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Abstract

In this paper, a fully discrete finite element scheme with second-order temporal accu-
racy is proposed for a fluid-fluid interaction model, which consists of two Navier-Stokes
equations coupled by a linear interface condition. The proposed fully discrete scheme is a
combination of a mixed finite element approximation for spatial discretization, the second-
order backward differentiation formula for temporal discretization, the second-order Gear’s
extrapolation approach for the interface terms and extrapolated treatments in linearization
for the nonlinear terms. Moreover, the unconditional stability is established by rigorous
analysis and error estimate for the fully discrete scheme is also derived. Finally, some
numerical experiments are carried out to verify the theoretical results and illustrate the
accuracy and efficiency of the proposed scheme.

Mathematics subject classification: 65M15, 65M60.
Key words: Fluid-fluid interaction model, Unconditional stability, Second order temporal
accuracy, Error estimate.

1. Introduction

Numerical simulation of multi-domain and multi-physics coupling of one fluid with another
fluid is an important aspect in many industrial applications. In fact, the fluid-fluid interaction
model can be seen as one of them arises in many important scientific, engineering and industrial
applications, such as heterogeneous of blood flow [8] and atmosphere-ocean interaction [20-22].
Due to the practical importance of the fluid-fluid interaction problem, there has been a lot of
attention recently paid to the development of accurate and efficient numerical methods; see,
e.g., [5,16-19,23] among many others. Besides, Bresch and Koko [4] have presented a numerical
simulation of the considered model by using an operator-splitting method and optimization-
based nonoverlapping domain decomposition methods. Based on implicit-explicit scheme for
the nonlinear interface conditions, Connors et al. [7] have presented a decoupled time stepping
method, which is conditionally stable proved by Zhang et al. [25]. Recently, Aggul et al. [2]
have developed a predictor-corrector-type method that is an unconditionally stable scheme with
second order time accuracy.
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In this paper, we study the following governing equations of a fluid-fluid interaction model
[9,26]. Let a bounded domain © C R? consist of two sub-domains ©; and €5 coupled across
their shared interface I, for times ¢t € [0,T]. For ¢« = 1,2, given the kinematic viscosities
v; > 0, the friction coefficients £ > 0, the body forces f; : [0,T] — H*(£2;)?, and initial values
w0 € H*(Q;)?, find the fluid velocities u; : [0,T] x Q; — R? and pressures p; : [0,7] x ; — R
satisfying (for ¢ € (0,T)

Ut — ViA’U,i =+ u; - V’U/l + Vpi = fi in Qi,

—ving - Vu; -7 = k(u; —uj) - T on I, for¢,j =1,2, and i # j,
u; -n; =0 on I,
(1.1)
V-u =0 in Q,
ui(0,2) = u;0(x) in Q;,
U; = 0 on 1—‘1 = 891\1

The vectors n; are the unit normals on 9¢2;, and 7 is any vector on I such that 7-n; = 0.
Note that the linear interface conditions are considered on the interface I, which have been
studied in past score years. Lions et al. [22] and Friedlander and Serre [9] have proved the
existence, uniqueness and regularity of the solution of the problem (1.1). Recently, Zhang et
al. [26] have proved that the error estimates of a decoupled scheme for the velocities in H*!
norm and pressures in L? norm are Ats +h and AtT + h, respectively. However, the decoupled
scheme is conditionally convergent with At < chz. Besides, for the same interface condition
as problem (1.1), Connors et al. [6] have proposed a partitioned time stepping method for a
parabolic two-domain problem and analyzed the error estimates.

In this paper, the purpose of the current efforts is to propose and investigate a fully discrete
finite element scheme with second order temporal accuracy for the fluid-fluid interaction model
(1.1). We discretize the system in time via a combination of second order backward differenti-
ation formula (BDF) for the temporal terms, second order Gear’s extrapolation approach for
the interface terms and extrapolated treatments in linearization for the nonlinear terms. The
coupling terms in the interface conditions are treated explicitly in our scheme so that only two
decoupled Navier-Stokes equations are solved at each time step.

The rest of the paper is arranged as follows: In the next section, we introduce some mathe-
matical preliminaries and provide the corresponding variational form for the problem (1.1). In
Section 3, we propose a fully discrete finite element scheme for the fluid-fluid interaction model.
Besides, the unconditional stability of the presented scheme is proven. Then in Section 4, we
derive and prove the error estimates for the considered scheme. In Section 5, some numerical
experiments are implemented to verify the theoretical results and efficiency of the proposed
scheme. Consequently, we end our paper by drawing a conclusion in the last section.

2. Notation and Preliminaries

In this section, we describe some necessary definitions and inequalities, which will be fre-
quently applied to the following sections. We introduce the usual L?(£;) norm and its inner
product by [ - [[o and (-, -)q,, respectively. The LP(£;) norms and the Sobolev W;"(£2;) norms
are denoted by || - [zr(a,) and || - [[wm(a,) for m € N*, 1 < p < co. In particular, H™({;)
is used to represent the Sobolev space W3"(Q;) and || - ||, denotes the norm in H™(;). For
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X, being a normed function space in Q;, L?(0,T; X;) is the space of all functions defined on
[0,T] x €; for which the norm

T P
lullLeo,1x:) = (/ ||U||§<idt> ,p € [1,00)
0

is finite. For p = oo, the usual modification is used in the definition of this space.
For the mathematical setting of the fluid-fluid interaction model (1.1), we introduce the
following function spaces:

X, = {’Ui S Hl(Qi)2;’UZ‘|Fi =0;v; -n; =0o0n I}, M,; = {Qi S L2(Ql), (Qia 1) =0 }

For f; an element in the dual space of X, its norm is defined by

(Firv2)
fill 1 = sup o2l
Iill-2 = swp T,

In particular, all of the above notations are adaptable to the sub-domain €2;.

