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Abstract. This paper proposes a deep-learning-based Robin-Robin domain decom-
position method (DeepDDM) for Helmholtz equations. We first present the plane
wave activation-based neural network (PWNN), which is more efficient for solving
Helmholtz equations with constant coefficients and wavenumber k than finite differ-
ence methods (FDM). On this basis, we use PWNN to discretize the subproblems di-
vided by domain decomposition methods (DDM), which is the main idea of Deep-
DDM. This paper will investigate the number of iterations of using DeepDDM for
continuous and discontinuous Helmholtz equations. The results demonstrate that:
DeepDDM exhibits behaviors consistent with conventional robust FDM-based domain
decomposition method (FDM-DDM) under the same Robin parameters, i.e., the num-
ber of iterations by DeepDDM is almost the same as that of FDM-DDM. By choosing
suitable Robin parameters on different subdomains, the convergence rate is almost
constant with the rise of wavenumber in both continuous and discontinuous cases.
The performance of DeepDDM on Helmholtz equations may provide new insights for
improving the PDE solver by deep learning.
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1 Introduction

The Helmholtz equation, the main research object in this paper, is a kind of important
partial differential equation (PDE) in scientific computing and industrial applications. It
can be regarded as a time-independent form of the wave equation, which has important
applications in acoustics and describes the propagation of waves. Besides acoustic waves,
it is also used to describe electromagnetics because it can be reduced from Maxwell’s
equations [26]. Moreover, in the fields of elasticity, quantum mechanics and geophysics,
we also encounter different forms of Helmholtz equations.

We assume that there is a bounded Lipschitz domain Ω⊂Rd, d = 2,3. In addition
to the true physical part, the domain Ω may also contain artificial layers, for example,
representing perfectly matched layers [4]. A general Helmholtz equation is given in the
following

Lu :=−∇T(α∇u)−ω2

κ
u= f in Ω, (1.1a)

Bu= g on ∂Ω, (1.1b)

where ω ∈ C and the coefficient matrix α, the scale field κ and the source term f are
all given complex-valued functions. The boundary condition Bu = g can be one or a
combination of the following cases,

u= gD on ΓD, (1.2a)

nT(α∇u)+p0u= gR on ΓR, (1.2b)

nT(α∇u)+p0u+p1nT(α∇Su)−∇T
S (q1ΠS(αn)u+p2α∇Su)= gV on ΓV , (1.2c)

where n is the unit outer normal vector, ∇S is the surface gradient, p0, p1, p2, q1 are
complex-valued functions and ΠS is the orthogonal projection onto the tangential plane
of the surface. In order to simplify the notations and facilitate discussion, we will use a
simpler Helmholtz equation version that usually is seen in other papers.

We look for the numerical solution of the heterogeneous Helmholtz equation as fol-
lows,

−∆u−k2(x)u= f in Ω, (1.3a)
∂u
∂n

+ik(x)u= ga on ∂Ω, (1.3b)

[u]=u+−u−= gb on Γ, (1.3c)[
∂u
∂n

]
=

(
∂u
∂n

)+

−
(

∂u
∂n

)−
= gc on Γ, (1.3d)

where n is the unit outer normal vector on the boundary ∂Ω or the interface Γ, k(x)>0 is
the wavenumber. In practice, k(x) would be the continuous variable coefficient or piece-
wise constants, not just a constant. The two formulas (1.3c) and (1.3d) describe jump con-
ditions of u and ∂u

∂n on the interface Γ. Actually, the numerical solution of the Helmholtz
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equation has always been a hot topic in the field of computational mathematics. When
classical iterative methods are used to solve for the Helmholtz equation, especially for a
large wave number problem, we always suffer some difficulties, for example, pollution
effect [2]. In [13], Ernst et al. has carried out a series of researches on classical iterative
methods solving for Helmholtz problems. Domain decomposition methods (DDM), as
an important kind of iterative method, lose also its effectiveness and efficiency for the
Helmholtz equation, if it is not modified properly.

Following our previous article [9, 24], this paper continues to explore the use of deep
learning to improve the efficiency of traditional DDM, and to improve the difficult sit-
uation of traditional methods when encountering large wave number Helmholtz prob-
lems. The deep learning-based domain decomposition method (DeepDDM) integrates
the spirit of both deep learning and domain decomposition and inherits the advantages
of the two methods. DeepDDM will exchange the subproblem information across the
interface in DDM by adjusting the boundary term for solving each subproblem by deep
learning. For the Helmholtz equation, a plane wave-based neural network (PWNN) with
one hidden layer is very effective in solving the Helmholtz equation with constant wave
number [9]. Thus we use PWNN to solve each subproblem in DeepDDM. Benefiting
from the simple implementation and mesh-free strategy of using deep learning for PDE,
DeepDDM will simplify the implementation of DDM and make DDM more flexible for
complex PDE, e.g., those with complex interfaces in the computational domain.

In this paper, a robust DDM for solving the Helmholtz equation recently proposed by
Chen et al. in [6] is used as an example to present the DeepDDM algorithm. This paper
mainly has the following contributions.

(i) We present the DeepDDM method which uses PWNN to discretize the subproblems
divided by the robust DDM [6] for solving Helmholtz equations, since PWNN can
solve Helmholtz equations with constant wave number very efficiently [9].

