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Abstract. A novel canonical Euler splitting method is proposed for nonlinear compos-
ite stiff functional differential-algebraic equations, the stability and convergence of the
method is evidenced, theoretical results are further confirmed by some numerical ex-
periments. Especially, the numerical method and its theories can be applied to special
cases, such as delay differential-algebraic equations and integral differential-algebraic
equations.
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1 Introduction

Functional differential-algebraic equations (FDAEs) have been widely used in science
problems in mechanics, control science, biology and other fields [1,2]. The reference [3]
has indicated that differential-algebraic equations (DAEs) are neither differential equa-
tions nor algebraic equations, they include the process of differentiation and the limita-
tions of algebraic conditions, which change the behavior of the solution and lead to some
difficulties of numerically solving FDAESs.

In recent years, there has been extensively studied on the numerical stability and con-
vergence of delay differential-algebraic equations [4-15]. Further, we can refer to [16-19]
for details on the numerical stability and convergence of integral differential-algebraic
equations. However, most of the above studies are focused on theoretical and numerical
analysis of linear or non-stiff problems, we can refer to [20-22] for the stability of the more
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general nonlinear stiff FDAEs and theirs numerical methods. For these stiff problems,
since the right-side functions of the equations exhibit different stiffness at different stages
of development, when we solve the stiff problems on the slow-varying interval, although
the fast-varying interval has been attenuated to insignificance, but the fast-changing in-
terference will still affect the stability and accuracy of the numerical solution. If it is
solved numerically in the entire interval, it will increase the amount of calculation and
fail to achieve high accuracy. As a consequence, some scholars have proposed some split-
ting methods, such as operator splitting method, symmetric weighted sequential split-
ting method, high-order splitting method, and Strang-Marchuk splitting method, but
currently these splitting methods are mainly used to solve differential equations without
algebraic constraints, such as the splitting methods for stiff differential equations [23-25],
Schrodinger equations [26-33], nonlinear convection-diffusion-reaction equations [34,35],
nonlinear delay differential equations and integral differential equations [36—40]. Never-
theless, the splitting methods and their theories mentioned in the above references are
aimed at the nonlinear or stiff problems with some special structures, and still cannot be
applied to the general nonlinear composite stiff functional differential equations [41].
The canonical Euler splitting method (CES) is proposed for solving nonlinear com-
posite stiff evolution equations [41]. On this basis, in order to effectively overcome the
difficulties caused by algebraic constraints, we further propose a new CES method to
solve the nonlinear composite stiff FDAEs, and prove the stability and convergence of the
CES method, and the numerical experiments verify the theoretical results of the method.

2 Canonical Euler splitting method for solving nonlinear
composite stiff FDAEs

Consider the nonlinear composite stiff FDAEs

y' () =f(Ly(t)y(-)z(t)2(), te(0,T],
z2(t) =g (y(H)y(-).z(-)), te(0,T], (2.1)
y(O)=p(t), z(t)=¢2(t),  te[-1,0],

where T>0, T€[0,+00] are constants, and initial functions ¢y, ¢; are given, R represents
the m; dimensional Euclidean space, i=1,2, the inner product is denoted as (-,-), and the
corresponding norm is denoted as || -||, the mappings

f: [0, T] xR™ X Cpy, [—T,T| xR"™ X Cypp, [T, T] — R™,

g: R"MxCy [-7,T] xCppy[—T,T] — R™,

are given, and the mapping g satisfies the consistency condition at the point t =0: z(0) =
2(y(0),91(0),92(0)), f can be divided into two sub-mappings

f(t,u,lp(-),v,)((-)) :fl(t,u,tp(-),v,x(-))—I—fz(t,u,lp(-),v,x(-)),
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Vte(0,T],ucR™,veR™, peCy, [—7,T], X €Cp,[—T,T], the mappings f1, f» and g satisfy
the conditions

A (tur,1(-),01,x1(+)) = f(tuz, 2(-),02,x2(4))

<wq||ug —uzl|+B1 max, 111(8) = 2(S) | +71 /o1 — 02|

+or_max (-2,
(faltan p(0),00()) = bt ()01 ()t —z) Sy =l
It 1 () o020 ()) = fal b 92l() e )|

<P max [1(6) —2() | + 7201 —val +02 max [xa(6)—x2(€)]l

T<E<t

(2.2)

and

18 (w1, 1 () x1 (-)) =g (2,92 (), x2(-))
<Lyflur —ual|+Ls - max < 91(8) = 2(8) [ +Ls max X Jx1 (&) =x2()ll, (2.3)

where uy,u; € R™, 01,00 €R™, 1,5 € Cpy [T, T), X1,X2 € Coy [T, T|, 1, a2, B1, B2, 11,
Y2, 01, 02, L1, Ly, L3 are all real constants and L3 < 1, the constants a1,&, =max{a»,0}, 1,
B2, Y1, 72, 01, 02, L1, Lo, Lz and T are assumed to be of appropriate size.

Further, we assume that problem (2.1) has unique true solutions y(t) and z(t), and de-
note the problem class S(«a1,81,71,01,&2,B2,72,02,L1,L2,L3) consisting of all the problems
(2.1) with (2.2) and (2.3).

Secondly, if the mappings f and g are independent of the past values of the true solu-
tions y(t) and z(f), it can be seen that problem (2.1) degenerates into nonlinear composite
stiff DAEs

y(H)=f(ty(t)z(t)):=fi(ty(t)z(t)+ f2(ty(t)z()), t€(0,T],
z(t)=g(y(t)), te(0,T], (2.4)
y(0)=yo, z(0)=z,

where o € R™, zg € R™2, the mappings f:[0,T] x R™ xR — R™ and g:R"™ — R, and
the sub-mappings fi, f> and the mapping g satisfy the conditions

| f1(t,u1,01) — f1(Fup,02) || <aqljug —uz||+71||v1 — 02|,
(f2(t,u1,0) = fa(t,u2,0),u1 —uz) <tz |lug —uz?, (2.5)
[ fa(t,u,01) = fa(t,u,02) || < 72|01 — 02,

and

lg(y1) —gy2) I <Lallyr—y2ll, (2.6)

where uy,u; € R™, v1,v; € R, we assume that the constants a1,&; :=max{a2,0}, 71, 72,
and L; all have only appropriate size. We use the symbol S (a1,71,&2,72,L1) to represent
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the problem class that contains all problems (2.4) with (2.5) and (2.6), and it can be seen
as a special case of the problem class S(«1,81,71,01,42,B2,72,02,L1,L2,L3).