Based on the above definitions of the function spaces, the corresponding variational formu-
lation of the problem (1.1) is given as follows: Find (u;,p;) € L?(0,T; X;) x L?(0,T; M;) for all
(vi,q;) € X; x My, 1,5 = 1,2, i # j such that

(wi,e, vi) + alug, vi) — d(vi, i) + d(ug, @) + b(ui, ug, v;) + / k(u; —uj)vids = (fi,vi),  (2.1)
I

where (u; 4, v;) = ‘[Qi %Uidﬂi, the bilinear forms a(-,-) and d(-,-) are defined on X; x X; and
X; x M;, respectively, by

a(ui,vi) = vi(Vug, Vo), i, v; € X,
d(vi,qi) = —(vi, V@) = (V- vi, qi), v; € X, q; € M,

and the trilinear term b(-, -, -) are defined on X; x X; x X; by
b(ui, vi, wi)= ((u; - V)vi,w;) + 2((V - wi)vi, wy)
%((uz : V)vi,wi) — %((uz : V)wi, ’Ui), Yug, vi, w; € X;.

Some properties of this skew-symmetric trilinear term will be used in the next analysis and
given in the following lemma.

Lemma 2.1 ([12,15,24]). For u;,v;,w; € X;, i = 1,2, we have

b(uia Vi, wl) = _b(ulv Wi, v’i)a

[b(ws, vi, wi)| < coll Vuillol[Vosllol| Vawillo-
Besides, if v; € H*(Q;)?, then we have
[b(ui, vi, wi)| < ealuallollvill2[[ Vewillo,
where ¢y, c1 are two positive constants depending on €;.

As is known, the discrete Gronwall’s inequality will play an important rule in convergence’s
analysis, so we introduce it in the following lemma.
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Lemma 2.2 ([14]). Let C. k and an, by, d,, for integers ny < n < m, be nonnegative numbers
such that

am—i-kibngkiandn—i-c, Ym > ni.

n=ni n=ni

If s=m —1, then

m m—1
am—i-kangexp(kZdn)C, Ym > ni.

n=ni n=ni

Finally, we recall the Poincaré inequality and the trace inequality, which are useful in the
following analysis. There exist some positive constants C}, and Cy,, which depend on €2;, such
that [1,10]

1 1
[villo < CpllVvillo,  lvill L2y < Corllvillg Vil - (2.2)

3. A Fully Discrete Scheme with Second Order Temporal Accuracy

From now on, given N > 0, let {¢,})_, be a uniform partition of [0,7] with time step
At =T/N, and t,, = nAt. Next, for i =1, 2, let wf be a triangulation of ; and " = 7 U k.
The mesh size h is the largest diameter of the element in 7”. Accordingly, we consider the finite
element spaces on 7/ by X" C X; for velocity and M[* C M; for pressure. The finite element
discrete subspaces are given as follows:

th = {'Ui,h S 00(91)2 NnxX;: 'Ui,h|Ki S Pg(Ki)2,VKi S 7Tlh},
Mzh = {qiyh S CO(Ql) NM;: Qi,h|K; € Pl(Ki),VKi S 7T£L},

where P;(K;) (I = 1,2) denote the space of the polynomials on K; of degree at most [ for
every K; € ml'. It is well known that the finite element spaces M* and X satisfy the discrete
Ladyzenskaja-Babuska-Brezzi (LBB) condition

d . .
sup |d(vi,n; gin)l

= Bliginllo Vgin € M
O?évi,hGXih |‘Vvi7h||0 ” ? ” ; i e

where 5 > 0 is only dependent on €2;. Furthermore, (uzh,p;‘)h) will denote the fully discrete
approximation to the solution (u;, p;) of the problem (1.1) at ¢ = ¢,,. Besides, we set f* = fi(tn).

Now, we construct a fully discrete finite element scheme involving a second order BDF
scheme and mixed finite element method as temporal-spatial discretization, where the interface
terms on I are treated via a second order explicit Gear’s extrapolation approach and the
nonlinear terms are dealt with by the extrapolated linearization. Hence, we propose the fully
discrete scheme as follows:

Given u’f}ll,u?’h € XPand u;;l, uy € X% for1 <n < N-—1, find (ui’,’;l,p;ﬁl) € XhxMp

satisfying

1 -1
3u7f‘,'; —4uy ), + uih
2At

+1 1 el
le,h> +a(uly,  vin) +0(2ut ), —uyy  uly vn)

— (i P + d(ul L gun) + 2 / (i, — 2 )0 s
I

= [ R =t ads = (£ 010 (3.1)
1
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for all (v1 4, q1,n) € X} x M} Besides, given uj ', u, € X5 and uf'} ', ul, € Xp, for 1 <n <
N —1, find (ugﬁl,pgﬁl) € X} x M} satisfying

3utl — 4y, + 0?7t
2,h 2,h 2,h n+1 n n—1 _n+1
( AL v2,n | Faluyy van) +b(2uy ), —uyy uy g, v2,n)

= d(van, P33, ) +d(uy] gon) + 2 / w(u,, = uf p)vz,pds
I

- [ st = i s = (3 ) (3)
I
for all (van,q2.n) € X5 x Mb.

Remark 3.1. Note that the schemes (3.1) and (3.2) require some initial values u;, and uf,
(i = 1,2). For the sake of simplification, we set u; , = R;u;(t1) (see Section 4 for the definition
of the projection R;). In fact, it can obtained by the calculation of the first order scheme in [26].
Besides, we choose u?)h = R;u;(to).

In the following part of this section, we will analyze the stability of the schemes (3.1) and
(3.2). We will prove that the schemes (3.1) and (3.2) are unconditionally stable in Theorem
3.1. Besides, the long-time stability of the schemes (3.1) and (3.2) will be stated in Theorem
3.2.

Theorem 3.1. Let f; € L> (0,T; H(Q;)?), i = 1,2. Then the schemes (3.1) and (3.2) are
unconditionally stable.

