
Journal of Computational Mathematics

Vol.41, No.1, 2023, 18–38.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2104-m2020-0250

RECONSTRUCTION OF SPARSE POLYNOMIALS VIA
QUASI-ORTHOGONAL MATCHING PURSUIT METHOD*

Renzhong Feng and Aitong Huang1)

School of Mathematics Science & Key Laboratory of Mathematics, Informatics and Behavioral

Semantics, Ministry of Education, Beihang University, Beijing 100191, China

Email: fengrz@buaa.edu.cn, huangaitong@buaa.edu.cn

Ming-Jun Lai and Zhaiming Shen

Department of Mathematics, University of Georgia, Athens, GA 30602, U.S.A.

Email: mjlai@uga.edu, Zhaiming.Shen@uga.edu

Abstract

In this paper, we propose a Quasi-Orthogonal Matching Pursuit (QOMP) algorithm

for constructing a sparse approximation of functions in terms of expansion by orthonormal

polynomials. For the two kinds of sampled data, data with noises and without noises, we

apply the mutual coherence of measurement matrix to establish the convergence of the

QOMP algorithm which can reconstruct s-sparse Legendre polynomials, Chebyshev poly-

nomials and trigonometric polynomials in s step iterations. The results are also extended

to general bounded orthogonal system including tensor product of these three univariate

orthogonal polynomials. Finally, numerical experiments will be presented to verify the

effectiveness of the QOMP method.
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1. Introduction

Since [11], it has been an interesting research topic to accurately reconstruct functions via

a sparse representation with respect to an orthogonal basis. Suppose that Ω ⊆ Rd and that

{φj(x)}j∈Λ is a set of orthogonal polynomials defined on Ω, where Λ is an index set. Suppose

that |Λ| = n, here | · | means the cardinality of Λ, and n� 1 can be finite or infinite. For any

continuous function g on Ω, we can have an orthonormal expansion of g:

g(x) =
∑
j∈Λ

cjφj(x). (1.1)

In any practical computation, one can not have a memory to store all the coefficients cj .

Thus one is interested in finding a sparse representation of g in the sense that

g(x) ≈
∑
j∈Λs

c̃jφj(x) (1.2)

for a given integer s ≥ 1, where Λs ⊂ Λ and |Λs| = s� n. That is, letting c̃ be all the coefficient

vectors containing all nonzero coefficients in (1.2), if |Λs| � n and ≈ is =, the right-hand side
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of the expression in (1.2) is said to be a sparse representation of g. For practical purpose, we

say the right-hand side of the expression in (1.2) is a sparse approximation of g. The problem

of finding c̃ is naturally translated into reconstructing the s-sparse vector c̃.

Since [1, 7, 8, 14], compressed sensing has been a popular research topic. Its main idea is to

use the sparsity of signal to reconstruct the signal by using as few observations as possible. The

original model of compressed sensing is

min
c∈Cn

||c||0 s.t. Φc = b, (1.3)

where ||c||0 represents the number of non-zero elements in the vector c, that is, the sparsity

of the vector c, Φ ∈ Cm×n is a measurement matrix or sensing matrix, and b ∈ Cm×1 is an

observation vector, such as bi = g(xi), i = 1, · · · ,m for some locations xi ∈ Ω. The model (1.3)

is the model of the sampled data without noise. Since there may be noise in sampled data,

assume that the noise bound is ε, then the model (1.3) can be written as follows

min
c∈Cn

||c||0 s.t. ||Φc− b||2 ≤ ε, (1.4)

where || · ||2 represents Euclidean norm. If we know in advance that the sparsity of the vector

to be restored is s, then the problem (1.4) can be rewritten as

min
c∈Cn

||Φc− b||2 s.t. ||c||0 ≤ s. (1.5)

Many researchers have applied the technique of solving the sparse signal in compressed

sensing to reconstruct the coefficient vector c̃, see, e.g. [21], [19], [20], [23] and [10].

A greedy algorithm is one of the common methods to solve the problem (1.5). Among them,

the orthogonal matching pursuit algorithm (OMP for short) proposed in [6] is an importan-

t one of the greedy algorithms. Currently, there have been many improvements of the OMP

method, such as regularized Orthogonal Matching Pursuit [12], Generalized Orthogonal Match-

ing Pursuit [15], stagewise Orthogonal Matching Pursuit [16], etc. In this paper we propose

an improved method of OMP method named Quasi-Orthogonal Matching Pursuit (QOMP for

short). Different from the traditional OMP method, the QOMP method selects the two columns

that are most related to the space of the current redundant vector expansion in each iteration.

Algorithm 1.1. Quasi-Orthogonal Matching Pursuit (QOMP)

Input: Φm×n,bm×1, sparsity s, maximum number of iterations kmax(kmax < m/2),

tolerance ε

Initialization: S0 = ∅, r0 = (b), k = 0,Ψm×n = Φm×n
while k < kmax and ||rk||2 > ε

k = k + 1

Res(i,j)(rk−1) = minu,v∈R{||Ψiu+ Ψjv − rk−1||2}
(ik, jk) = argmin1≤i,j≤n{Res(i,j)(rk−1)}
Sk = Sk−1 ∪ {ik, jk}
rk = b− ΦSk

Φ†Sk
b

Ψik,jk = 0

end while

Output:S = Sk, cS = Φ†Sb and cSc = 0
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As shown in Algorithm 1.1, in the first iteration, we solve the best approximations

min
u,v∈R

‖Φiu+ Φjv − b‖2

for all i 6= j, i, j = 1, · · · , n to find the residuals. We choose the best index pair, (i1, j1) such

that the residual is the smallest:

min
i6=j,u,v∈R

‖Φiu+ Φjv − b‖2 = min
u,v∈R

‖Φi1u+ Φj1 − b‖2. (1.6)

Once we find (i1, j1) to solve (1.6), we let r1 = b− Φi1ui1 − Φj1vj1 and repeat the produce.

Although there have been many studies on the effectiveness of the OMP method, most re-

sults are based on the restricted isometry property(RIP) of the measurement matrix Φ, such as

[9, 17, 18, 22]. In this paper, we will apply the mutual coherence of the measurement matrix Φ

to establish the convergence of QOMP method for function reconstruction.

The rest of this paper is organized as follows: Section 2 introduces some preliminary knowl-

edge required for this paper. Mainly we explain three types of orthogonal system: Legendre,

Chebyshev, and trigonometric systems. Section 3 gives the condition for the QOMP method

to reconstruct three types of s-sparse univariate polynomial in s-step iterations in both noisy

and noiseless situations and the error estimation of the QOMP method. Section 4 extends the

conclusions of Section 3 to the general bounded orthogonal system including multi-dimensional

orthogonal systems. The last section shows the numerical experiments to verify the effectiveness

of the QOMP method.

