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Abstract. In this paper, a three-dimensional time-dependent nonlinear Riesz space-
fractional reaction-diffusion equation is considered. First, a linearized finite volume
method, named BDF-FV, is developed and analyzed via the discrete energy method,
in which the space-fractional derivative is discretized by the finite volume element
method and the time derivative is treated by the backward differentiation formulae
(BDF). The method is rigorously proved to be convergent with second-order accu-
racy both in time and space with respect to the discrete and continuous L2 norms.
Next, by adding high-order perturbation terms in time to the BDF-FV scheme, an al-
ternating direction implicit linear finite volume scheme, denoted as BDF-FV-ADI, is
proposed. Convergence with second-order accuracy is also strictly proved under a
rough temporal-spatial stepsize constraint. Besides, efficient implementation of the
ADI method is briefly discussed, based on a fast conjugate gradient (FCG) solver for
the resulting symmetric positive definite linear algebraic systems. Numerical experi-
ments are presented to support the theoretical analysis and demonstrate the effective-
ness and efficiency of the method for large-scale modeling and simulations.
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1 Introduction

In the past decades, nonlinear space-fractional differential equations (s-FDEs) have been
shown to provide an adequate and accurate description for challenging phenomena such
as long-range interaction and anomalously diffusive transport in various science and en-
gineering fields. For example, the fractional Allen-Cahn equation [2, 12] was applied to
describe the mesoscale morphological pattern formation and interface motion; the frac-
tional FitzHugh-Nagumo model [3] was used to represent impulse propagation in nerve
membranes; and the fractional Bloch-Torrey equation [21] has been successfully used in
magnetic resonance. However, in most case it is not available to obtain the analytical
solutions [15,32] for fractional differential equations. Therefore, efficient numerical mod-
eling becomes extremely urgent and important. Up to now, there has been an increasing
interest in developing and analyzing efficient numerical methods, see [4, 7, 16, 19, 20, 23,
24, 28, 31, 35, 37, 38] and the references therein.

Due to the local conservation property, the finite volume (FV) method is particu-
larly suitable for modeling and simulation of conservative type s-FDEs. Hejazi and Mo-
roney [10] presented a finite volume approximation to the one-dimensional time-space
fractional advection-dispersion equation, and showed that this method performs bet-
ter than finite difference method for the considered problem with variable coefficient,
since it deals with the equation directly in a conservative form. A preconditioned Lanc-
zos method which uses finite volume spatial discretization for space-fractional reaction-
diffusion equations was proposed and verified to be suitable for unstructured meshes
in [36]. Liu et al. [20] presented a finite volume method for the space-fractional diffusion
equation with variable coefficients and nonlinear source term. Simmons and Yang [27]
developed a novel finite volume discretization based on non-uniform meshes for two-
sided fractional diffusion equations with Riemann-Liouville derivative and proved the
stability of the scheme. In order to obtain second-order temporal accuracy, some nu-
merical techniques like Crank-Nicolson method [8, 38] and backward differentiation for-
mulae (BDF) [5, 13] were considered for related fractional models. In particular, Fu et
al. presented second-order Crank-Nicolson FV approximations for the two-dimensional
s-FDEs [8], and for the three-dimensional nonlinear distributed-order s-FDEs [41]. Corre-
sponding unconditional stability and error estimates in discrete energy norms were rig-
orously studied. However, the FV scheme coupling with the BDF method for nonlinear
space-fractional models has not been studied yet.

In this paper, we are interested in the following three-dimensional nonlinear Riesz
space-fractional reaction-diffusion equation (s-FRDEs) with orders α (1<α<2) in x- di-
rection, β (1<β<2) in y- direction and γ (1<γ<2) in z-direction [6, 13]:

∂u
∂t
−dx

∂αu(x,t)
∂|x|α −dy

∂βu(x,t)
∂|y|β

−dz
∂γu(x,t)

∂|z|γ = f (u)+g(x,t), (x,t)∈Ω×(0,T], (1.1a)

u(x,t)=0, (x,t)∈∂Ω×[0,T], u(x,0)=u0(x), x∈Ω, (1.1b)

where T<∞ is the final time instant, ∂Ω is the boundary of Ω⊂R3 and x=(x,y,z).
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Generally speaking, numerical methods based on fully-implicit discretization for the
nonlinear model (1.1a)–(1.1b) are usually proved to be unconditionally stable and con-
vergent. However, one has to solve a system of nonlinear equations [12, 41], in which
an extra iterative process must be imposed at each time level. To reduce the computa-
tional costs, many linearized numerical methods are developed. For example, Cheng et
al. [6] presented a second-order Newton linearized compact difference scheme for the
two-dimensional analogs of (1.1a), under the assumption that f (u) ∈ C2(R). Hu and
Cao [13] utilized the BDF and temporal extrapolation techniques, and proposed a com-
pact ADI scheme for the same model under the global Lipschitz continuous assump-
tion of f (u). Combining the fourth-order compact operator in space discretization, a
linearized compact difference scheme was proposed in [40] for the two-dimensional non-
linear space-fractional Schrödinger equation, and then a compact ADI scheme was also
presented and analyzed. The main purposes of this paper are (i) to develop an efficient
linearized second-order accurate finite volume method for the three-dimensional model
(1.1a) under assumption f (u)∈C1(R), and (ii) to establish corresponding convergence
analysis under a weak temporal-spatial stepsize constraint. For discretization of the time
derivative, we shall also use the two-step BDF scheme combined with second-order tem-
poral extrapolation technique; while for the spatial counterpart, the linear finite volume
element method is adopted.

From the perspective of computation, there will be huge computational complexity
and storage problem when numerically solving multi-dimensional time-dependent mod-
els. To overcome these challenges, the alternating direction implicit (ADI) techniques,
which reduce the solution of a multi-dimensional large-scale problem to a series of in-
dependent one-dimensional small-scale subproblems, have deserved great increasing re-
search interests. For instance, Tadjeran and Meerschaert [29] proposed a second-order
ADI difference method for the two-dimensional s-FDEs, and stability was discussed by
using a spectral analysis method. Zhao et al. [40] established a fourth-order compact
ADI difference scheme for the two-dimensional space-fractional Schrödinger equation.
In [38], Zeng et al. developed an ADI Galerkin-Legendre spectral method for the two-
dimensional nonlinear s-FRDEs and proved its stability and convergence. After that,
Zhang et al. [39] extended this ADI method to the two-dimensional advection-diffusion
equation with the Riesz space distributed-order derivative. Recently, Liu et al. [18] con-
structed and analyzed a second-order ADI finite volume method for the two-dimensional
linear s-FDEs. Besides, due to the non-local nature of fractional derivatives, numerical
methods for s-FDEs usually yield dense stiffness matrices which require O(N2) memory
and O(N3) computational complexity per time step using the direct Gaussian elimina-
tion (GE) solver, where N is the total number of spatial unknowns. Wang et al. [33] then
developed a fast ADI difference method, which only requires computational work of
O(N log2 N) per time step and memory of O(N) without losing any accuracy. The idea
was also adopted in e.g., [14, 18, 34]. These works inspire us to propose an efficient fi-
nite volume ADI method, denoted as BDF-FV-ADI, for the three-dimensional nonlinear
s-FRDEs. Most importantly, it is well known that the ADI method is well suitable for
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large-scale modeling and simulations via parallel computing.
The rest of this paper is organized as follows. In Section 2, some preliminary lemmas

are presented. In Section 3, we propose the BDF-FV scheme and analyze the second-order
convergence in the discrete and continuous L2 norms. Then, the BDF-FV-ADI method
and corresponding error estimate are carefully discussed in Section 4, and also efficient
implementation of the ADI method is briefly analyzed. In Section 5, we carry out several
numerical experiments to verify the effectiveness and efficiency of the proposed method.
Finally, we draw a brief conclusion. In the following, we use C to represent a general
positive constant, which can be different under different circumstances.

2 Preliminaries

Let Ω :=(xL,xR)×(yL,yR)×(zL,zR) be the interested domain. In model (1.1a), u(x,t) usu-
ally represents concentration, mass, or other physical quantities of interest, f (u)∈C1(R)
is a nonlinear reaction term and g(x,t) is a given source or sink term. Besides, dx, dy and
dz are three positive constant-diffusivity coefficients. Moreover, the Risez space-fractional
derivative ∂αu(x,t)

∂|x|α is defined by [25]

∂αu(x,t)
∂|x|α :=− 1

2cos(απ/2)
∂

∂x

(
∂α−1u(x,t)

∂+xα−1 −
∂α−1u(x,t)

∂−xα−1

)
,

with

∂α−1u(x,t)
∂+xα−1 :=

1
Γ(2−α)

∂

∂x

∫ x

xL

u(x,t)
(x−s)α−1 ds,

∂α−1u(x,t)
∂−xα−1 :=− 1

Γ(2−α)

∂

∂x

∫ xR

x

u(x,t)
(s−x)α−1 ds.

For simplicity of presentation, we denote

Dα−1 :=
∂α−1

∂+xα−1−
∂α−1

∂−xα−1 .

The Risez derivatives ∂βu(x,t)
∂|y|β and ∂γu(x,t)

∂|z|γ in other two directions can be defined in a similar
way.

Let M be a positive integer and define a uniform temporal partition of [0,T] with
tm :=mτ for m= 0,1,··· ,M, such that the temporal stepsize τ :=T/M. Denote the set of
temporal partition It :={1,2,··· ,M}. For m=1, we approximate the time derivative by the
first-order BDF (Backward Euler) method, i.e., g′(t1)≈ (g(t1)−g(t0))/τ; while for m≥2,
we approximate it by the second-order BDF method, i.e.,

g′(tm)≈ (3g(tm)−4g(tm−1)+g(tm−2))/2τ.

