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Abstract. Numerical study on dynamic hydroelastic problems is usually rather com-
plex due to the coupling of fluid and solid mechanics. Here, we demonstrate that the
performance of a hydroelastic microfluidic oscillator can be analyzed using a simple
equivalent circuit model. Previous studies reveal that its transition from the steady
state to the oscillation state follows the negative-differential-resistance (NDR) mecha-
nism. The performance is mainly determined by a bias fluidic resistor, and a pressure-
variant resistor which further relates to the bending stiffness of the elastic diaphragm
and the depth of the oscillation chamber. In this work, a numerical study is conducted
to examine the effects of key design factors on the device robustness, the applicable
fluid viscosity, the flow rate, and the transition pressure. The underlying physics is in-
terpreted, providing a new perspective on hydroelastic oscillation problems. Relevant
findings also provide design guidelines of the NDR fluidic oscillator.

AMS subject classifications: 76-10
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1 Introduction

Microfluidic manipulation is an important topic in the studies of the fast developing mi-
cro total analysis system (µ-TAS) and microreactor technologies [1, 2]. Due to the inher-
ent low-Reynolds number (Re) flow characteristics at micro-scales, special techniques
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are required in the design of microfluidic functional components such as micropump,
micromixer, microvalve, etc. [3]. These design methods are commonly categorized into
active ones which use external actuators (e.g., using pneumatic, electric, magnetic, acous-
tic, optical, centrifugal forces) [4–6], and passive ones by dint of specially designed chan-
nels [7–9]. Actuators provide better control flexibility, but external electric devices in-
evitably increase the system complexity. In comparison, passive methods are more reli-
able but usually require complex channel structures. Therefore, both have their advan-
tages and limits.

Some atypical microfluidic designs incorporate deformable elastic materials. These
devices operate in the passive way, i.e., at constant inlet conditions, they can provide so-
phisticated flow controls [10–13]. Without resorting to external resources, their operation
attributes to the dynamic response of the elastic structures or fluid-structure interaction
(FSI) effects. In our previous studies, we reported a hydroelastic microfluidic oscilla-
tor which, at a constant driving pressure, produces self-excited oscillation converting a
steady laminar flow to oscillatory flow [14, 15]. This device has exhibited great poten-
tial in applications such as droplets active control [16], microfiltration enhancement [17],
fluid mixing and chemical process intensification [18–21].

The microfluidic oscillator functions through FSI-induced oscillations of an elastic di-
aphragm, and it is essentially a dynamic hydroelastic problem. Such FSI phenomena
are usually rather complex. In traditional studies on macroscopic fluid systems, relevant
numerical analysis requires the coupling of CFD (computational fluid dynamic) and me-
chanical models, and it remains a challenging task today [22–24]. In comparison, for
microfluidic devices, their analogy to electric circuits can be utilized to facilitate the de-
sign and performance analysis. For above-mentioned hydroelastic microfluidic oscillator,
an equivalent circuit model was established, which reveals that it works the way as an
electric negative-differential-resistance (NDR) oscillator [25]. A variety of the oscillation
behaviors can be interpreted accordingly. The equivalent circuit model of the NDR os-
cillator provides a facile and alternative method to analyze its characteristics. Especially,
it allows direct examination on the effects of the design parameters, and hence greatly
reducing the enormous computational resource normally required using CFD methods.
This is of significance for device optimization.

In this study, the design space of the NDR microfluidic oscillator is explored numer-
ically using the equivalent circuit model. Relevant analysis and findings provide a new
perspective to understand the hydroelastic oscillations in microfluidic systems. It also
presents useful design guidelines about how to control its working characteristics to meet
specific application requirements, e.g., to process highly viscous fluids, to increase the
throughput, etc.

2 Key design factors and main characteristics of the NDR
oscillator
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Figure 1: (a)-(c) Different designs of the NDR microfluidic oscillator. In (a), the design utilizes silicone
rubber for the oscillating diaphragm which is freely-supported at its edge (Reprinted with permission from
reference [14]. Copyright 2012 RSC Publishing). In (b), the diaphragm is made of elastic metal film (Adapted
from reference [15]. Copyright 2014 AIP Publishing). The design in (c) also uses silicone rubber, but its edge
is fixed and sealed. The fluid flows through a by-pass channel to the downstream (Reprinted with permission
from reference [25], Copyright 2017, IOP Publishing). The sub-figure below is a sectional view of the design.
(d) Schematic of an equivalent circuit model of the NDR oscillator.

