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ISOGEOMETRIC SOLUTION OF HELMHOLTZ EQUATION

WITH DIRICHLET BOUNDARY CONDITION IN REGIONS

WITH IRREGULAR BOUNDARY: NUMERICAL EXPERIENCES

VICTORIA HERNÁNDEZ MEDEROS, ISIDRO ABELLÓ UGALDE, ROLANDO M. BRUNO

ALFONSO, DOMENICO LAHAYE, AND VALIA GUERRA ONES

Abstract. In this paper we use the Isogeometric Analysis (IgA) to solve the Helmholtz equa-

tion with Dirichlet boundary condition over a bounded physical 2D domain. Starting from the
variational formulation of the problem, we show how to apply IgA to obtain an approximated

solution based on biquadratic B-spline functions. We focus the attention on problems where the

physical domain has very irregular boundary. To solve these problems successfully a high quality
parametrization of the domain must be constructed. This parametrization is also a biquadratic

tensor product B-spline function, with control points computed as the vertices of a quadrilateral

mesh with optimal geometric properties. We study experimentally the influence of the wave num-
ber and the parametrization of the physical domain in the accuracy of the approximated solution.

A comparison with classical Finite Element Method is also included. The power of IgA is shown

solving several difficult model problems, which are particular cases of the Helmholtz equation and
where the solution has discontinuous gradient in some points, or it is highly oscillatory. For all

model problems we explain how to select the knots of B-spline quadratic functions and how to
insert knew knots in order to obtain good approximations. The results obtained with our imple-

mentation of the method prove that IgA approach is successful, even on regions with irregular

boundary, since it is able to offer smooth solutions having at the same time some singular points
and high number of oscillations.

Key words. Isogeometric analysis, Helmholtz equation, irregular regions.

1. Introduction

In its most general form Helmholtz equation in 2D is given by

(1) −∆u(x, y)− k2(x, y)u(x, y) = f(x, y), (x, y) ∈ Ω,

where k(x, y) and f(x, y) are known functions and ∆ denotes the Laplacian opera-
tor.

Due to its importance in different fields such as acoustic and electromagnetic
systems, the case k equal to a positive constant have been intensively investigated
over the years, see for instance [23], [24], [14], [29]. In this case, u(x, y) is the
amplitude of a wave traveling along Ω and k, called wave number, is the number
of waves per unit of distance. The more complicated scenario, where k(x, y) is a
function depending on spatial variables, is also important. For instance, the wave
function that satisfies a Schrödinger equation model of two interacting atoms [28]
is solution of a Helmholtz equation with variable k(x, y). Moreover, in realistic geo-
physical applications [16], u(x, y) is the pressure wavefield and k(x, y) = ω2/(ρc2),
where ω is the angular frequency, c = c(x, y) is the wave propagation velocity of
the medium and ρ = ρ(x, y) is the mass density, and both, c(x, y) and ρ(x, y) can
contain high-contrast variations in space.
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If k is a small constant, Helmholtz equation can be solved successfully using low
degree p Finite Element Method (FEM). But as k is increased, the number NFEM
of degrees of freedom necessary to obtain an accurate approximation of u(x, y) must
be proportional to k2 [17], or the mesh size h have to be selected in such a way
that hk(p+1)/p is constant and sufficiently small [27]. Moreover, many numerical
difficulties appear [27], [14], [29], [17], [12]. These difficulties are associated with
the fact that the standard variational formulation of the Helmholtz equation is
sign-indefinite, hence for k sufficiently large, the coefficient matrix is indefinite and
non-normal. As a consequence, iterative methods to solve the corresponding linear
systems with NFEM unknowns require the use of preconditioners, such as multigrid
methods, domain decomposition, complex shifted Laplacian and deflation, see for
instance [13], [32], [11].

Isogeometric analysis (IgA) was introduced by Hughes et al. in [21] as an exten-
sion of FEM to solve partial differential equations (PDE). The term isogeometric
highlights that IgA uses B-splines functions twice: to parametrize Ω and as shape
functions to approximate the solution of the PDE. In IgA approach B-splines func-
tions may be constructed to have high smoothness. This is very important for
problems with smooth solutions, where in comparison with FEM, IgA provides im-
proved accuracy per degree of freedom. The first step to solve a PDE with IgA is
the parametrization of Ω. This is currently an active research area, see for instance
[34], [35], [30], [20], [36], [15], [31], [37] and [1]. The parametrization of the physical
domain avoids the small errors introduced by FEM mesh, which can be amplified
significantly in the context of wave propagation problems. In the last years IgA
approach has been successfully used for a wide variety of PDE applications, see [3],
[38], [6].

Previous work
Several recent papers [7], [9], [10], [12], adopted IgA as discretization technique to

solve the Helmholtz equation with different boundary conditions. In [7] Helmholtz
equation with Neumann boundary condition is solved in a domain described by 4
quadratic B-spline curves. Moreover, the acoustic in the interior of a simplified 2D
model of a car is studied, for a wide frequency range. This problem is modeled
with Helmholtz equation with Robin and Neumann boundary conditions. The
results of the experiments in this paper confirm that, for similar degrees of freedom,
IgA manage acoustic problems more efficiently than FEM, since it suffers less of
the pollution errors, specially in the higher frequency range. In [9] partition of
unity isogeometric analysis is applied for computing the scalar acoustic potential,
governed by Helmholtz equation subject to (complex) Robin boundary condition.
The study is focused in a comparison between FEM and IgA, including the use
of enriched basis functions to reduce the pollution and also to avoid the need for
domain re-meshing at high frequencies. The paper concludes that IgA has a clear
advantage over FEM, since it achieves similar errors with significantly less degrees
of freedom.

The numerical solution of the linear system derived from IgA discretization of
Helmholtz equation is the central topic of papers [10] and [12]. In [10], Helmholtz
equation is solved with Robin boundary condition. The performance of GMRES is
investigated in the context of IgA, and it is compared to FEM, especially at high
polynomial orders. The study includes the use of preconditioners such as ILU with
a complex shift and complex shifted Laplacian. The conclusion is that to reach
the convergence of GMRES, IgA needs fewer iterations compared to FEM. In [12],
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Helmholtz equation is considered on a square domain with homogeneous Dirichlet
boundary condition. The linear system is solved with GMRES and its convergence
is accelerated with a deflation technique, based on rational quadratic Bezier curves.
The deflation scheme is combined with the approximated inverse of the Complex
Shifted Laplacian Preconditioner, computed with a multigrid method. Numerical
results are shown, confirming scalable convergence with respect to the wave number
and the order of the B-spline basis functions.

The problem and our contribution
In this paper we apply the isogeometric approach to solve the Helmholtz equation

(1) over a bounded physical domain Ω, with Lipschitz continuous boundary Γ and
nonhomogeneous Dirichlet boundary condition

(2) u(x, y) = g(x, y), (x, y) ∈ Γ.

We are specially interested in problems where the physical regions Ω has a very
irregular boundary, such as lagoons, lakes, islands, etc. In this regard, the problem
treated here is different from the ones studied in [7], [9], [10] and [12], since they deal
with very simple domains, like circles or squares, or with closed domains with simple
boundary curves. In consequence, the construction of the parametrization of Ω is
qualitatively more complex in our case. To obtain a high quality parametrization,
we use a biquadratic tensor product B-spline, computed by the method proposed
in [1]. For complex domains, the quality of the parametrization is very important,
since it has an strong influence on the speed of convergence of the approximated
solution and also on the condition number of the discretization matrix [35], [31].
Frequently, the quality of the parametrization is evaluated using several measures,
but the ultimate quality criterion is the accuracy of the approximated solution
obtained using a given parametrization. In this sense, one goal of the present
paper is to show that indeed the parametrization method proposed in [1] can be
successfully used to solve Helmholtz equation with Dirichlet boundary condition
over domains with irregular boundary.

Another difference between our work and the previous ones is that we prescribe
Dirichlet boundary condition. In contrast, Robin boundary condition is considered
in [9] and [10], while [7] works with Neumann or Robin and Neumann boundary
conditions. Only [12] fixes Dirichlet homogeneous boundary condition, but in that
case the domain is the unit square. In this sense, it is important to notice that
in comparison with other boundary conditions, the solution of Helmholtz equation
with Dirichlet boundary condition is more challenging, since the corresponding
linear system exhibits the distribution of the eigenvalues that is most unfavorable
for the convergence of Krylov-type iterative solvers [18].