For the nonlinear composite stiff FDAEs (2.1), we construct the following numerical
method

v () =TT"(¢,51,92, Yn), te[—1,tus1,
Zh(t):ﬁh(t;XIzllZZI'“/Zn); te [_T,tn+1],

y”l‘i‘l :y” +hl’lf1 (ti’l-i-l/yn/yh(')/znrzh(')) +hnf2(tn+1/yn+1,yh(‘),Z,/H_l,Zh(-)),
2ni1 =8 Y1,y (1), 2" (),

2.7)

where n=0,1,---,N—1, the grid A;:={t;:i=0,1,---,N}, t; (i=0,1,---,N) is the grid point

satisfying 0=to<t; <---<tny=T, variable step size h;=t; 1 —t; and h:O me}\)[( 1hi. Y and x
<i<N-—

are approximations of the initial functions ¢; and ¢;, y;€R™, z; €R" are approximations
of y(t;),z(t;),i=0,1,---,N, and yo=¢1(0), zo=¢2(0), y"(t) and z"*(t) are approximations of
the true solutions y(t) and z(t), the piecewise constant or piecewise linear interpolation
operator IT" is constructed:

I1":C, [ T,0] XR™" = Cppy [~ T, tps1]

and I'T" can be defined similarly.
In addition, we notice that for each time integration step (t.,¢,y1,y2,-*,Yn) —

(tut 1 Y.y, Y2, - Yngr) and (b, X,21,22,0++,20) = (En41,X,21,22,°++Zn41), the method (2.7)
for solving problem (2.1) can be done in two steps as follows:
First, we let

(a) yh(t):Hh(t;tplyll]/Zf”'/]/n>/ tG[—T,tn+1],
(b) 2"(t) =T1"(t;x,21,22,+ ,2n), te[—1,ths1), (2.8)
(c) y_n+1:yn+hﬂf1(tn+1r]/nr]/h(')zznrzh(‘))-

Here 1,41 can be regarded as the result obtained by explicit Euler method for solving the
non-stiff sub-problem in nonlinear FDAEs

{yr/(t):ﬁ<t,y<t>,yh<->,z<t>,zh<->>, tE (turtns),

J(tn) =Yn, Z(tn) =24, (2.9)

where v/ (t) and z/'(t) are defined by the formulas (2.8a) and (2.8b) respectively, the
method (2.8) is called the generalized explicit Euler method. For the advantages of this
method, please refer to the literature [42].

Second, we make

{ Yni1 =1 Hhn f2(bnst, Yns1,9" () 2ns1,2" (), (2.10)

Zni1 =8 (Wnr1,y" (1), 2" ("))
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Here y,,+1 and z,,11 can be regarded as the results obtained by the implicit Euler method
for solving the stiff sub-problem in nonlinear FDAEs

70 =LEFOYC)20)2()), te(ttn),
() =g((t).y"(-)2" (), (2.11)
(

tn = yn—i—ll

<

similarly, the method (2.10) is called the generalized implicit Euler method.

It can be seen that the method (2.7) for solving the original problem (2.1) can be trans-
formed into the methods (2.8) and (2.10) for solving the sub-problems (2.9) and (2.11) in
turn. We call the method (2.7) (that is, (2.8) and (2.10)) as the canonical Euler splitting
method (CES).

In particular, for the nonlinear composite stiff DAEs (2.4) € S(a1,71,&2,72,L1), it can
be seen that this is a special case, and the CES method (2.7) degenerates to

{ Yn1 =Yn+Mnf1(Fns1,Ynzn) Fhnfo(bn1, Yne1,2n+1), 2.12)

Zni1=8(Yn+1),

for each time integration step from ¢, to t,1, the method (2.12) can be divided into two
steps for solving Eq. (2.4), that is, we first use the generalized explicit Euler method

Yn+1=Yn +hnfl(tn+lrynzzn) (2.13)

to solve the non-stiff sub-problem of the nonlinear DAEs

7(t)=f(ty(t)z(t )) te (ttni1),
{y'(tn)zyn, z(ty) (2.14)

then employ the generalized implicit Euler method

%\n—s—l :gn—i—l +hnf2(tn+1/gn+1/2n+1)/ (2.15)
Zii1 =8 (1),
to solve the stiff sub-problem of nonlinear DAEs
7()=f(tg()2(1), tE(tntur),
2(t)=g((t)), (2.16)
(tn ]7 +1,

and let

Yn+1 :]?nJrl/ Zn+1 :2n+1-
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3 Stability analysis of CES method for solving nonlinear
composite stiff FDAEs

We first perform canonical analysis on the interpolation operators IT" and I'T" in the CES
method (2.7), and then establish the stability theory of CES method for nonlinear com-
posite stiff FDAEs (2.1).