Figs. 1(a)-(c) present several previously reported NDR microfluidic oscillators that dif-
fer in geometrical formats. All the designs include one inlet, one outlet, an oscillation
chamber that houses an elastic diaphragm, and a microchannel that crosses over the di-
aphragm. Essentially, they have the same working mechanism. A sectional view of the
third design and its equivalent circuit model are as shown in Figs. 1(c) and (d). Firstly, the
microchannel plays the role of a by-pass resistor (Rc). With a fluid flow, it will produce
an initial bias pressure Pb that deflects the diaphragm. The chamber and the diaphragm
act as a fluidic capacitor Ci. As the diaphragm oscillates up and down, the fluid will flow
in and out, just like the electrical charge and discharge process. When the diaphragm de-
flects under the bias pressure, it will change the flow resistance. So it also plays the role
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of a pressure-variant resistor (R̃). To operate the oscillator, a pressure tank with liquid is
applied. By using an auto-regulator, a constant pressure (Po) is applied to drive the liq-
uid out the tank and through the oscillator. Thus, the pressure tank works as a capacitor
of infinity (C∞). Besides, fluidic inductors are used to describe the fluid inertia effects.

At low operating pressure (Po), the diaphragm deflection w and R̃ is small, so the
flow rate Q and the bias pressure Pb are mainly determined by Rc. According to Darcy-
Weisbach equation [26],

Rc =
32ρvl
AD2 , (2.1)

where ρ is the fluid density; v is the fluid kinematic viscosity; l, A and D are the length,
cross-sectional area and hydraulic diameter of the by-pass microchannel respectively. So
in the design, Rc is tunable through changing the length (l) and hydraulic diameter (D)
of the channel.

At large deflections, the elastic diaphragm approaches the bottom of the chamber, R̃
increases rapidly, which is determined by both the diaphragm deflection w and the depth
of the chamber (H) underneath it. The fluid will be accelerated while it flows through
the narrow gap between the diaphragm and the chamber bottom (indicated as H(r) in
Fig. 1(c)). The Bernoulli effect becomes significant, producing a load (F) to pull the di-
aphragm further downstream. In addition, how easily the diaphragm deflects under
a pressure load relates to its bending stiffness, which is mainly decided by diaphragm
Young’s modulus E and thickness t. Thus, coupling E or t with H, R̃ can be tailored for
specific design.

The flow rate Q= Pb
Rb

, where the bias resistance Rb=Rc+R̃. The differential flow resis-

tance, Rdi f =
dPb
dQ . Suppose the load resistance of the oscillator is Rl , the operating pressure

can be calculated as:

Po =Q(Rb+Rl)+
ρU2

o
2

, (2.2)

where Uo is the liquid velocity at the outlet. Above a critical pressure, when Pb is further
increased, the diaphragm deflects so much that it will cause a rapid increase in the flow
resistance R̃. As a result, the flow rate Q will decrease. Rdi f becomes negative, triggering
the oscillation of the elastic diaphragm.

Fig. 2 gives a schematic showing how the flow rate Q, bias pressure Pb and differen-
tial resistance Rdi f change with the diaphragm deflection w. In our previous numerical
study [25], two types of instability are identified, and relevant phenomena are consis-
tent with experimental observations [14, 15]. They are mainly determined by the design
parameters and viscosity of the applied fluid.