The main contribution of our paper is a complete methodology to apply isoge-
ometric analysis for the solution of Helmholtz equation with Dirichlet boundary
condition on 2D closed regions with very irregular boundary. This methodology
is based in the method proposed in [1] to obtain good parametrizations of com-
plex domains. To show the success of the method, we solve several difficult model
problems, obtained as particular cases of the Helmholtz equation. The first model
problem is the Poisson equation with a right hand side function f(x, y), defined
in such away that the exact solution is a function with discontinuous gradient in
three points. The second model problem is a Helmholtz equation with constant
wave number k and a highly oscillatory solution u(x, y). For this problem we study
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the influence of the wave number k and the parametrization of the physical do-
main in the quality of approximated solution computed with IgA. We also compare
this solution with the approximation obtained using classical FEM, showing that
even when the L2 and H1 errors of IgA and FEM approximated solutions are of
the same order, the computational cost of FEM is higher, since it requires more
degrees of freedom than IgA to obtain these errors. In the last model problem
we study a Helmholtz equation, where the wave number k(x, y) depends of spatial
variables, and the exact solution is highly oscillatory near a singular point. For all
model problems we show how to construct the sequence of knots of the biquadratic
B-spline functions, in order to obtain approximations of the exact solution, having
a behavior similar to the exact solution, including singular points and oscillations.
The performance of our implementation to solve the previous problems in sever-
al regions with very irregular boundary is also included, proving that the method
produces accurate approximations to the exact solution.

Organization of the paper
The paper is organized as follows. In section 2 we obtain the variational formu-

lation of Helmholtz equation with nonhomogeneous Dirichlet boundary condition.
The isogeometric method is described in section 3, using biquadratic B-spline func-
tions to approximate the solution of the problem. Details about the basic steps of
the method are given in this section, including the obtention of the linear system
of equations, which provides the coefficients of the approximated solution written
in the tensor product B-spline basis. Section 4 describes how to approximate the
Dirichlet boundary condition. Moreover, computational aspects of the assembly
process are also given. In section 5 we show how to apply the IgA approach to
the solution of several model problems that are particular cases of the Helmholtz
equation defined on physical regions with irregular boundary. Section 6 concludes
the paper.

2. Variational formulation.

FEM and IgA have both the same theoretical basis, namely the weak or varia-
tional formulation of a PDE. In this section we obtain the variational formulation
of Helmholtz equation with homogeneous boundary condition. Our problem with
boundary condition (2) is reduced to a problem with homogeneous boundary con-
dition writing the solution of (1) as

(3) u(x, y) = u0(x, y) + ug(x, y),

where the function u0 satisfies (1) and

(4) u0(x, y) = 0, for (x, y) ∈ Γ,

while

(5) ug(x, y) = g(x, y), for (x, y) ∈ Γ.

Thus, substituting (3) in (1) we transform the original problem (1)-(2) into the
following problem with homogeneous Dirichlet boundary condition

(6) −∆u0(x, y)− k2(x, y)u0(x, y) = f̃(x, y),

where f̃(x, y) = f(x, y) + ∆ug(x, y) + k2(x, y)ug(x, y). Let V the Hilbert space of
functions

(7) V = {v ∈ H1(Ω) /v(x, y) = 0 for (x, y) ∈ Γ},
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which consists of all functions v ∈ L2(Ω) that possess weak and square-integrable
first derivatives and that vanish on the boundary. The norm ‖v‖V in this space is
given by

(8) ‖v‖2V =

∫ ∫
Ω

v2 +

(
∂v

∂x

)2

+

(
∂v

∂y

)2

dΩ.

To obtain the variational formulation we multiply (6) by v ∈ V and integrate on
Ω

(9)

∫ ∫
Ω

(−∆u0(x, y)− k2(x, y)u0(x, y))v(x, y) dΩ =

∫ ∫
Ω

f̃(x, y)v(x, y) dΩ.

Using the Green formula in (9) and taking into account that v ∈ V we obtain the
variational formulation of problem (6): find u0 ∈ V such that for all v ∈ V

(10) a(u0, v) = G(v),

where a(u, v) is the bilinear form

(11) a(u, v) =

∫ ∫
Ω

(∇u(x, y)t∇v(x, y)− k2(x, y)u(x, y)v(x, y)) dΩ,

and G(v) is the linear form
(12)

G(v) =

∫ ∫
Ω

(f(x, y) + k2(x, y)ug(x, y))v(x, y) dΩ−
∫ ∫

Ω

∇ug(x, y)t∇v(x, y) dΩ.

The existence and uniqueness of weak solution has been very well studied when
k(x, y)2 = λ, where λ is a real constant, see for instance [33]. For λ = 0 the
bilinear form a(u, v) given by (11) is coercive. Therefore, Lax-Milgram theorem
guarantees the existence and uniqueness of a solution to the variational problem
(10) and the continuous dependence of the solution on the data. On the other
hand, if λ = λj , where λj is the j-th Dirichlet eigenvalue of the negative Laplacian
in Ω, i.e. there exists a uj ∈ H1(Ω) \ 0 such that −∆uj = λjuj in Ω and uj = g
on Γ, then the problem has solution but it is not unique. Finally, if λ is not
an eigenvalue of the negative Laplacian, then the bilinear form a(u, v) satisfies a
Gärding inequality and again the variational problem (10) has a unique solution
which depends continuously on f .

There are few results in the literature about the Helmholtz equation with variable
coefficient k(x, y). In the recent paper [19], existence and uniqueness results for this
problem are obtained under rather general conditions on the function k(x, y), using
the unique continuation principle and the Fredholm alternative.

3. Galerkin method with isogeometric approach.

The Galerkin method solves the variational problem assuming that the approxi-
mated solution belongs to a finite-dimensional subspace Vh. In the classical FEM,
Vh consists of piecewise polynomials functions with global C0 continuity. This space
is defined in terms of a partition of the physical domain Ω in a mesh of triangles
or quadrilaterals. In the isogeometric approach [8], the subspace Vh is generated
by tensor product B-spline functions (or more general by NURBs functions) with
higher global continuity.
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3.1. Parametrization of the domain. In order to solve a PDE using isogeo-
metric analysis a suitable parametrization of the physical domain Ω is required.
Assuming that Ω is topologically equivalent to the unit square Ω̂, its boundary can
be divided into 4 curves in such a way that consecutive curves are the image by the
unknown parametrization

F(ξ, η) : Ω̂ −→ Ω,

of consecutive sides of Ω̂. In this paper, we assume that F(ξ, η) is an injective
biquadratic B-spline function that can be written as [4]

(13) F(ξ, η) = (x(ξ, η), y(ξ, η))t =

n∑
i=1

m∑
j=1

Pi,jB
3
i,tξ(ξ)B

3
j,tη (η),

where Pi,j = (P xi,j , P
y
i,j)

t, i = 1, ..., n, j = 1, ...,m are the control points, B3
i,tξ(ξ)

is the i-th quadratic B-spline for the knot sequence tξ and B3
j,tη (η) is the j-th

quadratic B-spline for the knot sequence tη with

tξ = (0, 0, ξ1, ξ2, ..., ξn−1, 1, 1), 0 = ξ1 < ξ2 < ... < ξn−1 = 1,(14)

tη = (0, 0, η1, η2, ..., ηm−1, 1, 1), 0 = η1 < η2 < ... < ηm−1 = 1.(15)

In other words, F(ξ, η) is a function in the tensor product space S3,tξ
⊗

S3,tη , where
S3,t denotes the space of quadratic spline functions for the knot sequence t. The
space S3,tξ

⊗
S3,tη has dimension n×m.

We assume that Γ is composed by two quadratic B-splines curves, F(ξ, 0), and
F(ξ, 1), 0 6 ξ 6 1, both with knots tξ and two quadratic B-splines curves, F(0, η),
and F(1, η), 0 6 η 6 1, both with knots tη. It means that by hypothesis, boundary
control points of the map F: Pi,1,Pi,m, i = 1, ..., n and P1,j ,Pn,j , j = 1, ...,m
are known. In consequence, the parametrization problem is reduced to compute
the internal control points. Denote by Ω

′
the planar region whose boundary is the

polygonal made up by the boundary control points of the map F. The interior con-
trol points Pi,j , i = 2, ..., n− 1, j = 2, ...,m− 1 are computed as the inner vertices

of a structured quadrilateral mesh G on Ω
′
. These vertices are obtained minimizing

a functional that measures some geometric properties of G. For more details about
the computation of the control points see [1], where necessary and sufficient con-
ditions for the injectivity of the map F(ξ, η) are also studied. Figure 1 shows the
quadratic B-splines boundary curves and the control mesh of the biquadratic map
F parametrizing Havana bay region.

