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Abstract. This article deals with parallel iterative algorithms for linear systems with

block-band matrices. The algorithms can be used in mathematical modeling of the prob-

lems involving finite difference and finite element methods. The solvers are adjusted to

the problem and to the computing systems, which use special precompilers. Applica-

tions of the algorithms to the ACELAN-COMPOS software package focused on the new

material modeling, is described. To achieve a high performance, both parallel program-

ming techniques and the optimization of the processor memory hierarchy are used. The

results of numerical experiments confirm the efficiency of the methods and algorithms.
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1. Introduction

In many problems of mathematical modeling, there is a need to solve systems of linear

algebraic equations with large sparse matrices. Iterative algorithms are used to solve such

problems [9,23].

This work continues the series of publications of the authors [26, 28, 30]. The solvers

presented in this article are embedded in the ACELAN COMPOS application software pack-

age for modeling the properties of new materials [18,20]. In recent years, the main distin-

guishing feature of processors is that the execution time of arithmetic operations is more

than an order of magnitude bigger than the time of reading the arguments of such op-

erations from RAM [16]. In this work, we use structures for efficient data storage and

fast algorithms. Numerical experiments demonstrate the high efficiency of the methods
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presented. While in [26,28] the solver was applied to the matrices obtained by a finite dif-

ference method, we extend the capabilities of the solver to matrices arising in finite element

methods.

Since the solver in the application software package is focused on a certain set of similar

problems, the solver is assumed to be parameterized. The parameters of the solver are both

the characteristics of the input data of the problem (for example, the number of unknown

functions and the number of differential equations in the model, the numerical solution

of which leads to the system of linear algebraic equations) and the characteristics of the

computing system (the amount of cache memory, parallelization capabilities).

Block-band matrices arise when regular grids are used on the domains having the form

of rectangular parallelepipeds. If the region has a different shape, then curved orthogonal

grids can sometimes be used to obtain a system of linear algebraic equations with a block-

band matrix [15,17]. The solution of linear systems with such matrices can be accelerated

by employing specific data structures and parallel methods that can operate with blocks

[1, 2, 11]. Such solvers are usually iterative due to the need to keep low memory profile,

which is usually not possible for direct solvers. An important part of the development

of such iterative solver is convergence analysis [10] and multi-stage performance analysis

[3, 5]. Asynchronous parallel nonlinear multi-splitting programs and their convergence

analysis were presented in [1]. Designing proper preconditioner is another vital part of

solver development for specific matrix structures [4,6–8].

An important feature of the ACELAN COMPOS package solver presented in this work

is that not only the initial data of the mathematical model but also the solver is formed

in the package. In addition, the precompiler — i.e. the preliminary compiler in [26, 28],

is modified. The presented precompiler merges loops that have different for-loop head-

ers [27]. Information dependency analysis is used for the correctness and effectiveness of

the merge. The use of the precompiler is justified by the fact that the modern optimiz-

ing compilers such as GCC, LLVM, ICC do not optimize programs efficiently enough [14].

A precompiler is a preliminary compiler that converts a C program into a faster program

of the same language. The precompiler presented in the paper, is developed on the basis

of OPS (Optimizing Parallelizing System) [13, 21] and shows acceleration by 1.25 times.

Ways to get further performance are outlined.

2. Features of Block-Band Matrices

The block-band matrices are a kind of sparse matrices. Sparse matrices are stored in

memory [22] only by values of non-zero elements and their row and column numbers (3

numbers). Block-band matrices can be stored only by non-zero diagonals [26, 28], which

are stored as arrays. In this case, column and row numbers should not be stored. The

amount of memory used is 2 times less than for sparse matrices of the general form.

Band matrices arise in finite-difference and finite-element methods — cf. Figs. 1 and 2,

when covering a rectangular parallelepiped with a Cartesian grid [2–8,10,11]. If we con-

sider a system of differential equations, the matrix of the system of linear algebraic equa-

tions is a block-band matrix — cf. Fig. 3. The elements of this matrix are blocks (matrices)
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Figure 1: View of the matrix created by the finite difference method with Cartesian grid on a rectangular
parallelepiped. The matrix contains 7 nonzero diagonals.

Figure 2: Matrix created by ACELAN COMPOS package using the finite element method. The matrix
contains 9 non-zero block diagonals.