Then the following lemma holds.
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Lemma 2.1 ([30]). Let

Dtu(x,tm) :=


u(x,t1)−u(x,t0)

τ
, m=1,

3u(x,tm)−4u(x,tm−1)+u(x,tm−2)

2τ
, m≥2.

(2.1)

Then, for u(x,·)∈C3([0,T]), it holds

∂u(x,tm)

∂t
=Dtu(x,tm)+rm

t , m∈It,

such that

|rm
t |=

{
O(τ), m=1,
O
(
τ2), m≥2.

At each time level tm, the nonlinear reaction term can be approximated by the linear
extrapolation method [13]

f (u(x,tm))≈ f̂ (u(x,tm)) :=

{
f (u(x,t0)), m=1,
f (2u(x,tm−1)−u(x,tm−2)), m≥2.

(2.2)

Lemma 2.2. Let rm
n := f (u(x,tm))− f̂ (u(x,tm)). Then, if f (u)∈C1(R) and u(x,·)∈C2[0,T],

it holds

|rm
n |=

{
O(τ), m=1,
O
(
τ2), m≥2.

Let A⊗B represents the Kronecker product of two matrices A and B. We review the
following well-known conclusions which are required in the analysis.

Lemma 2.3 ([17]). Suppose A and B are two real symmetric positive definite matrices, then both
A⊗B and B⊗A are symmetric positive definite.

Lemma 2.4 ([11]). Let A∈Rm×n, B∈Rr×s, C∈Rn×p and D∈Rs×t. Then

(A⊗B)(C⊗D)=AC⊗BD.

The following lemma can be proved directly from Lemma 2.4.

Lemma 2.5. Let {Ai}2
i=1∈Rm×m, {Bi}2

i=1∈Rn×n and {Ci}2
i=1∈Rr×r. Accordingly, let Iκ be

the identity matrix of order κ for κ=m,n and r, we have(
A1±A2

)
⊗
(
B1±B2

)
⊗
(
C1±C2

)
=
(
(A1±A2

)
⊗In⊗Ir

)(
Im⊗

(
B1±B2

)
⊗Ir

)(
Im⊗In⊗

(
C1±C2

))
. (2.3)
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3 The BDF-FV method and its error estimate

In this section, we are committed to establishing the finite volume space discretization
of the three-dimensional nonlinear Riesz s-FRDEs model (1.1a)–(1.1b) combined with the
second-order BDF time discretization and the linear extrapolation technique. Meanwhile,
we shall prove the corresponding convergence analysis.

3.1 Derivation of the BDF-FV scheme

First, note that at each time level tm, model (1.1a) can be rewritten as

Dtu(x,tm)−dx
∂αu(x,tm)

∂|x|α −dy
∂βu(x,tm)

∂|y|β
−dz

∂γu(x,tm)

∂|z|γ

= f̂ (u(x,tm))+g(x,tm)+rm
n +rm

t , (3.1)

where the temporal truncation errors rm
t and rm

n satisfy Lemmas 2.1–2.2.
Let Nx, Ny and Nz be three given positive integers. The domain Ω is uniformly di-

vided by xi := xL+ihx, yj := yL+ jhy, zk := zL+khz for i= 0,1,··· ,Nx+1, j= 0,1,··· ,Ny+1
and k = 0,1,··· ,Nz+1, such that the spatial mesh sizes hx := (xR−xL)/(Nx+1), hy :=
(yR−yL)/(Ny+1) and hz := (zR−zL)/(Nz+1). Denote the sets of spatial partitions as
Ix :={1,2,··· ,Nx}, Iy :={1,2,··· ,Ny} and Iz :={1,2,··· ,Nz}. Moreover, let xi−1/2 :=(xi−1+
xi)/2, yj−1/2 :=(yj−1+yj)/2, zk−1/2 :=(zk−1+zk)/2 and define the control volume element
Ωi,j,k :=[xi−1/2,xi+1/2]×[yj−1/2,yj+1/2]×[zk−1/2,zk+1/2] for each i∈Ix, j∈Iy and k∈Iz.

Let Sh(Ω) be the space of continuous and piecewise linear functions with respect to
the spatial partition, which vanishes at the boundary ∂Ω. Besides, let um

i,j,k be the finite
volume approximations to the true solution u(xi,yj,zk,tm) for i∈ Ix, j∈ Iy and k∈ Iz at
time tm,m∈ It. Then the finite volume solution uh(x,tm)∈Sh(Ω) of model (1.1a) can be
expressed as

uh(x,tm) := ∑
l∈Ix

∑
r∈Iy

∑
s∈Iz

um
l,r,sφ

x
l (x)φy

r (y)φz
s (z), (3.2)

where φx
l (x), φ

y
r (y) and φz

s (z) are the standard Lagrange piecewise linear nodal basis
functions along the x-, y- and z-directions, respectively. Basically, we have the following
conclusions for the basis functions.

Lemma 3.1 ([7, 41]). For each piecewise linear nodal basis function φx
l (x), l∈Ix, we have

∫ xi+1/2

xi−1/2

φx
l (x)dx=

hx

8


1, |l−i|=1,
6, l= i,
0, else,
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Dα−1φx
l (x)

∣∣∣
x=xi−1/2

=
1

hα−1
x Γ(3−α)



−s(α)l−i+1, l> i,

s(α)0 −s(α)1 , l= i,

s(α)1 −s(α)0 , l= i−1,

s(α)i−l , l< i−1,

Dα−1φx
l (x)

∣∣∣
x=xi+1/2

=
1

hα−1
x Γ(3−α)



−s(α)l−i, l> i+1,

s(α)0 −s(α)1 , l= i+1,

s(α)1 −s(α)0 , l= i,

s(α)i−l+1, l< i,

where

s(α)i =



(
1
2

)2−α

, i=0,(
3
2

)2−α

−2
(

1
2

)2−α

, i=1,(
i+

1
2

)2−α

−2
(

i− 1
2

)2−α

+

(
i− 3

2

)2−α

, 2≤ i≤Nx.

Remark 3.1. Similar conclusions for the basis functions φ
y
r (y),r∈ Iy and φz

s (z),s∈ Iz can
be derived by a small modification of Lemma 3.1, in which parameters (hx,Nx,α) are
replaced by (hy,Ny,β) and (hz,Nz,γ), respectively.

Now we consider the finite volume element approximation of model (1.1a). Integrat-
ing both sides of the governing equation (3.1) over each Ωi,j,k with u(x,tm) replaced by
uh(x,tm) in (3.2), and then dropping the temporal truncation errors give rise to the lin-
early implicit BDF-FV scheme:

∑
l∈Ix

∑
r∈Iy

∑
s∈Iz

Dtum
l,r,s

∫
Ωi,j,k

φx
l (x)φy

r (y)φz
s (z)dx

+
dx

2cos(απ/2) ∑
l∈Ix

∑
r∈Iy

∑
s∈Iz

um
k,r,s

[
Dα−1φx

l (x)
∣∣∣xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

φ
y
r (y)dy

∫ zk+1/2

zk−1/2

φz
s (z)dz

]

+
dy

2cos(βπ/2) ∑
l∈Ix

∑
r∈Iy

∑
s∈Iz

um
l,r,s

[
Dβ−1φ

y
r (y)

∣∣∣yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

φx
l (x)dx

∫ zk+1/2

zk−1/2

φz
s (z)dz

]

+
dz

2cos(γπ/2) ∑
l∈Ix

∑
r∈Iy

∑
s∈Iz

um
l,r,s

[
Dγ−1φz

s (z)
∣∣∣zk+1/2

zk−1/2

∫ xi+1/2

xi−1/2

φx
l (x)dx

∫ yj+1/2

yj−1/2

φ
y
r (y)dy

]
=hxhyhz

[
N m

i,j,k+Lm
i,j,k

]
, (3.3)



B. Zhang, H. Fu, X. Liang, J. Liu and J. Zhang / Adv. Appl. Math. Mech., 14 (2022), pp. 1400-1432 1407

where

N m
i,j,k :=

1
hxhyhz

∫
Ωi,j,k

f̂ (uh(x,tm))dx, Lm
i,j,k :=

1
hxhyhz

∫
Ωi,j,k

g(x,tm)dx. (3.4)

Next, we reformulate the finite volume scheme (3.3) into a compact matrix form. Let
Um,N m and Lm be N :=Nx NyNz- dimensional vectors defined by

Um :=
[
um

1,1,1,··· ,um
Nx ,1,1,··· ,um

1,Ny,1,··· ,um
Nx ,Ny,1,··· ,um

1,1,Nz
,··· ,um

Nx ,Ny,Nz

]>
, (3.5a)

N m :=
[
N m

1,1,1,··· ,N m
Nx ,1,1,··· ,N m

1,Ny,1,··· ,N m
Nx ,Ny,1,··· ,N m

1,1,Nz
,··· ,N m

Nx ,Ny,Nz

]>
, (3.5b)

Lm :=
[
Lm

1,1,1,··· ,Lm
Nx ,1,1,··· ,Lm

1,Ny,1,··· ,Lm
Nx ,Ny,1,··· ,Lm

1,1,Nz
,··· ,Lm

Nx ,Ny,Nz

]>
. (3.5c)

Furthermore, let Ax and Bx be respectively the mass matrix and stiffness matrix of order
Nx as

Ax :=
1
8



6 1 ··· ··· 0

1 6 1
. . .