3.2. Galerkin method. To simplify the notation, in the rest of the paper we
don’t write the subindex tξ or tη of the B-spline functions when it is clear from the
context. The functions

(16) B3
i,j(ξ, η) := B3

i (ξ)B3
j (η), i = 1, ..., n, j = 1, ...,m,

define a basis of S3,tξ
⊗

S3,tη . Moreover, due to the assumptions on the parame-
terization F, the functions

(17) φi,j(x, y) := (B3
i,j oF−1)(x, y), i = 1, ..., n, j = 1, ...,m,

are independent in Ω. With the help of F, integrals (11),(12) over Ω can be trans-

formed into integrals over Ω̂ by means of the integration rule∫ ∫
Ω

w(x, y) dΩ =

∫ 1

0

∫ 1

0

w(F(ξ, η)) |det JF(ξ, η)| dξ dη,
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Figure 1. Left: Havana bay region Ω. Blue curves: “south” and
“north” quadratic B-spline curves F(ξ, 0) and F(ξ, 1) respectively.
Red curves: “west” and “east” quadratic B-spline curves F(0, η)
and F(1, η) respectively. Right: boundary curves and the control
mesh of F(ξ, η) with n×m = 1 444 points, n = 38 and m = 38.

where JF denotes the Jacobian matrix of the parametrization

(18) JF(ξ, η) =

(
∂x/∂ξ ∂x/∂η
∂y/∂ξ ∂y/∂η

)
.

Applying the chain rule to the function w(x, y) = w(F(ξ, η)) we obtain

(19) ∇(x,y)w(x, y) = JF(ξ, η)−t∇(ξ,η)w(ξ, η),

where the notation ∇(x,y) means that partial derivatives are computed with respect

to variables x, y and JF(ξ, η)−t denotes the transpose of the inverse of JF(ξ, η).
Hence, integrals (11),(12) defining the weak formulation can be written as

a(u, v) =

∫ 1

0

∫ 1

0

(JF(ξ, η)−t∇(ξ,η)u)t(JF(ξ, η)−t∇(ξ,η)v) |det JF(ξ, η)| dξdη

−
∫ 1

0

∫ 1

0

k2(F(ξ, η))u(F(ξ, η))v(F(ξ, η)) |det JF(ξ, η)| dξ dη,(20)

and

G(v) =

∫ 1

0

∫ 1

0

(f(F(ξ, η)) + k2(F(ξ, η)) ug(F(ξ, η)))v(F(ξ, η))| det JF(ξ, η)|dξdη

−
∫ 1

0

∫ 1

0

(JF(ξ, η)−t∇(ξ,η)ug(ξ, η))
tJF(ξ, η)−t∇(ξ,η)v(F(ξ, η))| det JF(ξ, η)|dξdη.(21)

The approximated solution uh0 (x, y) is sought in the space

(22) Vh = {span(φi,j(x, y)) such that φi,j(x, y) = 0, for (x, y) ∈ Γ}.
Taking into account (14) and (15) it is easy to check that [4]

(23) φi,j(x, y) = 0, (x, y) ∈ Γ, for i = 2, ..., n− 1, j = 2, ...,m− 1.

From (22) and (23) it follows that

(24) Vh = span{φi,j(x, y), for i = 2, ..., n− 1, j = 2, ...,m− 1}.
Hence, uh0 (x, y) can be written as

(25) uh0 (x, y) =

n∑
i=1

m∑
j=1

γi,jφi,j(x, y),

where γi,j ∈ R, i = 1, ..., n, j = 1, ...,m. The coefficients γ1,j , γn,j , for j = 1, ...,m
and γi,1, γi,m, for i = 1, ..., n must be forced to be zero. In order to obtain a linear



8 V. HERNÁNDEZ, I. ABELLÓ, R.M. BRUNO, D. LAHAYE, AND V. GUERRA

system for the unknowns γi,j it is convenient to vectorize the basis functions and
the corresponding coefficients in (25) introducing the change of index

(26) p := n(j − 1) + i, i = 1, ..., n, j = 1, ...,m.

With this transformation, the expression (25) can be written as

(27) uh0 (x, y) =

N∑
p=1

αpψp(x, y),

where N := n×m and

(α1, ..., αN )t = (γ1,1, ..., γn,1, ..., γ1,m, ..., γn,m)t,(28)

(ψ1(x, y), ..., ψN (x, y)) = (φ1,1(x, y), ..., φn,1(x, y), ..., φ1,m(x, y), ..., φn,m(x, y)).

The set of indexes I = {1, 2, ..., N} is subdivided in two subsets: I = I0 ∪ I1,

where I0 is the set of indexes of basis functions that generate Vh and I1 is the
set of indexes of basis functions that are different from 0 on Γ. In other words,
Vh = span{ψp(x, y), p ∈ I0} and I1 is the set of indexes (26) corresponding to
functions φ1,j(x, y), φn,j(x, y), j = 1, ...,m and φi,1(x, y), φi,m(x, y), i = 1, ..., n,
hence αp = 0 for p ∈ I1. Substituting in (10) expressions (20) and (21), changing

u(x, y) by uh0 (x, y) and v(x, y) by the basis function ψq(x, y), q ∈ I0, we obtain the
Galerkin formulation: find uh0 (x, y) given by (27) such that∑

p∈I0

[∫ 1

0

∫ 1

0

[
(∇ψp)t (JFtJF)−1∇ψq − k2ψpψq

]
|det JF| dξdη

]
αp

=

∫ 1

0

∫ 1

0

[
(f + k2ug)ψq − (∇ug)t(JFtJF)−1∇ψq

]
|det JF| dξdη, q ∈ I0.

In the last expression we omit the dependence of (ξ, η) of all functions in order to
simplify the notation. These equations can be written in matrix form as

(29) Aα̃ = b,

where for p, q ∈ I0

(30) A = (aq,p) =

∫ 1

0

∫ 1

0

[
(∇ψp)t (JFtJF)−1∇ψq − k2ψpψq

]
|det JF| dξdη,

and for q ∈ I0

(31) b = (bq) =

∫ 1

0

∫ 1

0

[
(f + k2ug)ψq − (∇ug)t(JFtJF)−1∇ψp

]
|det JF| dξdη,

and α̃ is the vector of unknown coefficients αp, p ∈ I0.

4. Computing the B-spline approximated solution.

In this section we explain how to compute a B-spline approximation of the func-
tion ug(x, y). Moreover, we give some details about the efficient implementation
of the procedure to compute the global matrix and the right hand side vector of
the linear system (29), whose solution is the vector α of B-spline coefficients of
uh0 (x, y).



ISOGEOMETRIC SOLUTION OF HELMHOLTZ EQUATION 9

4.1. Approximating the function ug(x, y). The function ug(x, y) satisfying
boundary condition (5) is approximated by a function uhg (x, y) in S3,tξ

⊗
S3,tη writ-

ten as

(32) uhg (x, y) =

n∑
i=1

m∑
j=1

δi,jφi,j(x, y),

with φi,j(x, y) given by (17). The unknown coefficients δi,j , i = 1, ..., n, j = 1, ...,m
are computed requiring that uhg (x, y) interpolates the function g(x, y), defining the
Dirichlet boundary condition, at a sequence of points on Γ. More precisely, we select

as interpolation sites ξ̃i and η̃j in the directions ξ and η respectively, the Greville
abscissas, which for the quadratic interpolation are the averages of 2 consecutive
knots in the sequences tξ and tη

ξ̃k =
tξk+1 + tξk+2

2
, k = 1, ..., n,(33)

η̃l =
tηl+1 + tηl+2

2
, l = 1, ...,m.(34)

Evaluating the map F(ξ, η) given by (13) we obtain the sequence of interpolation
points on Γ

(xsk, y
s
k) := F(ξ̃k, 0), (xnk , y

n
k ) := F(ξ̃k, 1), k = 1, ..., n,

(xwl , y
w
l ) := F(0, η̃l), (xel , y

e
l ) := F(1, η̃l), l = 1, ...,m.