(ii) Many numerical experiments are carried out to illustrate the effectiveness and effi-
ciency of the DeepDDM algorithm. Even for the Helmholtz problem with a large
wave number, the DeepDDM algorithm can still converge quickly and has good ac-
curacy. In particular, when the wave number increases, we can keep the iteration
number of DeepDDM almost unchanged by increasing the hidden unit of PWNN
and training data. This result, the robustness of DeepDDM, coincides with one of
the results in [6].

(iii) The number of iterations of DeepDDM is almost the same as that of using finite
difference method (FDM) to solve each subproblem in the robust DDM, denote it
by FDM-DDM. For large wave number problems, PWNN is faster than FDM [9],
which indicates that DeepDDM is a more practical method than FDM-DDM.

(iv) Both PWNN [9] and the robust DDM [6] only consider Helmholtz equations with
constant wave number. By combining these two methods, the results of our exper-
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iments show that DeepDDM can deal with the problem with piecewise constant
wavenumber well.

The outline of this paper is as follows. In Section 2, we briefly review the DDM al-
gorithm designed in [6]. Focusing on a given Helmholtz equation, we introduce the
framework of PWNN for solving the Helmholtz equation and the corresponding loss
function in Section 3. In Section 4, the profile of the DeepDDM algorithm for solving the
Helmholtz equation is given, which is followed by numerical experiments on Helmholtz
equations with constant and piecewise constant wave number in Section 5. Finally, we
will conclude this paper and present some directions for future work in Section 6.

2 Domain decomposition methods for Helmholtz equation

The indefiniteness of the Helmholtz equation causes that the classical Schwarz method
with Dirichlet transmission conditions fails to converge even if overlapping is used. The
convergence of the domain decomposition method was proved after the first-order ab-
sorbing transmission condition was introduced in Bruno Despres’s Ph.D. thesis. In order
to get a faster convergence rate, a new under-relaxed algorithm was introduced by Ben-
amou and Despres in [3]. Both theoretical and numerical results make it clear the choice
of relaxation parameters has a great influence on the convergence efficiency of the al-
gorithm. Optimized Schwarz methods looking for better parameters were studied to
accelerate convergence in [17,18]. Recently, a robust Robin-Robin domain decomposition
method and its convergence theorem were presented in [6]. Moreover, there are FETI-
H method [15], FETI-DPH method [14] and the source transfer domain decomposition
method [7, 8] for the Helmholtz equation. Another efficient preconditioner, sweeping
preconditioner, for the Helmholtz equation was presented and studied in [11, 12]. There
are some summary articles relating this topic, such as [1, 13, 19, 20].

In this article, we propose to combine the deep neural network with the domain de-
composition algorithm in [6] to obtain an efficient mesh-free algorithm for heterogeneous
Helmholtz equations. Based on the algorithm used in [6], we introduce a domain decom-
position algorithm for system (1.3) in the following.

Assuming that k(x) in (1.3) are piecewise constants, i.e., k(x)=k1 in Ω1, and k(x)=k2
in Ω2, where Ω1 and Ω2 are two non-overlapping subdomains in the domain Ω, and the
interface Γ= Ω̄1∩Ω̄2. Let

f1= f |Ω1 , f2= f |Ω2

and γ1, γ2, µ be three constant parameters whose values shall be determined later. Giving
the initial guess value g1

1, then the domain decomposition iterative procedure can be
defined as follows (for n=1,2,···):
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1. Solve for un
1 in Ω1, 

−∆un
1−k2

1un
1 = f1 in Ω1,

∂un
1

∂n1
+ik1un

1 = ga on ∂Ω1\Γ,

∂un
1

∂n1
+γ1un

1 = gn
1 on Γ,

(2.1)

2. Update the transmission condition along the interface Γ,

gn
2 =−

∂un
1

∂n1
+γ2un

1+gc−γ2gb, (2.2)

3. Solve for un
2 in Ω2, 

−∆un
2−k2

2un
2 = f2 in Ω2,

∂un
2

∂n2
+ik2un

2 = ga on ∂Ω2\Γ,

∂un
2

∂n2
+γ2un

2 = gn
2 on Γ,

(2.3)

4. Update the transmission condition along the interface Γ,

gn+ 1
2

1 =−∂un
2

∂n2
+γ1un

2+gc+γ1gb, (2.4)

5. Relax the transmission condition along the interface,

gn+1
1 =µgn+ 1

2
1 +(1−µ)gn

1 . (2.5)

If gb and gc are fixed as 0, i.e., without jump on the interface, the above algorithm
is same to the algorithm was used in [6]. The choice of γ1, γ2 and µ will affect the con-
vergence rate of this algorithm, but it is not the main concern of this paper. In order to
meet the convergence conditions of the algorithm, the real part and the imaginary part
of γ1 and γ2 should be nonnegative. However, when the boundary condition (1.3b) is
∂u/∂n−ik(x)u= ga, the imaginary part of γ1 and γ2 should be negative [6, 21]. For fur-
ther details, we refer the interested readers to [6]. The specific parameter selection will
be introduced in the numerical experiment part of this paper.