For both the cases, the flow rate initially increases with w. After reaching a maximum
Qmax, it gradually decreases to 0 at the point wm where the diaphragm reaches the bottom
of the oscillation chamber and closes the outlet. For Pb, it exhibits different changing
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Figure 2: Schematic showing the typical changes of the flow rate Q, bias pressure Pb and differential resistance
Rdi f as a function of the diaphragm deflection w in a NDR fluidic oscillator. Two different types of instability

as shown in (a) and (b) are identified.

trends with w corresponding to two instability types. For Type I instability, the Pb-w curve
exhibits an N-shaped pattern. Accordingly, based on whether Rdi f is positive or negative,
the whole deflection range can be divided into four regions. In Regions I (w<wi) and
Region III (wa<w<wb), Rdi f >0. In Regions II (wi<w<wa) and Region IV (wb<w<wm),
Rdi f < 0. Deflection wi is the transition point where Rdi f turns from positive to negative
and the flow system becomes unstable. For type II instability, Pb increases consistently
with w. As a result, it leads to two different regions over the span of w–a stable region I’
and an unstable region II’. For this case, if the operating pressure Po in region II’ is less
than the pressure required deflecting the diaphragm to close the channel (Pc), it may also
trigger oscillations. Otherwise, the diaphragm will tend to move to the chamber bottom
and stop there, acting as a flow-limiting valve.

According to experimental [14, 15] the oscillator will become less robust when softer
materials are used for the diaphragm, or higher-viscosity fluids are applied. Under such
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conditions, the applicable fluid viscosity range becomes narrower and the transition pres-
sure is higher. From the simulation results, along with the reduction in the device ro-
bustness, the span of region III (∆w=wb−wa) will gradually narrow down and finally
disappear, transiting Type I instability to Type II instability. So, an empirical index χ is
defined here to evaluate the robustness of the device, χ=∆w/(wm−wi). A large χ means
a wide workable range of the operating pressure, and high applicable fluid viscosities.
On the contrary, small χ means the oscillator only works in a narrow pressure range and
cannot be applied for high-viscosity fluids. Oscillations can hardly occur at χ=0.

3 Methodology

A quasi-static analysis is conducted, which neglects the capacitance and inductance ef-
fects. Suppose the diaphragm can reach an equilibrium state at any deflection w, the
corresponding Po, Pb, Q , and Rdi f can be calculated. Detailed information about the nu-
merical method was introduced in [25]. It is briefed here to facilitate understanding of
the present work.

Firstly, at a given diaphragm deflection w, the corresponding bias pressure, flow rate,
differential flow resistance, etc. can be calculated. It starts from w=0 with an increment
of ∆w= 0.005µm. At a deflection w, the pressure-variant resistance R̃ can be calculated
through integration of the flow resistance over the diaphragm radius

R̃=
∫ r0

0

32ρv
2πrH(r)·Dh(r)2 dr. (3.1)

Here, ρ is the fluid density, v is the fluid viscosity, r0 is the diaphragm radius. H(r) is the
gap between the diaphragm and chamber bottom, H(r)=H−w[1−( r

r0
)2], where H is the

depth of the oscillation chamber. Dh(r) is the hydraulic diameter at r, Dh(r)∼2H(r).
Then, assume a bias pressure Pb. Using the thin-plate theory, the corresponding de-

flection of the diaphragm w1 can be obtained,

Pbr4
0

Et4 =
5.333
1−σ2

w1

t
+1.0815

(w1

t

)3
, (3.2)

where E, ρ and t are the Young’s modulus, Poisson’s ratio, and thickness of the di-
aphragm. With R̃, Pb and the by-pass resistance Rc, the flow rate Q can be calculated
as,

Q=
Pb

Rc+ R̃
. (3.3)

Next, the central load F due to Bernoulli effect is calculated as,

F=
∫ r0

0

ρ

2

(
Q

2πrH(r)

)2

2πr ·dr. (3.4)
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The diaphragm deflection caused by F(w2) can be obtained through Eq. (3.5)

Fr2
0

πEt4 =
1.333
1−σ2

w2

t
+0.2948

(w2

t

)3
. (3.5)

The total deflection is approximated as w∗=w1+w2.
Then based on the difference between w∗ and w, Pb is tuned using the interpola-

tion method. The above procedures are iterated until self-consistent solutions at w are
obtained. The convergence criteria is set as |w∗−w

w |< 10−12. Then, move on to w+∆w
(∆w=0.005µm). The differential resistance Rdi f is calculated as

Rdi f =∆Pb/∆Q. (3.6)

The evolution of Rdi f with w helps analyze the flow state in the oscillator. The transition
point from the steady to oscillatory flow, the required operating pressure, the flow rate
range, the applicable viscosity, and reliability of the device can be obtained.

