4,0.4) (1.4,0.4) (4.3,0.9) (2.9,0.8)

P-RTTSCSP (α,β ,ω) (1.4,0.4,1.09) (1.3,0.3,0.93) (4.3,0.9,0.96) (4.6,0.8,1.05)

N = 80 P-LPMHSS α 1.1 1.2 1.3 1.2

P-DPMHSS (α,β) (0.8,1.7) (0.8,1.8) (0.6,1.5) (0.6,1.6)

P-TTSCSP (α,β) (4.0,0.9) (4.0,0.8) (4.5,0.8) (4.6,0.8)

P-RTTSCSP (α,β ,ω) (3.9,0.9,1.04) (4.0,0.8,0.95) (4.5,0.8,0.96) (4.5,0.8,1.09)

Table 9: Experimental optimal values α,β ,ω for nonlinear like methods.

Method Parameter
N = 60 N = 80

q = 1 q = 10 q = 1 q = 10

NL-LPMHSS α 1.1 0.8 1.0 1.2

NL-DPMHSS (α,β) (0.8,1.5) (0.6,1.2) (0.7,1.5) (0.6,1.3)

NL-TTSCSP (α,β) (0.7,0.9) (1.0,0.6) (1.0,1.0) (1.6,0.9)

NL-RTTSCSP (α,β ,ω) (1.0,1.0,0.97) (1.1,0.7,0.97) (1.0,1.0,0.99) (1.5,1.0,1.03)
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Table 10: Example 5.2. Experimental results, N = 60.

Method Results
η= 0.1 η= 0.2

q = 1 q = 10 q = 1 q = 10

P-LPMHSS I Tint 6.3333 6.3333 4.6250 4.6250

I Tout 6 6 8 8

I T 38 48 37 37

CPU(s) 12.7489 8.7509 8.9466 8.3174

P-DPMHSS I Tint 4 4 2.8571 3

I Tout 5 6 7 8

I T 20 24 20 24

CPU(s) 4.7830 4.9871 5.3801 6.4159

P-TTSCSP I Tint 1 1 1 1

I Tout 5 5 5 5

I T 5 5 5 5

CPU(s) 1.9607 1.9866 1.8496 1.8771

P-RTTSCSP I Tint 1 1 1 1

I Tout 5 5 5 5

I T 5 5 5 5

CPU(s) 1.7814 1.8690 1.8171 1.7913

Table 11: Example 5.2 Experimental results, N = 80.

Method Results
η= 0.1 η= 0.2

q = 1 q = 10 q = 1 q = 10

P-LPMHSS I Tint 6.3333 6.3333 4.6250 4.5000

I Tout 6 6 8 8

I T 38 38 37 36

CPU(s) 25.1320 24.9167 25.7081 24.8792

P-DPMHSS I Tint 4 4 2.8571 2.8571

I Tout 5 5 7 7

I T 20 20 20 20

CPU(s) 13.8127 14.1710 14.8526 15.5286

P-TTSCSP I Tint 1 1 1 1

I Tout 5 5 5 5

I T 5 5 5 5

CPU(s) 5.9176 11.4024 12.5763 12.0625

P-RTTSCSP I Tint 1 1 1 1

I Tout 5 5 5 5

I T 5 5 5 5

CPU(s) 5.6902 8.0098 6.1024 6.0622

results are shown in Tables 10-12 which inform iteration times and CPU time with the

inner tolerance η = 0.1,0.2. Picard-RTTSCSP method is obviously superior to the Picard-

DPMHSS and Picard-LPMHSS methods in respect to computing time and iteration times —

cf. Tables 10 and 11. Note that in terms of iteration and calculation time, our method is
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Table 12: Example 5.2. Numerical results of the nonlinear-like methods.

Method Results
N = 60 N = 80

q = 1 q = 10 q = 1 q = 10

NL-LPMHSS I T 38 37 38 37

CPU(s) 6.6737 7.5065 24.2613 26.0405

NL-DPMHSS I T 21 20 21 21

CPU(s) 3.1742 2.9395 10.9286 13.1256

NL-TTSCSP I T 3 3 2 3

CPU(s) 0.7233 0.7589 1.6200 2.6363

NL-RTTSCSP I T 2 3 2 3

CPU(s) 0.4961 0.7567 1.5267 2.3454

a dozen times faster than the two methods mentioned. Moreover, CPU time in the Picard-

TTSCSP is bigger than in our relaxed iteration method, which illustrates the efficiency of

the Picard-RTTSCSP method.

Remarkably, the nonlinear RTTSCSP-like method is superior to the other methods — cf.

Table 12. In this two-dimensional nonlinear problem, the nonlinear RTTSCSP-like method

saves computation time and iteration steps compared with the other existing methods.

6. Conclusions

A relaxed TTSCSP iteration method for complex linear system is constructed by intro-

ducing a relaxation parameter to the TTSCSP iteration method. For the complex weakly

nonlinear equation, the Picard-RTTSCSP and nonlinear RTTSCSP-like iteration schemes

are proposed and their convergence is studied. Optimal iterative parameters to minimize

the upper bound of spectral radius are derived. Examples show that the proposed itera-

tion methods are achievable and effective. They perform better than the Picard-DPMHSS,

Picard-LPMHSS, Picard-TTSCSP, nonlinear DPMHSS-like, nonlinear LPMHSS-like and non-

linear TTSCSP-like methods in terms of calculation time and iteration numbers. Besides,

the nonlinear RTTSCSP-like method outperforms the Picard-RTTSCSP method.
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