2. Preparation of Manuscript

In this section, we will introduce some knowledge required for this article.

2.1. Preconditioned Legendre orthogonal function system

It is well known that the standard univariate Legendre polynomials (cf. [5]) Lj(x), j =

0, 1, · · · are orthogonal with respect to the uniform probability measure on [−1, 1], namely,∫ 1

−1

1

2
Lj(x)Lk(x)dx = δj,k =

{
0, j 6= k,

1, j = k.

The L∞-norm of the standard Legendre orthogonal polynomials Lj(x) is

||Lj(x)||∞ = |Lj(1)| = |Lj(−1)| =
√

2j + 1,

here | · | means to take the absolute value of a number. Obviously, as j grows, the L∞-norm

||Lj(x)||∞ is not uniformly bounded on [−1, 1], hence consider the standard function system

Qj(x) =

√
π

2
(1− x2)

1
4Lj(x), j = 0, 1, · · · .

The function system {Qj(x)}j∈N0
are orthogonal with respect to the Chebyshev probability

measure v(x) = π−1(1− x2)−
1
2 on [−1, 1], because∫ 1

−1

v(x)Qj(x)Qk(x)dx =
1

2

∫ 1

−1

Lj(x)Lk(x)dx = δj,k.
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We call {Qj(x)}j∈N0
as preconditioned Legendre orthogonal system. Obviously, they are u-

niformly bounded:||Qj(x)||∞ ≤
√

2 + (1/j) ≤
√

3, j ∈ N0. Assume that the sampling points

{xi}mi=1 are randomly sampled according to the Chebyshev probability measure v(x) on [−1, 1],

then the elements in the measurement matrix Φ which are generated by the values of the

function system {Qj(x)}n−1
j=0 at the sampling point are

Φij = Qj(xi), j = 0, 1, · · · , n− 1, i = 1, · · · ,m.

2.2. Chebyshev orthogonal function system

The form of the univariate Chebyshev orthogonal polynomials (cf. [3]) is

Tj(x) = cos(j · arccos(x)), j = 0, 1, 2, · · · ,

and they are orthogonal with respect to Chebyshev probability measure ρ(x) = (1− x2)−
1
2 on

[−1, 1], namely,

∫ 1

−1

1√
1− x2

Tj(x)Tk(x)dx =


0, m 6= n,
π

2
, m = n 6= 0,

π, m = n = 0.

From its expression, obviously we have ||Tj(x)||∞ = 1,∀j ∈ N0. Assume that the sampling

points {xi}mi=1 are randomly sampled according to the Chebyshev probability measure ρ(x) on

[−1, 1], then the elements in the measurement matrix Φ which are generated by the values of

the function system {Tj(x)}n−1
j=0 at the sampling points are:

Φij = cos(j · arccos(xi)), j = 0, 1, · · · , n− 1, i = 1, · · · ,m.

2.3. Trigonometric polynomial function system

Univariate trigonometric series (the well-known Fourier series) is another bounded orthog-

onal system (cf. [2]). Let Ω = [0, 1], for j ∈ Z we have

Fj(x) = e2πijx, x ∈ Ω, i =
√
−1.

This kind of polynomials are orthogonal with respect to Lebesgue probability measure on [0, 1],

namely, ∫ 1

0

Fj(x)F̄k(x)dx = δjk,

where F̄ (x) represents the conjugate of F (x), and obviously they are uniformly bounded:

||Fj(x)||∞ = 1,∀j ∈ Z. Using this system to expand a function g ∈ L2[0, 1] is the stan-

dard Fourier expansion of g. Assume that the sampling points {xi}mi=1 are randomly sampled

according to the Lebesgue probability measure on [0, 1], then the elements in the measurement

matrix Φ which are generated by the values of the function system {Fj(x)}j∈Γ at the sampling

points are

Φlj = e2πijxl , l = 1, · · · ,m, j ∈ Γ.

Let Γ = {−n2 ,−
n
2 +1, · · · , n2 −1} to make sure that the expansion truncation of the function

has n items. This type of matrix is usually called Fourier matrix or non-equispaced Fourier

matrix.
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2.4. Tensor product of orthonormal polynomials

It is easy to understand that for a multivariate function g ∈ L2(Ω), we can use a tensor

product of univariate orthonormal system to form an orthonormal system to expand g. For

simplicity, let consider d = 2. That is, recalling Tj(x) is Chebyshev polynomials defined on

[−1, 1] from a previous subsection, let

Tj(x)Tk(y), j, k = 0, 1, 2, · · · (2.1)

be an orthonormal system for L2(Ω) with Ω = [−1, 1]2. We know

g(x, y) =

∞∑
j,k=0

cj,kTj(x)Tk(y)

with

cj,k :=

∫ 1

−1

1√
1− x2

∫ 1

−1

1√
1− y2

g(x, y)Tj(x)Tk(y)dxdy.

If g has an s sparse representation in terms of Chebyshev basis in (2.1) or if one is to find a best s-

term approximation using the Chebyshev basis, one should use the compressive sensing approach

in (1.5) to do. Indeed, we first randomly sample distinct points ξj′,k′ = (x′j , y
′
k), j′, k′ = 1, · · · ,m

over Ω subject to Chebyshev distribution ρ(x)ρ(y) to obtain a sensing matrix Φ with entries

Tj(xj′)Tk(yk′) for j′, k′ = 1, · · · ,m and j, k = 0, · · · , n − 1 with m � n. Then we solve (1.5)

with the right-hand side b = [g(ξj′,k′), j
′, k′ = 1, · · · ,m]. In this way, we obtain a best s term

approximation of g.

2.5. Restricted isometry property and coherence of matrix

Restricted isometry constant and mutual coherence are two important characteristic quan-

tities of measurement matrix Φ. Their definitions are standard. For convenience, let us give

them as follows.

Definition 2.1. The restricted isometry constant(RIC) δs > 0 of a matrix Φ ∈ Cm×n is defined

to be the smallest δs ∈ (0, 1) such that

(1− δs)||x||22 ≤ ||Φx||22 ≤ (1 + δs)||x||22

for all s-sparse x ∈ Cn.

If the restricted isometry constant δs ∈ (0, 1) of matrix Φ for a reasonable sparsity s, we say

that the matrix Φ satisfies the restricted isometry property(RIP).

Next, we give the definition of the mutual coherence which is very important in this paper.

Definition 2.2. The mutual coherence of a matrix Φ ∈ Cm×n is defined as

µ(Φ):= max
j 6=k

|〈Φj ,Φk〉|
||Φj ||2 · ||Φk||2

,

where Φj ,Φk represent the jth and kth columns of the matrix, respectively. 〈Φj ,Φk〉 := Φ∗jΦk
is the inner product in Cn, Φ∗j is the conjugate transpose of Φj.
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Obviously, if we let the `2-norm of each column of Φ be normalized, that is ||Φj ||2 = 1, j =

1, · · · , n, the mutual coherence of matrix Φ can be written as

µ(Φ):= max
j 6=k
|〈Φj ,Φk〉|.