Recall that points (xsk, y
s
k), (xnk , y

n
k ), k = 1, ..., n are on the “south” and “north”

boundaries of Ω, i.e in the boundary curves F(ξ, 0) and F(ξ, 1) respectively. Sim-
ilarly, points (xwl , y

w
l ), (xel , y

e
l ) l = 1, ...,m are on the “west” and “east” bound-

aries of Ω, i.e in the boundary curves F(0, η) and F(1, η) respectively. In con-
sequence, boundary coefficients of uhg (x, y) in (32): δi,1, δi,m, i = 1, ..., n and
δ1,j , δn,j , j = 1, ...,m, are computed from the interpolation conditions

uhg (xsk, y
s
k) = g(xsk, y

s
k), uhg (xnk , y

n
k ) = g(xnk , y

n
k ), k = 1, ..., n,

uhg (xwl , y
w
l ) = g(xwl , y

w
l ), uhg (xel , y

e
l ) = g(xel , y

e
l ), l = 1, ...,m.

Taking into account that the boundary knots in the sequences (14) and (15) have
multiplicity 3, from (32) and (17) we obtain that the previous interpolation condi-
tions can be written as

n∑
i=1

δi,1B
3
i,tξ(ξ̃k) = g(xsk, y

s
k),

n∑
i=1

δi,mB
3
i,tξ(ξ̃k) = g(xnk , y

n
k ), k = 1, ..., n,(35)

m∑
j=1

δ1,jB
3
j,tη (η̃l) = g(xwl , y

w
l ),

m∑
j=1

δn,jB
3
j,tη (η̃l) = g(xel , y

e
l ), l = 1, ...,m.(36)

Observe that linear systems (35) share the same matrix B1 := (B3
i,tξ(ξ̃k))ni,k=1

and linear systems (36) have the same matrix B2 := (B3
j,tη (η̃l))

m
j,l=1. Matrices B1

and B2 are nonsingular since hypothesis of Shoenberg-Whitney theorem [4] hold
for interpolation sites (33) and (34). Thus, coefficients δi,1, δi,m, i = 1, ..., n and
δ1,j , δn,j , j = 1, ...,m are computed solving the corresponding linear systems. The
rest of the coefficients δi,j , i = 2, ..., n − 1, j = 2, ...,m − 1 are assigned as zero.
Figure 2 shows the graphics of a region Ω and the corresponding function uhg (x, y).



10 V. HERNÁNDEZ, I. ABELLÓ, R.M. BRUNO, D. LAHAYE, AND V. GUERRA

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

0
0.5-0.2

0.4-0.3

0.3-0.4

0.5

0.2-0.5

1

Figure 2. Left: physical domain Ω, right: function uhg (x, y) sat-
isfying Dirichlet boundary condition in Γ.

4.2. Assembling the global matrix and the right-hand side vector. The
process of building the global matrix (30) and the vector (31) is known in the FEM
literature as assembly. This process does not compute the elements of A and b,
one entry at a time, as a first glance at the formulation (30)-(31) might imply.

Instead, one loops through the elements Ω̂k,l := [ξk, ξk+1] × [ηl, ηl+1], building as
we go local matrices and vectors Ak,l and bk,l respectively, for k = 1, ..., n− 2, l =
1, ...,m− 2. Every entry of each of these dense matrices and vectors is then added
to the appropriate spot in the global matrix A and vector b.

Since in our problem the basic functions are biquadratic B-splines, only 9 basic

functions are different from zero in Ω̂k,l. These functions are
(37)

(φk,l, φk,l+1, φk,l+2, φk+1,l, φk+1,l+1, φk+1,l+2, φk+2,l, φk+2,l+1, φk+2,l+2).

Therefore, each local matrix Ak,l and the corresponding vector bk,l are of order
9×9 and 9×1 respectively. Denote by p1, ..., p9 the global indexes of basic functions
(37) computed using (26). Then

(38) Ak,l =


IA(ψp1 , ψp1) · · · IA(ψp1 , ψp9)
IA(ψp2 , ψp1) · · · IA(ψp2 , ψp9)

...
...

...
IA(ψp9 , ψp1) · · · IA(ψp9 , ψp9)


where for i, j = 1, ..., 9
(39)

IA(ψpi , ψpj ) =

∫ ξk+1

ξk

∫ ηl+1

ηl

[
(∇ψpi)

t
(JFtJF)−1∇ψpj − k2ψpiψpj

]
|det JF| dξdη.

Similarly

(40) bk,l = (Ib(ψp1), Ib(ψp2), · · · , Ib(ψp9))
t
,

where for i = 1, ..., 9,
(41)

Ib(ψpi) =

∫ ξk+1

ξk

∫ ηl+1

ηl

[
(f + k2ug)ψpi − (∇ug)t(JFtJF)−1∇ψpi

]
|det JF| dξdη.

The integrals (39) and (41) are computed approximately using Gaussian quadra-
tures [22]. Observe that IA(ψpi , ψpj ), i, j = 1, ..., 9 must be added up in api,pj .
Similarly, Ib(ψpi), i = 1, ..., 9 must be added up in bpi .
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Finally, the approximated solution uh(x, y) of the problem is given by uh(x, y) =
uh0 (x, y) + uhg (x, y). From (32) and (25) it follows that

(42) uh(x, y) =

n∑
i=1

m∑
j=1

βi,jφi,j(x, y),

where βi,j = δi,j + γi,j , i = 1, ..., n, j = 1, ...,m.
Observe that equation (42) can be expressed also in terms of the tensor product

B-spline basis (16) in the parametric space Ω̂

(43) uh(F(ξ, η)) ≡ uh(ξ, η) =

n∑
i=1

m∑
j=1

βi,jB
3
i,j(ξ, η).

5. Numerical Experiments

In this section we describe our experiences solving the Helmholtz equation with
Dirichlet boundary condition using IgA approach. Our study includes three model
problems, where the exact solution is known and therefore, it is possible to com-
pute the numerical errors. In the experiments we compute the L2 error of the
approximated solution uh(x, y) as

(L2 error)2 =

∫ 1

0

∫ 1

0

(
u(F(ξ, η))− uh(F(ξ, η))

)2 |det(JF(ξ, η)) |dξdη,(44)

where F(ξ, η) was defined in (13) and JF(ξ, η)) in (18). We also compute the
H1 error in the norm (8) as

(H1 error)2 = (L2 error)2 +

∫ 1

0

∫ 1

0

[(
∂u(F(ξ, η))

∂x
− ∂uh(F(ξ, η))

∂x

)2

+ · · ·

+

(
∂u(F(ξ, η))

∂y
− ∂uh(F(ξ, η))

∂y

)2
]
| det(JF(ξ, η))| dξ dη.(45)

In practice, we compute IgA errors with expressions (44) and (45) using a Gauss-
ian quadrature rule in two variables with 4 points. The components of the (x, y)

gradient ∇(x,y)u
h =

(
∂uh

∂x , ∂u
h

∂y

)t
that appear in the expression (45) are calculated

using the (ξ, η) gradient ∇(ξ,η)u
h, the Jacobian matrix (18) and the chain rule (19).

The gradient ∇(ξ,η)u
h is computed directly deriving in the expression (43) [1].

We consider several physical domains, with emphasis in planar regions Ω with
irregular boundaries. The numerical results reported here have been obtained with
the help of our computational implementation of isogeometric method. This imple-
mentation, uses biquadratic B-splines functions and computes the control points of
the map F(ξ, η) that parametrizes Ω by minimizing a functional [1]. We run our
experiments in a PC with i7 processor and 8Gb of RAM.

5.1. Poisson equation with discontinuous gradient. In this section we solve
a very simple case of Helmholtz equation, the Poisson equation

−∆u(x, y) = f(x, y), (x, y) ∈ Ω,
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with Dirichlet boundary condition (2). The function f(x, y) is computed in such a
way that the exact solution u(x, y) is given by
(46)

u(x, y) = exp
(
α
√

(x− x0)2 + (y − y0)2
)

+ exp
(
β
√

(x− x1)2 + (y − y1)2
)

+ exp
(
γ
√

(x− x2)2 + (y − y2)2
)
,

where the real values α, β and γ and the points (x0, y0), (x1, y1) and (x2, y2) are
known. The function g(x, y) is the restriction of u(x, y) to the boundary of Ω.
This problem is solved in [5] on the unit square [0, 1]2. Here we solve it on several
irregular regions. The main difficulty is the discontinuity of the gradient of u(x, y)
in the points (x0, y0), (x1, y1) and (x2, y2).