4 Results

4.1 Influence of the by-pass resistor (Rc)

The influences of the by-pass resistance are shown in Fig. 3. In this simulation, the other
parameters are kept constant. The Young’s modulus E of the diaphragm is 1.52MPa,
Poisson’s ratio σ=0.47. The diaphragm thickness t=250µm and radius r0 =0.9mm. The
oscillation chamber depth H=300µm, and the outlet radius rout=250µm. The fluid viscos-
ity is 1cP. For all the cases with different Rc, the flow rate initially increases and then drops
with the deflection of the diaphragm. It also shows that the maximum flow rate Qmax de-
creases, while the corresponding transition deflection wi increases with Rc. When Rc in-
creases from 1.6×105 to 8.0×105Pa/(ml ·s−1), Qmax decreases from 0.44ml/s to 0.12ml/s.
Refer to Fig. 3(b), for the design of Rc = 1.6×105Pa/(ml ·s−1), wi = 265.9µm. When Rc
increases to 8.0×105Pa/(ml ·s−1), wi increases to 299.1µm. As wi shifts to the right, the
stable flow Region I expands and the span of Regions II∼IV narrows down.

When the diaphragm deflects to the same location that wi = 265.9µm, which is the
transition point of Rc = 1.6×105Pa/(ml ·s−1), the results of the flow rate Q and the op-
erating pressure Po are shown in Fig. 4(a). When Rc increases to 8.0×105Pa/(ml ·s−1),
Q decreases from 0.44ml/s to 0.10ml/s. Accordingly, the load F caused by Bernoulli
effect decreases while Po increases. This is because that the Bernoulli effect plays an im-
portant role to form the N-shaped Po-w curve. With increase of Rc, the Bernoulli effect
become weak and the diaphragm must defect more to trigger the oscillation, i.e., the tran-
sition deflection wi is increased. Consequently, a higher operating pressure is required.
Fig. 4(b) presents the results of transition pressure Pi, close pressure Pc and robustness in-
dex χ with different by-pass resistance Rc. Pc is determined by the maximum deflection
wm, for current case, Pc = 111.2kPa. The transition pressure Pi increases from 80.0kPa to
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Figure 3: Influence of the by-pass resistance (Rc) on the flow rate (Q) and the differential flow resistance
(Rdi f ). (a) Flow rate Q versus diaphragm deflection w at different Rc. (b) The differential flow resistance Rdi f
versus deflection w at different Rc.

96.8kPa over the tested Rc range. Obviously, the corresponding operating pressure range
(∆P=Pc−Pi) narrows down. In the meanwhile, the robustness index χ drops from 0.73
to 0.58.

As the oscillator design with large Rc becomes less robust, the maximum applicable
fluid viscosity µmax is accordingly reduced. Relevant results are displayed in Fig. 5. Over
the analyzed range of the by-pass channel length (l) from 8mm to 40mm, µmax drops
from 3.6cP to 2.2cP, while the corresponding transition pressure Pi increases from about
98.8kPa to 101.7kPa. This can be explained as follows. For a large Rc, a small flow rate Q
can produce a high bias pressure Pb. While the diaphragm deflects downstream under Pb,
the flow rate Q may not be high enough to cause significant Bernoulli effects which are
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Figure 4: (a) The flow rate Q and operating pressure Po versus Rc at diaphragm deflection of w=265.9µm. (b)
Change of the corresponding transition pressure Pi, the close pressure Pc and robustness index χ as a function
of Rc. The applied fluid viscosity is 1cP.

necessary for the transition to oscillation. Instead, it will turn directly from a stable flow
state into the valving state where the diaphragm goes to the bottom of the oscillation
chamber and blocks the outlet. For the by-pass channel of fixed dimensions, Rc also
increases with the viscosity of applied fluid (see Eq. (2.1)), and so reduces the robustness
index χ. The influence of fluid viscosity will be further discussed in Section 4.3.