It is easy to see that the normalization of columns does not change the mutual coherence of

matrix Φ. The following result is well-known (cf. [13]).

Lemma 2.1. Let Φ ∈ Cm×n with normalized columns, coherence µ(Φ). Then

µ(Φ) ≥
√

n−m
m(n− 1)

. (2.2)

For n large enough, for example n ≥ 2m, obviously there is µ(Φ) ≥ (2m)−
1
2 according to (2.2).

This fact will be useful later in the paper.

In the following sections of the paper, we will use the mutual coherence µ(Φ) of the measure-

ment matrix to explain: if the measurement matrix Φ in (1.5) is a structured random matrix

formed by the above three bounded orthogonal function systems randomly sampled according

to their corresponding orthogonal measures, then the QOMP method can reconstruct the sparse

coefficient vector for each of the three types of orthonormal expansions in s steps.

3. Reconstruction of Sparse Polynomial Function via QOMP Method

In this section, we will use the QOMP method to reconstruct sparse polynomial functions.

It shows that when the measurement matrix meets certain conditions, the reconstruction of the

s-sparse polynomial function can be achieved in s-step iterations by the QOMP method in the

both settings of sampled data without noise and with noise.

3.1. Sparse polynomial recovery under noiseless condition

To give an estimate of the mutual coherence of the measurement matrix, we first introduce

variance criterion for averages.

Lemma 3.1 (a variance criterion for averages). Let ξ1, ξ2, · · · be independent random

variables with mean 0, such that
∑
n n
−2cE(ξ2

n) < ∞ for some c > 0. Then n−c
∑
k≤n ξk → 0

a.s. when n→∞.

Proof. It is a strong law of large number in the sense of Kolmogorov, Marcinkiewicz and

Zygmund. We refer to Theorem 3.23 in [4] for a proof. �

Next, we will apply Lemma 3.1 to estimate the upper bound of the mutual coherence of the

three structured random measurement matrices Φ discussed in Section 2.

Lemma 3.2. Suppose that the matrix Φ ∈ Rm×n is a measurement matrix whose entries are

Φij = Qj(xi), j = 0, 1, · · · , n − 1, i = 1, · · · ,m, here {Qj(x)}n−1
j=0 is the preconditioned Legen-

dre function system and {xi}mi=1 are sampling points drawn independently at random from the

Chebyshev density v(x) = π−1(1− x2)−
1
2 on [−1, 1]. Let q(m) = o(m1−c) for 1

2 < c < 1. Then

q(m)→∞ as m→∞ and we have µ(Φ) ≤ 1
q(m) with high probability.
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Proof. Firstly because of

E(Q2
j (x)) =

∫ 1

−1

v(x)Qj(x)Qj(x)dx = 1,

by the strong law of large number, we can obtain

1
m ||Φj ||

2
2 = 1

m

m∑
i=1

Q2
j (xi)→ E(Q2

j (x)) = 1 as m→∞.

Hence, when m → ∞, we have ||Φj ||2 ∼
√
m. According to the definition of coherence , with

the increase of m, there is

µ(Φ) = max
0≤j,k≤n−1,j 6=k

|Φ>
j Φk|

||Φj ||2·||Φk||2 ≈
1

m
max

0≤j,k≤n−1,j 6=k
|Φ>j Φk|.

Let gjk = Qj(x)Qk(x), j 6= k. Then

|Φ>j Φk| =
∣∣∣∣ m∑
i=1

Qj(xi)Qk(xi)

∣∣∣∣ =

∣∣∣∣ m∑
i=1

gjk(xi)

∣∣∣∣ .
Since

E(gjk(x)) = E(Qj(x)Qk(x)) =

∫ 1

−1

v(x)Qj(x)Qk(x)dx = 0, j 6= k,

we see that gjk(x) is a random variable with mean 0. Because of

E(g2
jk) =

∫ 1

−1

Q2
j (x)Q2

k(x)

π
√

1− x2
dx ≤ 9

π

∫ 1

−1

1√
1− x2

dx = 9 <∞,

we have ∑
m

m−2cE(g2
jk) ≤ 9

∑
m

m−2c.

Next based on the condition 1
2 < c < 1, we have

∑
mm

−2c < ∞. Finally, we immediately

obtain
∑
mm

−2cE(g2
jk) <∞.

Because the sampling points {xi}mi=1 are independently and identically distributed, the

random variables {gjk(xi)}mi=1, 0 ≤ j, k ≤ n − 1, j ≤ k are also independently and identically

distributed. By Lemma 3.1,

m−c
(
m∑
i=1

gjk(xi)

)
= m−c

(
m∑
i=1

Qj(xi)Qk(xi)

)
= m−c(ΦTj Φk)→ 0

holds almost surely, and then

m−c
∣∣∣∣ m∑
i=1

gjk(xi)

∣∣∣∣ = m−c
∣∣∣∣ m∑
i=1

Qj(xi)Qk(xi)

∣∣∣∣ = m−c|ΦTj Φk| → 0

also holds almost surely. Because of q(m) = o(m1−c), we can obtain that

m−1 · |ΦTj Φk| · q(m) = m−c · |ΦTj Φk| ·mc−1 · q(m)→ 0

is almost surely when m→∞. Therefore, by taking all the upper bounds of n, we can get that

as m→∞,

µ(Φ) · q(m) = sup
0≤j,k≤n−1,j 6=k

|ΦT
j Φk|
m · q(m)→ 0
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holds almost surely. Hence, for large m, we have µ(Φ) · q(m) ≤ 1 with high probability and the

result follows. �

Remark 3.1. For Chebyshev orthogonal polynomials {Tj(x)}n−1
j=0 . Assume that the sampling

points {xi}mi=1 are drown independently at random from the Chebyshev probability measure

ρ(x) = 1√
1−x2

on [−1, 1], and the random variable is written as gjk(x) = Tj(x)Tk(x). Then we

have

E(g2
jk) =

∫ 1

−1

T 2
j (x)T 2

k (x)
√

1− x2
dx ≤

∫ 1

−1

1√
1− x2

dx = π <∞.

Hence, following the proof of Lemma 3.2, we can immediately obtain the following lemma.

Lemma 3.3. Suppose that the matrix Φ ∈ Rm×n is a measurement matrix whose entries are

Φij = Tj(xi), j = 0, 1, · · · , n − 1, i = 1, · · · ,m, here {Tj(x)}n−1
j=0 are Chebyshev orthogonal

polynomials and {xi}mi=1 are sampling points drawn independently at random from the Chebyshev

density ρ(x) = 1√
1−x2

on [−1, 1]. Let 1
2 < c < 1, q(m) = o(m1−c) and q(m) → ∞ as m → ∞.