Proof. Setting (v1,h,q1.0) = 4At(u7f'};l,p7f"};l) in (3.1) and (va,p,q2.n) = 4At(ug'};l,pg"};l) in
(3.2), using the equality (2a,3a —4b+c) = |a|2 +2a—b]2 = b]* — |2b—c|? + |a — 2b + c|2 and
Lemma 2.1, and summing the ensuing equations yield

g BHIE + 112075 = ul1§ = lluf nllE = 11207, — w3 18 + a5 — 2uf , +uyy IS

+ [lu b1 + ||2U”+1 —ug 15— s lls — 1265 ) — ugy, 17 + lusf' — 203, +up 3 5

+ 4Atu1||Vu"+1||0 + 4AtV2||Vu"+1||O + 8At/ (uf ), — ugyh)uﬁ;lds

— ANt /1 li(u?ﬁl - u2 h )u?zlds + 8At/}ﬂ(u3},h - uih)ug)zlds

- 4At/f<¢(u;‘£1 —ul'y, Yu ;1ds = 4At(frt u?#) + ANt (fott ué”{ll) (3.3)
I

Next, concerning the interface terms of (3.3), applying (2.2), the Holder inequality and the
Young’s inequality, there holds

2 [t =g = [ eyt —agyhuritas
<k (l1207 = uin aacn + 1263, — whz e ) e e
< C2C wll2ut, — w3 IV 2uf, - u?,;1>||§||vwf“no
+ C2.C w1203, — usy G IV /(2ug , — w3 DS Vet o
< Sk O 2t — i ol V2t — i o+ Ve 1113

3 _ _
+ §Ct4GCHQV1 H2us = uh g ol V (2ug , = usy o
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< 54C Cprtoy |2, — uf h1||0 +54C Cortuy Pry 1”2'“3}1 —uy [

tr~'p tr~p
+ _||V(2U?,h uyy, h )”0 ||V(2“2,h “2 h )HO ||V n+1||0
< 54C§TCZ“4V1_3||2U?,h Uy h1||0 + 54CETC§’€4V1_2’/2 1||2U2,h Uy, I3+ ||V Talld
n—1)2 , Y2 n o2, Y2 n—1p2 , Y1 n+12
LIV I + 2190 3 + 22 IV 13 + S IVuT R, (3.4

Arguing in exactly the same way as (3.4), we get

2//{(u§7h - u’fﬁh)ug}tlds - //@(u2 hl u?ﬁl)ug}tlds
s , ; , ,
< 54Ct8rcz"$4V2 3||2U721,h Ug, h1||0 + 54Ct8rC;2)'€4’/2 vy ||2U1 T U h1||0

Vo _ — n

+ EHVUMH(% + 5 IVusa'ls + E”vul,hno + 4—8||Vul,h I6 + —||V on 5 (35)

Besides, the right-hand sides (RHSs) of (3.3) are bounded
ANL(FIH ul ) + AAL(f3 T ul )
<At ||[Vul THIG + Atva|[Vus b HIE + 48t T2 4+ 4ty 512 (3.6)
Moreover, set C* = Cp.C2k* and v* = max{v; *, 15, v ?v; ', vy vy *}. Combining (3.4)-
(3.6) with (3.3) yields
M8 + 112075 — w15 + g b8+ 12up 3 — w15+ g — 2uf )+ ui IS

+llugh = 2uh ), +up G+ At Vuy G + Ates|[Vuy } 5

< ANt AR + 4AtV51||f§“||31 + (1443207 At)([[uf 1§ + ||2U’fh iy l13)

2V1

+ (14432070 At ([[u oI5 + 12055 — w3 ' 5) + - AtV T AtIIV Wl

2V2 n
— At Vu Ballg+ 2 AltIIV o 13- (3.7)

Next, add £4-At[|Vup ,[|§ and 22 At[|Vuy , [[§ to (3.7), which implies that

432C* v* vy At? 432C* v* 1y At?
EnJrl EnJrl V n+1 V n 2
poohE 1+4320*I/*At” wllo + (1+4320*I/*At)|| ol
432C* v* vy At? n+1 432C*V*V2At2 n 12
— o IVus G + o 1 Vuz o
1+ 432C*v* At 3(1 + 432C*v*At)
+ it = 2t + ut G+ st = 2uyy, + gt
S AN + e IR ) + (14 4320 0 AL) (BT + ES), (3-8)
where
n n n n ViAt n ViAt n
EPHY = (lu G A+ 20l — I3+ IVul G + IVui,lI5,

1+ 432C*v*At 3(1 4+ 432C*v*At)

for i=1,2. Discarding all terms on the left-hand side of (3.8), all of which are positive, except

for EP™! and EJT! we arrive at

Ert 4 B <At (oM R g AR + (14 4320700 At) (B} 4 EY).
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Then, by recursion

exp(432C*v*T) 2
B + By < exp(432C" V' T) (B} + By) + “ 22 3 (o7 TR (39
T+ By <exp( v'T)(E; + Ey) + 108C 1~ ; v; max||f [t (3.9)
Hence, the unconditional stability of the considered schemes is proved. O

In fact, according to (3.9), the proof of the unconditionally stable bound of the considered
schemes for the velocity fields results in the dependence of the bounds on the final time T' of
the form O(exp(T')). Although being time step independent, such bound is not very practical
for longer final time problem.

Now, we consider the long time stability over 0 < ¢t < oo and show that the considered
schemes are uniformly bounded for all time, without any time step restriction.

Theorem 3.2. Assume that f; € L? (O,T;H‘ (£2,)? ), i = 1,2, and the viscosity coefficients

hold for the condition 160C, < v2, where C, = C’frczliz and v. = min{vy, o}, then the

considered schemes (3.1) and (3.2) for problem (1.1) are uniformly bounded on (0,T].
Proof. Note that the interface terms of (3.3) can be bounded by
//@ (2(1/11),I —uyp) — (u’fﬁl - ug7;1)) u’f;};lds (3.10)
I

< n (2l = walleen + st = wbi e ) g e

< RCECy (209, =g )lo + IV (5! = w3z o) Va3 o

< W2CHCHT (SIV (i — us ) I3 + 20V (i7" = ug )3 ) + T IVer I
< RCLCIT (16||vwf,h||%+16||w3,h||3+4||Vu;i;1||3+4||Vu3,;1||0) Va3,
as well as
[ (2 =) = (5t i) e (311)

— n n V2 n
< w203 C2vyt (1611V g 413 + 1690t ol + 411 Vg I + 4V 7 IF) + 22 9t 3.