Lemma 3.1 ([41-43]). The interpolation operators TT" and TT" in (2.7) satisfy

(max [ ) TP )|

<max{ max 51, rr;a;ouw } o
g [ -0t 20

<max{ max |2, m<at§0HX H},

Vll)ﬂ/} € le [_TIO]I X/X € sz [_TIO]I ]/i/?i S Rm]/ Zi/Zi S Rm2l i= 1121' N

Proof. When IT" is a piecewise constant interpolation operator, there is

N

P(t) for te[—1,0],
yi fOI' te(ti—llti], i:1,2,'~~,1/l,

we obviously have

It o N TT (el e T
_max (I (G ) — I (GG ,yn)‘
<max{1max lyi=gill, max [p(t)—p §(1)l }

When TT" is a piecewise linear interpolation operator, there is

Hh(tlwlyll o

P(t) for te[—1,0],

Yn)=9 (L—t)yi1+(t—ti1)y;
ti—tiq

for te (tl‘,l,ti], i=1,2,---,n,

it is easily proved that

H (ti—tyiat+t—tiyi  ELi—HFiat+(E—ti)Fi
ti—ti1 ti—ti1

<max{|lyi—1—Fi-1ll, lyi—7ill},
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where t € (t;_1,t;],i=1,2,---,n, this leads to

max [T (¢, 91, yn) =11 (6,71, 5n)
—T<t<ty
<max{ max [ly;—gill, max ly()—§()]|}.
I1" can be similarly proved. O

Theorem 3.1. Suppose the CES method (2.7) is used to solve the nonlinear composite stiff prob-
lem (2.1) € S(a1,B1,71,01,42,B2,72,02,L1,L2,L3) on a given grid Ay, for the starting functions
{w(t),x(t)} of method (2.7) and the starting functions {(t),X(t)} of the corresponding method
(3.2), let {yn,zn}, {Vn,2n} denote the approximate sequences generated by the CES method (2.7)
for solving the nonlinear composite stiff problem of the form (2.1) under these two sets of starting
functions, then for any four parallel integration steps

(t . y1y2, - yn) = (s, Py1Y2, Ynt1),
(twX,21,22,,2n) — (bar1,X021,22, 7 Zn41),
(tw G102, Fn) = (barr, B 9092, Fns1),
(tn,Xo21,22, /2n) — (tny1, X 20,22, Zn11),

where the first and second integration steps are determined by (2.7), and the third and fourth
integration steps are determined by

7'(t) =", 51,52, ), tE[~T tns1l,
Zh(t) :ﬁh(t;X121122/' o /Z}’l) te [ T, tn_;,_l]

_ . o . N (3.2)
Jnt1 =Tn+hnft (a1, 007" ()20, 2" () Fhnfo(bus 1, Tns 1,7 (), 201, 2" (),
Zni1=8(Fn1, 7" (), 2"()),
then, we have the stability inequalities
lyn—ull <exp(ertn)max{ max [[p(H)—F(D)], max [x(H)-xOIf, @3
lzn—2u]| < czexp(erty)max{ max [p()=(1)], max |x()-x(D)[},  (B33b)
where max h;<h,n=1,2,---,N, the constants
0<i<n—1
2(c L), L,>0,
o= (Cl+_062+72 1) a2+72L1 Cz:max{L1+Lz,1}, (3.4)
max{¢i+ar+72L1,0}, ar+72L1 <0, 1-L3

and
ci=w1+71Li+B1+B2+71La+7v2La+ (01 +02+71L3+72L3)c2,
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and

L Ly >0
h={ 2(ax+72L1)’ 2T 2E =5 (3.5)
h*, xr+72L1 <0,

here, h* >0 is any given constant, it can be seen that the constants cy, ¢, 1, hYare of appropriate
size.

Proof. From (2.7) and (3.2) we have

Ynt1 = Fni1 =Yn—Jn+al A (turr,yny" (), 202" () = filbusr, 9§ (), 20,2 ()
+hn[fz(tn+1z]/n+1:yh(')on+1/ ()= f2(tus1,Fns1y (')/ZnJrerh('))
+fo(tasr,Gns 1y () 20,2 () = faltusr Gnsn, () Zns, 2 ()],

therefore, according to the Lipschitz conditions (2.2)

Y1 = Fsa |
=(Yn—InYn+1—FJnt1)
+h(fi (b Yy (202" () = Albns, G0 7" () 202" () Yns1 = Tnsa)
+hn<f2(tn+1fyn+1/yh(')/Zn-i-lr ()= fo(tus1,Fns1,y (-),zn+1,zh(-)),yn+1—y”nH)
+ha (fa (b1, T, () 204,27 () = fa(bai1, T, 7 () 2,2 (D) Y1 — Fnsn)
<Nyn—=Tnlllyn+1 = Fnsa |+ hnar[[yn = Tl Yni1 = Fnia |
+haBr max |y (&) =7 (©MYns1—Tnsa | Hinvallza—Zall Y1 — T |

_T§g§t11+1
hyx\ __sh o~
+hmqg§§§m|\z &) —2"(O)Myn+1—Fnrll
Fhna||Ynsr —Tnsr P +haB2 max [y (E) =7 ()| [ynr1—Fura |

—T<E<typ1

vzl znir = Zust | Yo = Fura | +hnoe_max  124(8) =2" (@) [yws1 G,
—T<{<tpi1

and together with (2.3), we have

st =Fust | <Y —nll +hner |yn =Tl + 11 max [[y*(&) = 7" (@) | +huyl|zn—Zal

—T<E<tut
thaor max |2(8) =2 ()| +hntallyns1 = Fusr [+ 1al|Zws1 = Zuga |
—T<E<tn
hiz\ _ =h hizy _ sh
thapa_max Iy (&) =7 (Sl +hmoz_ max [[2(8)=Z(C)ll

<[|yn = Fnll+Hner[[yn = Fn |l +Hna2l|yns1 —Fusa |
homy  oh
+(B1+B2) max Iy (&) =" (O

- >tn+1
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+Hortoa)hy max  [|2"(8) =2 (&) |+ [Lallyn— 7

—T<E<tpp1

+Lp_max " (&) =7" (@)l +Ls_max 12" (&) ~2"(@)]

Hhuya[Lillyner—Fusa+L2 max [y"(@)—7"(@)]

—T<{<tpi1

+Ly max [2"(8)—Z"(@)ll], (3.6)

—T<E<ty41

according to canonical conditions (3.1), this leads to

[1—(a2+72L1) ] [|Yns1 —Fnsa |
<[14(a14+y1L1)hy] ||yn_y~nH
+(B1+Bat11la+7ala)hy  max Iy (&) —7"(2) |l

-7 é b1

+(o1+ 2+ 7103 +72L3)h,  max  [|2"(&) —2"(&) ||

—T<E<tpi1

<[+ (o +71L1) ] [y — G
+(Br+Pa+nLa+7aLa)hymax{ max [yl max lp() ()] }

T<t<0

+ (01402 +71La+72L3 ) max{1rr1ax |z~ 2, max [|x(t)— (t)||}. (3.7)

7<t<0

Next, we will prove

max{ max [lz;—z|, max [lx(1)~%(1)] }

<eymax{ max [y —gill, max [[p(t)—§(0)ll, max Ix()-x(OI}, @8

7<t<0 T<t<0

where ¢; = max{ LllfLL; ,1}. The following three cases are considered to prove the formula
(3.8).