...
...

. . . . . . . . .
...

...
. . . 1 6 1

0 ··· ··· 1 6


, Bx :=



q(α)1 q(α)2 ··· ··· q(α)Nx

q(α)2 q(α)1 q(α)2
. . .

...
...

. . . . . . . . .
...

...
. . . q(α)2 q(α)1 q(α)2

q(α)Nx
··· ··· q(α)2 q(α)1


, (3.6)

with

q(α)i =


2
(
s(α)0 −s(α)1

)
, i=1,

s(α)1 −s(α)0 −s(α)2 , i=2,

s(α)i−1−s(α)i , 3≤ i≤Nx.

Similarly, we can define the matrices Ay and By of order Ny, and Az and Bz of order Nz,
just with (α,Nx) being replaced by (β,Ny) and (γ,Nz).

Let

ηα :=
dx

2cos(απ/2)Γ(3−α)

τ

hα
x

,

ηβ :=
dy

2cos(βπ/2)Γ(3−β)

τ

hβ
y

,

ηγ :=
dz

2cos(γπ/2)Γ(3−γ)

τ

hγ
z

.

Then the matrix form of the BDF-FV scheme (3.3) reads as:(
Az⊗Ay⊗Ax

)
D̂tUm+

(
ηαAz⊗Ay⊗Bx+ηβAz⊗By⊗Ax+ηγBz⊗Ay⊗Ax

)
Um

=τ(N m+Lm), (3.7)
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for m∈It, where

D̂tUm :=


U1−U0, m=1,
3Um−4Um−1+Um−2

2
, m≥2.

The following lemma follows immediately from [8].

Lemma 3.2. The mass matrices Ax, Ay and Az and the stiffness matrices Bx, By and Bz are all
symmetric positive definite.

Remark 3.2. Lemmas 2.3 and 3.2 further imply that the Kronecker products Az⊗Ay⊗Ax,
Az⊗Ay⊗Bx, Az⊗By⊗Ax and Bz⊗Ay⊗Ax in (3.7) are all symmetric positive definite. Be-
sides, Az⊗By⊗Bx, Bz⊗Ay⊗Bx, Bz⊗By⊗Ax and Bz⊗By⊗Bx are also symmetric positive
definite. These facts play an important role in the following convergence estimates.

Remark 3.3. We have proposed a linearized second-order finite volume scheme (3.3),
which avoids the solution of a nonlinear algebra system resulting from the fully-implicit
finite volume discretization of the nonlinear Riesz s-FRDE model (1.1a). However, at each
time level tm (m∈It), one still has to solve a large-scale and dense N-by-N linear algebra
system (3.7). It is well-known that if the traditional GE solver is adopted for the solution
of (3.7), the memory requirement is of order O(N2) and the computational complexity is
of order O(N3). This is deemed computationally challenging for large-scale modeling of
multi-dimensional s-FRDEs, compared with the one-dimensional analogs.

However, note that the matrices Ax, Ay and Az are all tri-diagonal, and Bx, By and
Bz are all symmetric positive definite and Topelitz [9]. Based on these special matrix
structures, using the same idea of Zheng et al. [41], we can develop a fast version Krylov
subspace iterative method for the BDF-FV scheme (3.7), in which the computational com-
plexity can be reduced to O(N logN) per iteration and meanwhile the total memory re-
quirement is reduced to O(N). As it is not the main concern of this paper, we refer
readers to [41] for the details.

3.2 Error estimate of the BDF-FV scheme

In this subsection, we prove the convergence of the BDF-FV scheme (3.7) via the discrete
energy method. Throughout the paper, just like [6, 40], we assume that there exists a
positive constant K such that

max
x∈Ω
|u(x,tm)|≤K, m∈It. (3.8)

Define mesh grid space

Vh =
{

v
∣∣v={vi,j,k}, i∈Ix, j∈Iy, k∈Iz

}
.
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For any v,w∈Vh, define the discrete L2 inner product and discrete L2 and L∞ norms as
follows:

(v,w) :=hxhyhzw>v=hxhyhz ∑
i∈Ix

∑
j∈Iy

∑
k∈Iz

vi,j,kwi,j,k, (3.9a)

‖v‖ :=
√
(v,v), ‖v‖∞ := max

i∈Ix , j∈Iy, k∈Iz
|vi,j,k|. (3.9b)

Moreover, we introduce the following weighted discrete inner product and norm

(v,w)K :=(Kv,w)=hxhyhzw>Kv, ‖v‖K :=
√
(v,v)K, (3.10)

for any positive definite matrix K of order N. In particular, by Remark 3.2 we define

‖v‖A :=‖v‖Az⊗Ay⊗Ax , (3.11a)

‖v‖E :=
(

ηα‖v‖2
Az⊗Ay⊗Bx

+ηβ‖v‖2
Az⊗By⊗Ax

+ηγ‖v‖2
Bz⊗Ay⊗Ax

)1/2
. (3.11b)

The following lemma states the equivalence of the norms ‖·‖A and ‖·‖.

Lemma 3.3 ([41]). The ‖·‖ and ‖·‖A norms are equivalent with the following relation holds

1
2
√

2
‖v‖≤‖v‖A≤‖v‖, v∈Vh.

Let Πh be the standard Lagrange piecewise linear interpolation operator [26], i.e.,

Πhg(x) := ∑
l∈Ix

∑
r∈Iy

∑
s∈Iz

g(xl ,yr,zs)φ
x
l (x)φy

r (y)φz
s (z), (3.12)

where φx
l (x), φ

y
r (y) and φz

s (z) are the Larange piecewise linear basis functions. Denote

rm
I :=u(x,tm)−Πhu(x,tm), m∈It.

Then, for u(·,t)∈C2(Ω) we have

|rm
I |=O

(
h2

x+h2
y+h2

z

)
. (3.13)

For n∈N∪{0} and θ>0, define

Ln+θ(R)=
{

ϕ(z)∈L1(R)
∣∣∣∫ ∞

−∞
(1+|ω|)n+θ |F (ω)|dω<∞

}
,

where
F (ω)=

∫ ∞

−∞
ϕ(z)eiωzdz
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denotes the Fourier transform of ϕ(z).
Denote the spatial truncation errors

rm
x :=Dα−1rm

I , rm
y :=Dβ−1rm

I , rm
z :=Dγ−1rm

I .

Moreover, for fixed y∈ [yL,yR], z∈ [zL,zR] and t∈ [0,T], define

ũ(x,t)=

{
u(x,t), x∈ [xL,xR],
0, x /∈ [xL,xR],

for fixed x∈ [xL,xR], z∈ [zL,zR] and t∈ [0,T], define

û(x,t)=

{
u(x,t), y∈ [yL,yR],
0, y /∈ [yL,yR],

for fixed x∈ [xL,xR], y∈ [yL,yR] and t∈ [0,T], define

ǔ(x,t)=

{
u(x,t), z∈ [zL,zR],
0, z /∈ [zL,zR].

Then the following lemma holds.

Lemma 3.4 ([18]). Assume that for each fixed t∈ [0,T], the zero extension functions ũ(·,y,z,t)∈
L2+α(R), û(x,·,z,t)∈L2+β(R) and ǔ(x,y,·,t)∈L2+γ(R). Then∣∣∣∣∣rm

x

∣∣∣x=x
i+ 1

2

x=x
i− 1

2

∣∣∣∣∣=O(h3
x),

∣∣∣∣∣rm
y

∣∣∣y=y
j+ 1

2

y=y
j− 1

2

∣∣∣∣∣=O(h3
y),

∣∣∣∣∣rm
z

∣∣∣z=z
k+ 1

2

z=z
k− 1

2

∣∣∣∣∣=O(h3
z).

Next, we turn to the estimate of the BDF-FV scheme (3.7). We see from the governing
equation (3.1) that the exact solution u(x,tm) satisfies the following formula∫

Ωi,j,k

Dtu(x,tm)dx+
dx

2cos(απ/2)

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

[
Dα−1u(x,tm)

∣∣∣xi+1/2

xi−1/2

]
dydz

+
dy

2cos(βπ/2)

∫ xi+1/2

xi−1/2

∫ zk+1/2

zk−1/2

[
Dβ−1u(x,tm)

∣∣∣yj+1/2

yj−1/2

]
dxdz

+
dz

2cos(γπ/2)

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

[
Dγ−1u(x,tm)

∣∣∣zk+1/2

zk−1/2

]
dxdy

=hxhyhz

[
Ñ m

i,j,l+Lm
i,j,l+rm

t +rm
n

]
, (3.14)

where
Ñ m

i,j,l :=
1

hxhyhz

∫
Ωi,j,k

f̂ (u(x,tm))dx. (3.15)
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Let um :={u(xi,yj,zk,tm)}∈Vh be the exact solution vector of (1.1a) at t=tm. Now replacing
u(x,tm) on the left-hand side of (3.14) by its Lagrange linear interpolation Πhu(x,tm), it
follows from (3.13) and Lemma 3.4 that the exact solution vector um also satisfies a similar
formula of (3.3) with an extra local spatial truncation error

|rm
s |=O

(
h2

x+h2
y+h2

z

)
. (3.16)

That means in matrix form the error em :=um−Um satisfies(
Az⊗Ay⊗Ax

)
D̂tem

+
(
ηαAz⊗Ay⊗Bx+ηβAz⊗By⊗Ax+ηγBz⊗Ay⊗Ax

)
em

=τ
(
Ñ m−N m+Rm

)
, (3.17)

for m∈It, where Rm =(rm
t +rm

n +rm
s )E and E=[1,1,··· ,1]>.