In the following experiments α = β = γ = 7 and the points involved in
the description of the problem and in its solution (46) are: (x0, y0) = F(ξa, ηa),
(x1, y1) = F(ξb, ηb) and (x2, y2) = F(ξc, ηc), where ξa = ηa = 0.25, ξb = ηb = 0.5
and ξc = ηc = 0.75. The first step to obtain the approximated solution uh is to
compute the B-spline biquadratic parametrization F(ξ, η) of the physical region Ω.
The sequences of knots tξ and tη that we use to define the space of biquadrat-
ic splines are nonuniform. More precisely, the distribution of knots in tξ is more
concentrated near the parametric values ξa, ξb and ξc. Similarly, the sequence tη

contains more knots near the parametric values ηa, ηb and ηc.
In table 1 we show the results for different regions. The number of degrees of

freedom n×m used to compute uh is reported in the second column of the table.
The other two columns contain the errors (44) and (45). As we observe, the L2

error oscillates between e-01 and e-04, but the H1 error is approximately one to two
orders bigger. It means that uh could be considered as acceptable approximation
of the exact solution u, but partial derivatives of uh are not good approximations
of partial derivatives of u.

Table 1. Errors of the biquadratic B-spline solution of Poisson
equation with exact solution (46) on several physical regions. The
parameters ξa, ξb, ξc are simple knots in tξ and the parameters
ηa, ηb, ηc are simple knots in tη.

Region Degrees of freedom L2 error H1 error
Havana bay 116× 110 4.8168e-02 4.5843e-01
Toba lake 172× 172 1.0143e-03 3.7642e-02

Strait of Gibraltar 96× 112 6.2503e-01 1.1674e+00
Grijalva channel 124× 44 1.0860e-02 4.2216e-01
Pátzcuaro lake 108× 108 7.4703e-04 7.8701e-02

V. de Bravo reservoir 156× 156 2.9897e-04 3.8636e-02

In Figure 3 we show the biquadratic B-spline functions uh for some of the physical
regions reported in table 1. We recall that the B-spline basis functions B3

i,tξ(ξ) and

B3
j,tη (η) used to construct the approximated solution uh are C1 continuous, since the

corresponding sequences of knots tξ and tη are composed by simple knots. However,
the gradient of the exact solution (46) is not defined in three points. Hence, the
smooth B-spline solution uh approximates the exact solution u in these points, but
partial derivatives of uh are not good approximations of partial derivatives of u.
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To overcome this difficulty, we include two times the parametric values ξa, ξb and
ξc in the sequence of knots tξ, and similarly the parametric value ηa, ηb and ηc
are included two times in the sequence tη. The corresponding B-spline functions
are only C0 continuous in these points, therefore uh approximates better the exact
solution u. Observe that the introduction of new knots does not change the map
F(ξ, η), which is still differentiable, but the expression of F(ξ, η) in the new basis
must be computed.

Figure 3. Biquadratic B-spline functions uh approximating the
exact solution (46) of Poisson equation for several regions. Top
left: Havana bay, top right: Toba lake. Bottom left: V. de Bravo
reservoir, bottom right: Grijalva channel.

In Figure 4 we compare the graph of the functions u(F(ξ, ξ)) and uh(F(ξ, ξ)),
where F is the parametrization of Pátzcuaro lake and uh is the biquadratic B-
spline approximation to the exact solution u. Observe that these curves contain
the singular points of u. The left image shows the function u(F(ξ, ξ)), 0 ≤ ξ ≤ 1,
while center and right images show a zoom of u(F(ξ, ξ)) and uh(F(ξ, ξ)) restricted
to the black rectangle in the left image. This rectangle contains the point ξb = 0.5.
The center graph shows in blue the approximated B-spline solution uh obtained for
a sequence of simple knots. We observe that the exact solution u(F(ξ, ξ)) (in red)
is not differentiable in ξb, but uh(F(ξ, ξ)) has continuous derivative in this point.
The right graph shows in blue the approximated B-spline solution uh corresponding
to a sequence of knots tξ, where ξb = 0.5 is repeated, and a sequence of knots tη,
where ηb = 0.5 is also repeated. The result is that uh has the same behavior that
u since it is not differentiable in ξb = 0.5. The effect of repeating the knots ξa, ξb
and ξc in tξ and ηa, ηb and ηc in tη is shown in table 2, which contains the results
for the same physical regions of table 1.
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Figure 4. Left: graph of u(F(ξ, ξ)) with u given by (46) on the
Pátzcuaro lake. Center and right: zoom of uh(F(ξ, ξ)) (in blue)
in comparison with u(F(ξ, ξ)) ( in red). In center graph uh is
computed with simple knots, in right graph uh has repeated knots.

Comparing tables 1 and 2 we observe that in each parametric direction, the
number of degrees of freedom is increased in 3, because we repeat 3 knots in the
corresponding sequences tξ and tη. As a consequence, the L2 and the H1 errors are
reduced in general. The reduction is bigger for the H1 error, since repeating knots
we obtain a better approximation of the vector field of the exact solution. This
is illustrated in Figure 5, where we show the vector field near a singular point for
Havana bay. The left and center images of this figure show the vector field of the
biquadratic B-spline function uh for simple and repeated knots respectively. The
right image shows the vector field of the exact solution u. It is easy to see that the
size of the arrows near the singular point is smaller for the left image, which means
that the field is smoother in this point. Moreover, the vector fields for the center
and right images are very similar.

Table 2. Errors of the biquadratic B-spline solution of Poisson
equation with exact solution (46). The parameters ξa, ξb, ξc are
double knots in tξ and ηa, ηb, ηc are double knots in tη.

Region Degrees of freedom L2 error H1 error
Havana bay 119× 113 4.7959e-02 3.4124e-01
Toba lake 175× 175 1.0139e-03 2.6891e-02

Strait of Gibraltar 99× 115 6.2427e-01 8.3259e-01
Grijalva channel 127× 47 1.0598e-02 3.5410e-01
Pátzcuaro lake 111× 111 7.4603e-04 7.3279e-02

V. de Bravo reservoir 159× 159 2.9866e-04 3.5940e-02

5.2. Helmholtz equation with constant wave number. In this section we
solve the Helmholtz equation (1), where the function k(x, y) is a constant k > 0,
and the right hand side is

f(x, y) =

(
5π2 − 4

4

)
k2 sin(kπx) sin(kπy/2).

This equation has exact solution

(47) u(x, y) = sin(kπ x) sin(kπy/2).
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Figure 5. Zoom of the vector field of the exact solution and the
biquadratic B-spline solution of Poisson equation. Left: for the
smooth B-spline approximation with simple knots. Center: for the
B-spline approximation with double knots. Right: for the exact
solution.

The function (47) is very oscillatory and the number of its oscillations is higher as
k grows. Moreover, the function

(48) ‖∇u‖2 =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

,

is even more oscillatory than u(x, y), as we can see in Figure 6, where functions
(47) and (48) are shown for k = 1 on [0, 2π] × [0, 4π]. We will see soon, that this
behavior of ‖∇u‖2 makes difficult to obtain good approximations of u(x, y) in the
H1 norm.

Figure 6. Function u(x, y) given by (47) on [0, 2π] × [0, 4π] for
k = 1 (left) and the corresponding function ‖∇u‖2 given by (48)
(right).

5.2.1. Influence of the wave number k in the error. Here we solve the
Helmholtz equation (1) in a region Ω, that is a closed approximation of Havana
bay (see Figure 1). The first step to solve the problem is to parametrize Ω with
an injective biquadratic map F(ξ, η). In this example, we use a uniform sequence
of knots in both directions ξ and η. The n × m control points of F(ξ, η) in (13)
are computed as the vertices of a quadrilateral mesh [1]. In Figure 1 we show the
control mesh for n = 38 and m = 38. First, we solve the problem for k = 1. The
corresponding solution uh, written as (42), belongs to the space of biquadratic B-
splines functions, with uniform knots and N = n ×m = 1 444 degrees of freedom.
The errors (44) and (45) in the L2 and H1 norms are 2.7801e-05 and 5.3929e-03
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respectively. Since the number of oscillations of u grows when we increase the
parameter k, more degrees of freedom are necessary, if we want to obtain similar
errors in the L2 and H1 norms.