Then for a large m, we have µ(Φ) ≤ 1
q(m) with high probability.

We have the similar conclusion about the Fourier matrix.

Lemma 3.4. Suppose that the matrix Φ ∈ Cm×n is a measurement matrix whose entries are

Φlj = Fj(xl), j ∈ Γ, l = 1, · · · ,m, here {Fj(x)}j∈Γ are the trigonometric orthogonal polynomi-

als, Γ = {−n2 ,−
n
2 + 1, · · · , n2 − 1}, and {xl}ml=1 are sampling points drawn independently at

random from the Lebesgue measure on [0, 1]. Let 1
2 < c < 1,q(m) = o(m1−c) and q(m)→∞ as

m→∞. Then for a large m, we have µ(Φ) ≤ 1
q(m) with high probability.

Proof. Through the definition of coherence, we have

µ(Φ) = max
j,k∈Γ,j 6=k

|〈Φj ,Φk〉|
||Φj ||2 · ||Φk||2

,

where Φj and Φk represent the jth and the kth column of the Fourier type measurement matrix,

respectively. First of all, let us consider the denominator. For any column Φj of the matrix Φ,

the square of its `2-norm is

||Φj ||22 =
m∑
l=1

(exp(2πijxl))
2 = m, i =

√
−1.

Through the above formula, obviously we have ||Φj ||2 =
√
m. Then the definition of coherence

can be rewritten as

µ(Φ) =
1

m
|〈Φj ,Φk〉|.

Next, we will consider the numerator. Let gjk(x) = Fj(x)F̄k(x), then we have

|〈Φj ,Φk〉| =

∣∣∣∣∣
m∑
l=1

Fj(xl)F̄k(xl)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
l=1

gjk(xl)

∣∣∣∣∣.
Let gljk = gjk(xl) = Fj(xl)F̄k(xl). Since

E(gjk(x)) = E(Fj(x)F̄k(x)) =

∫ 1

0

Fj(x)F̄k(x)dx = 0, j 6= k,

the expectation of random variable gjk(x) is zero. Next, due to
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(gmjk)2 = g2
jk(xm) = exp(4πi(k − j)xm), j 6= k,

we have

E((gmjk)2) =

∫ 1

0

exp(4πi(k − j)xm)dx = 0

and then we can obtain ∑
m

m−2cE(gmjk)2 = 0 <∞.

In addition, it should be noted that since the sampling points {xl}ml=1 are independently and

identically distributed, the random variables {gjk(xl)}ml=1 are also independently and identically

distributed. Hence, by Lemma 3.1, we have

m−c
m∑
l=1

gjk(xl) = m−c
m∑
l=1

Fj(xl)F̄k(xl)→ 0.

Since the limit is zero, we have

m−c

∣∣∣∣∣
m∑
l=1

gjk(xl)

∣∣∣∣∣ = m−c

∣∣∣∣∣
m∑
l=1

Fj(xl)F̄k(xl)

∣∣∣∣∣ = m−c|〈Φj ,Φk〉| → 0.

For 0 < c < 1, suppose that there exists a function q(m) = o(m1−c) with q(m)→∞ as m→∞.

Furthermore, by Lemma 2.1, when n is large enough, that is n ≥ 2m, the mutual coherence

satisfies µ ≥ (2m)−
1
2 . Then 1

2 < c < 1 obviously meets the above conditions. Therefore, when
1
2 < c < 1, we can obtain the result that

m−1 · |〈Φj ,Φk〉| · q(m) = m−c · |〈Φj ,Φk〉| ·mc−1 · q(m)→ 0

holds with high probability as m → ∞. Finally ,by taking all the upper bounds of n, we can

get that as m→∞,

µ(Φ) · q(m) = sup
j,k∈Γ,j 6=k

|Φ>j Φk|
m

· q(m)→ 0

holds almost surely. Hence, for large m, we have µ(Φ) · q(m) ≤ 1 with high probability. �

Lemmas 3.1, 3.2 and 3.3 show that the mutual coherence µ(Φ) of these three kinds mea-

surement matrix Φ mentioned before have the same upper bound. Based on these lemmas, we

can immediately obtain the following conclusions about sparse polynomial reconstruction.

Theorem 3.1. Suppose that g(x) =
∑
j∈Λ,|Λ|=n cjφj(x) is an s-sparse function, i.e. the cardi-

nality of {cj 6= 0, j ∈ Λ} is less than or equal to s. If {φj(x)}j∈Λ is a preconditioned Legendre

orthogonal system or a Chebyshev orthogonal system or a trigonometric polynomial orthogonal

system, and the measurement matrix Φ ∈ Cm×n in (1.5) is generated by a certain orthogonal

system based on the random sampling {xi}mi=1 under the corresponding orthogonal probability

measure. Then when the sparsity of the function satisfies

2 ≤ s ≤ q2(m)

4q(m) + 4
,

solving the problem (1.5) by the QOMP method can reconstruct the function g(x) accurately in

s-step iterations.
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Proof. Since g(x) is an s-sparse function, it can be seen from the definition that the coefficient

vector c is an s-sparse vector. Then we only need to explain that under the assumptions, the

QOMP method can accurately reconstruct the coefficient vector c in s steps.

Without loss of generality, assume that the support set of the coefficient vector c is ∆ =

{1, · · · , s}. Hence there is

b = c1Φ1 + c2Φ2 + · · ·+ csΦs =

s∑
k=1

ckΦk.

It can be seen from the iterative process of QOMP method that in the first iteration, for each

1 ≤ i, j ≤ n, minimizing ||Φiu + Φjv − b||2 is equivalent to finding the maximum value of the

projection of b onto the hyperplane spanned by Φi and Φj . A simple computation gives

Proj(b) =
1

1− |Φ>i Φj |2
(ΦiΦ

>
i + ΦjΦ

>
j − (Φ>i Φj)ΦjΦ

>
i

− (Φ>j Φi)ΦiΦ
>
j ) ·

(
s∑

k=1

ckΦk

)
.

Here Proj(b) represents the projection of b onto the hyperplane spanned by Φi and Φj . We

know that the normalization does not affect the mutual coherence of the matrix. Without loss

of generality, assumed that the measurement matrix is `2-norm standardized by column. From

Lemma 3.2, Lemma 3.3 and Lemma 3.4, when the measurement matrix is a matrix that satisfies

the assumptions of the theorem, then µ(Φ) ≤ 1
q(m) holds for a large m with high probability.