Lemma 3.5. Let N m,Ñ m∈Vh with elements defined by (3.4) and (3.15), respectively. If f (·)∈
C1(R), then we have

‖Ñ m−N m‖2≤


O
(

h2
x+h2

y+h2
z

)2
, m=1,

128L2‖2em−1−em−2‖2
A+O

(
h2

x+h2
y+h2

z

)2
, m≥2,

provided that the the finite volume solutions uh(x,tm−1) and uh(x,tm−2) are bounded. Here the
constant L :=max| f ′(·)| is finite which depends on the solutions uh(x,tm−1) and uh(x,tm−2).

Proof. First, for the initial time we take uh(x,t0)=Πhu0(x) which yields

∣∣∣Ñ 1
i,j,k−N 1

i,j,k

∣∣∣=∣∣∣∣∣ 1
hxhyhz

∫
Ωi,j,k

[
f
(
u0(x)

)
− f
(
u0

h(x)
)]

dx

∣∣∣∣∣
≤ 1

hxhyhz

∫
Ωi,j,k

∣∣ f (u0(x)
)
− f
(
Πhu0(x)

)∣∣dx

≤ 1
hxhyhz

∫
Ωi,j,k

L
∣∣r0

I
∣∣dx≤C

(
h2

x+h2
y+h2

z

)
,

where the interpolation estimate (3.13) is utilized in the last step, and L is finite because
the initial value uh(x,t0)=Πhu0(x) is bounded. With the help of the above inequality, we
then directly have

‖Ñ 1−N 1‖2=hxhyhz ∑
i∈Ix

∑
j∈Iy

∑
k∈Iz

∣∣∣Ñ 1
i,j,k−N 1

i,j,k

∣∣∣2≤C
(

h2
x+h2

y+h2
z

)
, (3.18)

which proves the case for m=1.
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Next, we pay special attention on the estimate of ‖Ñ m−N m‖ for m≥2. By the mean
value theorem

‖Ñ m−N m‖2=hxhyhz ∑
i∈Ix

∑
j∈Iy

∑
k∈Iz

[
1

hxhyhz

∫
Ωi,j,k

f
(

2u(x,tm−1)−u(x,tm−2)
)

− f
(

2uh(x,tm−1)−uh(x,tm−2)
)

dx

]2

≤L2 ∑
i∈Ix

∑
j∈Iy

∑
k∈Iz

∫
Ωi,j,k

∣∣∣(2u(x,tm−1)−u(x,tm−2))

−(2uh(x,tm−1)−uh(x,tm−2))
∣∣∣2dx,

for f (·) ∈ C1(R), provided that the numerical solutions uh(x,tm−1) and uh(x,tm−2) are
bounded.

Note that on each control volume element Ωi,j,k, by triangle inequality we have∣∣∣(2u(x,tm−1)−u(x,tm−2))−(2uh(x,tm−1)−uh(x,tm−2))
∣∣∣

≤
∣∣∣(2u(x,tm−1)−u(x,tm−2))−(2Πhu(x,tm−1)−Πhu(x,tm−2))

∣∣∣
+
∣∣∣(2Πhu(x,tm−1)−Πhu(x,tm−2))−(2uh(x,tm−1)−uh(x,tm−2))

∣∣∣
=
∣∣∣2rm−1

I −rm−2
I

∣∣∣+∣∣∣2eh(x,tm−1)−eh(x,tm−2)
∣∣∣,

where
eh(x,tm) :=Πhu(x,tm)−uh(x,tm),

and thus

‖Ñ m−N m‖2≤2L2 ∑
i∈Ix

∑
j∈Iy

∑
k∈Iz

∫
Ωi,j,k

∣∣∣2rm−1
I −rm−2

I

∣∣∣2dx

+2L2 ∑
i∈Ix

∑
j∈Iy

∑
k∈Iz

∫
Ωi,j,k

∣∣∣2eh(x,tm−1)−eh(x,tm−2)
∣∣∣2dx

= : I1+ I2. (3.19)

While for the first term of (3.19), by interpolation estimate (3.13), it is bounded by

I1≤C
(

h2
x+h2

y+h2
z

)2
. (3.20)

Next, for the second term I2, note that on each fixed element Ωi,j,k, we have

eh(x,tm)=
i+1

∑
l=i−1

j+1

∑
r=j−1

k+1

∑
s=k−1

em
l,r,sφ

x
l (x)φy

r (y)φz
s (z) (3.21)
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and therefore

I2=2L2 ∑
i∈Ix

∑
j∈Iy

∑
k∈Iz

∫
Ωi,j,k

(
i+1

∑
l=i−1

j+1

∑
r=j−1

k+1

∑
s=k−1

(
2em−1

l,r,s −em−2
l,r,s

)
φx

l (x)φy
r (y)φz

s (z)

)2

dx

≤54L2 ∑
i∈Ix

∑
j∈Iy

∑
k∈Iz

[
i+1

∑
l=i−1

j+1

∑
r=j−1

k+1

∑
s=k−1

(
2em−1

l,r,s −em−2
l,r,s

)2
]

×
∫

Ωi,j,k

(
φx

l (x)
)2(

φ
y
r (y)

)2(
φz

s (z)
)2

dx

≤16L2 ‖2em−1−em−2‖2, (3.22)

where we have used the facts [41] that∫ xi+1/2

xi−1/2

(
φx

i (x)
)2

dx=
7hx

12
,∫ xi+1/2

xi−1/2

(
φx

i+1(x)
)2

dx=
∫ xi+1/2

xi−1/2

(
φx

i−1(x)
)2

dx=
hx

24
.

Now substituting (3.20)-(3.22) into (3.19) and utilizing Lemma 3.3, we have

‖Ñ m−N m‖2≤16L2‖2em−1−em−2‖2+C
(

h2
x+h2

y+h2
z

)2
,

which proves the lemma.

Theorem 3.1. Suppose that model (1.1a)–(1.1b) has a unique solution u(x,t)∈C3([0,T];C2(Ω)
)

and the condition in Lemma 3.4 holds. Moreover, assume that f (u)∈C1(R) and (3.8) is satisfied.
If the stepsizes τ, hx, hy, hz and τ2√

hxhyhz
are sufficiently small, the BDF-FV scheme (3.7) admits

a unique solution uh(x,tm) satisfying

max
x∈Ω
|uh(x,tm)|≤K+1, m∈It. (3.23)

Moreover, there exists a constant τ̂>0 such that the following error estimate holds for τ< τ̂

‖um−Um‖+‖um−Um‖E≤C
(

τ2+h2
x+h2

y+h2
z

)
, m∈It, (3.24)

where the constant C is independent of the mesh parameters hx, hy, hz and τ.

Proof. First, the existence and uniqueness of the BDF-FV solution follows immediately
from the fact that the coefficient matrix of (3.7) is symmetric positive definite.

Next, we start to prove the boundedness result (3.23) and error estimate (3.24) by the
mathematical induction method. Taking the discrete inner product of (3.17) with em, by
notations (3.10)–(3.11) we have(

D̂tem,em)
A+‖e

m‖2
E =τ

(
Ñ m−N m+Rm,em

)
. (3.25)
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Firstly, we verify (3.23)–(3.24) for the case m= 1 from the above equation. Note that
e0=0 and in this case the following inequality holds

(
D̂te1,e1

)
A
≥ 1

2

(
‖e1‖2

A−‖e0‖2
A

)
=

1
2
‖e1‖2

A. (3.26)

Now inserting (3.26) and Lemma 3.5 into (3.25) for m=1, and then the norm equivalence
in Lemma 3.3 implies

‖e1‖2
A+‖e1‖2

E≤2τ‖R1‖‖e1‖≤4
√

2τ‖R1‖‖e1‖A ⇒ ‖e1‖A≤4
√

2τ‖R1‖. (3.27)

Thus, we can derive from Lemmas 2.1–2.2 and (3.16) that

‖e1‖A+‖e1‖E≤8τ‖R1‖

≤8
√
(xR−xL)(yR−yL)(zR−zL) Cτ

(
τ+h2

x+h2
y+h2

z

)
≤C

(
τ2+h2

x+h2
y+h2

z

)
, (3.28)

for sufficiently small τ<1.
Therefore, by the norm equivalence in Lemma 3.3, the error inequality (3.24) holds for

m= 1. Furthermore, using the triangle inequality and inverse inequality, we can easily
get the boundedness of the numerical solution uh(x,t1), i.e.,

max
x∈Ω
|uh(x,t1)|=‖U1‖∞≤‖u1‖∞+‖e1‖∞≤‖u1‖∞+C(hxhyhz)

− 1
2 ‖e1‖

≤‖u1‖∞+C(hxhyhz)
− 1

2

(
τ2+h2

x+h2
y+h2

z

)
≤K+1, (3.29)

whenever τ2√
hxhyhz

, hx, hy and hz are sufficiently small.