The first case: when

max{lrgguzl z, max [x(t)-x RO} =lzn—2all

there is

20 =2l =llg (v y" (), 2" () — g (@7 (). 2" ()]
<Lallyn=gull+La_ max Iy (&) =7" (@)l +Ls _max [2"(5)~2"(2)]

T<E<tut

<La [y —Fal|+Lomax{ max ly;—5ill, max [lp())—~(0)] }

—17<t<0

—|—L3max{112iag>; ||Zi_zi”’_rfngaté0HX(t) x| },
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since L3 <1, we have

L1+L ~
202 < 5= 2 max { max =gl max [9(0) = §(8)], max |x() -2},

T<t<0 7<t<0

so we can get

max{ max |z~ |, max [x(1)~%(1)] }

<cpmax{ max [lyi—ill, max [[$(5)—F()], max [lx(t)-%(#)]}.

1<i<n 7<t<0 T<t<0

The second case: when

max{ max [z~ |, max [x(6)=%(0)] } =z~

where k€ [1,n—1] and k€ Z, from (2.3) and (3.1) we can get

2= 2l =g et ()2 () =g G (1.2 ()]
<Lallye=fell+1a_max [y"(2)-7"(@)]+La max [2(6)-"(@)]

<Lalye— il +-Lamax{ max [lyi—gill, max [[p(6)— (1)l }

7<t<0

+Lomax{ max_ ==z, max lx()-x(0)]}

<(La-+ Loy max{ max [y ~gill, max [9(6) = (0] +Lsl|z—Zd),

7<t<0

due to L3 <1, it is easily obtained

. LitLs - .
— <
Iz =2l =5 — 3ma><{lma><||yz Fill, max lp(t)—p(t)ll, max [lx(t)— x(t)H}
§L1+L2

— o max{ max [lyi—gill, max [9() ()|, max llx(t)~%(1)] },

where k€ [1,n—1] and k€ Z, so we can get
max{ max |[z;—|, max [}x(t)~%(1)] }
< —T; —1 —X :
<emax { max lyi—7ill, max [[p(6)~§(1)]l, max [x()-x(1)] |
The third case: when

max { max |17-%|, max x())=%(0)]l } = max x(t)-z(®)],

7<t<0
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since ¢; =max{ Lll_LLL;,l}, there is a special case of (3.8) obviously.

Therefore, according to the analysis of the above three cases, we can obtain

max{ max |lz;—z|, max [}x(1)~%(1)] }

<crmax{ max lyi—gill, max [[p(6)~§(0)ll, max [x())-x(D)},

T<t<0 7<t<0

where ¢; =max{ L11_+LL32 ,1}, on this basis, substitute (3.8) into (3.7), we get

[1— (a2 +72L1) ] |V 1 — Gt ]

< (e ) max{ max |lyi—gill, max [lp() (1), max [x(t)-xOII},

where
ci=a1+71Li+B1+B2+11La+v2Lo+ (01 +02+71L3+72L3) 2,

when ay+ L1 <0, it is not difficult to check that

1+¢1h,
1— (a2 +2L1)hy

<1+max{¢1+ar+v2L1,0} 1y,

when ay+72Lq1 >0, let hy, < 0 we have

1
2(az2+72L1)’

1
0 <142 L1)h,,
<1—(062+72L1)hn_ +2(az 72l

thus, we can get
1+¢1hy
1— (a2 +72L1)hy

according to the relationships (3.9)-(3.12), we infer that

<1+42(¢14+a2+72L1)hy,

I =G
< (i) max{ max [lyi—gil, max [p()=p(0)], max [x()-x(OI},

7<t<0 T<t<0

where c; is defined by (3.4). Let

X =max{ max lyi—gil, max [p(t)=(0)], max |x(6)~%(0)]},

T<t<0 —T<t<0
thus from the inequality (3.13), we have

Xn < (1+C1hn71>Xn71/ hnfl Sljlz

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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therefore, through further iteration

n—1 n—1
[Yn—Full <Xu <] T(1+e1hi) Xo < T Texp(erhi) Xo
i=0 i=0
<exp(erty)max{ max [p(t)~¢(0)ll, max [x() %W}, @15)

where

max h;<h, n=12,---,N,
0<i<n—1

the constant c; is defined by (3.4), so we can get the stability inequality (3.3a). On the
other hand, from (3.8) and (3.15) we know

—z.< —Z —% <
Iz 2| <max{ max |1z~ 2|, max [lx(1)=x(0)] } <caX,

SCzeXp(mfnhnaX{_gggéoﬂw(ﬂ-—ﬁ(ﬂHfgggéon(ﬂ-—X(ﬂH}, (3.16)

where

max h;<h, n=12,---,N,
0<i<n-—1

c2 and & is defined by (3.4) and (3.5) respectively, thus the stability inequality (3.3b) is also
obtained. The proof of Theorem 3.1 is completed. O

Corollary 3.1. Suppose the CES method (2.12) is used to solve the nonlinear composite stiff
problem (2.4) € S(a1,71,&2,72,L1) on any given grid Ay, for the starting values {yo,zo} and
{J0,20}, and then for any parallel integration steps (tn,y1,Y2,**,Yn) = (tns1,Y1,Y2,**,Yn+1)
and (tn,z1,22,++,2n) = (bn41,21,22,**  Zn+1 ) defined by (2.12), and the parallel integration steps
(tn/glngI' o /gn) — (tn-i-l/glrgZ/' o /gi’l-‘rl) and (thIIZZ/' o /Zﬂ) — (tn+1/21122/' o /Zn—i-l) deﬁned
by