3 Neural networks for Helmholtz equations

Neural networks are indeed a powerful tool, which has been proved to be effective
in many fields, even in the field of numerical solution of partial differential equations
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which is a problem with high complexity. Focusing on a general PDE, some neural
network architectures and optimization methods were designed from different perspec-
tives [10, 28, 29]. As a typical case, Raissi et al. introduced Physics-Informed Neural
Networks (PINNs) that take initial conditions and boundary conditions as the penalties
of the optimization objective loss function in [28], where numerical experiments illus-
trate that network can achieve good accuracy for both forward and inverse problems.
Otherwise, aiming at a kind of PDEs not general equations, some researchers introduced
different neural network architectures and activation functions based on a prior knowl-
edge of mathematics and physics, [9, 16, 25, 30] and so on.

We now introduce the physics-informed neural network that is a deep learning frame-
work for solving PDEs [28].

We consider deep fully connected feedforward neural networks. The entire neural
network consists of L+1 layers, where layer 0 is the input layer and layer L is the output
layer. Layers 0< l<L are the hidden layers. All of the layers have an activation function,
excluding the output layer.

Mathematically, we denote d0,d1,··· ,dL as a list of integers, with d0, dL representing
the lengths of the input signal and output signal of the neural network. Define a function
Tl :Rdl→Rdl+1 , 0≤ l<L,

Tl(x)=Wlx+bl , (3.1)

where Wl∈Rdl+1×dl and bl∈Rdl+1 . Thus, we can simply represent a deep fully connected
feedforward neural network using the composite function h(·;Θ) :Rd0→RdL ,

h(·;Θ)=TL−1◦σ◦TL−2◦···◦T1◦σ◦T0, (3.2)

where σ is the activation function and Θ :={Wl ,bl : 0≤ l< L} represents the collection of
all parameters.

Solving a Helmholtz equation such as (1.3) by a deep neural network is a physics-
informed minimization problem with the objectiveM(θ) consisting of two terms as fol-
lows:

Θ∗=argminΘM(Θ) :=MΩ(Θ)+M∂Ω(Θ) (3.3)

with

MΩ(Θ) :=
1

N f

N f

∑
i=1

∣∣∣−∆h(xi
f ;Θ)−k2h(xi

f ;Θ)
∣∣∣2 ,

M∂Ω(Θ) :=
1

Ng

Ng

∑
i=1

∣∣∣∣∣∂h(xi
g;Θ)

∂n
+ikh(xi

g;Θ)−g(xi
g)

∣∣∣∣∣
2

,

where {xi
f }

N f
i=1 and {xi

g}
Ng
i=1 are the collocation points in the inside and on the boundary,

respectively. The domain termMΩ and boundary termM∂Ω enforce the condition that
the desired optimized neural network h(·;Θ∗) satisfies governed equations and boundary
conditions, respectively.
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Gradient descent-based methods such as gradient descent, Adam and L-BFGS can be
used to solve this kind of optimization problem [5, 22, 23, 27].

Note that PINNs use hyperphysical tangent activation functions as a substitute for
ReLU and Sigmoid functions that are heavily used in computer vision and pattern recog-
nition [28]. Sinusoidal representation networks (SIRENs) use the sinusoidal function as
the activation function, and apply the periodic property of sinusoidal function to get bet-
ter approximation effect [30].

Based on the object studied in this paper, Helmholtz equation, whose solution is
a complex-valued function and indicates the propagation of waves, we also use com-
plex exponential function eix as the activation function which is proposed in [9]. From
the results of numerical experiments in [9], the neural network architecture with plane
wave basis (eix) as activation function (PWNN) has obvious advantages in solving the
Helmholtz equation.

In the rest of this section, we introduce briefly the complex-valued neural networks
architecture using eix as the activation function. Because the solution of Helmholtz equa-
tion is a complex-valued function, parameters in the used neural network are complex
values. To be specific, unlike (3.1) for the space of Wl and bl , now we assume the pa-
rameters for the last layer WL−1∈CdL×dL−1 and bL−1∈CdL . However, the architecture of
PWNN is also presented with same expression,

h(·;Θ)=TL−1◦σ◦TL−2◦···◦T1◦σ◦T0, (3.4)

where the activation function σ(x) = eix. If one expands the expression of two-layer
PWNN, then

Tl◦σ◦Tl−1(x)=Wlei(Wl−1x+bl−1)+bl . (3.5)

In fact, the solution of homogeneous Helmholtz equation can be expressed by plane
wave basis functions. Assuming that u(x) is the solution of homogeneous (1.3) and
dθ := (cosθ,sinθ) is the plane wave direction. From Theorem 2.1 in [32], we know that
∀ε>0, ∃D(θ) : [0,2π] 7→C, s.t.∥∥∥∥u(x)−

∫ 2π

0
D(θ)eikdθ ·xdθ

∥∥∥∥
0,Ω

<ε. (3.6)

In other words, the solution of the homogeneous Helmholtz equation can be written as
the integral form of plane waves in multiple directions.

Note that the right hand term of (3.5) can be used as the discrete formula for (3.6) if
parameters W and b are specifically selected. When solving the Helmholtz equation,
because the plane wave form is satisfied, PWNN has obvious advantages over other
neural network architectures. The knowledge of plane wave basis functions can guide
us to initialize neural network parameters.