Next, multiplying (3.10) and (3.11) by 4At and combining (3.6) and (3.3) with the ensuing
inequalities, we get

luf B IE + 112075 — 1§ = [t ll = 1207, — uf 3 15 + 288 [ Vi 3G

s G+ 12usht — s ll§ = lus nll§ = 1205, — up 3 I3 + 28802 Vag 113

it =20ty + a3 G+ lus - 2us ), 4+ ul G
< ANt +4Atu2_1||f2 12, 4+ 64At67Co.Court ([Vul |15 + 1Vus 4 115)

+ 16Ats?CL C2up (||vu;(;1||g + ||Vu’21)711||(2)) + 64Ats°Co.Covy  (IIVug L II5 + 1Vl 4 115)

trp trp

trp

+16AtR2CE C2p; ! (||Vu 2 4+ ||Vu;;1||3) . (3.12)
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Note that v, = min{v1, 2} and C, = C{.C3k*. Thus, it is easy to get

64At:2C.Covyt (IVul 15 + Vs 4 15) + 64AtR2CECEvy " (Vs 15 + [Vt 4113)
< 128AtC. v ([Vul 4ll5 + (IVus 4 115)

16Atn2C Cavr (IIVai 3 13 + Vug 13) + 16882 C2vyt (IVugy I3 + 1Vug3 1)
< st (Va3 I + IV 1) |
which together with (3.12) lead to
a2 + 120t — 13—l 13 — [12uf ), — w3 3 + 2000 |V 312
B + (120 — I — (a3l — (1268, — w5513 + 2000 Vs Y3
= 20, R st - 2uf, +ug 2
— 128AC.; ! (||vwf,h||3 + Vug, 18) = 322800t (IVa3 13 + 11V 3 113)

< 4Dt R, 4 40ty |2 (3.13)

Moreover, assume that the viscosity coefficients hold under the condition 160C, < v2, which
implies

Atwn||Vug  Ig + Atws|[Vuy 3 5 — 160AtC (Vg ll5 + Vg u17)
> Atv (V3G + IVus i H5) — 160AtC w7 (Vi ll5 + Vg 417)

> 1608 ([Vul 713 + IVas I3 = (19 113 + V3 4013)) - (3.14)

Finally, combining (3.13) with (3.14) and summing the ensuing inequality with respect to n
from 1 to N — 1, we arrive at

N-1
eVl + 120, = w7 1R + Nl + 2, — w13+ A S (mllVart 3
n=1
N—
+ v Vg £ 3) Z( = 2up, g I gt - 20+ s

+ 160 (Va3 + Vbl 13) + 32¢C.0t (IVul I3 + 9 3)

< 4TZ (v e 77 ) o+ e 3 + 120k — 3 + 1 3

+ ||2U2,h = u I3 + 160AC. w7 ([[Vug b][5 + Vg 4ll5)
+32AtCv ! (IVu W18 + Vg 4 ll3) -

This completes the proof of the theorem. O

4. Error Analysis

In this section, we mainly explore the errors arising from the schemes (3.1) and (3.2) for the
model (1.1). In order to establish error equations, set (vi, ¢;) = (Vin, gip) in (2.1) with ¢ = t,,4q



80 W. LI, P.Z. HUANG AND Y.N. HE

to get

3ui(tn+1) — 4ul(tn) + ui(tn_l)
2At

7'Ui,h> + a(ui(tns1), vin) — d(vin, pi(tni))

+ d(wi(tnr1), @in) + b(wi(tny1), wiltny1), vin) + / K (Ui (tng1) — wj(tng1)) vipds
I

= (M vin) + (M vin), (4.1)

where £ = 31”(t"“)_‘lgg"ﬁui(t””) — ;1 (tn41) is the truncation error. From (4.1) and the

fully discrete schemes (3.1) and (3.2), we get the error equations

n+1 n n—1
(3ei — 4el + €]

SAf ,vi,h> +a(ef ™ vin) — d(vin, ep ) + b(wi(tns1), wi(tn1), vin)

= b(2ufy, — it vin) + d(ef T gin) + / K(ui(tnt1) — uj(tng1))vinds
I
- Z/H(U?,h — ujp)vi,nds + / r(ufyt = uly Doinds = (E77 vin), (42)
I I

where el = u;(t,) — uiy, and ey ; = pi(tn) — piy,-
Moreover, we recall the Stokes-Stokes projection [11,12,24]: Find (R;u;, Typ;) € (X[, M),
i =1, 2 such that

a(u; — Riug, vi ) — d(vip,pi — Tipi) =0 Yoin € X,

4.3
d(RZUZ, qiﬁh) =0 VQi,h S Ml-h. ( )

Besides, this projection has the following properties [12,13,24]. If u; € H3(9;)? and p; €
H?(€;), then we have

lus — Riuillo + h(|V (u; — Riug)|lo + [lps — Tipillo) < CR*(||uills + ||pill2), (4.4)

where C' > 0 is a constant independent of At and h.
Furthermore, let us split several errors as e} = ;' + ¢}, ep ; = ¢ + ¢, for i, j = 1,2, and
1 <n <N, where 0" = u;(tn) — Riui(tn), ¢f = Riu;(tn) — uzh, ‘PZ,i = pi(tn) — Tipi(t,) and

i = Tipi(tn) — piy,- From Remark 3.1, we notice that ¢}1h = (;5?7,1 =0.

Hereafter, we always assume that the solution of the initial/boundary value problem (1.1)
satisfies u; € L°(0,T; H3(2)?), wiy € L2(0,T; H?(2)?), wie € L*(0,T; HY()?), wi €
L2(0, T; H_I(Qi)Q) and p; € L™ (O, T; HQ(Ql))

We now state error estimates for velocities.

Theorem 4.1. Let u;(t,11) and uﬁrl be the exact solutions of the system (1.1) at t,41 and
the full-discrete approzimated solutions of the schemes (3.1) and (3.2) i =1,2,0<n < N —1,
respectively. Then, based on the regqularity assumptions of the exact solutions, we have

N—1
> At (Vb)) = wfFIE + vl V(wa(tarn) - wgfHIF) < C(AL + 1),
n=1
where C' > 0 is a constant independent of At and h.
Proof. See Appendix A.1. O

Next, we state and prove error estimates for pressures.
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Theorem 4.2. Let p;(t,11) and p"Jrl be the exact solutions of the system (1.1) at t,41 and

the full-discrete approzimated solutions of the schemes (3.1) and (3.2) i =1,2,0<n < N —1,
respectively. Then, based on the reqularity assumptions of the exact solutions, we have

N—
Z (o1 (tasn) = PR + pa(tnsn) = pEETIZ) < C(AE +hY),

where C' > 0 is a constant independent of At and h.