Figure 3: A five-diagonal block-band matrix obtained by the finite difference method for a system of
differential equations of functions of two variables.
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Figure 4: One of the block diagonals of a matrix.

whose dimension is equal to the number of equations in the original system of differential

equations. Block-band matrices also arise when using the finite element method.

Each block diagonal — cf. Fig. 4, of a block-band matrix is stored in the memory as

a one-dimensional array. Elements of each block are placed in RAM row by row. Such

placement leads to minimization of cache misses. The diagonal of matrix A consists of all

elements Ai j for which (i − j) = k. This makes it easy to find the column number by the

row number of an element. Elements of block diagonals can be obtained through simple

generalization.

3. Iterative Algorithms for Linear Systems

Consider a system of linear equations Ax = b0 and the iterative algorithm for solving it

x (k+1) = Bx k + b,

B = I − C−1A,

b = C−1 b0,

(3.1)

where k is an iteration number, b0 is an initial approximation, C is a nonsingular matrix.

For the iterative process convergence, the spectral radius of matrix B must be less than 1.

In order to perform each iteration quickly, it is necessary to quickly perform the calculation

z = C−1 · y and y = b0 − A · x . We will consider the matrix C to be equal to the submatrix

of matrix A consisting of the main matrix and the block-diagonals next to it. Matrix A can

be represented as A= C +O, where O is a matrix consisting of the remaining elements of

matrix A after subtraction of the elements on the main block diagonal and adjacent (on both

sides) block diagonals (Fig. 5). After LU-decomposition of the matrix C (or C = L · D · LT

for a symmetric matrix), C−1 · x at each iteration of the algorithm can be quickly calculated.

In many applications, the matrix C is symmetric or positively defined or has diagonally

dominant properties. Matrix A may not be symmetric or positively defined (for example,

with a saddle-point singularity), but C is symmetric and positively defined. If matrix A had

diagonally dominant properties, then matrix C has the same feature.
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Figure 5: Representation of original matrix as a sum of two matrices A= C +O.

Decomposition of the matrix C into a product of two-diagonal (block-two-diagonal)

matrices can take a long time. It is important that the calculation of C−1 ∗ y should be

performed quickly, if possible, with parallelization [30]. If the matrix C is symmetric, then

its decomposition L · D · LT allows you to store only the matrices L and D, which should

give acceleration. It is expected that with a larger number of computing cores, the par-

allel solution of a system of linear equations with a two-diagonal matrix will give greater

acceleration. And for a new generation of processors with more than 1000 cores [24],

acceleration can also be obtained for block tridiagonal matrices.

4. Exploring the Parallelization Options of ACELAN-COMPOS Solvers

Each iteration of the developed solver contains 2 sequentially called computationally

intensive steps: y = O ·h and x = C−1 · y. Each of these steps can be paralleled. Calculation

of y = O · h is multiplication of a block-band matrix (with six block diagonals) by a vector.

It was decided to store each diagonal of this matrix in a separate array. The peculiarity

of the matrices under study is that the upper three diagonals are transposed lower three

diagonals. That is why they are stored only once, in three corresponding arrays.

Let us consider possible computation optimizations.

Multiplication of all block diagonals by a vector should be performed simultaneously

(inside one loop) to reduce the number of readings. This can be helped by simultaneous

(inside one loop) multiplication of two middle blocks marked in Fig. 6 by corresponding

fragments of vector h. Note that these blocks use the same data of the three stored diagonal

arrays. Then we can proceed to the next middle blocks (using the same data). In doing so,

it is possible to parallelize the computations required for the first and the second pair. But

on neighboring iterations there is a write access to the common part of the resulting vector.

This is supported by OpenMP (reduction function for arrays) since version 4.5.

The calculation of x = C−1 · y at each iteration of the algorithm uses the decomposition

C = L · D · LT , which is performed beforehand. Thus, the computation of x = C−1 · y is

reduced to the solution of system of linear algebraic equations with a two-diagonal matrix

and the trivial inversion of the diagonal matrix.
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Figure 6: Block 6-diagonal and block 3-diagonal matrix.

Solving system of linear algebraic equations with a bi-diagonal matrix reduces to com-

puting a loop with linear recurrent dependence. Parallel algorithms for computing such

loops were described in the articles [29, 30]. In this work, the matrix of the system of

linear algebraic equations has a special block structure (periodically zero blocks appear),

which significantly improves the efficiency of parallelized. It is possible to solve system of

linear algebraic equations for all middle blocks in parallel.