Firstly, suppose both i, j /∈ ∆.By applying triangle inequality together with the assumption

µ(Φ) ≤ 1
q(m) , we get

‖Proj(b)i,j 6∈∆‖

=

∥∥∥∥∥ 1

1− |Φ>i Φj |2
(ΦiΦ

>
i + ΦjΦ

>
j − (Φ>i Φj)ΦjΦ

>
i − (Φ>j Φi)ΦiΦ

>
j ) ·

(
s∑

k=1

ckΦk

)∥∥∥∥∥
≤ 1

1− |Φ>i Φj |2
s∑

k=1

|ck|
(
|Φ>i Φk|+ |Φ>i Φj ||Φ>j Φk|+ |Φ>j Φk|+ |Φ>j Φi||Φ>i Φk|

)
≤ 1

1− 1/q2(m)
(1/q(m) + 1/q2(m) + 1/q(m) + 1/q2(m))

(
s∑

k=1

|ck|

)

=
q2(m)

q2(m)− 1

(
2

q(m)
+

2

q2(m)

)(
s∑

k=1

|ck|

)

=
2q(m) + 2

q2(m)− 1
·

(
s∑

k=1

|ck|

)
.

Here Proj(b)i,j 6∈∆ means the projection of b onto the hyperplane spanned by Φi and Φj in the

case that the indicators i, j are not in the support set ∆.

Secondly, suppose i ∈ ∆ or j ∈ ∆. Without loss of generality, let us assume i ∈ ∆, i = 1

and |c1| = max1≤i≤s |ci| is the one of the largest entries in absolute value. By applying triangle

inequality together with the assumption µ(Φ) ≤ 1
q(m) and using one of the estimates above, we
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get

‖Proj(b)i∈∆‖

=

∥∥∥∥∥ 1

1− |Φ>1 Φj |2
(Φ1Φ>1 + ΦjΦ

>
j − (Φ>1 Φj)ΦjΦ

>
1 − (Φ>j Φ1)Φ1Φ>j ) ·

(
s∑

k=1

ckΦk

)∥∥∥∥∥
≥ 1

1− |Φ>1 Φj |2

(
|c1|(‖Φ1‖ − |Φ>j Φ1| · ‖Φj‖ − |Φ>1 Φj | · ‖Φj‖ − |Φ>1 Φj |2‖Φ1‖)

)

− 1

1− |Φ>1 Φj |2
(2/q(m) + 2/q2(m)) ·

(
s∑

k=2

|ck|

)

≥ 1

1− |Φ>1 Φj |2

[
(1− 2/q(m)− 1/q2(m))|c1| − (2/q(m) + 2/q2(m)) ·

(
s∑

k=2

|ck|

)]
.

It follows that to show ‖Proj(b)i∈∆‖ ≥ ‖Proj(b)i,j /∈∆‖. Obviously, if

(1− 2/q(m)− 1/q2(m))|c1| − (2/q(m) + 2/q2(m)) ·

(
s∑

k=2

|ck|

)

≥(1− |Φ>1 Φj |2)
2q(m) + 2

q2(m)− 1
·
s∑

k=1

|ck| (3.1)

holds, then we have ‖Proj(b)i∈∆‖ ≥ ‖Proj(b)i,j /∈∆‖. Since |c1| = max1≤i≤s |ci|, we divide |c1|
both sides of the above inequality, it suffices to show

(1− 2/q(m)− 1/q2(m))− (2/q(m) + 2/q2(m))(s− 1) ≥ (1− |Φ>1 Φj |2)
2q(m) + 2

q2(m)− 1
s,

which is

1− 2s

q(m)
− 2s− 1

q2(m)
≥ (1− |Φ>1 Φj |2)

2q(m) + 2

q2(m)− 1
· s. (3.2)

As 1− |Φ>1 Φj |2 ≤ 1, we can see that (3.2) will hold if

1− 2s

q(m)
− 2s− 1

q2(m)
≥ 2q(m) + 2

q2(m)− 1
· s. (3.3)

Indeed, the above inequality will be valid when q(m) large enough.

According to our assumption 2 ≤ s ≤ q(m)2

4q(m)+4 , we will have (3.3) and hence (3.2). In fact,

we have

‖Proj(b)i∈∆‖ > ‖Proj(b)i,j /∈∆‖.

This means that at least one of the two indexes selected by the QOMP method at the first

iteration is a correct one.

In the iteration process of the QOMP method, after each iteration, the columns correspond-

ing to the two indexes selected in the measurement matrix are replaced by 0. Through the

previous analysis, we know that in the second iteration, the QOMP method will choose at least

one correct index which is different from the one selected in the first iteration. Therefore, the

support set ∆ can be restored in at most s iterations. That is, the sparse coefficient vector c

of function g(x) can be accurately reconstructed in s iterations. �

Theorem 3.1 gives a sufficient condition for the QOMP method to reconstruct s-sparse polyno-

mial functions under the noiseless condition.



Reconstruction of Sparse Polynomials via Quasi-Orthogonal Matching Pursuit Method 29

3.2. Sparse polynomial recovery under the noise setting

In this section, we will discuss the sufficient conditions for using the QOMP method to

recover the s-sparse function when the sampling is noisy.

Theorem 3.2. Suppose that g(x) =
∑
j∈Λ,|Λ|=n cjφj(x) is an s-sparse function and the noise

vector satisfies ||v||2 ≤ ε, here 0 < ε � 1 is the noise level. If {φj(x)}j∈Λ is a preconditioned

Legendre orthogonal system or a Chebyshev orthogonal system or a trigonometric polynomial

orthogonal system, and the measurement matrix Φ ∈ Cm×n in (1.5) is generated by a certain or-

thogonal system based on the random sampling {xi}mi=1 under the corresponding orthogonal prob-

ability measure. Then when the sparsity of the function satisfies 2 ≤ s ≤ q(m) (1− (ε/cmax)),

solving the problem (1.5) by the QOMP method can reconstruct the function g(x) accurately in

s-step iterations, here cmax = maxj∈Λ |cj |.

Proof. Similar to the proof of Theorem 3.1. Without loss of generality, assumed that each

column of Φ is `2-norm standardized and that the support set is ∆ = {1, 2, · · · , s}. Hence there

is

b = b0 + v = c1Φ1 + c2Φ2 + · · ·+ csΦs + v =

s∑
k=1

ckΦk + v.

We first consider the first iteration. Since the projection operator is a linear operator, the

projection of b on the hyperplane spanned by Φi and Φj is

Proj(b) = Proj(b0 + v)

= Proj(b0) +
1

1− |Φ>i Φj |2
(ΦiΦ

>
i + ΦjΦ

>
j − (Φ>i Φj)ΦjΦ

>
i − (Φ>j Φi)ΦiΦ

>
j ) · v.