If L-BFGS optimization method is used to solve the physics-informed minimization
problem (3.3), the profile of the algorithm PWNN for Helmholtz is given in Algorithm 3.1.
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Algorithm 3.1 PWNN for Helmholtz equation.

1: Input training data X and initial parameters Θ0;
2: for j=0,1,··· do
3: Calculate ∇ΘjM(Θj;X); . Save recent m steps’ gradients
4: Update: Θj+1←Θj+L-BFGS({∇ΘkM(Θk;X)}j

k=max(0,j−m+1));
5: end for

Remark 3.1. L-BFGS is an improved algorithm for the quasi-Newton method: BFGS. In
BFGS, the approximate Hesse matrix B−1

k is stored at every step, which wastes a lot of
storage space in high dimensional cases. But in L-BFGS, only the recent m steps’ iterative
information is saved for calculation B−1

k to reduce the storage space of data. We fix m=50
in numerical experiments.

4 DeepDDM for Helmholtz equations

It is natural to mix domain decomposition methods with neural networks. In this section,
we only present a two-subdomain case as an example for simplification of notations and
descriptions. For multi-subdomain cases, it is necessary to use more complex symbols
for delivering exactly the algorithm, see [6] for detail.

However, when the boundary conditions are not as simple as the formula (1.3), i.e.,
when different edges own different boundary conditions, the objective function M(θ)
given by (3.3) needs to be modified. Taking (2.1) as an example, its objective function is
given as follows

M(Θ)=MΩ1(Θ)+M∂Ω1\Γ(Θ)+MΓ(Θ), (4.1)

where

MΩ1(Θ)=
1

N f

N f

∑
i=1

∣∣∣−∆N (xi
f ;Θ)−k2N (xi

f ;Θ)− f1(xi
f )
∣∣∣2 , (4.2a)

M∂Ω1\Γ(Θ) :=
1

Ng

Ng

∑
i=1

∣∣∣∣∣∂N (xi
g;Θ)

∂n1
+ikN (xi

g;Θ)−ga(xi
g)

∣∣∣∣∣
2

, (4.2b)

MΓ(Θ) :=
1

NΓ

NΓ

∑
i=1

∣∣∣∣∣∂N (xi
Γ;Θ)

∂n1
+γ1N (xi

Γ;Θ)−g1(xi
Γ)

∣∣∣∣∣
2

, (4.2c)

with {xi
Γ}

NΓ
i=1 are the collocation points on the interface Γ.

Furthermore, we have an algorithm, called DeepDDM in this paper, for the Helmholtz
equation, which inherits virtues from domain decomposition and neural network. The
profile of the algorithm for the Helmholtz equation is given below.
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Algorithm 4.1 DeepDDM for the Helmholtz equation.

1: Initial interface information g1
1 along Γ;

2: for n=1,2,··· do
3: Retrain the latest model for un

1 using Algorithm 3.1;
4: Update the transmission condition gn

2 =−
∂un

1
∂n1

+γ2un
1+gc−γ2gb;

5: Retrain the latest model for un
2 using Algorithm 3.1;

6: Update the transmission condition gn+1/2
1 =− ∂un

2
∂n2

+γ1un
2+gc+γ1gb;

7: Relax gn+1
1 =µgn+1/2

1 +(1−µ)gn
1 ;

8: if min{‖gn+1
1 −gn

1‖,‖gn
2−gn−1

2 ‖}< tolΓ then
9: STOP;

10: end if
11: end for

Remark 4.1. In the Step 3 and Step 5 of Algorithm 4, retraining the latest model, i.e., the
network parameters obtained in the previous iteration are used as the initialization of
the current training network, makes subsequent training processes faster than the first
training process.

When stochastic gradient descent is used to train neural network parameters, differ-
ent from the random sampling in the field of computer vision, we always require each
batch of training data including information of boundary conditions. From the perspec-
tive of PDE theory, it is guaranteed that a numerical PDE corresponding to each batch
optimization problem is well-posed. Moreover, each batch has a different amount of
training data for accelerating the training process. This idea coincides naturally with the
idea of multigrid with coarse grid and fine grid [31]. A batch with less internal training
data corresponds to a coarse grid, and a batch with more internal training data corre-
sponds to a fine grid.

5 Experiments

In this section, we present a series of numerical experiments to illustrate the property of
our algorithm.

5.1 Settings

We use Intel Core-i7-10700 and 32 GB of DDR4 RAM for calculation in the framework
of TensorFlow. For FDM, we use scipy.sparse.linalg.spsolve as a direct solver of sparse
linear equations, which provides a wrapper of SuperLU sparse direct solver in SciPy.
The domain of interest is a bounded square domain [0,1]2 in where waves propagate.
When using domain decomposition splits the whole domain into multiple subdomains,
we always split it along x-axis.
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For the algorithm given in Section 2, how to choose the best relaxation parameters γ1,
γ2, µ is still an unanswered problem. Empirically, one can solve numerically a min-max
problem to have a good parameter choice [17, 18]. However, it needs to solve min-max
problems repeatedly for different physical parameters and discrete parameters, which
will cause expensive computational cost and is not conducive to the description and in-
terpretation of numerical experiments. In fact, the selection of relaxation parameters is
not the focus of this paper. In this paper, we will select appropriate parameters based on
experience and some exploratory numerical experiments to be given in Tables 2, Table 3
and Table 5 to make the DeepDDM have good results for different cases.