Numerical experiments were carried out for a matrix of size 125 with block size 5

and parallelized to 8 threads for two compilers (GCC 10.1.0 and Intel C++ Compiler

19.1.3.311) with the −O3 optimization flag. The results of the experiments (see Table 1)

show that using loop parallelized leads to slowdown of the program. This can be explained

by the small size of middle blocks which leads to the fact that different parallel threads will

use the same cache line which will lead to overhead costs on synchronization.

Table 1: Results of numerical experiments.

Block size 5 Block size 65

Sequential program 4.145 7.266

Parallel program 6.402 5.662

Numerical experiments were performed for a matrix of size 274625 with block size

65 with 8 threads parallelized for two compilers (GCC 10.1.0 and Intel C++ Compiler

19.1.3.311) with the −O3 optimization flag. The results of the experiments show that

using loop parallelized leads to speeding up the program — cf. Table 1.

Parallelization does not always speed up programs – sometimes it slows them down.

Addition and multiplication operations are performed quickly, and accesses to DDR4 mem-

ory are slow in modern processors [16].

Modern processors use a hierarchy of memory

DDR4−> L3−> L2−> L1−> R−> ALU .
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The closer the memory module is to the ALU – the faster access to this memory module.

Previous publications could not take into account such a hierarchy of memory, since then

no such an hierarchy existed.

The solution of a system of equations with a two-diagonal matrix is reduced to the

calculation of a recurrent program loop — viz.

1. for ( j = 1, j < N , j = j + 1)

2. {

3. X [ j] = A[ j] ∗ X [ j − 1] + B[ j]

4. }

To speed up the calculation of this loop on an 8-Core processor, the intermediate values

X [N/8], X [2 ∗ N/8], X [3 ∗ N/8], X [4 ∗ N/8], X [5 ∗ N/8], X [6 ∗ N/8], X [7 ∗ N/8]

have been first calculated in parallel. These intermediate values are stored in the fast regis-

ter memory. The remaining values of the array X are then calculated in parallel in (N/8−1)

step [30].

Only half of the elements of a symmetric or skew-symmetric matrix are stored in com-

puter memory. If this data is placed in cache memory, then it is read from RAM only once,

and the second time – from cache memory. This property gives additional acceleration,

since the data of the two-diagonal matrix can be placed in the L2 or L1 cache.

5. Solver Acceleration Using Precompiler

Like in [26,28], we used a preliminary compiler (precompiler) to speed up the solver.

The use of a precompiler is justified by the fact that optimizing compilers often poorly op-

timize high-performance programs [14, 25]. We added optimization of linear expressions

to the precompiler. These linear expressions can contain real numbers (replacing an arith-

metic operation with constant operand containing the result of this operation, replacing

the product of zero and another operand with a zero value, replacing the product of one

and another operand with this operand), ternary expressions (they may occur in the loop

headers when applying a loop merge), modulus and conditional operators.

The first half of the code below shows an example of a loop to index expressions in the

body of which optimization can be applied. The result will be a loop located at the bottom

of the code. The modified expressions are underlined in the original and transformed code

fragments. The precompiler speeds up the solver by 1.25 times.

6. Building Block-Band Matrix in ACELAN-COMPOS Package

For electroelastic bodies V with inhomogeneous material properties the following sys-

tem of differential equations is used [12]:

ρü+αdρu̇−▽ ·σ = f , ▽ ·D = 0,
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σ = cE : (ǫ + βd ǫ̇)− eT · E, Ḋ+ ζd D = e : (ǫ + ζd ǫ̇) + kS · E,

ǫ = (▽u+▽uT )/2, E = −▽ϕ,

where σ is the stress tensor, ρ is the body density, ǫ is the stain tensor, u is the displacement

vector, D is the electric induction vector, E is the electric field vector, f is the mass forces

vector, ϕ is the electric potential, αd , βd , ψd are the damping coefficients, cE is the tensor

of elastic stiffness moduli of the fourth rank, computed for constant electric filed (E), e is

the tensor of piezoelectric moduli of the third rank, kS is the tensor of dielectric permittivity

of the second rank, calculated at constant strains (S), which is also often denoted by ǫS,

(...)T is the transposition operation, (...) : (...) is the double inner product operation for

tensors.