Next, we assume (3.23) holds for k≤m−1 with m≥2. We need to prove that (3.23)–
(3.24) also hold for k=m. Since for ∀a,b,c∈R,

(3a−4b+c)a=
1
2
[
a2+(2a−b)2]− 1

2
[
b2+(2b−c)2]+ 1

2
(a−2b+c)2. (3.30)

Then, we conclude for m≥2(
D̂tem,em)

A

≥1
4

[(
‖em‖2

A+‖2em−em−1‖2
A

)
−
(
‖em−1‖2

A+‖2em−1−em−2‖2
A

)]
. (3.31)

Now inserting (3.31) into (3.25), and then utilizing the Cauchy-Schwarz inequality and
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the norm equivalence in Lemma 3.3, we have

‖em‖2
A+‖2em−em−1‖2

A+‖em‖2
E

≤‖em−1‖2
A+‖2em−1−em−2‖2

A+8
√

2τ ‖Ñ m−N m‖‖em‖A+8
√

2τ ‖Rm‖ ‖em‖A

≤‖em−1‖2
A+‖2em−1−em−2‖2

A+4
√

2τ
(
‖Ñ m−N m‖2+‖Rm‖2

)
+8
√

2τ‖em‖2
A

≤‖em−1‖2
A+
(

1+512
√

2L2τ
)
‖2em−1−em−2‖2

A+8
√

2τ‖em‖2
A+4
√

2τ‖Rm‖2

+Cτ
(

h2
x+h2

y+h2
z

)2
, (3.32)

where we have used the estimate for ‖Ñ m−N m‖ via Lemma 3.5 based on the bounded-
ness of the finite volume solutions uh(x,tm−1) and uh(x,tm−2).

Denote

Θ(em)=‖em‖2
A+‖2em−em−1‖2

A.

We can rewrite the inequality (3.32) as

Θ(em)+‖em‖2
E

≤1+512
√

2L2τ

1−8
√

2τ
Θ(em−1)+

4
√

2τ

1−8
√

2τ
‖Rm‖2+Cτ

(
h2

x+h2
y+h2

z

)2
, (3.33)

for τ<
√

2
16 , which further implies

Θ(em)+‖em‖2
E≤

1+512
√

2L2τ

1−8
√

2τ

[
1+512

√
2L2τ

1−8
√

2τ
Θ(em−2)+

4
√

2τ

1−8
√

2τ
‖Rm−1‖2

+Cτ
(

h2
x+h2

y+h2
z

)2
]
+

4
√

2τ

1−8
√

2τ
‖Rm‖2+Cτ

(
h2

x+h2
y+h2

z

)2

≤
(

1+512
√

2L2τ

1−8
√

2τ

)m−1

Θ(e1)+
4
√

2τ

1−8
√

2τ

m

∑
k=2

(
1+512

√
2L2τ

1−8
√

2τ

)m−k

‖Rk‖2

+Cτ
m

∑
k=2

(
1+512

√
2L2τ

1−8
√

2τ

)m−k(
h2

x+h2
y+h2

z

)2
. (3.34)

Noting the definition of Θ(em), we know

Θ(e1)=‖e1‖2
A+‖2e1−e0‖2

A =5‖e1‖2
A≤C

(
τ2+h2

x+h2
y+h2

z

)2
. (3.35)
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Also, noting the fact for τ<
√

2
16(

1+512
√

2L2τ

1−8
√

2τ

)k

≤
(

1+512
√

2L2τ

1−8
√

2τ

)T/τ

≤
(

1+
(8+512L2)

√
2τ

1−8
√

2τ

)T/τ

≤ e
(8+512L2)

√
2T

1−8
√

2τ . (3.36)

Then, we plug (3.35)–(3.36) into (3.34) to directly obtain

Θ(em)+‖em‖2
E≤C

(
τ2+h2

x+h2
y+h2

z

)2
. (3.37)

Now, we can obtain from the inequality (3.37) that

‖em‖+‖em‖E≤2
√

2‖em‖A+‖em‖E≤2
√

2Θ(em)+‖em‖E≤C
(

τ2+h2
x+h2

y+h2
z

)
,

which proves (3.24) for k=m.
Finally, analogous to the process (3.29), we can easily prove the boundedness of the

finite volume solution uh(x,tm):

max
x∈Ω
|uh(x,tm)|=‖Um‖∞≤‖um‖∞+‖em‖∞

≤‖um‖∞+C(hxhyhz)
− 1

2

(
τ2+h2

x+h2
y+h2

z

)
≤K+1, (3.38)

for sufficiently small τ2√
hxhyhz

, hx, hy and hz. This completes the proof of Theorem 3.1.

Remark 3.4. The temporal-spatial stepsize constraint condition in Theorem 3.1 is not
very stringent. It only demands τ≈h3/4 for hx=hy=hz=h. In particular, if the nonlinear
reaction term f (u) satisfies the Lipschitz continuous condition, i.e., there exists a positive
constant L such that

| f (u1)− f (u2)|≤L|u1−u2|, ∀u1,u2∈R, (3.39)

the assumption (3.8) as well as the temporal-spatial stepsize constraint can be naturally
canceled, see, for example, [13, 41]. However, the Lipschitz assumption (3.39) greatly
limits the application of the nonlinear model. For example, it is easy to check that (3.39)
is satisfied for f (u)=(sinu)4 in Section 5.1, however, it is not fulfilled for f (u)=u−u3 in
Example 5.2. Therefore, in this paper we assume a more general case f (u)∈C1(R) and
hence (3.8) is needed.

Corollary 3.1. Theorem 3.1 further shows that the conclusion of Lemma 3.5 reduces to

‖Ñ m−N m‖=O
(

h2
x+h2

y+h2
z

)
, m∈It.
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We end this section by giving an optimal-order error estimates for the BDF-FV scheme
(3.3) in the continuous L2 norm. By the classical interpolation theory, we have

‖u(x,tm)−Πhu(x,tm)‖L2≤CΩ

(
h2

x+h2
y+h2

z

)
‖u‖H2 , (3.40)

for u∈H2(Ω)
⋂

H1
0(Ω), where CΩ is a positive constant that only depends on the domain

Ω.
Considering the definitions of Πh (see, (3.12)) and ‖·‖L2 , we obtain by (3.21) that

‖Πhu(x,tm)−uh(x,tm)‖2
L2 =

∫
Ω
(Πhu(x,tm)−uh(x,tm))

2 dx

= ∑
i∈Ix

∑
j∈Iy

∑
k∈Iz

∫
Ωi,j,k

(
i+1

∑
l=i−1

j+1

∑
r=j−1

k+1

∑
s=k−1

em
l,r,sφ

x
l (x)φy

r (y)φz
s (z)

)2

dx.

Applying a similar process to (3.22) and Theorem 3.1, we can easily obtain the following
estimate:

‖Πhu(x,tm)−uh(x,tm)‖L2≤2
√

2‖em‖≤2
√

2
(

τ2+h2
x+h2

y+h2
z

)
. (3.41)

Therefore, combing (3.40) and (3.41) together, and using the triangle inequality, we im-
mediately have:

Corollary 3.2. Under the assumptions in Theorem 3.1, we further have

‖u(x,tm)−uh(x,tm)‖L2≤C
(

τ2+h2
x+h2

y+h2
z

)
, m∈It. (3.42)

4 Derivation and error estimate of the BDF-FV-ADI scheme

In the previous section, a second-order accuracy BDF-FV scheme is proposed and ana-
lyzed. As pointed out in Remark 3.3, a fast solution method can be developed for the
efficient implementation of BDF-FV scheme. However, as the grid parameters getting
smaller and smaller, the developed method shall also be CPU time consuming. In order
to improve the computational efficiency, we further construct an efficient alternating di-
rection implicit method, named BDF-FV-ADI, to reduce the large-scale three-dimensional
modeling to a series of independent small-scale one-dimensional analogs, and mean-
while the method can be implemented in parallel.

4.1 Derivation of the BDF-FV-ADI scheme

Define two perturbation terms of order O(τ3):

p1 :=
(

ηαηβAz⊗By⊗Bx+ηαηγBz⊗Ay⊗Bx+ηβηγBz⊗By⊗Ax

+ηαηβηγBz⊗By⊗Bx

)(
D̂tU1

)
, m=1, (4.1)
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and

pm :=

(
4
9

ηαηβAz⊗By⊗Bx+
4
9

ηαηγBz⊗Ay⊗Bx+
4
9

ηβηγBz⊗By⊗Ax

+
8

27
ηαηβηγBz⊗By⊗Bx

)(
D̂tUm), m≥2. (4.2)

Then adding them to the left-hand side of the BDF-FV scheme (3.7) and distributing them
appropriately to the left and right-hand side of the equations, we are left with

(Az+ηγBz)⊗
(

Ay+ηβBy

)
⊗
(

Ax+ηαBx

)(
D̂tU1

)
=−

(
ηαAz⊗Ay⊗Bx+ηβAz⊗By⊗Ax+ηγBz⊗Ay⊗Ax

)
U0+τ

(
N 1+L1

)
:=F1, (4.3)

for m=1, and(
Az+

2ηγ

3
Bz

)
⊗
(

Ay+
2ηβ

3
By

)
⊗
(

Ax+
2ηα

3
Bx

)(
D̂tUm

)
=− 1

3

(
ηαAz⊗Ay⊗Bx+ηβAz⊗By⊗Ax+ηγBz⊗Ay⊗Ax

)(
4Um−1−Um−2

)
+τ(N m+Lm)

:=Fm, (4.4)

for m≥2.

Algorithm 4.1. BDF-FV-ADI at time t1.