Table 3. Errors, for different values of k, of the biquadratic B-
spline solution of Helmholtz equation with exact solution (47) on
Havana bay domain.

k nsub Degrees of freedom L2 error H1 error
1 1 38× 38 2.7801e-05 5.3929e-03
3 2 74× 74 3.9801e-05 1.4816e-02
5 3 146× 146 1.4232e-05 1.1136e-02
10 4 290× 290 9.0835e-06 1.6026e-02
15 5 578× 578 3.3467e-06 1.1990e-02

To increase the number of degrees of freedom, we insert new knots located at
the midpoints between old knots. The control points of the (same) map F(ξ, η) are
updated using subdivision. The extra degrees of freedom obtained allow to keep
the errors bounded. In table 3 we show the errors (44) and (45), obtained solving
the problem with k = 1, 3, 5, 10, 15. The second column of the table indicates the
number nsub of subdivisions of the original control mesh ( with n×m control points,
n = 38 and m = 38) that we made, in order to increase the total number of degrees
of freedom reported in the third column. Two things are clear: the H1 error is at
about two orders bigger than the L2 error. Moreover, to keep the L2 error between
e-05 and e-06 and the H1 error between e-02 and e-03, more degrees of freedom are
necessary as we increase the value of k.

In Figure 7 we show the approximated solution uh for k = 15, obtained with
n = 578 and m = 578 for a total of N = 334 084 degrees of freedom. The L2 and
H1 errors, reported in table 3 are of order e-06 and e-02 respectively.

Figure 7. Approximated solution uh of Helmholtz equation with
exact solution (47) for k = 15. Function uh is computed using
biquadratic B-splines with 578×578 = 334 084 degrees of freedom.
Left: 2D view, right: 3D view.
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5.2.2. Influence of the parametrization in the error. It is well known that
the precision of the approximated solution computed with IgA approach depends
on the quality of the parametrization F(ξ, η) of the physical domain Ω [26]. In this
sense, a good uniformity and orthogonality of the isoparametric curves of F(ξ, η) is
desirable. To measure the quality of the parametrization in the point F(ξ, η) we
use the mean ratio Jacobian [25] given by

(49) Jr(ξ, η) =
2 det JF(ξ, η)

‖Fξ(ξ, η)‖22 + ‖Fη(ξ, η)‖22
,

where Fξ(ξ, η) = (∂x∂ξ ,
∂y
∂ξ ) and Fη(ξ, η) = (∂x∂η ,

∂y
∂η ) are the tangent vectors to the

isoparametric curves, and ‖ · ‖2 denotes the Euclidean norm. If the map F(ξ, η) is
injective, then detJF(ξ, η) does not changes of sign. Assuming that det JF(ξ, η) >
0 it holds that 0 < Jr(ξ, η) ≤ 1. A value of Jr equal to 1 at a point P0 = F(ξ0, η0)
indicates that the isoparametric curves are orthogonal at P0 and the map F(ξ, η)
produces the same length distortion at P0 in both parametric directions ξ and η.
On the contrary, a value of Jr close to zero indicates a poor parametrization.

To study the influence of the parametrization in the accuracy of the numeri-
cal results we solve Helmholtz equation with exact solution (47) for three different
regions: Blue lagoon, Ucha lake and Jyvasjarvi lake. For each region a parametriza-
tion F(ξ, η) of the domain Ω is computed. In first row of Figure 8 we show a color
map, where colors correspond to the values of Jr(ξ, η) for the parametrization
F(ξ, η). Yellow areas in Ω have a value of Jr close to 1, while blue areas are those
where Jr is close to 0. In other words, in blue zones the parametrization is poor.

Moreover, we construct a rectangular mesh of points (ξ̃i, η̃j), i = 1, ..., ñ, and
j = 1, ..., m̃ in [0, 1] × [0, 1]. Given the parametrization F(ξ, η) of the region Ω,

let (x̃i, ỹj) = F(ξ̃i, η̃j) be the vertices of the corresponding rectangular mesh in
Ω. To show the influence of the parametrization F(ξ, η) in the accuracy of IgA

approximated solution, we compute for each point (ξ̃i, η̃j) the pointwise H1 error,
denoted by eH1

p and defined as

(eH1
p )2
∣∣∣
(x̃i,ỹj)

= (u− uh)2
∣∣∣
(x̃i,ỹj)

+

(
∂u

∂x
− ∂uh

∂x

)2 ∣∣∣
(x̃i,ỹj)

+

(
∂u

∂y
− ∂uh

∂y

)2 ∣∣∣
(x̃i,ỹj)

.

In the second row of Figure 8 we plot on the mean ratio Jacobian map a red
point in the coordinates (x̃i, ỹj), if eH1

p (x̃i, ỹj) is greater than a given threshold ε.
The value of ε is selected for each region, depending of the range of values of the
pointwise H1 error. For Blue lagoon we solve Helmholtz equation with k = 3 and
compute IgA solution with n×m degrees of freedom with n = m = 234. Helmholtz
equation with k = 10 was solved on Ucha lake, with n = m = 134. Finally, on
Jyvasjarvi lake we solve Helmholtz equation with k = 5 and compute IgA solution
using n×m degrees of freedom with n = m = 74.

From Figure 8 it is clear that most of points with high pointwise H1 error are
located in those zones where the parametrization of Ω is poor ( intense blue areas in
the mean ratio Jacobian map). It confirms that the precision of the approximated
solution computed with IgA approach depends on the quality of the parametriza-
tion of the physical domain, with smaller errors in zones of Ω with high quality
parametrization. This is very significant in some applications, where due to the
physical nature of the problem, it is important to have small error in some specific
areas of the domain.
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Figure 8. First row: mean ratio Jacobian map, dark blue areas
are zones of poor parametrization. Second row: red points on
mean ratio Jacobian map are those where the pointwise H1 error
is bigger than a prescribed threshold. Left: Blue lagoon region,
center: Ucha lake, right: Jyvasjarvi lake.

5.2.3. Comparison with FEM solution. Given a physical domain Ω, in this
section we compute a sequence of IgA approximated solutions of Helmholtz equa-
tion with exact solution (47). Moreover a sequence of quadratic FEM solutions
is also computed and a comparison between them is performed. To obtain these
sequences of solutions we proceed as follows. First, we construct a biquadratic B-
spline parametrization F(ξ, η) of Ω written as (13) and with uniform knots tξ and
tη.

The sequence of IgA solutions is computed increasing the number of degrees of
freedom by knot insertion. Starting from the original knots (14) and (15), that we
denote here by tξ,0 and tη,0, the new sequences of knots tξ,1 and tη,1 are obtained
inserting new knots at the midpoints of the break points. More precisely, tξ,1 =
(0, 0, ξ1

1 , ξ
1
2 , ..., ξ

1
2n−3, 1, 1), where ξ1

2i−1 = ξi for i = 1, ..., n−1 and ξ1
2i = (ξi+ξi+1)/2,

for i = 1, ..., n−2. The sequence tη,1 = (0, 0, η1
1 , η

1
2 , ..., η

1
2m−3, 1, 1) is constructed in

a similar way. Repeating the previous strategy we obtain sequences of knots tξ,l and
tη,l for l > 1. These knots define a sequence of nested tensor product biquadratic
spline spaces S3,tξ,l

⊗
S3,tη,l . IgA approximated solutions computed here belong to

these spaces.
FEM approximated solution is computed for a sequence of meshes Ml defined

as follows. Vertices Ml
i,j of the mesh Ml with l ≥ 0 are computed as Ml

i,j =

F(ξli, η
l
j), where ξli and ηlj are the break points defining the knot sequences tξ,l

and tη,l respectively. For each mesh of the sequence Ml, l = 0, 1..., we solve the
Helmholtz equation using FEM quadratic Lagrange elements with 9 nodes. If we
denote by h the mesh size of M0, the number NFEM of degrees of freedom of
FEM solution on M0 is proportional to 4/h2. In comparison, the number NIgA of
degrees of freedom of IgA solution in S3,tξ,0

⊗
S3,tη,0 is proportional to 1/h2, with

h denoting as before the mesh size of M0. Since F(ξ, η) is biquadratic, then the
mesh size ofM1 is approximately h/2. From the previous analysis we conclude that



ISOGEOMETRIC SOLUTION OF HELMHOLTZ EQUATION 19

refining the mesh M0, the mesh size is reduced from h to h/2, the number NFEM
of degrees of freedom of FEM solution is increased from 4/h2 to 16/h2, while the
number NIgA of degrees of freedom of IgA solution is increased from 1/h2 to 4/h2.
In other words, the value of NFEM for the mesh M0 of size h is of the same order
that the value of NIgA for the mesh M1 of size h/2.