Corresponding finite element model in vector form can be presented as

u(x , t) = N T
u
(x) · U(t),

ϕ(x , t) = N T
φ (x) ·Φ(t),

where Nu is the matrix of the shape functions for the displacement field, Nϕ the vector of

shape functions for the electric potential, and U(t), Φ(t) the global vectors of the degrees

of freedom.

Figure 7: An example of precompiler using.
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After the substitution a = [U ,Φ]T , the problem can be written as the system of linear

equations

M · ä+ C · ȧ + K · a = F,

where M is the mass matrix, C the damping matrix, and K the stiffness matrix. In this

paper we consider static problems, so that the above equation takes the form

K · a = F,

where

K =

�

Kuu Kuϕ

KT
uϕ −Kϕϕ

�

.

Note that Kuu is a symmetric positive semi-definite matrix describing mechanical proper-

ties, Kuϕ defines piezoelectric properties, and Kϕϕ dielectric properties and is also sym-

metric positive semi-definite. For mechanical problems, we can consider only Kuu, and for

electrostatic problems only Kϕϕ.

The solvers for the systems of linear equations presented in this article are meant to be

used in ACELAN-COMPOS package for modeling of new composite materials. The problem

of identification of properties of a composite material can be solved using homogenization

method [19,20]. The implementation of homogenization method includes solving a set of

boundary problems for a representative volume of material. Representative volumes for

composites with connectivity types 3-1, 3-0 and 3-3 are created as regular hexahedron-

based finite element meshes in the ACELAN-COMPOS package. The regularity of meshes

makes it possible to select specific numeration for nodes and degrees of freedom which leads

to block-diagonal sparse global stiffness matrices in static boundary problems (Fig. 2).

Depending on the problem being solved, the structure of the blocks and the properties

of the matrix change. In case of electrostatic, magnetostatic, and thermal conductivity

problem each node corresponds to one degree of freedom, in problems of the theory of

elasticity there are three unknowns at each node, and in coupled problems there could be

four or more degrees of freedom. The matrices that arise when solving problems with one

and three degrees of freedom turn out to be symmetric and positive definite, and in the

case of coupled fields, saddle matrices that require more complex solution are obtained.

Fig. 8 shows the block structure for problems with 3 and 4 degrees of freedom at each

node of representative volume. It is possible to change structure of matrices by changing

the way of numerating degrees of freedom. So, Fig. 9 shows the structure of matrix for

the electroelasticity problem with four degrees of freedom at the node for two different

numerations of the unknowns. As seen, it is possible to obtain a block-diagonal matrix or

a saddle matrix consisting of two symmetric blocks located along the main diagonal and

two rectangular blocks. For the problem with n nodes, the sizes of large blocks on the main

diagonal will be 3n and n. Building blocks of the matrix can be performed independently

in parallel.

As can be seen from Figs. 8 and 9 (left), at the level of large blocks, matrices for dif-

ferent physical problems have the same structure, although they have different properties.

Changing the numbering of unknowns allows to split a matrix into even larger blocks. At
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Figure 8: Distribution of non-zero elements in matrices with 3(left) and 4(right) degrees of freedom per
node.

Figure 9: Distribution of non-zero elements in matrices built for electroelastic problem using two different
ways of enumerating degrees of freedom.

the same time, in problems with field connectivity, in particular, in the case of electroelas-

ticity, the values of the matrix elements can differ significantly: in the rows corresponding

to mechanical variables, the diagonals will contain numbers of the order of 1010, and the

electrical variables will correspond to values of the order of 10−10. This negatively affects

the accuracy of calculations; various data normalization techniques are used to solve this

problem. When numbered corresponding to Fig. 9 (right), values of the same order appear

inside each large block. The block located in the upper left corner of the Fig. 9 (right) matrix

completely coincides in structure and characteristics with the matrix shown in Fig. 8.

7. Conclusion and Further Research

We consider expanding the set of algorithms, where the proposed acceleration methods

can be used. The article describes the construction of a high-performance system of linear

algebraic equations solver with block-band matrices for the ACELAN-COMPOS application
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software package. Numerical experiments demonstrate high performance of the solver on

modern processors.

The ACELAN-COMPOS package forms block-band matrices in which blocks have many

zero elements in the upper-right and lower-left corners. Splitting these blocks into smaller

ones can lead to more efficient matrix storage and performance.
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