(i) Solving the subproblem in z-direction for the intermediate solution U1,∗∗∗ :=
{U1,∗∗∗

i,j,k }∈RN that ((
Az+ηγBz

)
⊗INy⊗ INx

)
U1,∗∗∗=F1; (4.5)

(ii) Solving the subproblem in y-direction for the intermediate solution U1,∗∗ :=
{U1,∗∗

i,j,k }∈RN that (
INz⊗

(
Ay+ηβBy

)
⊗INx

)
U1,∗∗=U1,∗∗∗; (4.6)

(iii) Solving the subproblem in x-direction for the intermediate solution U1,∗ :={U1,∗
i,j,k}∈

RN that (
INz⊗INy⊗

(
Ax+ηαBx

))
U1,∗=U1,∗∗; (4.7)
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(iv) Updating the solution U1 via D̂tU1=U1,∗, i.e.,

U1=U1,∗+U0. (4.8)

Equivalently, by Lemma 2.5, we can rewrite (4.3) for m=1 as((
Az+ηγBz

)
⊗INy⊗INx

)(
INz⊗

(
Ay+ηβBy

)
⊗INx

)
(

INz⊗INy⊗
(
Ax+ηαBx

))(
D̂tU1

)
=F1, (4.9)

and from which the BDF-FV-ADI scheme at the first time level can be formulated as
Algorithm 4.1.

Similarly, Eq. (4.4) is equivalent to((
Az+

2ηγ

3
Bz

)
⊗INy⊗INx

)(
INz⊗

(
Ay+

2ηβ

3
By

)
⊗INx

)
(

INz⊗INy⊗
(

Ax+
2ηα

3
Bx

))(
D̂tUm

)
=Fm. (4.10)

Once the solution U1 is obtained via Algorithm 4.1, then from (4.10) we can get Um via
the following Algorithm 4.2 for m=2,3,··· ,M.

Algorithm 4.2. BDF-FV-ADI at time tm (m≥2).

(i) Solving the subproblem in z-direction for the intermediate solution Um,∗∗∗ :=
{Um,∗∗∗

i,j,k }∈RN that

((
Az+

2ηγ

3
Bz

)
⊗INy⊗INx

)
Um,∗∗∗=Fm; (4.11)

(ii) Solving the subproblem in y-direction for the intermediate solution Um,∗∗ :=
{Um,∗∗

i,j,k }∈RN that

(
INz⊗

(
Ay+

2ηβ

3
By

)
⊗INx

)
Um,∗∗=Um,∗∗∗; (4.12)

(iii) Solving the subproblem in x-direction for the intermediate solution Um,∗ :={Um,∗
i,j,k}∈

RN that (
INz⊗INy⊗

(
Ax+

2ηα

3
Bx

))
Um,∗=Um,∗∗; (4.13)

(iv) Updating the solution Um via D̂tUm =Um,∗, i.e.,

Um =
2
3

Um,∗+
4
3

Um−1− 1
3

Um−2. (4.14)
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4.2 Practical efficient implementation of the BDF-FV-ADI scheme

In this subsection, we briefly discuss the efficient implementation of the BDF-FV-ADI
scheme described in Algorithms 4.1–4.2. As they only have a bit difference, we just take
Algorithm 4.1 as a brief illustration.

For any N-dimensional vector v={vi,j,k}∈Vh defined in the form of (3.5), we denote
its column vectors along each spatial direction by

v:,j,k :=
[
v1,j,k,v2,j,k,··· ,vNx ,j,k

]>∈RNx , j∈Iy, k∈Iz,

vi,:,k :=
[
vi,1,k,vi,2,k,··· ,vi,Ny,k

]>
∈RNy , i∈Ix, k∈Iz,

vi,j,: :=
[
vi,j,1,vi,j,2,. . .,vi,j,Nz

]>∈RNz , i∈Ix, j∈Iy,

such that v can be represented by block vectors, i.e.,

v=
{

v:,j,k
}

j∈Iy, k∈Iz
, v={vi,:,k}i∈Ix , k∈Iz

, v=
{

vi,j,:
}

i∈Ix , j∈Iy
.

Actually, in practical computation, (4.5)–(4.7) reduce to solve a series of small-scale linear
algebraic systems.

� First, the solution of (4.5) is equivalent to solve a series of Nz-by-Nz linear system(
Az+ηγBz

)
U1,∗∗∗

i,j,: =F1
i,j,:, i∈Ix, j∈Iy, (4.15)

along the z-direction. As the special matrix structures (see (3.6)), the coefficient matrix
of (4.15) can be computed only one time and stored in O(Nz) memory. The main
computational costs lie in two aspects:

(i) The first one is the evaluation of the right-hand side N-dimensional vector F1 (see
(4.3)). Following the same idea of Ref. [41], it can be computed in

NzNyO(Nx logNx)+NzNxO(Ny logNy)+Nx NyO(Nz logNz)=O(N logN)

operations only one time.
(ii) Another one is the solution of these linear systems. However, as the coefficient

matrix is symmetric positive definite, we can employ the well-known conjugate
gradient (CG) solver [1]. As we can see from Algorithm 4.3 below, the main com-
putational cost in this algorithm is the matrix-vector multiplication

(
Az+ηγBz

)
w

for any w∈RNz , which requires O(Nz logNz) operations per iteration [8]. Thus
the total computational cost for these systems is

Nx NyO(LzNz logNz)=O(LzN logNz),

where Lz is the average number of iterations for the solution of each (4.15). Ac-
tually, (4.15) can be solved in parallel on different processors. This will further
improve the computational efficiency.
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� Then, the solution of (4.6) is equivalent to solve a series of Ny-by-Ny linear system(
Ay+ηβBy

)
U1,∗∗

i,:,k =U1,∗∗∗
i,:,k , i∈Ix, k∈Iz, (4.16)

along the y-direction, which requires

Nx NzO(LyNy logNy)=O(LyN logNy)

operations, where Ly is the average number of iterations for the solution of each (4.16).

� Finally, the solution of (4.7) is equivalent to solve a series of Nx-by-Nx linear system(
Ax+ηαBx

)
U1,∗

:,j,k =U1,∗∗
:,j,k , j∈Iy, k∈Iz, (4.17)

along the x-direction, which requires

NyNzO(Lx Nx logNx)=O(Lx N logNx)

operations, where Lx is the average number of iterations for the solution of each (4.17).

Algorithm 4.3. Review of CG method for linear system Ax=b.

For an initial guess vector x0, compute r(0)=b−Ax0.

For i=1,2,···

ρi−1= r(i−1)>r(i−1).
If i=1, then set p(1)= r(0).
Else

βi−1=ρi−1/ρi−2, p(i)= r(i−1)+βi−1p(i−1).
End if
q(i)=Ap(i), αi =ρi−1/p(i)>q(i), x(i)=x(i−1)+αip(i), r(i)= r(i−1)−αiq(i).
Check convergence; continue if necessary

End

x=x(i).

Remark 4.1. Based on the above discussion, we can obtain a fast version of Algorithm 4.3,
named fast conjugate gradient (FCG) solver. Similarly, in practical computation, (4.11)–
(4.13) reduce to solve a series of small-scale linear algebraic systems along each spatial
direction: (

Az+
2ηγ

3
ηγBz

)
Um,∗∗∗

i,j,: =Fm
i,j,:, i∈Ix, j∈Iy; (4.18a)(

Ay+
2ηγ

3
ηβBy

)
Um,∗∗

i,:,k =Um,∗∗∗
i,:,k , i∈Ix, k∈Iz; (4.18b)(

Ax+
2ηγ

3
ηαBx

)
Um,∗

:,j,k =Um,∗∗
:,j,k , j∈Iy, k∈Iz; (4.18c)
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and also these equations can be solved in parallel. Besides, the memory requirement and
computational cost are similar as discussed above.

In summary, we have the following conclusion of the implementation of the BDF-FV-
ADI scheme.

Proposition 4.1. Let L :=max{Lx,Ly,Lz}. The total computational cost for the BDF-FV-ADI
scheme (4.3)–(4.4) is of order O(LMN logN), and the memory requirement is of order O(N).

4.3 Corresponding error estimate of the BDF-FV-ADI scheme

In this subsection, we devote to prove the convergence of the BDF-FV-ADI scheme (4.3)-
(4.4) via the discrete energy method. We define the following weighted discrete norms

9v9 :=
(
‖v‖2

A+ηβηγ‖v‖2
Bz⊗By⊗Ax

+ηαηγ‖v‖2
Bz⊗Ay⊗Bx

+ηαηβ‖v‖2
Az⊗By⊗Bx

+ηαηβηγ‖v‖2
Bz⊗By⊗Bx

)1/2

, (4.19a)

9v9BDF :=
(
‖v‖2

A+
4
9

ηβηγ‖v‖2
Bz⊗By⊗Ax

+
4
9

ηαηγ‖v‖2
Bz⊗Ay⊗Bx

+
4
9

ηαηβ‖v‖2
Az⊗By⊗Bx

+
8

27
ηαηβηγ‖v‖2

Bz⊗By⊗Bx

)1/2

, (4.19b)

by (3.10) and Remark 3.2.
The following equivalence conclusion about the two norms can be proved easily.

Lemma 4.1. The norms 9·9 and 9·9BDF are equivalent with the following relation holds

2
√

6
9

9v9≤9v9BDF≤9v9, v∈Vh.