4.2 Influence of the pressure-variant resistor (R̃)

The characteristics of the pressure-variant resistor R̃ are determined by several factors,
including the material properties, geometries and dimensions of the diaphragm, specif-
ically the radius and thickness of the diaphragm, and the depth of the oscillation cham-
ber. To analyze its influence, the hydraulic diameter of the by-pass channel is fixed at
D = 200µm, channel length l = 8mm. The other parameters are kept the same as intro-



1390 J. Wu, H. Xia, Z. Wang, W. Wang and H. Du / Adv. Appl. Math. Mech., 14 (2022), pp. 1381-1399

Figure 5: Maximum applicable viscosity µmax and the corresponding transition pressure Pi as a function of the
by-pass channel length.

duced in Section 4.1.

4.2.1 Radius r0 and Young’s modulus E of the diaphragm

How easily the oscillation diaphragm tends to deflect under a certain load relates to its
bending stiffness. It can be adjusted through choosing different materials, or changing
the diaphragm’s radius r0 and thickness t. In current work, the influences of the radius
(r0) and the Young’s modulus (E) of the diaphragm are examined.

Fig. 6(a) plots the results of Rdi f versus deflection w at different r0. As r0 increases,
the span of Region III gradually narrows down. At r0 = 0.8mm, Region III ranges from
w=264.1µm (A1) to w=321.6µm (A2), ∆w=57.5µm. But at r0=1.2mm, it decreases to just
7.3µm (from point B1 to B2). When r0 is further increased to 1.3mm, Rdi f becomes negative
over the whole deflection range beyond the transition point (w > wi). The robustness
index χ becomes zero. Fig. 6(b) shows that the transition pressure Pi, the close pressure
Pc and χ decrease with r0. Pi drops from 122.3kPa to 27.4kPa, Pc decreases from 188.1kPa
to 32.3kPa. This is because with the increase of r0, a smaller load is required to deflect the
diaphragm to the transition point. The operating pressure range (∆P) over the oscillation
regime is also reduced. Accordingly, the robustness index χ declines from 0.81 to 0.17.

Figs. 7(a) and (b) show the influence of Young’s modulus (E) of the diaphragm. First,
the transition pressure Pi and the close pressure Pc increase with E. Over the analyzed
range from 0.76Mpa to 6.08Mpa, for fluid of viscosity µ=2.5cP, Pi increases from 49.3kPa
to 335.9kPa and Pc goes up from 55.6kPa to 444.9kPa. The operating pressure range ∆P
expands from 6.3kPa to 109.0kPa. This is consistent with the change of χ, which increases
from 0.11 to 0.68. As the oscillator becomes more robust, the maximum applicable vis-
cosity µmax is also increased. It is elevated from 2.5cP to 7.2cP. At the same time, the cor-
responding transition pressure Pi increases from 49.3kPa to 395.0kPa. This trend agrees
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Figure 6: (a) The differential resistance Rdi f as a function of the oscillation chamber radius (r0). A1, A2 and
B1, B2 indicate the span of region III for r0 =0.8mm and 1.2mm. Type II instability is observed at r0 =1.3mm.
(b) The line chart shows how the transition pressure Pi, close pressure Pc and the robustness index χ change
with r0. The applied fluids viscosity is 1cP.

well with previous experimental observation that both µmax and Pi increase with the di-
aphragm thickness [15]. Apparently, with the increase of E, a high pressure is required to
deflect the diaphragm, and the flow rate also increases accordingly.

4.2.2 Oscillation chamber depth H

The diaphragm deflection w coupling with the chamber depth H determines the pressure-
variant resistance R̃. So the device performance can also be tuned through changing H.
Relevant results are shown in Figs. 8 and 9. With the increases of H, the diaphragm must
deflect further downstream to reach the transition point. At the same time, the span of
Region III is increased (refer to Fig. 8(a)). From Fig. 8(b), both Pi and Pc, as well as χ
increase with H. Over the range of H from 200µm to 500µm, Pc increases from 65.5kPa
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Figure 7: Influences of the diaphragm’s Young’s modulus on: (a), the transition pressure Pi, close pressure
Pc and the robustness index χ; (b), the maximum applicable viscosity µmax and the corresponding transition
pressure Pi.

to 254.8kPa and the oscillation pressure range (∆P) increases from 17.6kPa to 87.8kPa. χ
increases from 0.48 and 0.87.