Unt1=Tn+hnf1(tus1,9n,2n) Fhnfo(bns1, Tns1,2n41), (3.17)
Zns1 =8 (Fn+1),
we have stability inequalities
[yn—Fnll <exp(citn) lyo—Toll, (3.18)
and
|z —Zu|l < Lrexp(citn) |yo—7oll, (3.19)
where
max h;<h, n=12,---,N,
0<i<n-—-1
and
2(¢1+ar+v972L1), o L1>0,
o= (1—1—_2 Y2L1) 2+Y2L1 (3.20)
max{¢ +a2+7v2L1,0}, ar+72L1 <0,

here, 1 =waq +y1L1, h is defined by (3.5).



1288 H. Liu, Y. Zhang, H. Liand S. Li / Adv. Appl. Math. Mech., 14 (2022), pp. 1276-1301

Proof. Using the CES method (2.12) to solve nonlinear composite stiff problem (2.4) ¢
S(a1,71,02,72,L1), we have B1=Br=01=0,=Lp,=L3=0, so the inequality (3.7) degenerates
to

[1— (a2 +72L1) ] [[Yn1 —Fna |
[T+ (a1 +y1L1) ] |y — |

<
<+arhn) |y —Gall, ha<h,

where ¢; =a7+y1L1, thus
Hyn—ﬂn|\<(1+01hn DlYn—1—Fn-l

n—
H (1+c1hi)|lyo—1ol| <H9XP (c1hi)llyo—7ol|
=0 i=0

Sexp(cltn)Hyo—goH, O<lrr1<zalq>ilhi§13, n=1,2,---,N, (3.21)

the formula (3.18) is obtained. On the other hand, by (2.3) and (3.18) there are

120 —Znll <L1llyn —Fnll < L1 (LT+c1hp—1) [[yn—1—Fn—1 |
SLleXp(cltVl)HyO_gOHI max hlgfll n:1/2/"'/N/
0<i<n—1

where ¢; and h are defined by (3.20) and (3.5), respectively, thus we can get formula
(3.19). O

4 Convergence analysis of CES method for solving nonlinear
composite stiff FDAEs

In this section, we mainly perform the convergence analysis of the CES method (2.7)
to solve the nonlinear composite stiff FDAEs (2.1), and prove that the CES method is
consistent of order 1. Based on this, we further obtain that the CES method is convergent
of order 1. To prove this conclusion, we first note

Y()—1(H) =0, x(t) = ¢2(t) =0, —T<i<0.

In addition, it should be noted that in order to match the convergence order of the
method, IT" and IT" used in this section are linear interpolation operators.

Theorem 4.1. The CES method (2.7) is consistent of order 1 for solving the nonlinear com-
posite stiff problem (2.1)€ S(a1,B1,71,01,&2,B2,72,02,L1,L2,L3) on any given grid Ay, for any
fictitious integration steps (¢1,y(t1),y(t2), -+, y(tn)) — (@1,y(t1),y(t2), -, y(tn),Yns1) and
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(p1,2(t1),2(t2), - 2(tn)) = (1,2(11),2(t2), -+ 2(tn) Zu11) defined by

7O =11"(Ee1(),y(h)y(t), - y(t),  tE[-T ], (4.12)
(=TT (Lo (1), 2(h)2(k), - 2(t), tE[-T b, (4.1b)
Fue1=Yy(tn) +hafi(tas1,y(t wh() < NELS)
thafa (bt s 7' (), 21, 2 (), (4.1¢)
L1 =8 (Wnr 7" (), 2" (), (4.1d)
then, we have
2
1=y (tn)l| s (max i), (4.22)
2
201 —2(tre) | < max ) (4.2b)

where
max h;<h, n=12,---,N—1,

0<i<n

in addition, we always assume that symbols My, My, 2\711 and M, denote boundaries of certain
derivatives of the true solutions y(t) and z(t) respectively, that is

<t [0 <, |20 < reom

[ < | mZ

here, c3 and c4 depend on Lipschitz constants aq, B1, B2, Y1, Y2, 01, 02, L1, Lo, L3 and boundaries
Mi, My, My, My, and

20,M+M;, ar+72L1>0, X
3= { 52M+%, 2o+ 72L1 <0, cs=Lics+LoyMy+ LMy, (4.3a)
M =max{M;, My, M;,M,}, (4.3b)
S =a1+(B1+Ba+12L2)i+71+ (01 +0a+72L3)h, (4.3c)

h is defined by (3.5), it can be seen that c3, c4 and h™! are of appropriate size.
Proof. For the Taylor expansion of y(t,) at t,+1, we have
Y(tn) =y (tnsr) =y (tn 1) +R,

where
Mz

/!
g
R=L1D2 ce (bt |RI<ME
so there is

Y(tu1) =y () Fhn fi(tnar,y (b)), y () 2(tn), 2 (- ))
+hnf2<tn+1/y(tn+1> ( ),Z tn+1) ( )) (4-4)
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it can be concluded from Egs. (4.1c) and (4.4)

Y1 =Y (tns1)
=ho[fr (b1, (0a) 7" ()2 (1), 2 () = ity (b)) y () 2(tn), 2())]
+ Iy [fZ(thr]/nHry (*),Znt 2h< )= fa(tu,y( th)IVVh( )/Zni1,2 h())
+faltwry(bs1) 7" () 201, 2" () = fa(burr,y (b)) 9 () 2 (tn),2() ]+ R,