For each subproblem, we use PWNN with one hidden layer and Units indicates the
number of hidden neurons. The stop criterion of outer iteration is that the difference of
two adjacent interface conditions is less than the given threshold, as mentioned above, in
formulas,

max
i
‖gn

i −gn−1
i ‖2<10−2. (5.1)

The network training process is set as follows: we use the L-BFGS optimizer and the
stop criterion is that ‖∇M‖∞ <2×10−16, or that we exceeded the maximum number of
allowed iterations, set as 3000 here. The training data include sample points inside of
domain and on the boundary, using N f and Ng for the number of samples. The training
points in the inside are randomly selected, while the training points on the boundary
are uniformly selected. More training points usually lead to smaller approximation error
of neural network and higher numerical solution accuracy. Meanwhile, more training
points also mean more training time and more expensive computational costs. We have
to trade-off precision against time and cost. Fortunately, it has been shown in [9] that
N f = C and Ng =O(k) is enough for PWNN to achieve high accuracy, and we follow
this strategy in the experiments. The test points used to estimate the relative L2 errors are
uniformly sampled by row and column, with 40000 in all. For the finite difference method
(FDM), we use the nine-point finite difference scheme with third-order accuracy. We use
a uniform square grid, and Mesh represents how many cells we divide the calculation
area into. We have the expression of error in the following

E= ‖u∗−uh‖2

‖u∗‖2
. (5.2)

5.2 Helmholtz equations with constant wave number

In this section, we consider a Helmholtz equation with a constant wave number k in the
whole domain.  −∆u−k2u=0 in Ω,

∂u
∂n

+iku= g on ∂Ω,
(5.3)
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Table 1: Relative L2 error ε and time cost of PWNN and FDM under different Units or meshsize on problem
(5.3).

PWNN FDM
Units #parameters E Total time Train time Mesh #freedoms E Total time Solve time

k=20
16 #66 3.6e-2 6.4s 1.3s 20*20 #882 8.1e-2 0s 0s
18 #74 4.9e-3 6.5s 1.4s 40*40 #3362 1.5e-2 0.1s 0s
20 #82 4.5e-4 6.5s 1.4s 60*60 #7442 4.6e-3 0.2s 0.1s

k=60
48 #194 2.0e-3 6.8s 1.7s 60*60 #7442 8.9e-2 0.2s 0.1s
54 #218 2.5e-4 6.4s 1.3s 120*120 #29282 1.1e-2 1.4s 1.1s
60 #242 2.0e-6 6.4s 1.3s 180*180 #65522 3.1e-3 4.8s 4.1s

k=100
80 #322 1.4e-3 6.6s 1.3s 100*100 #20402 7.1e-2 0.9s 0.6s
90 #362 5.0e-6 6.4s 1.3s 200*200 #80802 9.2e-3 5.8s 4.9s

100 #402 2.4e-6 6.4s 1.3s 300*300 #181202 2.7e-3 19.1s 17.1s

Table 2: Relative L2 error ε (the number of outer iterations IS) of DeepDDM and FDM-DDM under different
parameter µ on problem (5.3). Here k=20, γ1 =γ2 = k(1+i).

#parameters
µ 0.2 0.4 0.6 0.8 1.0

DeepDDM #98 5.1e-2(25) 2.0e-2(16) 1.0e-2(12) 8.4e-3(9) 7.1e-3(8)
FDM-DDM #7442 1.1e-2(20) 1.1e-2(12) 1.0e-2(9) 1.0e-2(8) 1.0e-2(8)

The exact solution is set as

u∗(x)= J0(k|x−s|),

where J0 denotes the Bessel function of the first kind and order 0 and s= (0.5,0.5). We
substitute the exact solution into (5.3) to compute g.

We solve the problem without using DDM first. We use PWNN and FDM to solve the
problem. Because PWNN satisfies the plane wave expansion of the Helmholtz equation,
only a few internal sample points are needed, the numbers of training data are fixed to
N f =200, Ng =2k×4.

In Table 1, the relative L2 errors and time costs are shown for different Units or Mesh
for PWNN and FDM. As k increases, the time cost of PWNN does not change signifi-
cantly. This is because the number of internal sample points of PWNN does not change
with k. When k is not very large, the second derivative of internal sample points is re-
quired, which is the main time-consuming place. When k=100, it is obvious that PWNN
achieves higher accuracy than FDM in a shorter time. This indicates that PWNN is more
efficient than FDM in solving large wave number problems.

To illustrate the effectiveness of DeepDDM and investigate its properties, we present
the results of the two-subdomain case. In practice, we set Ω1 := [0,0.5]×[0,1], Ω2 :=
[0.5,1]×[0,1], and tolΓ = 10−2. The numbers of training data are fixed to N f = 200, Ng =
2k×4, NΓ = 2k. When k= 20, we run some simple test on the choice of γ1, γ2 and µ, the
results are shown in Table 2 and Table 3. After comprehensive test results, for different
wave number k, we let γ1=γ2=

√
10k(1+i), µ=1.
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Table 3: Relative L2 error ε (the number of outer iterations IS) of DeepDDM and FDM-DDM under different
parameter γ1,γ2 on problem (5.3). Here k=20, µ=1.