In [2], some results about a priori error estimate of IgA solutions under quasi
uniform h-refinement are presented. For second order elliptic PDE, with exact
solution u ∈ Hp+1(Ω), where p is the minimum of polynomial degrees in directions
ξ and η, it is shown that the L2 error of IgA solution uh is bounded by

(50) ||u− uh||L2(Ω) ≤ C hp+1||u||Hp+1(Ω).

Moreover, the H1 error is bounded by

(51) ||u− uh||H1(Ω) ≤ C hp||u||Hp+1(Ω).

Hence, the order of convergence of IgA and classical FEM are the same for degree
p basis functions. Since in 2D problems the number of degrees of freedom (dof) is
of order h−2, from (50) and (51), the order of convergence is (dof)−(p+1)/2 in the
L2 norm and (dof)−p/2 in H1 norm. In particular, for p = 2, the expected order of
convergence of L2 and H1 errors are (dof)−3/2 and (dof)−1 respectively, for both
FEM and IgA approximations.

Figure 9. Ucha lake results for k = 5. L2 error (left) and H1 error
(center), both log-log plots as functions of the number of degrees
of freedom (dof). Right: number of dof vs. mesh size h. Blue:
IgA solution, red: FEM solution.

In the next experiments we show that, even when the errors of IgA and FEM
are of the same order, the computational cost of FEM is higher, since it requires
approximately 4 times more dof than IgA to obtain these errors. This increment
in the number of dof of FEM is more significant for higher values of p. Quoting
Cottrell et al in [8] “ the isogeometric analysis solution obtained using NURBS of
order p has the same order of convergence as we would expect in a classical FEA
setting using classical basis functions with a polynomial order of p ... bisecting all
of the elements in an FEA mesh (thus cutting the mesh parameter from h to h/2)
requires the introduction of many more degrees of freedom than does bisection of the
same number of NURBS elements while maintaining p− 1 continuity. This means
that NURBS can converge at the same rate as FEA polynomials, while remaining
much more efficient”.

To evaluate the results obtained with FEM and IgA, we solve the Helmholtz
equation with exact solution (47) for different regions. In Figures 9, 10 and 11 we
show the results for three regions: Ucha lake, Banderas bay and Titicaca lake. The
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log of L2 error (left) and the log of H1 error (center) are plotted, for FEM and
IgA approximated solutions, both as functions of log of the number of degrees of
freedom. Observe that in all examples the L2 error is of order (dof)−3/2, while
the H1 error is of order (dof)−1 for both FEM and IgA. Nevertheless, it is clear
that for a given number of degrees of freedom, IgA solution is about half an order
of magnitude more accurate than FEM solution. Moreover, this behavior is more
pronounced when we increase the number of degrees of freedom. The right column
in Figures 9, 10 and 11 show a graph of the number of degrees of freedom of FEM
and IgA, NFEM and NIgA respectively, as function of the mesh size h. Notice that
the value of NFEM for the mesh Ml of size h is similar to the value of NIgA for
the mesh Ml+1 of size h/2. Since the errors of IgA and FEM solutions are of the
same order (as functions of h), this confirm that given a mesh size h, FEM solution
requires more dof than IgA solution to obtain L2 and H1 errors of the same order.
This implies that the computational cost of FEM is higher, since at least dof2

operations are need to solve a linear system with dof unknowns.

Figure 10. Banderas bay results for k = 3. L2 error (left) and
H1 error (center), both log-log plots as functions of the number of
degrees of freedom (dof). Right: number of dof vs. mesh size h.
Blue: IgA solution, red: FEM solution.

Figure 11. Titicaca lake results for k = 1. L2 error (left) and
H1 error (center), both log-log plots as functions of the number of
degrees of freedom (dof). Right: number of dof vs. mesh size h.
Blue: IgA solution, red: FEM solution.

Experiments with other regions with irregular boundary and higher values of k
confirm the results reported in Figures 9, 10 and 11. As an example we show in
table 4 the L2 errors of FEM and IgA approximated solutions, both computed for
the sequence of mesh refinements explained before, for three regions: Valle Bravo
reservoir ( with k = 25), Aral sea ( with k = 20) and Gibraltrar strait ( with k = 15).
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Table 4. L2 errors of FEM and IgA approximated solutions for
a sequence of mesh refinements and three irregular regions.

Region Valle Bravo (k = 25) Aral (k = 20) Gibraltar (k = 15)
dof L2 error dof L2 error dof L2 error

IgA 4624 1.2904e-01 6384 7.3934e-02 10764 3.0033e-03
FEM 4489 7.1431e-01 6179 5.9143e-02 10549 6.2688e-03
IgA 17956 6.6323e-03 24716 9.9665e-03 42196 2.9474e-04

FEM 17689 6.4833e-02 24309 1.1141e-02 41769 1.0030e-03
IgA 70756 4.9397e-04 97236 6.8826e-04 167076 3.3809e-05

FEM 70225 6.0208e-03 96425 2.1565e-03 166225 1.5478e-04
IgA 280900 5.3282e-05 385700 6.8921e-05 664900 4.1310e-06

FEM 279841 7.8168e-04 384081 2.5806e-04 663201 2.4403e-05

Like in the previous examples we observe that, for similar numbers of degrees of
freedom, IgA solution is at least half an order of magnitude more accurate than
FEM solution in the L2 norm. This behavior is again more accentuated when the
number of degrees of freedom is increased.

5.3. Helmholtz equation with variable wave number. The wave function
u(x, y) that satisfies a Schrödinger equation model of two interacting atoms [28] is
the solution of the Helmholtz equation (1) with

(52) k(x, y) =
1

α+ r(x, y)
,

where α is a parameter, r(x, y) =
√

(x− x0)2 + (y − y0)2 and

(53) f(x, y) =
(α− r(x, y)) cos(k(x, y))

(α+ r(x, y))3r(x, y)
.

In this case, the exact solution of Helmholtz equation is given by

(54) u(x, y) = sin(k(x, y)).

The function (54) has discontinuous gradient at (x0, y0) and it is highly oscillatory
near that point. The number of oscillations M is determined by the parameter
α = 1

Mπ .

5.3.1. Experiments when the exact solution has only one oscillation. In
this section we solve the Helmholtz equation with k(x, y) given by (52) for sever-
al regions with irregular boundary. In all the examples we select α = 1

π and we

compute the point (x0, y0) as F(ξ̃, η̃), where (ξ̃, η̃) = (0.5, 0.5) and the parametriza-
tion F(ξ, η) is the biquadratic B-spline function given by (13), with control points
computed as the vertices of a quadrilateral mesh [1].

Initially the sequences of knots tξ and tη are defined by (14) and (15) respec-

tively. But new knots are inserted depending on the position of the point (ξ̃, η̃).

More precisely, if tξi < ξ̃ < tξi+1 then the knot sequence (14) is refined inserting 9

equally spaced knots in each interval (tξi−1, t
ξ
i ), (t

ξ
i , t

ξ
i+1) and (tξi+1, t

ξ
i+2). Similarly,

if tηj < η̃ < tηj+1 then we insert in (15) 9 knots equally spaced in each interval

(tηj−1, t
η
j ), (tηj , t

η
j+1) and (tηj+1, t

η
j+2). If ξ̃ or η̃ agrees with a knot of the sequences tξ

and tη respectively, then we insert 9 equally spaced knots in both intervals of tξ and



22 V. HERNÁNDEZ, I. ABELLÓ, R.M. BRUNO, D. LAHAYE, AND V. GUERRA

Figure 12. Biquadratic B-spline solution uh and exact solution
(54) of Helmholtz equation with variable wave number. Left col-
umn: B-spline approximation uh. Right column: exact solution
(54). First row Toba lake, second row Strait of Gibraltar.

tη containing the value ξ̃ and η̃. Finally, since the gradient of the exact solution u

is discontinuous in (x0, y0) we always insert ξ̃ = η̃ = 0.5 as a double knot in tξ and
also as a double knot in tη.

Table 5. Errors of the biquadratic B-spline solution of Helmholtz
equation with exact solution (54) on several physical regions.