SO

[Fn+1 =y (Ens1) [
=h (i (tn1,y(0) 7" () 2(t0), 2" () = fi(bns1,y (Bs1) Y () 2 (En),2(4)),
Vn1 =Y (tns1)) +hnlf2(bns1,Ynr1,9 () Enr1 2 ()
— fa(tus,y(bas1) 7" () 201, 2" () Fn1 =y (tnir))
i (fo (1, (1) 7 () i, 2(-)) = f2( n1Y (Eng1) Y () 2(Enr1),2(4)),
Y1 =Y (1)) H (R, G =y (tut1)),

according to the Lipschitz conditions (2.2), there is

541 =y (Ens) |
<halar |y(tn) =y (tust) [ +B1 max (|5 (0) =y (&) [ +7llz(t) = 2(tur1) |

—T<E<tpp

+o1 max [|27(8) ~z(8) |+ a2l a1~y (tara)|

—T<E<tni1

+p2 max |7(0) ~y(&) [ +72llZnr1—z(tus)]

—T<E<tpt1

+or max [|27(8)~z(5) ] +IR]

—T<E<ty1

<hylaa [y (tn) =y (tn) [+ @2l Fnrr =y (tuga) ]
+mllz(te) = z(tn) |+ 7202012 —2(En1 )|

+(Brtp) max T (S91(8)y (b)Y (82), -y (b)) —y (E)
+(ortoy) max  [[T1(Gg2(€)z(h)2(t2), - 2(t)) =2 ]+ IR, (45)

—T<G<ty1

using differential mean value theorem and Lipschitz condition (2.3) yield that

ly(ta) =y (tas )| < Mk, (|2(80) = 2(tn 1) || < Wi, (4.6a)
i1 = 2(tns) | S Lallfnr =y (tsn) |+ L2 max  [|5(8) —y (&)l
7T_‘:§tn+l
+Ly max [[2'(&)—z(g)l, (4.6b)

—T<{<tpi
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because IT" and I'T" are piecewise linear interpolation operators, so we have

max th(gl§01/y<tl)ry(t2)/' "l]/(t”)) _y(é)H §M2<max hi)zl (4-73)

_nggthrl OSlSVl
2
- A
cee _ < . ‘
_max TG paz(t) 2(t2), - 2(t) z(@)H_Mz(Org%hl) : (4.7b)

according to (4.6a), (4.6b) and (4.7), we can get from (4.5)
[1— (a2 +v2L1)hn] || Fns1 =y (Fnsd) |
2
<oy Myl + (B1+Ba+72L2) Mahy, < max hi>

0<i<n

N o 2 M
—|—’)’1M1h% + (0’1 —|—0’2—|—’)/2L3)M2hn ( max hi) + TZh%

0<i<n

< (c‘zM+ %) ( max hi>2, (4.8)

0<i<n

where M and ¢; are defined by (4.3b) and (4.3¢c) respectively, so we can get

2
74— < . < = oo N— .
T4 y(tn+l)||_c3<g2?§);hz> , hw<h, n=12,---,N-1, (4.9)

where c3 is defined by (4.3a), that is, the formula (4.2a) is obtained. On the other hand,
from the Lipschitz condition (2.3) and (4.7), we have

1Zn+1—2(tn1) | <Lil|Fnr1 —y(tns1) ||+ L2 max I\?h(é)—y(C)H

—T<E<tpt1

+Ls max [[2(5)~z(?)|

7T§§§tn+l

2 R 2
Shies(max ) +LoMa (e ) -+ LV ma i)

<i <i<

2 —

§C4(maxhi> , maxh;<h, n=12,--,N—1,
0<i<n 0<i<n

where ¢4 and /1 are defined by (4.3a) and (3.5) respectively, that is, the formula (4.2b) is

obtained. The proof of Theorem 4.1 is completed. ]

Theorem 4.2. The CES method (2.7) is convergent of order 1 for solving the nonlinear composite
stiff problem (2.1)€ S(a1,B1,71,01,%2,82,72,02,L1,L2,L3) on any given grid Ay, let {yn,zn}
denote the approximate sequences generated by the CES method (2.7) applied to the nonlinear
composite stiff FDAEs (2.1), then, we have

Iy () =yl < C(t) max hi, (4.10a)

||Z(tn)_an SCZ(tn)O%‘ax_lhir (410b)
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where

max h;<h, n=12,---,N,
0<i<n—1

C1(t) and Cy(t) depend on Lipschitz constants aq, B1, B2, Y1, Y2, 01, 02, L1, Lo, L and bound-

A

aries My, My, My, My, h is defined by (3.5), and
Ci(t) =Kesexp(cit), Co(t)=c2Ca(t), (4.11)
here, c1, c and c3 are defined by (3.4) and (4.3a) respectively,

n max h; <K, n=1,2,---,N,
0<i<n-—1

here, K is a constant of appropriate size, it can be seen that Cy(t), Co(t) and h~! are of appropriate
size.

Proof. Considering Theorem 4.1, for any fictitious integration step

(twory(t)y(t2), - y(tn)) — (tnrr,@1y(t)y(t2), - y(tn) Yns1)

defined by (4.1), we have consistency inequality (4.2a). In addition, from formulas (3.9)-
(3.12) of Theorem 3.1, we have

[0 =yl < (Ttcrhp1) max |ly(t:) =yill, (4.12)

1<i<n-1

where c; is defined by (3.4), the inequalities (4.2a) and (4.12) imply that

1y (k) =yl <Ny (En) =Gl [+ 15 =y
2 _
§C3< max 1h1~> +exp(cihy—1) max |ly(t:)—vil, hn—1<h. (4.13)

0<i<n— 1<i<n-1

Let
X =max |ly(t:) —yill,  Xo=0,

we get from (4.13)

2
Xn§C3< max hi> +exp(c1hy—1)Xn-1,
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so through further iteration, we have

2
ly(ta) =ynll <Xo <es( max i) +explerhn 1) X1

0<i<n-1

manx—lhi) 2+Xn71}

<exp(cihu-1) [C3 (ogzg

<explen(y1-+1y2)) [203( max ) +%,] <

0<i<n-—1

<exp (clﬁho (nC3( max hi)2+X0)