Firstly, suppose both i, j /∈ ∆. By applying triangle inequality together with the assumption

µ(Φ) ≤ 1
q(m) , we get

‖Proj(b)i,j 6∈∆‖

=

∥∥∥∥Proj(b0) +
1

1− |Φ>i Φj |2
(ΦiΦ

>
i + ΦjΦ

>
j − (Φ>i Φj)ΦjΦ

>
i − (Φ>j Φi)ΦiΦ

>
j ) · v

∥∥∥∥
≤‖Proj(b0)‖+

1

1− |Φ>i Φj |2

(
(|Φ>i v|+ |Φ>j Φi||Φ>j v|)‖Φi‖+ (|Φ>j v|+ |Φ>i Φj ||Φ>i v|)‖Φj‖

)
=‖Proj(b0)‖+

1

1− |Φ>i Φj |2

(
|Φ>i v|+ |Φ>j Φi||Φ>j v|+ |Φ>j v|+ |Φ>i Φj ||Φ>i v|

)
≤2q(m) + 2

q2(m)− 1
·

(
s∑

k=1

|ck|

)
+

1

1− 1/q2(m)

(
‖v‖+

1

q(m)
· ‖v‖+ ‖v‖+

1

q(m)
· ‖v‖

)

≤2q(m) + 2

q2(m)− 1
·

(
s∑

k=1

|ck|

)
+

2q(m)(q(m) + 1)

q2(m)− 1
· ε.

Secondly, suppose i ∈ ∆ or j ∈ ∆. Without loss of generality, let us assume i ∈ ∆, i = 1 and

|c1| = max1≤i≤s |ci| is the one of the largest entries in absolute value. By applying triangle

inequality together with the assumption µ(Φ) ≤ 1
q(m) and using one of the estimates above, we
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get

‖Proj(b)i∈∆‖

=

∥∥∥∥Proj(b0) +
1

1− |Φ>1 Φj |2
(Φ1Φ>1 + ΦjΦ

>
j − (Φ>1 Φj)ΦjΦ

>
1 − (Φ>j Φ1)Φ1Φ>j ) · v

∥∥∥∥
≥‖Proj(b0)‖ −

∥∥∥∥ 1

1− |Φ>1 Φj |2
(Φ1Φ>1 + ΦjΦ

>
j − (Φ>1 Φj)ΦjΦ

>
1 − (Φ>j Φ1)Φ1Φ>j ) · v

∥∥∥∥
≥
(

1− 2/q(m)− 1/q2(m)

)
|c1| − (2/q(m) + 2/q2(m)) ·

(
s∑

k=2

|ck|

)

− 1

1− |Φ>1 Φj |2
(‖v‖+

1

q(m)
· ‖v‖+ ‖v‖+

1

q(m)
· ‖v‖)

≥
(

1− 2/q(m)− 1/q2(m)

)
|c1| − (2/q(m) + 2/q2(m)) ·

(
s∑

k=2

|ck|

)
− (2ε+ 2ε/q(m)).

It remains to show ‖Proj(b)i∈∆‖ ≥ ‖Proj(b)i,j /∈∆‖. Obviously, if

(1− 2/q(m)− 1/q2(m))|c1| − (2/q(m) + 2/q2(m)) ·
( s∑
k=2

|ck|
)
− (2ε+ 2ε/q(m))

≥2q(m) + 2

q2(m)− 1
·
( s∑
k=1

|ck|
)

+
2q(m)(q(m) + 1)

q2(m)− 1
· ε

|c1|

holds, we have‖Proj(b)i∈∆‖ ≥ ‖Proj(b)i,j /∈∆‖. Since |c1| = max1≤i≤s |ci|, it suffices to show

1− 2

q(m)
− 1

q2(m)
−
(

2

q(m)
+

2

q2(m)

)
· (s− 1)− 2ε

|c1|
− 2

q(m) · |c1|

≥2q(m) + 2

q2(m)− 1
· s+

2q(m)(q(m) + 1)

q2(m)− 1
· ε

|c1|
,

which is equivalent to

1− 2s

q(m)
− 2s− 1

q2(m)

≥2q(m) + 2

q2 − 1
· s+

2ε

|c1|
+

2ε

q(m) · |c1|
+

2q(m)(q(m) + 1)

q2(m)− 1
· ε

|c1|
. (3.4)

According to the assumption 2 ≤ s ≤ q(m)(1− (ε/cmax)), we have (3.4). In fact, we have

‖Proj(b)i∈∆‖ > ‖Proj(b)i,j /∈∆‖

as m→∞. This means that at least one of the two indexes selected by the QOMP method at

the first iteration is correct. Finally, through the same analysis as Theorem 3.1, we can gain

the result of this theorem. �

Remark 3.2. The ‘accurately’ in Theorem 3.2. means that when the sparsity s satisfies 2 ≤
s ≤ q(m) (1− (ε/cmax)), QOMP method can find the location of the nonzero elements in the

coefficient vector accurately and give an approximate vector of the coefficient vector.
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3.3. The error estimation of QOMP method

In this section, we will give the error estimation of the approximate vector c̃ obtained by

the QOMP method in the noisy setting in section 3.2.

Theorem 3.3. Suppose that the noise vector v satisfies ||v||2 ≤ ε, where 0 < ε� 1 is the noise

level and the sparsity of the original coefficient vector c satisfies 2 ≤ s < q(m) (1− (ε/cmax)).

Then the error between the coefficient vector c̃ obtained by the QOMP method and the original

coefficient vector c is

||c− c̃||2 ≤M · ε,

here M is the upper bound of ||Φ+
Θ||2 which is independent of ε. Φ+

Θ denotes the pseudo-inverse

of ΦΘ, ΦΘ denotes the submatrix formed by the columns of matrix Φ whose indexes are in Θ

and Θ denotes the index set selected by QOMP method.

Proof. Without loss of generality, suppose that the support set of the coefficient vector c is

∆ = {1, 2, · · · , s}. According to the condition 2 ≤ s < q(m) (1− (ε/cmax)), the QOMP method

picks out at least one correct position index in each iteration. Therefore, we assume that the

index set selected by the QOMP method is Θ = {1, 2, · · · , 2s}, that is the first 2s columns.

Decompose the measurement matrix into Φ = [Ψ ∈ Ω], where Ψ represents the first 2s columns

of Φ, Ω represents the remaining columns. Similarly, decompose the coefficient vector and the

reconstructed coefficient vector into c = [c1 0] and c̃ = [c̃1 0], where c1 and c̃1 represent the

first 2s columns of the vector c and c̃1, respectively. At this time, the non-zero part of the

solution obtained by QOMP method of (1.5) is

c̃1 = Ψ+b.

Since b = Φc + v, by substituting into the above formula we can get

c̃1 = Ψ+b = Ψ+ ([Ψ Ω]c + v) = c1 + Ψ+v.

Obviously, the reconstruction error is:

||c− c̃||2 = ||c1 − c̃1||2 = ||Ψ+v||2 ≤ ||Ψ+||2||v||2 ≤M · ε.