It is noted that increasing H produces similar effects as increasing the Young’s modu-
lus of the diaphragm E. Both the maximum applicable fluid viscosity µmax and the corre-
sponding transition pressure Pi grow with H. From Fig. 9(a), for a 200µm-deep chamber,
µmax is 1.6cP. For 500µm, µmax increases to 11.1cP. The corresponding Pi increases from
52.6kPa to 241.6kPa. At same fluid viscosity, the maximum flow rate Qmax and Pi also
increase with H. Refer to Fig. 9(b), Qmax has increased from 0.26ml/s to 0.89ml/s, and Pi
rises up from 47.9kPa to 167.0kPa.

Though increasing the chamber depth can lift the upper limit of the applicable fluid
viscosity and flow rate, attention should be paid that H must be limited below the yield
point of the diaphragm. Otherwise, it will cause permanent deformation of the di-
aphragm and hence failure of the oscillator.
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Figure 8: (a) The Rdi f -w patterns at different oscillation chamber depths H. (b) The evolution of transition
pressure Pi, close pressure Pc and robustness index χ with H.

4.3 Influence of the fluid viscosity (µ)

Figs. 10 and 11 present the results of two different designs showing the influence of the
fluid viscosity. The diaphragm material is the same as that used in Section 4.1. The
diaphragm thickness t is 500µm, radius r0 is 1.5mm. The oscillation chamber depth H is
900µm. The by-pass channel length l is 8mm and the hydraulic radius D is 200µm. For the
first design in Fig. 10, the outlet radius (rout) is 250µm. Over the fluid viscosity µ range
from 1.0cP to 6.5cP, the maximum flow rate Qmax drops from 1.70 ml/min to 0.32ml/min,
while the transitional operating pressure Pi increases from 333.9kPa to 374.5kPa. For the
second design in Fig. 11, rout is reduced to 150µm while other design parameters remain
unchanged. Qmax drops from 1.53ml/min to 0.39ml/min as µ is increased from 1.0cP to
5.0cP. However, for Pi it exhibits an opposite trend in comparison with the first case. It
drops from 502.9kPa to 360.6kPa as µ rises.
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Figure 9: The influence of oscillation chamber depth H on (a) maximum applicable viscosity µmax and corre-
sponding pressure Pi; (b) maximum flow rate Qmax and transition pressure Pi at fluid viscosity of 1cP.

Interestingly, it is found that for both the cases shown in Figs. 10(b) and 11(b), all the
Po-w curves at different viscosities cross at a same point A. Before point A, Po decreases
with µ; afterwards Po increases with µ. This can be explained as follows. For the operat-
ing pressure, Eq. (2.2) can be rewritten as,

Po =Q
(

Rc+ R̃+Rl
)
+

ρU2
o

2
. (4.1)

Part of the input energy is utilized to overcome the flow resistance, the rest converts to
the kinetic energy of the fluid.

For the elastic diaphragm, the total pressure load (Pl) attributes to two parts:

Pl =Pb+Peq, (4.2)

where Pb is the bias pressure, Peq is an equivalent pressure load due to Bernoulli effect.
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Figure 10: (a) The results of transition pressure Pi and maximum flow rate Qmax at different fluid viscosities.
(b) The plot of operating pressure Po as a function of deflection w at different fluid viscosities. The outlet
radius of the oscillator is 250µm.

In the low-w range, Bernoulli effect and Peq can be neglected, the diaphragm defection
is mainly determined by the bias pressure Pb = Q(Rc+ R̃). For two cases of different
viscosities, when the diaphragm deflects to a same position, Pb1 = Pb2. It can be derived
that for both the cases, the item Q(Rc+ R̃+Rl) also remains the same. Suppose µ1 <µ2,
then Q1>Q2. From Eq. (4.1),

Po,1−Po,2=
ρ
(
U2

1−U2
2
)

2
=

ρ
(
Q2

1−Q2
2
)

2s2 >0, (4.3)

where s is the cross sectional area of the outlet. It explains why at low diaphragm deflec-
tions before point A, the operating pressure decreases with the fluid viscosity.