0<i<n—1
2
SHC3exp(c1tn)< max hi>
0<i<n-—1
<Cy(t,) max h;, max h;<h,
0<i<n-—1 0<i<n-—1

where n=1,2,---,N, C;(t) =Kczexp(cit), n0<m<ax 1hi <K. On the other hand, we can get
<i<n—

_ < N .
|z(tn) zn\|_lrgl.a§>;||2(tl) zi|
< N\ —.
_Czlrg%\\yﬁz) vill

<cCq(t,) max h;
0<i<n-1

<Cy(t,) max h;, max h;<h,
0<i<n-—1 0<i<n-—1

where n=1,2,---,N, Co(t) =c2C1(t), C1(t) and Cy(t) are defined by (4.11). The proof of
Theorem 4.2 is completed. ]

Corollary 4.1. The CES method (2.12) is consistent of order 1 for solving the nonlinear composite
stiff problem (2.4) € S(a1,71,&2,72,L1) on any given grid Ay, for any fictitious integration steps

(b y (01),y(t2), -y (82)) = (s, y (01) ¥ (82), - Y () Y ) and (£,2(0),2(t2), -+ 2(E0)) =
(bur1,2(h1),2(t2), -+ 2(tn) Znt1) defined by

Vnr1=Y(tn) Fhufi (bns1,y(tn),2(tn)) +Fhnfo(bns1, Yns1,2n41),
Zn41 :g(yvnﬂ)r

then, we have

2
—1 < . )
[y (tns1) yn+1H_03(0rgla§>;hz), (4.14a)
h : b
_~ < . .
z(tns1) zn+1H_L163(0r21,a§>§1 l) , (4.14b)
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where
maxh;<h, n=0,1,---,N—1,

0<i<n

c3 depends on Lipschitz constants ay, 1, and boundaries My, My, My, his defined by (3.5), and

200M+M,, az+72L1>0,
ca= (4.15)

M
oM+ 72, xp+y2L1 <0,

here, ¢ =w1+71, M :max{Ml,Ml }, it can be seen that c3 and h=1 are of appropriate size.

Proof. By solving the nonlinear composite stiff problem (2.4) € S(a1,71,42,72,L1) with
CES method (2.12), we have p1 =, =01 =0 = Ly = L3 =0, so the inequality (4.8) degen-
erates to

(1= (a2 +v2L1) ] [[Gn1 =y (i)
S(XlMlh% +'yll\711h$z —+ %h%

< <62M+ %) ( max hi) 2,

0<i<n

so there is

2 —
o — < : < —-12,--- N—
1=y ()| <es(maxh), maxhi<h, n=12.-N-1,
Thus, the formula (4.14a) is obtained. On the other hand, by the Lipschitz condition (2.6)
and (4.14a) we have

1Zn1 =zt ) [| <La|[Fn1 =y (Buga)

2 _
§L163<maxhi>, h,<h, n=1,2,---, N—1,

0<i<n

where c3 and /1 are defined by (4.15) and (3.5) respectively. Thus, the formula (4.14b) is
obtained. O

Corollary 4.2. The CES method (2.12) is convergent of order 1 for solving the nonlinear com-
posite stiff problem (2.4)€ S(aq,71,&2,72,L1) on any given grid Ay, let {y,,z,} denote the ap-
proximate sequences generated by the CES method (2.12) applied to the nonlinear composite stiff
FDAEs (2.4), we have

ly(tn) =yull SCl(tn)Oglrnge}ﬁlhi, (4.16a)

_ < . .
Hz(tn) Zn“ = Llcl(tn)ogzn'lg%;(—lhl’ (4 16b)
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where

max h;<h, n=12,---,N,
0<i<n—1

Cy(t) depends on Lipschitz constants a1, a3, y1, y2, L1 and boundaries My, My, My, his defined
by (3.5), and
Cy(t) =Kczexp(cit), (4.17)

here, c1 and c3 are defined (3.20) and (4.15) respectively, C1(t) and h™! are of appropriate size.

Proof. By solving the nonlinear composite stiff problem (2.4) € S(a1,71,42,72,L1) with
CES method (2.12), we have 1 =2 =01 =02 =Ly =L3=0, so0 it’s easy to see that the
inequalities (4.10a) and (4.10b) degenerate to (4.16a) and (4.16b) respectively. O

5 Numerical results

Example 5.1. Consider differential-algebraic equations

y'(t)=z(t) —10*(2z(t) -y (t) —2cost —sin2t), te [O,g} ,
2(H)(y(t) —1)+ (y(t) —1)>—sint =0, reo.2]. (5.1)
y(0)=1, z(0)=1,

this equations has a unique true solution y(t) =sint+1, z(t) =cost. For each time integra-
tion step from t, to t,,1, we split the differential equation of the problem (5.1) into two
sub-problems, that is, the non-stiff sub-problem

{ 7 (£) =2(t)+2-10*cost+10%sin2t, t€ (b, tpi1), 52

y(tﬂ) =Yn, Z(tn) =Zn,

and stiff sub-problem

() =—2-10"g5(t)z(t),
2()(F() —1)+(#(t) —1)°> —sint =0, t€ (tn,tns1), (5.3)
]](tn) =Vn+1,

where the symbols 7,11 and {7,+1,Z,41} represent the numerical solutions generated
by solving problems (5.2) and (5.3) with methods (2.13) and (2.15) respectively, and
let Vy+1 = Jnt1, Znt1 = Zn+1, Where yo = y(0), zo = z(0). In order to test the stabil-
ity theory of CES method established in this paper, we use the method (2.1) to solve
equations (5.1) with different initial values, we let h =0.01, and first let initial values
{y*(0) =1, z%(0) =1} equal the true solution of Egs. (5.1), and then let the different ini-
tial values be {y%(0) =0.5, z(0) =0.5} and {y°(0) =2, z°(0) =2}, respectively. The nu-
merical solutions corresponding to the initial values {y*(0), z*(0)}, {y*(0), z°(0)} and
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Figure 1: The difference between the perturbed solution and the unperturbed solution as ¢ changes.