Thus, the conclusion of the theorem is proved. �

Remark 3.3. It is not difficult to see from Theorem 3.3 that since the original function is a

sparse function, the reconstruction error of its coefficient vector is only related to the noise level

of the sampling points. Therefore, we can obtain that when the sampled data does not contain

noise, the reconstruction error of coefficient vector is 0.

4. Reconstruction of General Univariate Sparse Function

by QOMP Method

In this section, we consider reconstructing the functions which can be expanded with respect

to general univariate uniform bounded orthogonal basis. Suppose that {ψj(x)}j∈Λ, |Λ| = n is

a set of standard orthogonal functions defined on Ω ⊆ R, which are orthogonal with respect to

measure ν(x), i.e. ∫
Ω

ν(x)ψj(x)ψk(x)dx = δjk =

{
0, j 6= k,

1, j = k,
(4.1)
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and the corresponding orthogonal measure is bounded on the domain, that is, there exists a

constant C, satisfying ∫
Ω

ν(x)dx ≤ C. (4.2)

In addition, let {ψj(x)}j∈Λ have an uniform upper bound K, i. e.

||ψj(x)||∞ ≤ K, ∀j ∈ Λ, (4.3)

here Λ is an index set known in advance, K is a constant independent of j. Then we can draw

conclusions similar to Lemma 3.2 on uniform bounded orthogonal system {ψj(x)}j∈Λ.

Lemma 4.1. Assume that the matrix Ψ ∈ Cm×n is a measurement matrix generated by the

bounded orthogonal system {ψj(x)}j∈Λ with random sampling {xi}mi=1 under the corresponding

orthogonal measure ν(x). Here the measure ν(x) and the orthogonal system {ψj(x)}j∈Λ satisfy

condition (4.2) and (4.3), respectively. Let 1
2 < c < 1, q(m) = o(m1−c) and q(m) → ∞ as

m→∞. Then for a large m, we have µ(Ψ) ≤ 1
q(m) with high probability.

Proof. First, for the denominator in µ(Ψ), similar to the proof of Lemma 3.2, according to

the definition of coherence, the standard orthogonality property of the system and the strong

law of large numbers, with the increase of m, we have

µ(Ψ) = max
j,k∈Λ, j 6=k

|ΨT
j Ψk|

||Ψj ||2 · ||Ψk||2
≈ 1

m
max

j,k∈Λ, j 6=k
|ΨT
j Ψk|.

Next, let us consider the numerator of µ(Ψ): let gjk = ψj(x)ψk(x), then we have

|ΨT
j Ψk| =

∣∣∣∣∣
m∑
i=1

ψj(xi)ψ(xi)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

gjk(xi)

∣∣∣∣∣ .
Because of

E(gjk(x)) = E(ψj(x)ψk(x)) =

∫
Ω

ν(x)ψj(x)ψk(x)dx = 0, j 6= k,

we can immediately know that the expectation of random variable gjk(x) is zero. It is also not

difficult to obtain that

E(g2
jk) =

∫
Ω

ψ2
j (x)ψ2

k(x)dx ≤ K2

∫
Ω

ν(x)dx ≤ K̃,

here K̃ = K2C, hence we have ∑
m

m−2cE(g2
jk) ≤ K̃

∑
m

m−2c.

From the assumption 1
2 < c < 1,

∑
mm

−2c <∞ is available. Thus we have
∑
mm

−2cE(g2
jk) <

∞. Since the sampling points {xi}mi=1 are independently and identically distributed, the random

variables {gjk(xi)}mi=1 (j 6= k) are also independently and identically distributed. Then from

Lemma 3.1, it is obvious to get that

m−c

∣∣∣∣∣
m∑
i=1

gjk(xi)

∣∣∣∣∣ = m−c

∣∣∣∣∣
m∑
i=1

ψ(xi)ψk(xi)

∣∣∣∣∣ = m−c|ΨT
j Ψk| → 0.
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Note that q(m) = o(m1−c), therefore

m−1 · |Ψ>j Ψk| · q(m) = m−c · |Ψ>j Ψk| ·mc−1 · q(m)→ 0

holds almost surely as m → ∞. Finally, by taking all the upper bounds of n, we can get that

as m→∞,

µ(Ψ) · q(m) = sup
j,k∈Λ, j 6=k

|Ψ>j Ψk|
m

· q(m)→ 0

holds almost surely. Hence, for large m, we have µ(Φ) · q(m) ≤ 1 with high probability. �

Using the conclusion of Lemma 4.1, we can get the following two conclusions about reconstruct-

ing the s-sparse function using the QOMP method for the noiseless and noisy settings.

Theorem 4.1. Suppose that g(x) =
∑
j∈Λ cjψj(x) is an s-sparse function. If {ψj(x)}j∈Λ is the

bounded orthogonal system which satisfies condition (4.1)− (4.3), and the measurement matrix

Φ = Ψ ∈ Cm×n in (1.5) is formed by the bounded orthogonal system {ψj(x)}j∈Λ with random

sampling {xi}mi=1 under the corresponding orthogonal measure ν(x). Then if the sparsity of g(x)

satisfies 2 ≤ s < q2(m)
4q(m)+4 , the QOMP method can reconstruct the function g(x) accurately in s

steps.

Theorem 4.2. Suppose that g(x) =
∑
j∈Λ cjψj(x) is an s-sparse function, and the noise vector

is ||v||2 ≤ ε, here 0 < ε� 1 is the noise level. If {ψj(x)}j∈Λ is the bounded orthogonal system

which satisfies condition (4.1) − (4.3), and the measurement matrix Φ = Ψ ∈ Cm×n in (1.5)

is formed by the bounded orthogonal system {ψj(x)}j∈Λ with random sampling {xi}mi=1 under

the corresponding orthogonal measure ν(x). Then if the sparsity of g(x) satisfies 2 ≤ s <

q(m) (1− (ε/cmax)), the QOMP method can reconstruct the function g(x) accurately in s steps,

here cmax = maxj∈Λ |cj |.

The proofs of Theorem 4.1 and Theorem 4.2 can be completely done by the proof processes

of Theorem 3.1 and Theorem 3.2 in Section 3, and their proofs are omitted here.

Remark 4.1. When the basis function is any standard bounded orthogonal system, following

the proof process of Theorem 3.3 in Section 3, we can also give the error estimation of the

QOMP method in the noisy setting.

5. Numerical Experiments

In this section, we will first demonstrate experimentally the effectiveness and robustness of

the QOMP method in signal recovery, and then verify the effectiveness of the QOMP method

in sparse polynomial function reconstruction.

5.1. The effectiveness and robustness of QOMP method in signal recovery

In this experiment, we first take the measurement matrix Φ ∈ Cm×n which is formed by

preconditioned Legendre system with random sampling according to the Chebyshev probability

measure as an example and compare the QOMP method with the classic OMP method (cf.