Theorem 4.1. Suppose that model (1.1a)–(1.1b) has a unique solution u(x,t) ∈
C3([0,T];C2(Ω)

)
∩C1([0,T];Cα+β+γ(Ω)

)
and the condition in Lemma 3.4 holds. Moreover,

assume that f (u)∈C1(R) and (3.8) is satisfied. If the stepsizes τ, hx, hy, hz and τ2√
hxhyhz

are suf-

ficiently small, the BDF-FV-ADI scheme defined in (4.3)–(4.4) admits a unique solution uh(x,tm)
satisfying

max
x∈Ω
|uh(x,tm)|≤K+1, m∈It. (4.20)

Moreover, there exists a constant τ̂>0 such that the following error estimate holds for τ< τ̂

‖um−Um‖+‖um−Um‖E≤C
(

τ2+h2
x+h2

y+h2
z

)
, m∈It, (4.21)

where the constant C is independent of the mesh parameters hx, hy, hz and τ.
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Proof. Due to the positive definiteness of the coefficient matrix yielded by the BDF-FV-
ADI scheme (4.3)-(4.4), the existence and uniqueness of the numerical solution follows
immediately.

Similar to the proof of Theorem 3.1, we shall prove (4.20)–(4.21) by the mathematical
induction method. Let em :=um−Um with e0=0. Considering the added small perturba-
tion terms pm, we conclude that em satisfies the following error equations:

(Az+ηγBz)⊗
(
Ay+ηβBy

)
⊗(Ax+ηαBx)

(
D̂te1

)
=τ
(
Ñ 1−N 1+R1

BDF

)
, (4.22)

for m=1, and(
Az+

2ηγ

3
Bz

)
⊗
(

Ay+
2ηβ

3
By

)
⊗
(

Ax+
2ηα

3
Bx

)(
D̂tem

)
=− 1

3
(
ηαAz⊗Ay⊗Bx+ηβAz⊗By⊗Ax+ηγBz⊗Ay⊗Ax

)(
4em−1−em−2

)
+τ
(
Ñ m−N m+Rm

BDF

)
, (4.23)

for m≥2, where from Lemmas 2.1–2.2, (3.16) and (4.1)–(4.2) that

Rm
BDF =(rm

t +rm
n +rm

s +pm/τ)E=

 O
(

τ+h2
x+h2

y+h2
z

)
E, m=1,

O
(

τ2+h2
x+h2

y+h2
z

)
E, m≥2.

(4.24)

Next, we firstly prove (4.20)–(4.21) for the case m=1. Note that (4.22) is equivalent to the
following form:(

Az⊗Ay⊗Ax+ηαηβAz⊗By⊗Bx+ηαηγBz⊗Ay⊗Bx+ηβηγBz⊗By⊗Ax

+ηαηβηγBz⊗By⊗Bx

)(
D̂te1

)
+
(

ηαAz⊗Ay⊗Bx+ηβAz⊗By⊗Ax+ηγBz⊗Ay⊗Ax

)
e1

=τ
(
Ñ 1−N 1+R1

BDF

)
. (4.25)

Then, taking the discrete inner product of (4.25) with e1, and following a similar treat-
ment as (3.26)–(3.29), we derive

9e19+‖e1‖E≤C
(

τ2+h2
x+h2

y+h2
z

)
, (4.26)

for sufficiently small τ<1, and thus by Lemma 3.3 and definition (4.19a), this immediately
yields the estimate (4.21) for m = 1. Moreover, the boundedness of the finite volume
solution uh(x,t1) in (4.20) can be proved similarly as (3.29) for sufficiently small τ2√

hxhyhz
,

hx, hy and hz.
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Secondly, we assume that (4.20) holds for k≤m−1 with m≥2. To prove (4.20)–(4.21)
at the time instant tm, we start from the following equivalent form of (4.23):(

Az⊗Ay⊗Ax+
4
9

ηαηβAz⊗By⊗Bx+
4
9

ηαηγBz⊗Ay⊗Bx+
4
9

ηβηγBz⊗By⊗Ax

+
8
27

ηαηβηγBz⊗By⊗Bx

)(
D̂tem)

+
(
ηαAz⊗Ay⊗Bx+ηβAz⊗By⊗Ax+ηγBz⊗Ay⊗Ax

)
em

=τ
(
Ñ m−N m+Rm

BDF

)
, m≥2. (4.27)

Then, similar as the proof of Theorem 3.1, by taking the discrete inner product of (4.27)
with em and using a similar inequality (3.31) with ‖·‖A norm replaced by 9·9BDF norm,
we can obtain

9em92
BDF+92em−em−192

BDF+‖em‖2
E

≤9em−192
BDF+92em−1−em−292

BDF+4τ
(
Ñ m−N m+Rm

BDF,em
)

≤9em−192
BDF+

(
1+512

√
2L2τ

)
92em−1−em−292

BDF+8
√

2τ9em92
BDF

+4
√

2τ‖Rm
BDF‖2+Cτ

(
h2

x+h2
y+h2

z

)2
, (4.28)

where Lemma 3.5 is utilized to estimate ‖Ñ m−N m‖ due to the fact uh(x,tm−1) and
uh(x,tm−2) are bounded.

Denote
Q(em)=9em92

BDF+92em−em−192
BDF .

We can further deduce from (4.28), (4.24) and (3.36) that

Q(em)+‖em‖2
E

≤1+512
√

2L2τ

1−8
√

2τ
Q(em−1)+

4
√

2τ

1−8
√

2τ
‖Rm

BDF‖2+Cτ
(

h2
x+h2

y+h2
z

)2

≤
(

1+512
√

2L2τ

1−8
√

2τ

)m−1

Q(e1)+
4
√

2τ

1−8
√

2τ

m

∑
k=2

(
1+512

√
2L2τ

1−8
√

2τ

)m−k

‖Rk
BDF‖2

+Cτ
m

∑
k=2

(
1+512

√
2L2τ

1−8
√

2τ

)m−k(
h2

x+h2
y+h2

z

)2

≤C
[

Q(e1)+
(

τ2+h2
x+h2

y+h2
z

)2
]

, τ≤
√

2
16

. (4.29)

Noting the definition of Q(em) and (4.26), and meanwhile using Lemma 4.1, we have

Q(e1)=59e192
BDF≤59e192≤C

(
τ2+h2

x+h2
y+h2

z

)2
, (4.30)
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and then, we substitute (4.30) into (4.29) to obtain

Q(em)+‖em‖2
E≤C

(
τ2+h2

x+h2
y+h2

z

)2
,

which proves (4.21) using Lemma 3.3 and definition (4.19b).
Finally, similar to the process (3.38), we can easily obtain the boundedness results

(4.20) for the BDF-FV-ADI solution uh(x,tm) for sufficiently small τ2√
hxhyhz

, hx, hy and hz.

Thus, Theorem 4.1 is proved.

Corollary 4.1. Assume the conditions in Theorem 4.1 hold. Analogous to Corollary 3.2, we
can further derive the optimal-order error estimate of the BDF-FV-ADI scheme in the sense of
continuous L2 norm:

‖u(x,tm)−uh(x,tm)‖L2≤C
(

τ2+h2
x+h2

y+h2
z

)
. (4.31)

5 Numerical experiments

In this section, we carry out several numerical experiments to investigate the conver-
gence and efficiency of the proposed finite volume methods. Both the BDF-FV scheme
(3.7) and the BDF-FV-ADI scheme (4.3)–(4.4) are implemented, which are solved by the
traditional GE solver, the CG solver and the FCG solver. All numerical experiments be-
low are carried out using MATLAB R2018b on a Windows server with Intel(R) Xeon(R)
E5-2650 processor of 128GB RAM and 2.30GHz CPU. Besides, in all simulations, the con-
vergence orders of the schemes are measured as follows:

Covd = log2

(
Errd(2h,2τ)

Errd(h,τ)

)
, Covc = log2

(
Errc(2h,2τ)

Errc(h,τ)

)
,

where Errd(h,τ) and Errc(h,τ) respectively denote the discrete and continuous L2-norm
errors with h=hx =hy =hz.

5.1 Accuracy of the BDF-FV and BDF-FV-ADI schemes

In this subsection, the analytical solution of (1.1a) is given by

u(x,t)=64e−tx2(1−x)2y2(1−y)2z2(1−z)2,

for (x,t)∈ [0,1]3×[0,1], where the nonlinear reaction term f (u)= (sinu)4, and the linear
part g(x,t) is computed accordingly.

We run two sets of numerical experiments to verify the convergence of the BDF-FV
and BDF-FV-ADI schemes via GE solver with respect to various fractional orders α, β,
γ and various diffusion coefficients dx, dy, dz. First, for fixed diffusion coefficients dx =
dy=dz=1, we test the discrete and continuous L2-norm errors and convergence orders of
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Figure 1: Errors and corresponding convergence orders, where the tangent of the triangle is 2.

the BDF-FV scheme and BDF-FV-ADI scheme, where different fractional orders α= β=
γ=1.1,1.5 and 1.9 are selected. From the numerical results shown in Tables 1–2, we can
observe that both the two numerical schemes generate the numerical solutions with the
same magnitude accuracy, although an extra perturbation term is introduced in the ADI
method. Meanwhile, second-order convergence in time and space is easily seen from
Fig. 1, which is independent of the fractional orders.

Next, for fixed fractional orders α=1.7, β=1.5 and γ=1.3, we also test the convergence
of the two schemes for various diffusion coefficients dx=dy=dz=1; dx=1.5, dy=1, dz=0.5
and dx = 100, dy = 1, dz = 0.01. Similarly, numerical solutions with the same magnitude
error accuracy and second-order convergence in the sense of discrete and continuous L2

norm errors are both observed from Tables 3–4 and Fig. 2. Moreover, we also see the error
accuracy and convergence orders are independent of the diffusion coefficients.

Table 1: Results of the BDF-FV scheme for dx =dy =dz =1 and representative fractional orders.