Proof. Choosing (vin,qin) = (€7 et in (4.2), it follows that

K2 ?Up,

n+1 n n—1
(36i —deiter on

o ) e+ bt )l )

= b2~ ) [ () - b))l ds
I

- 2//{(u2h — u;h)e?"‘lds + / li(uzgl - uzgl)e?""lds
I

(gn-i-l n+1)

) Z

which combines Lemma 2.1 and (2.2) to get

1 _
2At||3en+1 dej + e 1||71
<villef o + collV(2e} — e ol Vi (tns1)llo
+ collV (witns1) — 2ui(tn) + wi(tn-1)) llol| Vi (tnt1)llo
1
+ CrCp Kllui(tn1) — 2ui(tn) + witn— 1)||L2(I)
2u(tn) + uj(tn— 1)||L2(1)
e Mo + IV(2e} — € Hllo) + €111 (4.5)

+ CtrC§H||Uj( n+1)
+C5.Cphs (|IV(2€f —

Furthermore, setting ¢; , = 0 in (4.2) and applying the discrete inf-sup condition yield

BlleptHlo
_2At||3€n+1 def + ef 7t o1 + vl Ve THlo + ol [V (2ef — e T [lol Vi (tnta)llo
+ ||V (wi(tng1) = 2uiltn) + wi(tn—1)) oI Vet (1) llo + 1€ ] -1
+ CorCi klug(tasr) — 2uilty) + wi(tn—1)| 21y + Co-Cprl|V(2¢} — 7)o
+ CtGC%HHUj (tns1) = 2uj(tn) 4+ w;(tn—1)llL2r) + CL.Cprl|V (265 — €7 )lo
<2]| Ve o + 2¢0]| V (2¢7 — € ) [0l Vati(tara)llo + 2[1E7F |1
+ 200[|V (wiltn+1) = 2ui(tn) + wi(tn-1)) [lol[ Vi(tnt1)llo
+ 2Ctr0p%’f||ui(tn+1) — 2u(tn) + wi(tn—1)ll L2 (1) + 2C7.Cprl| V (2¢ — e H)]lo
+ ZCtrOp%HHUj(th) = 2u;(tn) + wj(tn—1)ll22(1) + 2CZ.Cor| V (2€] — €7 1)]lo,

where we have used (4.5). Multiplying above equation by At and then summing respect to n
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from 1to N —1and i=1,2 lead to

N-1 2 N-1
Yo Atlegitlig<cy At(wllve?“llé +eol| V(2ef — e T3 Vuitnr)3
i=1 n=1 i=1 n=1

+ col|V (uiltn1) = 2ui(tn) + wi(tn—1)) 1311 Vi (tns1) 113

+ Cor G llui(tnrn) — 2uilta) + wiltn—1) |3y + 1€ 12,

+ Cor O Rl (togr) — 2 (t) + g () 2y

+ CLCurlIV (26l — i IE + CEComl|V (26} — € )F)
< O(At* + 1Y),

where we have used Theorem 4.1. O

5. Numerical Experiments

In this section, some numerical experiments are presented to test the stability and conver-
gence of the schemes (3.1) and (3.2). Besides, we compare the effectiveness of the presented
schemes with the first order schemes [26]. Furthermore, by a practical problem (submarine
mountain problem), which has been proposed in [23], the performance of the schemes (3.1) and
(3.2) is illustrated. Finally, the coast mountain or cliff problem [3] is applied to illustrate the
performance of the presented schemes.

For the numerical tests in Subsection 5.1-5.3, we consider the problem (1.1) on the domain
0 = Q1 UQq, where O = [0,1] x [0,1] and Q3 = [0,1] x [—1,0]. Obviously, the I = (0,1) x {0}
in the experiment. Then, n; = [0, —1]7 and ny = [0,1]7 on I.

5.1. Stability

We take f11 = f1,2 = cos(z)sin(y), fa1 = f2.2 = cos(y) sin(x) and initial values for velocity
U1, = U2 = U21 = U2 = 0. Moreover, we choose x = 1, 1 = 1, o = 1 and denote the
energy by [[u1,1[§ + 121§ + lluz,1llg + [luz,2[[3-

First, we set At = h and take mesh step h = 2—10, %, %, % and 6—10 subsequently. In Fig. 5.1,
it is easy to see that the energy keeps uniformly bounded by a constant with different mesh
scale h. Second, we choose T'= 3, h = % and set N = 350,700, 1400, 2800. Fig. 5.2 can also

= -
7.3608\219
- LA e e I p— h=1/201"
> Lo, h=1/30
8 73000 I e, h=1/40H
iy 7.3605 e
- h=1/60]]
i 7.3604 |
E
2 F 7.3603 I
E 0.5 1 1.5 2 25 3
1f I
o L L L L L
[0} 0.5 1 1.5 2 2.5 3

Fig. 5.1. Stability of the presented schemes for the decreasing h.
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8 x10
7.5+ —
s 73608107 B
e N=350 | |
. | —n=
g oL 7.3607 ~ ---N=700 ||
2 ' s N=1400
55 7.3606 —[f ] ~ - N=2800 |
3
5 7.3605 L L L L L T
0.3 0.4 0.5 0.6 0.7
4.5 =
a4 L L L L L
(0] 0.5 1 1.5 2 25 3
t
Fig. 5.2. Stability of the presented schemes for the increasing N.
-3
g %10
T ]
5 i
s |
é - =T=6
=2 ———T=5] |
24 o T2
= ——T=3
sl
o i
N i
o L L L L L
(0] 1 2 3 4 5 6

t
Fig. 5.3. Stability of the presented schemes for the increasing 7T'.

demonstrate that the corresponding energy can be controlled by a constant with the increasing
N. Finally, we fix h = 30, At = h, and choose T' = 3,4,5,6. From Fig. 5.3, we can find that
the energy is stable with these final time.