Region Degrees of freedom L2 error H1 error
Havana bay 117× 111 2.1853e-02 7.9875e-02
Toba lake 167× 167 1.6721e-03 2.0115e-02

Strait of Gibraltar 97× 157 1.5081e-01 2.5876e-01
Grijalva channel 119× 39 3.0655e-03 8.7938e-02
Pátzcuaro lake 109× 109 7.6203e-04 8.7178e-02

V. de Bravo reservoir 157× 157 2.1475e-04 1.3584e-02

Figure 12 shows the graph of the exact solution u and the approximated bi-
quadratic B-spline solution uh for two of the regions reported in table 5. For each
row, the graph in left column is uh and the graph in the right column is u. The
differences between u and uh are not appreciable. In table 5 we show the errors
of the biquadratic B-spline solution uh for different physical regions. The L2 error
oscillates between e-01 and e-04. The H1 error is in some cases of the same order
as L2, but it can grow up to two orders in others.
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5.3.2. Experiments increasing the number of oscillations of the exact
solution. As we already mentioned, the parameter M in the expression of α = 1

Mπ
is the number of oscillations of the exact solution (54). Hence, in order to obtain
a good approximation uh of the exact solution u, for values of M greater than
1 we must add more basic functions B3

i (ξ) and B3
j (η) different from zero near

ξ̃ = η̃ = 0.5. In our experiments, we always insert ξ̃ = η̃ = 0.5 as a double knot
in tξ and also as a double knot in tη. Moreover, a total of 27 equally spaced knots

are inserted in both intervals in tξ containing ξ̃. The same procedure is used for
inserting knots in tη.
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Figure 13. Some basis functions B3
i,tξ(ξ) after insertion of knots

near ξ = 0.5.

In Figure 13 we show some of the basis functions B3
i,tξ(ξ), 0 ≤ ξ ≤ 1. Since the

knots are very concentrated in the neighborhood of ξ̃ = 0.5, we observe that many
basic functions (one for each knot inserted) are different from 0 near this value.

In the next examples we solve the Helmholtz equation with exact solution (54)
for M = 2, M = 3 and M = 4. In table 6 we show the L2 and the H1 errors
of the approximated solution uh, when the physical domain is Havana bay. For
comparison, we also include the result of table 5 for M = 1. Observe that the
number of degrees of freedom, reported in column 2, is bigger for M > 1 than for
M = 1.

Figure 14 shows the graph of the functions u(F(ξ, η)) and uh(F(ξ, η)) for Havana
bay, both restricted to the parametric line ξ = η, which contains the pre-image of
the singular point (x0, y0). More precisely, the red graph shows the curve u(F(ξ, ξ)),
while the blue graph represents the function uh(F(ξ, ξ)). The first row corresponds
to the solution with M = 2 oscillations, the second and third rows correspond to
M = 3 and M = 4 respectively. In each row, the black rectangle area in the graph
is zoomed in the next right image. Observe that the oscillations are located is a very
narrow segment. Moreover, the approximated solution uh reproduces the behavior

of u including the non differentiability in the point ξ̃ = 0.5. Finally, we point out
that even when the region Ω is irregular and the number of oscillations of the exact
solution is increased, the L2 and H1 errors remain bounded.

5.3.3. Convergence study. To study the convergence of the isogeometric ap-
proach we solve in this section the Helmholtz equation, where k(x, y) and f(x, y)
are given by (52) and (53) respectively, Ω is the Jigsaw puzzle region given in [20]
and shown in Figure 15, and α = 1

π . In table 7 we report the L2 and the H1 errors
for increasing values of the number N = n×m of degrees of freedom. The i-th row
of table 7 corresponds to a sequence of knots which is obtained refining uniformly
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Figure 14. Restriction to a parametric line of the exact (red)
and approximated (blue) solutions of the Helmholtz equation with
variable wave number on Havana bay. Each rectangle area is am-
plified on right image in the same row. First row M = 2, second
row M = 3 and third row M = 4.

Table 6. Errors on Havana bay of the biquadratic B-spline solu-
tion of Helmholtz equation, with exact solution (54) for increasing
number M of oscillations.

Number of oscillations (M) Degrees of freedom L2 error H1 error
1 117× 111 2.1853e-02 7.9875e-02
2 171× 165 3.3136e-02 1.6737e-01
3 171× 165 7.9149e-02 4.8330e-01
4 171× 165 1.4820e-01 8.4187e-01

i−1 times the initial uniform sequences (14) and (15) and introducing later equally
spaced knots in the intervals containing the parametric value 0.5 in each direction
(see the previous section). As we observe the L2 and the H1 errors decrease as the
number of degrees of freedom increases.

In Figure 15 we show a 2D view of the approximated solution for three of the
cases reported in table 7. There are almost no differences between the approximated
solution with 537× 537 = 288 369 degrees of freedom and the exact solution.

6. Conclusions

The solution of partial differential equations with IgA approach has several ad-
vantages in comparison with the classical finite element method. One of them is
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Table 7. Errors on Jigsaw puzzle region of the biquadratic B-
spline solution of Helmholtz equation, with exact solution (54) for
increasing number of degrees of freedom.

Degrees of freedom L2 error H1 error
13× 13 1.9015e+00 2.8427e+00
25× 25 5.2472e-01 1.0000e+00
45× 45 1.5823e-01 3.8434e-01
81× 81 5.7594e-02 1.5188e-01

149× 149 2.2850e-02 6.9488e-02
281× 281 9.5391e-03 3.4967e-02
537× 537 4.7848e-03 1.8761e-02
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Figure 15. 2D views of the approximated IgA solution of the
Helmholtz equation when we increase the number of degrees of
freedom. From left to right the total number N of dof is: 169, 625
and 288 369. Right image corresponds to the exact solution (54).

that the boundary of the physical domain is represented exactly. This is specially
important when the boundary is irregular, since high errors may be introduced if
it is approximated. In this paper we have confirmed that, in the context of the
numerical solution of the Helmholtz equation with Dirichlet boundary condition.

In contrast with previous works that deal with closed domains with very simple
boundary curves, we have solved Helmholtz equation on regions with very irregular
boundary. For these regions, the first step of IgA approach: the construction of
a good parametrization of the domain, is qualitatively more complex. Moreover,
we have considered Dirichlet boundary condition, the more challenging for the
convergence of iterative Krylov-type solvers, usually employed for the numerical
solution of the linear system derived from the discretization.

In our implementation of IgA, biquadratic B-spline functions are used to com-
pute a parametrization of the physical domain and also as a basis for writing the
approximated solution of the Helmholtz equation. The success of the method is
proved solving several difficult model problems, for which the exact solution has
singular points or is highly oscillatory. A lot of experiments have been included,
both for constant a variable wave number. Special attention is paid to the selection
of the number and position of the knots of the B-splines functions, in such a way
that the approximated solution reproduces the behavior of the exact solution. In
this sense, IgA approach is also advantageous, since it is able to offer smooth solu-
tions having at the same time some singular points and high number of oscillations.
The influence of the wave number and the quality of the parametrization of the
physical domain in the accuracy of the numerical solution was also studied. IgA
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and FEM quadratic approximated solutions are compared through several exam-
ples, which confirm that even when the L2 and H1 errors are of the same order,
the computational cost of FEM is higher, since it requires more degrees of freedom
than IgA to obtain these errors. In other words, in comparison with FEM, IgA
provides improved accuracy per degree of freedom.

As a future work we plan to solve the Helmholtz equation using IgA approach,
when the wave number is large. This problem, very important in acoustics and
other applications, is difficult to solve with classical FEM. Our intention is to
show that IgA approach is a better option to obtain good approximated solutions.
Moreover, we want to explore deeper the relation between the local quality of the
parametrization of the physical domain and the local error of IgA solution.
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[12] V. Dwarka, R. Tielen, M. Möller, C. Vuik, Towards accuracy and scalability: Combining Iso-

geometric Analysis with deflation to obtain scalable convergence for the Helmholtz equation,
Computer Methods in Applied Mechanics and Engineering, 377, 113694, 2021.

[13] Y.A. Erlangga, C. Vuik, C.W. Oosterlee, On a class of preconditioners for solving the
Helmholtz equation, Applied Numerical Mathematics, 50 (3-4), 409-425, 2004.

[14] O.G. Ernst, M.J. Gande, Why it is Difficult to Solve Helmholtz Problems with Classical

Iterative Methods, Numerical Analysis of Multiscale Problems, 325–363, 2011.



ISOGEOMETRIC SOLUTION OF HELMHOLTZ EQUATION 27
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