{y°(0), z°(0) } are denoted by {y%, z%}, {y%, 24} and {y, 25}, respectively, the difference
between the disturbed solution and the undisturbed solution is shown in the Fig. 1.

It can be seen from the Fig. 1 that the difference between the perturbed solution and
the undisturbed solution will approach zero with the increase of t for two different initial
value perturbations.

Example 5.2. Consider nonlinear delay differential-algebraic equations

( ou_ ,0%u
(a) ﬁ_t ﬁ+2u(x,t)z(x,t)
s 7T
—|—3u(x,t—5>z(x,t—§)+G(x,t), x€(0,1), te[0,m],
T 1 T
(b) z(x,t)—u(x,t)u<x,t—z>—i—iz(x,t—E)—i—xcost (5.4)

1
—Exsint+8x2(1—x)zsin2t,
(¢) u(0,t)=u(1,t)=2(0,t)=0, z(1,t)=cost, tel0,m],
(d) u(x,t)=4x(1—x)sint, z(x,t)=xcost, x€(0,1), te[—

0],

\

where
G(x,t) =2x(1—x)(2cost+xsin2t) +8t*sint,

this equations has a unique true solution
u(x,t)=4x(1—x)sinx, z(x,t)=xcost,

it can be calculated that L3 =0.5<1, so Egs. (5.4) satisfy the conditions of Theorem 3.1, the
discrete space variable x, and the space step size h=1/N, where N is a positive integer,
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using a uniform spatial grid {x;=ih, i=0,1,---,N}, we get the following semi-discrete
equations

( Jdu;(t i () —2u;(t)+u;_1(t T T
55 ) _pattira(t) hlg) i1 )+2ui(t)zi(t)+3ui(t—2)zi<t—2)
+G(x;,t), i=12,---,N—1, te]0,7],
T 1 T 1 .
zi(t):ui(t)ui(t—§>—l—izi(t—E)—l—xicost—Exismt (5.5)

+8x2(1—x;)%sin2t, i=1,2,---,N—1, te€(0,7],
MO(t):uN(t):ZO(t>:0, ZN(t):COSt, tG[O,TE],

u;(t)=4x;(1—x;)sint, z;(t)=x;cost, i=0,1,---,N, te[—g,O},

where u;(t—7%) and z;(t— %) represent u(x;,t—7%) and z(x;,t — 5 ) respectively. For each
time iteration step from t, to t,.1, we split the problem (5.5) into two sub-problems,
namely non-stiff sub-problem

diti _ o - (TN (4T .
E_Zul(t)z,(t)—k?)u,(t 2>z,<t 2)+G(x,,t), FE (b tnst), 56

ﬁi(tn) :”i,n/ Zl(ti’l) :Zi,n/

and stiff sub-problem

( @ﬁ:#ﬁwﬂﬂ—2ﬁ4ﬂ+ﬁpﬂﬂ

dt h? ’
() = (O (- ) 422 (= T 4 xjcost
Zilh) = ”1< 2) 221( 2) xicos (5.7)
1 . .
—Exismt—i—Sxiz(l —x;)?sin2t, te (tn,tps1),

i (ty) =1 pi1,

where the symbols 7; ,+1 and {i; ,+1,Z; n+1} represent the numerical solutions generated
by solving problems (5.6) and (5.7) with methods (2.8) and (2.10) respectively, and let
Uin+1 = Ujn+1, Zin+1 = Zin+1, Where u;g = ui(O), Zip = Zi(O), i=12,---,N—1. We take
N =100, that is, space step size h=1/100, in order to calculate the approximate solutions
u;; and z;; of Egs. (5.4) at each grid point (x;,t;), we use the method (2.7) with time step
size T=1/5m (m=4,8,16,32,64) to solve the semi-discrete equations (5.5). A series of
effective numerical solutions are obtained, and global errors and convergence orders of
CES method are shown in the Table 1. Here,

— o s — o N
Uerr Ogigl{flzlgéjf[%]nuq M(xu ])H/ Zerr ogiggg;g[g]HZ” Z(xu ])H
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Table 1: Global errors and convergence orders of CES method (2.7) for Eq. (5.5) with h=0.01.

T Uerr Zerr convergence orders of u | convergence orders of z
1/20 | 1.180e-02 | 9.102e-03 - -
1/40 | 6.164e-03 | 4.975e-03 0.937459275 0.871487061
1/80 | 3.152e-03 | 2.572e-03 0.967599327 0.951805883
1/160 | 1.594e-03 | 1.310e-03 0.983615905 0.973323831
1/320 | 8.010e-04 | 6.610e-04 0.992777482 0.986844635

To illustrate the stability of the method (2.7) with time space size T =1/100, we add
the perturbations é1, 6, to the two equations of the (5.4d) respectively, namely Eq. (5.4d)
is rewritten as

u(x,t)=4x(1—x)sint+6é1, z(x,t)=xcost+6d, x€(0,1), te [— g,O} ,
the same method can be used to calculate the perturbed numerical solutions #;; and Z;;.

Take 6; =0,=0.2, we can get the errors ||i;;—u;;|| and ||2;;—z;;||, when i=50, that is, x = %,
the changes at different time iteration steps are shown in Fig. 2.

035

The perturbation error of u
03 | — — — The perturbation error of 2

The perturbation error

-0.1
0

L L L L L L
0s 1 15 2 25 3 35

Figure 2: Changes of errors |[#;; —u;;|| and ||2;;—z;;|| with t when i=50.

is also controlled within a controllable range with the increase of ¢, which shows that the
method (2.7) is stable.

6 Conclusions

In this paper, a novel CES method based on canonical interpolation operators is proposed
to solve the more general nonlinear composite stiff FDAEs, which effectively solves the
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difficulties caused by algebraic conditions, and stability and convergence of the method
is proved. Ultimately, the numerical examples given further verify the theoretical results
of CES method.

In the future, we can extend it to higher-order splitting methods, such as the second-
order canonical implicit midpoint splitting method or the high-order canonical Runge-
Kutta splitting method, and establish corresponding stability and convergence theories
for these high-order methods.
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