5.2. Convergence

Give the analytic solutions of the problem (1.1) as follows:

—z% exp(—t)(z — 1)*(y — 1),
= ayexp(—t)(6x +y — 3y + 222y — 42% — 2),
=(1/k—y+1)2%(x — 1)%exp(—t),
U2,2 = ((y —1-1/k)?* -1+ 1//4:)2) (2 — 2)(2z — 1) exp(—t),
p1(t, z,y) = p2(t, z,y) = exp(—t) cos(mx) sin(my).
The chosen RHSs f1 = (f1,1(t,2,9), f1,2(¢t,z,v)) and fo = (fo.1(¢, 2, y), f2,2(¢, x,y)) are obliged

to satisfy that (u1,p1) and (ug,p2) are the solutions of the original problem (1.1), respectively.
Let Err(u;) and Err(p;), i = 1,2, denote the errors by

uy1(t, z,y) =

uy 2(t, x,y

uz1(t,x,y

~—~ o~~~
—_ — — —

t,x,y

1 1
2 2

Err(u;) = <AtZ||uZ n) —uﬁhH%) , Err(p;) = (AtZsz n p?,h”?))

We now implement the numerical tests to verify the convergent rate with respect to h
by the schemes (3.1) and (3.2). Set At = 0.01,0.001 with the final time 7' = 0.1 and take
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Table 5.1: Convergence orders with respect to h with At = 0.001.

1/h | Err(Vu1) Rate Err(Vuz) Rate Err(pi) Rate Err(p2) Rate
10 1.54E-3 — 6.09E—3 — 1.26E—-3 — 1.64E-3 —

20 3.81E—4 2.02 1.52E-3 2.00 3.11E-4 2.03 341E-4 228
30 1.69E—4 2.01 6.77TE—4 2.00 137E—4 2.01 143E-4 212
40 9.50E—-5 2.00 3.81E—4 2.00 770E-5 2.00 7.89E-5 2.06
50 6.07TE—-5 2.00 2.44E—-4 2.00 496E-5 2.00 5.00E-5 2.04

Table 5.2: Convergence orders with respect to h with At = 0.01.

1/h | Err(Vui1) Rate FErr(Vuz) Rate Err(p1) Rate Err(p2) Rate
10 1.61E-3 — 6.35E—3 — 1.19E-3 — 1.54E-03 —

20 4.01E—4 2.01 1.59E-3 2.00 291E-4 2.03 3.21E—-4 227
30 1.76E—4 2.01 7.06E—4 2.00 1.30E—4 2.01 1.35E—4 2.12
40 9.91E-5 2.00 3.97TE—4 2.00 728E-5 2.00 7.45E-5 2.06
50 6.34E—5 2.00 2.54E—4 2.00 4.66E-5 2.00 4.73E-5 2.04

Table 5.3: Convergence orders with respect to h with At = 0.01 and At = 0.001.

At = 0.001 At =0.01
1/h Err(uy) Rate Err(uz) Rate  Err(u1) Rate Err(uz) Rate
10 5.93E—-5 — 2.88E—4 — 5.93E—-5 — 2.88E-04 —

20 7.23E—6 3.04 285E-5 3.00 7.23E—6 3.04 3.85E-5 3.00
30 2.13E—6 3.01 843E-6 3.00 2.14E—6 3.01 843E-6 3.00
40 8.97TE-T7 3.01 3.56E—6 3.00 9.08E-7 298 3.56E—-6  3.00
50 4.59E-7 3.00 1.82E-6 3.00 4.77E-7 288 1.82E—6 3.00

Table 5.4: Convergence order with respect to At.

1/At | Err(u1) Rate(u1) Err(u2) Rate(uz) Err(pi) Rate(pi) Err(p2) Rate(p2)
10 3.55E-3 1.41E-2 — 2.34E-3 — 3.02E-3 —
20 8.51E—4 2.05 3.42E-3 2.04 6.31E—4 1.90 6.81E—4 2.14
30 3.80E—4 2.03 1.50E-3 2.03 2.90E—4 1.94 3.01E—4 2.05
40 2.12E—4 2.02 8.41E—4 2.02 1.61E—4 1.96 1.72E—4 2.01
50 1.32E—4 2.02 5.40E—4 2.01 1.01E—4 1.97 1.10E—4 2.00
60 9.27TE-5 2.01 3.72E—4 2.01 7.32E-5 1.97 7.42E-5 2.00

= 15> 35" 30> 10" 5—10 successively. We display the convergence rates of the schemes (3.1) and
(3.2) in Tables 5.1, 5.2 and 5.3 with At = 0.001 and At = 0.01, respectively. From these tables,
it is easy to see that the convergence rates are O(h?) of the H'-semi norm for the velocities
and the L2-norm for the pressures, and O(h?) of the L?-norm for the velocities.

When it comes to the convergence rates with respect to At, we set T'= 1 and At = h. In this
test, we take At = %, 2—10, %, %, %, and % successively. Table 5.4 lists the numerical results
obtained by the presented schemes. From Table 5.4, the convergence orders of the velocity and

pressure with respect to At are approximated to 2.

5.3. Comparison with the first order scheme

To illustrate the effectiveness of the presented scheme, we compare the presented schemes
with the first order schemes [26] by the numerical example in Subsection 5.2.
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We set At = h? in the first order schemes, then the convergence order of the velocity is
scale of O(At + h?) = O(h?). When is comes to the presented schemes (3.1) and (3.2), we
only choose At = h, which implies the same performance in convergence order aspect. Fig.
5.4 plots that the errors of both schemes with the decreasing h, and Table 5.5 collects the
corresponding CPU time. As expected, the presented schemes spend less CPU time than the
first order schemes [26] to get the almost the same approximated error, which is not surprising
since the presented schemes have second-order temporal accuracy. Hence, its iterative step in
time is far less than that of the first order Euler backward one.

5.4. Submarine mountain problem

In this example, we check the presented schemes (3.1) and (3.2) on a practical problem with
a submarine mountain problem [23]. We take 14 = 0.005 and v, = 0.01 in this example.

—*+—Em
—A—Em

u) of Scheme |
p) of Scheme |
u) of Scheme Il
p) of Scheme Il

—s—Em
Errl

1h

0.0151—

—*k—Erm
—A—Em

of Scheme |
of Scheme |
of Scheme Il
of Scheme Il

u
Y
—s—Err(u

0.01 Err

== =2 =

p

10 15 20 25 30 35 40 45 50
1h

(b)

Fig. 5.4. (a): The Err(-) of Qi; (b): The Err(:) of Q2. Scheme I means the presented schemes and
Scheme IT means the first order schemes [26].