Nx =Ny =Nz =M α=β=γ=1.1 α=β=γ=1.5 α=β=γ=1.9
Errd Covd Errd Covd Errd Covd

23=8 5.86×10−4 — 5.91×10−4 — 6.00×10−4 —
24=16 1.41×10−4 2.05 1.44×10−4 2.04 1.47×10−4 2.03
25=32 3.48×10−5 2.02 3.58×10−5 2.01 3.65×10−5 2.00
26=64 out of memory — out of memory — out of memory —

Errc Covc Errc Covc Errc Covc
23=8 4.95×10−5 — 6.79×10−5 — 9.46×10−5 —

24=16 1.04×10−5 2.25 1.61×10−5 2.08 2.47×10−5 1.94
25=32 2.22×10−6 2.24 3.73×10−6 2.11 6.30×10−6 1.97
26=64 out of memory — out of memory — out of memory —
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Table 2: Results of the BDF-FV-ADI scheme for dx =dy =dz =1 and representative fractional orders.

Nx =Ny =Nz =M α=β=γ=1.1 α=β=γ=1.5 α=β=γ=1.9
Errd Covd Errd Covd Errd Covd

23=8 7.81×10−4 — 9.50×10−4 — 1.30×10−3 —
24=16 1.83×10−4 2.10 2.16×10−4 2.14 2.85×10−4 2.19
25=32 4.47×10−5 2.03 5.26×10−5 2.04 6.73×10−5 2.08
26=64 1.10×10−5 2.02 1.30×10−5 2.02 1.65×10−5 2.03

Errc Covc Errc Covc Errc Covc
23=8 8.17×10−5 — 1.24×10−4 — 2.11×10−4 —

24=16 1.83×10−5 2.16 2.84×10−5 2.13 4.72×10−5 2.16
25=32 4.22×10−6 2.11 6.70×10−6 2.08 1.13×10−5 2.06
26=64 9.93×10−7 2.09 1.60×10−6 2.07 2.78×10−6 2.03

Table 3: Results of the BDF-FV scheme for α=1.7, β=1.5, γ=1.3 and representative diffusion coefficients.

Nx =Ny =Nz =M dx =dy =dz =1 dx =1.5,dy =1,dz =0.5 dx =100,dy =1,dz =0.01
Errd Covd Errd Covd Errd Covd

23 =8 5.97×10−4 — 6.17×10−4 — 6.95×10−4 —
24 =16 1.46×10−4 2.04 1.50×10−4 2.04 1.67×10−4 2.06
25 =32 3.62×10−5 2.01 3.73×10−5 2.01 4.12×10−5 2.02
26 =64 out of memory — out of memory — out of memory —

Errc Covc Errc Covc Errc Covc
23 =8 7.06×10−5 — 7.35×10−5 — 7.92×10−5 —

24 =16 1.70×10−5 2.05 1.79×10−5 2.04 1.96×10−5 2.01
25 =32 4.02×10−6 2.08 4.26×10−6 2.07 4.75×10−6 2.05
26 =64 out of memory — out of memory — out of memory —

Table 4: Results of the BDF-FV-ADI scheme for α=1.7, β=1.5, γ=1.3 and representative diffusion coefficients.

Nx =Ny =Nz =M dx =dy =dz =1 dx =1.5,dy =1,dz =0.5 dx =100,dy =1,dz =0.01
Errd Covd Errd Covd Errd Covd

23=8 9.56×10−4 — 9.36×10−4 — 1.10×10−3 —
24=16 2.18×10−4 2.13 2.16×10−4 2.12 2.43×10−4 2.18
25=32 5.30×10−5 2.04 5.27×10−5 2.03 5.93×10−5 2.03
26=64 1.31×10−5 2.02 1.30×10−5 2.01 1.47×10−5 2.01

Errc Covc Errc Covc Errc Covc
23=8 1.27×10−4 — 1.25×10−4 — 1.50×10−4 —
24=16 2.93×10−5 2.12 3.62×10−5 2.09 3.62×10−5 2.05
25=32 6.98×10−6 2.07 8.83×10−6 2.06 8.83×10−6 2.04
26=64 1.68×10−6 2.06 2.16×10−6 2.05 2.16×10−6 2.03

In addition, it is observed that the BDF-FV-ADI scheme (4.3)-(4.4) is more memory
saving than the BDF-FV scheme (3.7). For example, when Nx = Ny = Nz = M = 64, the
former can still run, while the latter is out of memory, as at this moment there are 262,144
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Figure 2: Errors and corresponding convergence orders, where the tangent of the triangle is 2.

unknowns at each time level. In the following test, we shall implement further experi-
ments to corroborate the efficiency of proposed ADI method.

5.2 Performance of the BDF-FV and BDF-FV-ADI schemes via different
solvers

In this test, we take f (u) = u−u3, and in this case model (1.1a) reduces to the space-
fractional Allen-Cahn equation with a polynomial double-well potential [12]. The linear
part g(x,t) is given such that the analytical solution is

u(x,t)=11134e−tx2(1−x)2y2(1−y)2z2(1−z)2,

for (x,t)∈ [0,1]3×[0,1]. We fix the fractional orders α=1.7, β=1.5, γ=1.3 and diffusion
coefficients dx = dy = dz = 1 to compare the performance of the BDF-FV scheme and the
BDF-FV-ADI scheme via different solvers.

By testing this Allen-Cahn equation, we list the numerical errors and CPU times con-
sumed by the GE, CG and FCG solvers for the two schemes in Tables 5–6, respectively.
First, we observe that the proposed ADI method greatly reduces the CPU time and mem-
ory requirement compared with the BDF-FV scheme, no matter which solver is adopted.
For example, when Nx = Ny = Nz = 24, it takes more than two hours for the BDF-FV
scheme via the GE solver, and it is even out of memory for Nx = Ny = Nz =26, while the
BDF-FV-ADI scheme with the GE solver consumes only about six minutes for the latter
case! What we have to mention more is that there is not enough memory for the BDF-FV
scheme to run this numerical experiment when Nx = Ny = Nz ≥ 26, while the BDF-FV-
ADI scheme can still run even for Nx = Ny = Nz = 28. This confirms that the proposed
ADI method can significantly reduce the memory requirement for the BDF-FV scheme.



B. Zhang, H. Fu, X. Liang, J. Liu and J. Zhang / Adv. Appl. Math. Mech., 14 (2022), pp. 1400-1432 1429

Table 5: Results of the BDF-FV scheme for Allen-Cahn equation with α=1.7, β=1.5, γ=1.3.

Nx =Ny =Nz =M CPU times (GE) CPU times (CG) CPU times (FCG) Errd Covd
23 =8 0.74 s 0.14 s 0.56 s 9.82×10−2 —
24 =16 2 h 7 m 17 s 30.31 s 4.19 s 2.42×10−2 2.02
25 =32 > 10 d 2 h 35 m 7 s 1 m 5 s 6.00×10−3 2.01
26 =64 out of memory out of memory 16 m 59 s 1.50×10−3 2.00

Table 6: Results of the BDF-FV-ADI scheme for Allen-Cahn equation with α=1.7, β=1.5, γ=1.3.

Nx =Ny =Nz =M CPU times (GE) CPU times (CG) CPU times (FCG) Errd Covd
26 =64 6 m 17 s 2 m 18 s 3 m 55 s 2.20×10−3 —

27 =128 6 h 32 m 15 s 3 h 7 m 10 s 1 h 37 m 59 s 5.41×10−4 2.02
28 =256 > 10 d 8 d 13 h 37 m 1 d 8 h 48 m 1.35×10−4 2.01

Thus, the developed BDF-FV-ADI method is more suitable for large-scale modeling and
simulations of three-dimensional problems.

Next, we see that all solvers basically generate the same error results, but the FCG
solver for both schemes has clear advantages in computational efficiency and storage
over the other two solvers. For example, when Nx = Ny = Nz = 27 (about 2.1 millions of
unknowns each time level), it takes more than six and a half hours for the implementa-
tion of the BDF-FV-ADI scheme via the GE solver, while the CG solver consumes about
three hours. What is even more amazing is that the developed FCG solver takes only
about one and a half hours! The contrasts shall be more obvious for even fine tempo-
ral/spatial meshes. Besides, when Nx = Ny = Nz = 26, both the traditional GE and CG
solvers are running out of memory for the BDF-FV scheme, but the FCG solver with effi-
cient computational strategy and storage solution (see Remark 3.3 and [41]) can still run.
It is deemed that for fine temporal/spatial meshes, even the BDF-FV-ADI scheme with
GE and CG solvers shall be out of memory, but the FCG solver can still run. In conclu-
sion, numerical results show that the BDF-FV-ADI scheme via the FCG solver can greatly
reduce the CPU time and storage, which is consistent with our analysis in subsection 4.2.

6 Conclusions

In this paper, by using the linear extrapolation technique to deal with the nonlinear re-
action term, two linearized implicit finite volume schemes combined with the second-
order BDF time discretization are developed for the three-dimensional nonlinear Riesz
s-FRDEs. Second-order convergence of the proposed methods are strictly proved with
respect to discrete and continuous L2 norms via the discrete energy method. Compared
with the BDF-FV scheme, the BDF-FV-ADI method reduces the solution of a large-scale
three-dimensional problem into a series of independent small-scale one-dimensional sub-
problems, which greatly reduce the computational complexity and memory requirement.
Moreover, practical efficient implementation of the ADI method is briefly discussed based
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on the CG solver. Finally, numerical experiments are given to verify the theoretical anal-
ysis results.
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