#parameters
γ1=γ2= 20+10i 20+30i 20+20i 10+10i

√
200+

√
200i

DeepDDM #98 6.6e-3(11) 7.4e-3(9) 7.1e-3(8) 3.7e-3(7) 3.6e-3(7)
FDM-DDM #7442 8.6e-3(11) 1.2e-2(9) 1.0e-2(8) 1.2e-2(7) 1.1e-2(7)

Table 4: Relative L2 error ε (the number of outer iterations IS) of DeepDDM and FDM-DDM under different
Units or meshsize on problem (5.3).

DeepDDM FDM-DDM
Units #parameters E (IS) Mesh #freedoms E (IS)

k=20
20 #82 6.8e-3(7) 20*10 #462 1.5e-1(8)
22 #90 3.9e-3(7) 40*20 #1722 3.3e-2(7)
24 #98 3.6e-3(7) 60*30 #3782 1.1e-2(7)

k=60
60 #242 3.9e-3(8) 60*30 #3782 1.6e-1(9)
66 #266 4.7e-3(7) 120*60 #14762 2.9e-2(8)
72 #290 5.0e-3(7) 180*90 #32942 7.6e-3(7)

k=100
100 #402 8.7e-3(9) 100*50 #10302 1.6e-1(10)
110 #442 9.0e-3(8) 200*100 #40602 2.8e-2(9)
120 #482 7.9e-3(9) 300*150 #90902 8.3e-3(9)

In Table 4, the relative L2 errors and the number of outer iterations are shown for
different Units or Mesh for DeepDDM and FDM-DDM. Because the wave number is the
same, we use the same network structure of PWNN in the two regions. Also for FDM, we
use the same number of grids in Ω1 and Ω2. As the degrees of freedom (DOFs) increases,
the errors of solutions can reach the order of 10−3. Otherwise, if we focus on the number
of outer iterations, DeepDDM and FDM-DDM are almost the same, and the general trend
indicates that the number of outer iterations remains approximately constant no matter
how the Units or Mesh changes.

The processes of error convergence for different k are shown in Fig. 1. Here
DeepDDM-1.0k represents using PWNN with Units = 1.0k to solve subproblems, and
DeepDDM-1.1k, DeepDDM-1.2k represent similar meanings. FDM-low represents the
using FDM method with a grid size of h=1/k to solve subproblems, while h=1/5k for
FDM-high. It can be seen that the convergence speed of these methods is similar at the
beginning, but there are differences in the following iterations. This is because the initial
error mainly comes from the wrong interface conditions. As the algorithm progresses,
the error tends to be caused by the insufficient DOFs and the optimization error of the
neural network.

Fig. 2 is the simulation results of DeepDDM with Units=1.2k for wave number 20, 60
and 100. The black and purple waveforms respectively represent the numerical solutions
in Ω1 and Ω2. As we can see, the obtained waveforms in this figure are very clear, and
the wave has more vibration as k increases.
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(a) k=20 (b) k=60 (c) k=100

Figure 1: The change in relative L2 error along with out-iteration on problem (5.3).

(a) k=20 (b) k=60 (c) k=100

Figure 2: Wavefield for different wave number k obtained by DeepDDM on problem (5.3).

5.3 Helmholtz equations with piecewise constant wave number

In this section, we consider a Helmholtz equation with a piecewise constant wave num-
ber. Let’s focus on the following problem first.

−∆u−k2
1u=δs in Ω1,

−∆u−k2
2u=0 in Ω2,

[u]=0 on Γ,[
∂u
∂n

]
=0 on Γ,

∂u
∂n
−ik1u=0 on ∂Ω1\Γ,

∂u
∂n
−ik2u=0 on ∂Ω2\Γ,

(5.4)

where Ω1 := [0,0.5]×[0,1], Ω2 := [0.5,1]×[0,1], Γ := {(x,y)|x = 0.5, y∈ [0,1]}. We set the
wave source to s = (0.25,0.5). There is no analytical solution to this problem, and we
use the numerical solution of the third order FDM with more than 4 million DOFs as the
exact solution.
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Table 5: Relative L2 error ε (the number of outer iterations IS) of DeepDDM and FDM-DDM under different
parameter γ1,γ2 on problem (5.5). Here k1 =20, k2 =60, µ=1.

#parameters
γ1=γ2= 20−20i 60−60i

√
1200−

√
1200i

DeepDDM #388 3.9e-3(10) 1.0e-2(11) 4.3e-3(9)
FDM-DDM #36724 3.3e-3(10) 3.5e-3(11) 3.7e-3(9)

In Ω1, as the non-zero wave source term makes the exact solution u∗|Ω1 not satisfying
the plane wave expansion, we use PWNN to approximate u∗(x)−G(x,s). Here G(x,s) is
the fundamental solution of the Helmholtz equation of constant wave number k1,

−∆G(x,s)−k2
1G(x,s)=δs in R2, G(x,s)=

i
4

H(1)
0 (k1|x−s|).