[6]). For the sake of simplicity, we only test the noiseless sampled values here. Assume that
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the number of basis functions n = 128 and the number of sampling points m = 32, and we

apply both classic OMP method and QOMP method to perform s iterations to compare their

frequency of exact reconstruction. The experimental results are shown in Fig. 5.1(a). Since

the QOMP method selects two columns in each iteration, a total of 2s columns are selected in

s iterations. Then we also perform 2s iterations on the OMP method and select 2s columns.

The experimental results are shown in Fig. 5.1(b).

(a) Iteration number : QOMP: s, OMP: s (b) Iteration number: QOMP: s, OMP: 2s

Fig. 5.1. The comparison of OMP method and QOMP method on frequency of exact reconstruction.

It can be seen from Fig. 5.1 that whether the OMP method performs s iterations or 2s

iterations, the success rate of the QOMP method is always higher than that of the OMP method.

Meanwhile, Fig. 5.1 shows that when the number of basis functions n and sampling points m

are fixed, the frequency of exact reconstruction of the QOMP method gradually decreases as

the sparsity s increases. For s ≥ 0.4m, the frequency of exact recovery of these two algorithms

are both very low and hence we do not present it in Fig. 5.1. Obviously, the CPU time of the

QOMP method is greater than that of the OMP method.

The results in Fig. 5.1 illustrate the effectiveness of the QOMP method. To verify the

robustness of the QOMP method, we gradually perturb the s-sparse signal to judge whether the

QOMP method can find the leading terms of the signal, that is, the terms with relatively large

absolute values. In next experiment, we set the value of the non-zero position in the original

s-sparse signal in the range of [1, 2] and the value of the noise to ε = 10−1, 10−2, 10−3, 10−4

and 10−5, respectively. We perform 1000 independent repeated experiments on original signals

with different sparsity under different noise levels. The experimental results are shown in Fig.

5.2.

Fig. 5.2(a) shows that when the sparsity s is fixed, the frequency of exact reconstruction of

the QOMP method increases as the noise level decreases. At the same time, we find that when

the noise level is small, the frequency of exact reconstruction is almost the same as that of the

reconstruction of free-noise s-sparse signals, which shows that the QOMP method can find the

leading terms in the signal very well. Fig. 5.2(b) gives the logarithm of the average `∞ error

when the QOMP method succeeds. It can be seen from Fig. 5.2(b) that when the noise level is

relative large, even if the frequency of exact reconstruction is high, such as the sparsity s = 2,

the reconstruction error is almost the same as the noise level.
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(a) The frequency of exact reconstruction

of QOMP method in different noise levels (b) Iteration number: QOMP: s, OMP: 2s

Fig. 5.2. The frequency of exact reconstruction and average `∞ error of QOMP method.

5.2. The effectiveness of QOMP method in reconstruction of sparse polynomial

functions

Section 5.1 has verified the effectiveness and robustness of the QOMP method in signal

recovery. In this experiment, we will verify the effectiveness of the QOMP method in the re-

construction of sparse polynomial functions by the noiseless samples of univariate and bivariate

sparse polynomial functions. Here, we take the number of basis functions n = 128 and the

number of sampling points m = 32 for the reconstruction of univariate polynomial functions

and n = 144,m = 32 for the reconstruction of bivariate sparse polynomial functions. Indeed,

the essence of the reconstruction of a sparse polynomial function is the reconstruction of the

sparse coefficient vector.

The main steps of this experiment are as follows:

Step 1: Randomly generate an n-dimensional s-sparse coefficient vector c ∈ Cn whose

support set is ∆;

Step 2: For different systems, according to the corresponding orthogonal probability

measure, randomly select m sampling points {xi}mi=1 on corresponding domain;

Step 3: Generate bi = g(xi) =
∑
j∈Λ cjφj(xi), where we express the three types of basis

functions as {φj(x)}j∈Λ;

Step 4: Use the QOMP method to solve the problem (1.5);

Step 5: Compare the obtained results with the original coefficient vector and function.

Here we take the univariate polynomial functions as the examples in Step 3 and it is similar

for bivariate polynomial functions. We will first use the QOMP method to perform 1000

independent repeated experiments for the three different types of orthogonal systems mentioned

before according to the above experimental steps in the noiseless setting. Then we calculate

the average error of all experiments. The results are shown in Fig. 5.3.

Fig. 5.3(a) and (b) show the average errors of the three orthogonal polynomial functions

in the univariate and multivariate cases, respectively. In this experiment, the error is defined

as ‖g − g̃‖/N , here N is the number of test points and N = 1000 and 40101 for univariate

functions and bivariate functions, respectively. g are the values of the original functions at



36 R.Z. FENG, A.T. HUANG, M.J. LAI AND Z.M. SHEN

(a) Univariate (b) Bivariate

Fig. 5.3. The average error of QOMP method in reconstruction of univariate and bivariate sparse

polynomial functions.

these test points and g̃ are those of the reconstructed functions. When the sparsity s = 2, from

Sec 5.1, the frequency of exact reconstruction of 1000 independent repeated tests is almost 1,

hence the magnitude of average error is almost zero. And then as shown in these figures, the

average errors increase as the sparsity increases. This is due to the gradual decrease in the

frequency of exact reconstruction. When the QOMP method find the locations of the non-zero

items accurately, the average error can be 10−14 (see Fig. 5.4 and Fig. 5.5).

Finally, we will give some examples of the original images and reconstruction images via

QOMP method of univariate and bivariate sparse polynomial functions in the noiseless setting.

Here we take s = 5 as an example.

(a) Legendre (b) Chebyshev (c) Trigonometric

Fig. 5.4. The images and average errors of QOMP method in reconstruction of univariate sparse poly-

nomial functions.
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(a) Legendre (b) Chebyshev (c) Trigonometric

Fig. 5.5. The surfaces and average errors of QOMP method in reconstruction of biavariate sparse

polynomial functions.

The first row of Fig. 5.4 are the images of the original functions (red) and the reconstructed

functions (blue) and the second row of Fig. 5.4 are the `2 error images of those two kinds of

functions. It can be seen from the second column that the errors of reconstruction are almost

zero.

The first and second rows of Fig. 5.5 are the surfaces of bivariate sparse polynomial functions

mentioned before and the third row are the `2 error images respectively. We can clearly see

from these figures that the smoothness of these original functions is very poor. Based on the

knowledge of approximation theory, it is easy to know that if we use the traditional interpolation

methods, such as polynomial interpolation, reconstructing such functions well is very difficult.

However, it can be clearly seen from our experiments that even if the smoothness of the original

functions is poor, we can still give an accurate reconstruction of these types of original functions

by QOMP method.
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