Table 5.5: CPU time of the schemes.

1/h 10 15 20 25 30 35 40 45 50
Scheme I 1.31 4.37 10.62 20.77 35.70 56.73 85.07 124.05 168.10
Scheme II | 12.56 62.40 199.77 495.13 1038.29 1911.04 3311.86 5417.02 8247.96
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Set 1 = [0,1] x [0,0.1] and Q5 = {(z,y) : &5 (sin(Z) — (2z — 1) sin(7z — 1)) <y < 0,0 <
2 < 1}. The RHSs fi, f2 are chosen to ensure that

p1(t,x,y) = p2(t, x,y) = cos(mzx) sin(wy),

up 1 (t, @, y) = 22 (1 — 2)%(0.1 — y),

up2(t, v, y) = 2y(—0.2 + y + 0.6z — 3zy — 0.42% + 22°y),
ug 1 (t, ,y) = 22(1 — 2)*(0.1 + y),

ug.2(t, v, y) = 2y(—0.2 — y + 0.6z + 3zy — 0.422 — 22°%y).

The boundary terms and initial values are chosen by the above exact solutions. We take
At=h= é, and apply the presented schemes and the first order schemes [26] to get numerical
solutions at the final time 7" = 1.

Figs. 5.5 and 5.6 present profiles of the velocity streamlines and pressure contours with both
schemes at the final time 7" = 1 with the coefficient of friction x = 1. From these figures, we
can see that the both schemes are stable and the oscillations of the velocity streamlines do not
appear. What’s more, the numerical results of the two schemes are almost consistent. Hence,
the proposed method gives good results and can simulate this model very well.

0.05 w 0.05
o o

> >

0.05 |~ 0.05 |~

-0.1 |~ -0.1 =

015k 1 NI R T R P | 0150 1 NI R T R M |
o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1

X X

Fig. 5.6. Pressure contours: (a) the presented schemes; (b) the first order schemes [26].
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5.5. Coast mountain or cliff problem

To illustrate the long-time stability of the presented schemes, a coast mountain or cliff
problem, which has been considered in [3], is tested. This problem describes a parabolic inflow
in the atmosphere passing a coast mountain or cliff before it meets the ocean. The computed
domain is consistent with it in [3]. On this domain, homogeneous Dirichlet boundary conditions
are imposed at the coast mountain or cliff and on the bottom of the ocean. Meanwhile, the flow
in the atmosphere is driven by a parabolic inflow profile with maximum inlet 1 and “do-nothing”
conditions are imposed for the other boundaries.

In Fig. 5.7, we present profiles for the numerical velocity at different final time with
11=0.005, 15=0.05, k=0.001, h = % and 7 = % From this figure, we can see that the presented
schemes are stable and the unphysical oscillations do not appear. Besides, the numerical results
of the presented method agreement with those obtained in [3].

N T N T

(c) (d)
Fig. 5.7. Velocity streamlines with (a) 7" = 20; (b) T' = 40; (c) T' = 60; (d) T = 80.

6. Conclusions

In this work, we have designed and studied a second order unconditionally stable and con-
vergent linearized scheme for a fluid-fluid interaction model. The scheme is a combination of the
second order backward differentiation formula for temporal term, a extrapolated interpolation
for nonlinear term and second order explicit Gear extrapolation method for interface terms.
Theoretically, we have proved that the scheme is unconditionally stable and convergent, and
long-time stable under the restriction of viscosity. Numerically, we validate the unconditional
stability and convergence rates of this scheme. By compared with the first-order scheme, the
proposed scheme is much more efficient.
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A. Appendix

A.1. Proof of Theorem 4.1

Proof. Setting (vin,qin) = 4AL(71, 1/);;-“1) in (4.2) and using the Stokes-Stokes projection
(4.3) result in

671G + 112071 = ¢ 115 = 110715 = 11267 — &7 115 + llop ™ — 207 + 67713
+ 4AL [ VO F + 4A8b(wi(tng1), wi(tngr), 67T — 4486207y, — iy b uiyt o)
+ 4At/“(uz‘(tn+1) — wj(tni1)) gy ds — SAt/“(ugh —uf )¢ ds
I I
+ 4At/n(uzgl - u?);l)qb?“ds
I
=230 — Ay + 0l L o) +AALEM, o). (A1)

3

Concerning the nonlinear terms in (A.1), noticing the definition of the trilinear terms, we
have

|b(ui(tn+l)aui(tn+l)a (b;H_l) - b(2u:l,h - uzglauz;tlu ;H_l)l

IN

[b(ui(tns1) = 2uiltn) + wiltn-1), wi(tns), ;)] + 0207 =0~ wiltng), 67 7))

+ 16267 — 67 wiltn) &7+ D(2uly, — o o)

= i I,. (A.2)

m=1
Next, using Lemma 2.1, each terms of RHS of (A.2) are bounded by

I < erflui(tngr) = 2ui(tn) + wi(ta—1)llollwi(tns1) |2l Vo7 lo

<9ty ui(tne) = 2ui(tn) + wi(tn—)l[5]lui(tasa)]13 + %HV(;S?“II%

<1263y AP uiail Fa e,y ensizz o0 lwiltas )13 + %HW?“II%, (A.3a)
Iy < erl2nf = 07 Hlollwi(tns) 2l V67 lo

< 9t 120 = M B lualtu ) 3 + S IV E

< 72civ; [ lluwi(tasa) 13 + 18wy Himg ™ I3 llwa(tas) 113 + %IIV#“II%, (A.3b)
Iy < 1|26} — &7~ Hlolluitnr) 12 Vo7 o

— n n— Vi n
<9¢tv; 207 — o7 I llwi(tnra) 113 + 361V 1B, (A.3¢)
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as well as
Iy < eV 2uy, = uy D)ol Vi ol Ver o

_ _ v
< gy, IV Quiy, = ul, DGV G + 56

3

NCian k (A.4)

Moreover, we consider the interface terms in (A.1) and rewrite them as
/H (Uz‘(tn+1) — uj(tng1) — 2(ufy, —ufy) +uly ' — U?f) ¢pttds (A.5)
I