Here H(1)
0 (z) for z∈C, is the first Hankel function of order zero. In each out iteration, we

will add or subtract the change in boundary conditions caused by G(x,s) at ∂Ω1\Γ and Γ
correspondingly, thus problem (5.4) becomes

−∆û−k2
1û=0 in Ω1,

−∆û−k2
2û=0 in Ω2,

[û]=−G(x,s) on Γ,[
∂û
∂n

]
=−∂G(x,s)

∂n
on Γ,

∂û
∂n
−ik1û=0 on ∂Ω1\Γ,

∂û
∂n
−ik2û=0 on ∂Ω2\Γ.

(5.5)

Because the wave numbers are different in Ω1 and Ω2, we will use solvers with dif-
ferent DOFs in the two regions. The Mesh of FDM and the Units of PWNN will be
proportional to wave number k. Let tolΓ = 10−2. When k1 = 20,k2 = 60, we keep µ = 1
and run some simple test on the choice of γ1,γ2, the results are shown in Table 5. After
comprehensive test results, for different k1,k2, we let γ1=γ2=

√
k1k2(1−i).

The relative L2 errors and the number of outer iterations for different Units or Mesh
for DeepDDM and FDM-DDM are shown in Table 6. Here Units1 and Units2 represent
the width of PWNN in Ω1 and Ω2, respectively, while Mesh1 and Mesh2 have similar
meanings. It can be seen that in the case of discontinuous media, DeepDDM and FDM-
DDM also have almost the same number of outer iterations, which shows the scalability
of DeepDDM. A sharp interface problem is also considered (k1 =1, k2 =200), DeepDDM
can still handle this kind of problem and converges faster than FDM-DDM.

The process of error convergence for different k1, k2 are shown in Fig. 3. In the
case of piecewise constant wave number, we can get a conclusion similar to that in the
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Table 6: Relative L2 error ε (the number of outer iterations IS) of DeepDDM and FDM-DDM under different
Units or meshsize on problem (5.5).

DeepDDM FDM-DDM
Units1 Units2 #parameters E (IS) Mesh1 Mesh2 #freedoms E (IS)

k1=20, k2=60
20 60 #324 2.2e-2(9) 20*10 60*30 #4244 8.0e-2(10)
22 66 #356 1.7e-2(9) 40*20 120*60 #16484 1.1e-2(9)
24 72 #388 4.3e-3(9) 60*30 180*90 #36724 3.7e-3(9)

k1=20, k2=100
20 100 #484 6.2e-2(10) 20*10 100*50 #10764 4.9e-2(11)
22 110 #532 1.8e-2(10) 40*20 200*100 #42324 8.6e-3(10)
24 120 #580 5.4e-3(10) 60*30 300*150 #94684 3.5e-3(10)

k1=60, k2=100
60 100 #644 6.4e-2(8) 60*30 100*50 #14084 7.3e-2(9)
66 110 #708 5.6e-3(8) 120*60 200*100 #55364 1.1e-2(9)
72 120 #772 6.5e-3(8) 180*90 300*150 #123844 3.3e-3(9)

k1=1, k2=200
20 200 #884 2.7e-2(28) 20*10 200*100 #41064 5.7e-3(44)
22 220 #972 3.7e-2(28) 40*20 400*200 #162924 1.5e-3(44)
24 240 #1060 1.8e-2(25) 60*30 600*300 #365584 1.0e-3(44)

case of constant wave number, see Fig. 1. This shows that DeepDDM can deal with the
Helmholtz equation with piecewise constant wave number well, and is no longer limited
to the problem with constant wave number. In the case of k1=1, k2=200, it is too small to
use Units1 and Mesh1 corresponding to k1, we set Units1=20, Units2=200 for DeepDDM-
1.0k, Mesh1=20∗10, Mesh2=200∗100 for FDM-low, Mesh1=100∗50, Mesh2=1000∗500 for
FDM-high, and similar for DeepDDM-1.1k and DeepDDM-1.2k. Although the large dif-
ference between k1 and k2 brings oscillation to the error in the process of out iteration, it
still shows a downward trend on the whole. Fig. 4 is the simulation results of DeepDDM
with Units1=1.2k1, Units2=1.2k2 for different k1, k2. We can see the changes in vibration
and amplitude caused by different wave numbers in the left and right half domains.

In the former problem, the source of the wave is inside the region, and the solution
contains all directions. Then we focus on the exact solution that only exists with few
unknown directions of plane wave refraction and reflection at the interfaces.



−∆u−k2
1u=0 in Ω1,

−∆u−k2
2u=0 in Ω2,

[u]=0 on Γ,[
∂u
∂n

]
=0 on Γ,

∂u
∂n

+ik1u= g1 on ∂Ω1\Γ,

∂u
∂n

+ik2u= g2 on ∂Ω2\Γ,

(5.6)

where Ω1 :=[−0.5,0]×[−0.5,0.5], Ω2 :=[0,0.5]×[−0.5,0.5], Γ:={(x,y)|x=0, y∈[−0.5,0.5]}.
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(a) k1 =20, k2 =60 (b) k1 =20, k2 =100

(c) k1 =60, k2 =100 (d) k1 =1, k2 =200

Figure 3: The change in relative L2 error along with out-iteration on problem (5.5).

Figure 4: Wavefield contour for different wave number k obtained by DeepDDM on problem (5.5).