In high-w range, Bernoulli effect and Peq become significant. At the same time, the
variant resistance R̃ increases rapidly, Rc+ R̃�Rl , that is, Q(Rc+ R̃+Rl)≈ Pb. Then, by
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Figure 11: Results of the oscillator with reduced outlet radius, rout =150µm. Other design parameters remain
the same as that in Fig. 10. (a) Transition pressure Pi and the maximum flow rate Qmax versus fluid viscosty
µ. (b) Results of the operating pressure Po versus deflection w at different fluid viscosities.

combining Eqs. (4.1) and (4.2), we obtain

Po≈Pl−Peq+
ρU2

o
2

. (4.4)

Since Peq is caused by the Bernoulli effect, it relates to the gap between the diaphragm
and the chamber bottom. So, it’s a function of the diaphragm deflection and can be

expressed as f (w)·( ρQ2

2 ) (see Eq. (3.4)). The kinetic pressure term in Eq. (4.4), ρUo
2

2 can

also be written in the format of C0 ·( ρQ2

2 ), where C0=
1
s2 . With the increase of w from zero

to wm, there must exist a point where f (w′)=C0. At this point, Peq=
ρUo

2

2 , then Po≈Pl |w=w′ .
The operating pressure becomes irrelevant with the fluid viscosity. It approximates to
the total pressure load required to reach deflection w′. That is why all the Po-w curves at
different viscosities cross nearly a same point.
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Depending on the design, the intersection point A may occur either before or af-
ter the transition point. As demonstrated here, when the outlet radius rout is reduced
from 250µm to 150µm, point A shifts from before to after the transition point. Accord-
ingly, the transition pressure Pi increases for the former and decreases for the latter with
the increase of the fluid viscosity µ. This provides an explanation for previous exper-
imental observations. For the oscillator that utilizes silicone rubber for the oscillating
diaphragm [14], Pi increases with µ; while for another design using elastic metal [15], the
trend becomes opposite. It is believed that for the latter, the increase in fluid viscosity
have caused a more significant reduction in the flow rate and the kinetic pressure. As a
result, the required operating pressure is reduced.

5 Conclusions and discussions

In this work, the underlying physics and parameter influences of a NDR fluidic oscilla-
tor are systematically studied through quasi-static analysis using an equivalent-circuit-
model. First, the Bernoulli effect is identified to play an important role. It is the key
reason leading to the N-shaped Pb-w curve, which is essential to trigger the oscillation.
For the cases where the Bernoulli effect becomes very weak, e.g., when a highly viscous
fluid is applied, the bias pressure Pb will monotonically increases with the diaphragm
defection w. The device exhibits a second type of instability. The oscillation can hardly
occur. Instead, it will directly transit from the laminar-flow state to the valving state.
Based on the evolution of the differential resistance with the diaphragm defection (the
Rdi f -w curve), an empirical robustness index χ is defined, and the design space of the
NDR oscillator is explored.

Parameter studies show that the robustness of the NDR oscillator can be improved
through reducing the by-pass resistance Rc, increasing the depth of the oscillation cham-
ber H, or increasing the bending stiffness of the diaphragm. On the contrary, the robust-
ness will deteriorate. With the increase of χ, the operating pressure range is expanded,
the upper limit of the applicable fluid viscosity is improved, and the maximum flow rate
is increased. For the transition pressure Pi, it increases with Rc, H, Young’s modules of the
diaphragm E, but decreases with diaphragm radius r0. The outlet radius rout influences
how much of the operating pressure will be converted to the kinetic pressure, depending
on which the transition pressure may either increases or decrease with the fluid viscosity.
All these findings will help to advance the understanding of the NDR oscillation in mi-
crofluidic networks, and provide useful design guidelines of the NDR oscillator to meet
various application requirements.

Lastly, it should be noted that in the current static analysis the influences of the flu-
idic inductor and capacitor are neglected. They are key parameters that determine the
oscillation frequency. In the dynamic state, the inductance and capacitance load will also
influence the working pressure range and fluid viscosity range. In its practical operation,
the oscillator can still work within a certain pressure range above Pc. This is because in
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the dynamic state, collision occurs when the elastic diaphragm hits the chamber bottom.
The elastic force can overcome the upstream pressure and push the diaphragm back. For
a more detailed analysis of the NDR oscillator, all above issues should be taken into con-
sideration, which require further exploration.
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