- / o (uitnn) = 2ui(tn) + witn-1)) &7 ds - / (g (tngn) = 2u;(t) + uj(ta 1)) 67 ds
I I

+ / w20 = 4207 — 67 ) ¢ ds / w (20 =0 207 — 9f ") o ds.
1 1

We now estimate each terms of the RHS of (A.5) separately. Employing (2.2), we get

/FJ (wi(tns1) = 2ui(tn) + ui(tn—1)) ¢+ ds
I
< Kllui(tng1) = 2ui(tn) + wiltn—1)l 20 167 [ n2cr
1
< CirCF il|ui(tna1) — 2ui(tn) + wi(tn—1)l 20 VoI o

_ Vi n
<9CE CprPvy Hlwiltn 1) — 2ui(tn) + wiltn—1) |72y + %”V@ alr

< 1268 Cpr AV i B,y ez + 561V IS, (A.6)
and
[ ) = 25(8) ) 07
<1207 Cpr® Ay g ll T2,y oo ven2(ry + %HVWHH& (A7)
as well as

[t =y s oy -y o

<k (207 =07 Moz + 1207 =07~ o) 167 L2
< CLCok (V20 =1 Yo + 1V 207 — 07 Yllo) V6! o
— n n— n n— Vi us
<9C,Crrv (Vi = HIE+ IV @2} — 02~ HIIE) + EHV%HH%
2

< 18CLCorv 1Y (4IValllE + 1707 1) +
i=1

V; n
2VerR. (A8)
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Next, arguing in exactly the same way as (3.4), we obtain
[ wteor = orhertias— [ wtaay - oy ortias
I I
<BACE CortvPl1207 — o7 TG + 54CE Conty vy 1267 — 677G
v Vi v v Vi
_lvn2 _Zvv_l—12 _Jvn2 _Jvn—12 _Zvn+12-
+ TS IVOTIR + 21V IR+ T IV + 2 IVen IR + 2T
Furthermore, we consider the first term of RHS of (A.1).
20307t — A} + 0 of )
<2307 — A+ 0 Hlollof o
_ I n
< 96CH; 1Mitll bt sasz20iyn) + 5 AHIVETTG,
Besides, the truncation error in (A.1) can be bounded by

(€ o)

tni1 1 tnt1
/ (t— tn)2ui,tttdt - = / (t— tn71)2ui,tttdt
tn 4 tn—1

2
_ 6 1% n
<9y, (g) A witeelFoe tnirsr-1(002) + %HV% 3

Furthermore, combining (A.3), (A.4), (A.6)-(A.11) with (A.1), we deduce that

6713 + 11205 = P13 = 167115 — 1267 — &7 I

1

<
- At

IVl

—1

3V1'

i A2 A e

At||Vert3

(A.9)

(A.10)

(A.11)

< A8ctv A il T, pnizo (@) 16t I3 + 288civ; At (b 31107115

+ 72630 A ui (b)) 13100 IS + 36cTy;  A[267 — ¢ |G i (tnra) 13

+36chy; ALV (2upy, — g DIBIVa I

2

+48C.Cyprv LA (Huiytt||%2(tn,1,tn+1;L2(I)) + ”ujﬂft||%2(tn,1,tn+1;L2(I))>

2
+ 720t ALY (ARl + IV IG)
1=1
+ 21605 Corty; P At|2¢) — o7 1|5 + 216CF.Cov; vyt At||297 — ¢7 |5

tr~'p tr~p”i 7j

123 n 123 n— Vi n
+ DAV + A Ve + LAt Ve 3

v e _
+ éAfHV% 1§ +96Cov; HImil T, 1tniain2@i)?)

L (6)\°
+ 361, (3) At4”ui,ttt||2L2(tn,1,tn+1;H*1(Qi)Q)'

(A.12)
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Adding up (A.12) fromi=1,2 (j #4, j=1,2) and n=1,2,--- | N — 1 and noticing that

2
V; n V; n— 1223 n Vi n—

> (ZIVerIE+ SIver I+ ZIveri + IverI3)
£~ \3 12 3 12
i=1,j#1

2 2u;
1=1

2

> (216CHC2 R P 207 — ¢S + 216CE Corty vy 1207 — 67 3)
i=1,j#i

2
<4320 ) 207 — ¢ R i=1,2,
=1
we arrive at
2 N-1
Z||¢N||O+Z||2¢N SNTHEAD DD ertt — 207 + ¢ I3
=1 n=1
2 2 N-1 5 2 1 2
. ntl)2 , ° i Nj2 . ] N—1)2

+ g; 2 Aty Vo5 + 6;V1At|‘v¢i o + G ;VzAtHvﬁbi llo

2 2 2 2
5 1
<D NS + Y _11267 = Bl + ¢ D_wiAIVOLIG + ¢ > vt VLS
i=1 i=1 i=1 i=1

+ 482%” FAE i et 172 0,72 (002 i (B )13

2 N-1

+723° 3" Av Atflui(taa)[13 AP 2 + I 2)

=1 n=1

2

civi T A|267 — o G llui(tna) 3

Mw

+ 36
1

3
Il
=

3

2
L

+36

M

covi ALV (2ug, — u DRIV

N
Il
-
3
Il
-

2 N-1
+ 96 Z Co.Cor®vy " A [ |7 20 1p2(ry) + 864C™ V7 D 0>~ At|20) — 673
=1 1

=1 n=

2

o
MM
A

+72 ConCpr?vi PALY - (4 V 1§ + Vg~ 5)

-1 2
1 k=1

1

N
Il
3
Il

2 2 2
_ 4 (6
9630 O salsarasiogmy + 30 07 () At ussd oo s ey
] i=1

Finally, from Theorem 3.1, Remark 3.1, the regularity assumptions of the exact solutions
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and the properties (4.4) of the projection, we get

2 2 2 N-1
DM+ 120N =N THE+ DD et =267 + 67l
i=1 i=1 i=1 n=1
5 2 N-1 52 12
) nt1)2 , ° ) Ny2 , 1 _ N-1y2
+ 3 ; ; Aty ||V g + 6 ; viAt|Ve;|lo + 6 ; viAt|Ve; g

2 N-1
SCO(A RS+ R +CY TS Atf2gr — o2,
i=1 n=1

which combines with Lemma 2.2 to finish the proof. 0
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