The exact solution is set as
u∗=

d

∑
i=1

(eik1IT
i x−aieik1RT

i x) in Ω1,

u∗=
d

∑
i=1

(1−ai)eik2TT
i x in Ω2,

(5.7)
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(a) k1 =20, k2 =60 (b) k1 =20, k2 =100

(c) k1 =60, k2 =100 (d) k1 =1, k2 =200

Figure 5: The change in relative L2 error along with out-iteration on problem (5.6).

where Ii =(cosθI,i,sinθI,i)
T, Ri =(−cosθI,i,sinθI,i)

T, Ti =(cosθT,i,sinθT,i)
T represents the

direction of the incident, reflected and transmitted waves respectively. We have k2/k1 =
sinθI,i/sinθT,i for each 0< i≤ d, and ai = sin(θI,i−θT,i)/sin(θI,i+θT,i). Here we set d=10
and randomly generate {Ii}. We substitute the exact solution into (5.6) to compute g1
and g2. Follow the experience of our previous experiment, we let tolΓ = 10−2, γ1 =γ2 =√

k1k2(1+i), µ=1.
The relative L2 errors and the number of outer iterations for different Units or Mesh

for DeepDDM and FDM-DDM at this case are shown in Table 7. As can be seen, we have
obtained a conclusion similar to the previous experiment, that DeepDDM has almost the
same convergence rate as FDM-DDM. In the sharp interface problem (k1 = 1, k2 = 200),
DeepDDM also has a faster convergence rate than FDM-DDM.

In Fig. 5, we plot the process of error convergence for different k1, k2 on problem (5.6).
In this case, the error of DeepDDM-1.2k is even lower than that of FDM-DDM-high. This
is because PWNN can find the direction of the exact solution, which is difficult for other
methods. Same as before, in the case of k1 = 1, k2 = 200, we set Units1 = 20, Units2 =
200 for DeepDDM-1.0k, Mesh1=20∗10, Mesh2=200∗100 for FDM-low, Mesh1=100∗50,
Mesh2 = 1000∗500 for FDM-high, and similar for DeepDDM-1.1k and DeepDDM-1.2k.
The large difference between k1 and k2 also brings oscillation to the error in the process
of out iteration in this case.

Fig. 6 shows the comparison of the direction predicted by DeepDDM-1.2K with the
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(a) k1 =20, k2 =60 (b) k1 =20, k2 =100 (c) k1 =60, k2 =100

Figure 6: The directions (cosθ,sinθ) of exact solutions and DeepDDM solutions on problem (5.6). The upper
part and the lower part represent the direction of the wave in Ω1 and Ω2, respectively.

Table 7: Relative L2 error ε(The number of outer iterations IS) of DeepDDM and FDM-DDM under different
Units or meshsize on problem (5.6).

DeepDDM FDM-DDM
Units1 Units2 #parameters E (IS) Mesh1 Mesh2 #freedoms E (IS)

k1=20, k2=60
20 60 #324 2.6e-3(11) 20*10 60*30 #4244 1.0e-1(11)
22 66 #356 3.3e-3(11) 40*20 120*60 #16484 1.7e-2(11)
24 72 #388 1.1e-3(11) 60*30 180*90 #36724 5.2e-3(11)

k1=20, k2=100
20 100 #484 3.1e-3(11) 20*10 100*50 #10764 1.4e-1(11)
22 110 #532 1.5e-3(11) 40*20 200*100 #42324 2.1e-2(11)
24 120 #580 1.4e-3(11) 60*30 300*150 #94684 6.4e-3(11)

k1=60, k2=100
60 100 #644 3.3e-3(9) 60*30 100*50 #14084 1.5e-1(9)
66 110 #708 2.9e-3(9) 120*60 200*100 #55364 2.6e-2(9)
72 120 #772 2.4e-3(9) 180*90 300*150 #123844 7.4e-3(9)

k1=1, k2=200
20 200 #884 9.1e-4(27) 20*10 200*100 #41064 1.2e-2(37)
22 220 #972 1.2e-3(28) 40*20 400*200 #162924 2.2e-3(37)
24 240 #1060 7.0e-4(29) 60*30 600*300 #365584 6.0e-4(36)

direction of the exact solution. For the sake of brevity, we have only drawn the predicted
directions with an amplitude of bigger than 0.1. The upper part represents the directions
of incident and reflection, while the lower part represents the directions of refraction. It
can be seen that almost all directions of the exact solution are captured by DeepDDM,
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which proves that DeepDDM does have the ability to find exact directions in Helmholtz
equations with piecewise constant wave numbers.

6 Conclusions

We have introduced DeepDDM, a novel framework bridging deep learning, plane wave
method and domain decomposition, to approximate solutions of the Helmholtz equation.
The presented approach showcases a series of promising results for Helmholtz equations
with constant and piecewise constant wave numbers. These numerical results demon-
strate that the convergence rate of DeepDDM is close to that of FDM-DDM. Furthermore,
DeepDDM takes less time for each out-iteration than FDM-DDM in the case of large wave
numbers, which indicates that DeepDDM is more efficient than FDM-DDM for both con-
stant and piecewise constant wave number problems.

This work presents some experiments to provide insights for theoretical study. We
will develop DeepDDM for some more general cases such as the unbounded Helmholtz
equation in the future.
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