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Abstract. A kind of conservative upwind method is discussed for chemical 0il recov-
ery displacement in porous media. The mathematical model is formulated by a non-
linear convection-diffusion system dependent on the pressure, Darcy velocity, concen-
tration and saturations. The flow equation is solved by a conservative block-centered
method, and the pressure and Darcy velocity are obtained at the same time. The con-
centration and saturations are determined by convection-dominated diffusion equa-
tions, so an upwind approximation is adopted to eliminate numerical dispersion and
nonphysical oscillation. Block-centered method is conservative locally. An upwind
method with block-centered difference is used for computing the concentration. The
saturations of different components are solved by the method of upwind fractional
step difference, and the computational work is shortened significantly by dividing a
three-dimensional problem into three successive one-dimensional problems and using
the method of speedup. Using the variation discussion, energy estimates, the method
of duality, and the theory of a priori estimates, we complete numerical analysis. Fi-
nally, numerical tests are given for showing the computational accuracy, efficiency and
practicability of our approach.
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1 Introduction

Oil exploration plays an important rule in industrial engineering fields, while the un-
derground crude oil becomes less. New challenges of exploration techniques appear in
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this project, such as how to decrease the cost and increase the recovery efficiency at the
present oilfields. At present, a new recovery technique, chemical agents used during
the displacement, is generalized. Under the influences of driving fluids with addition of
chemical agents, crude oil is migrated and accumulated easily through the underground
media. Some chemical additives usually include polymer, surface active agent and alkali.
This is called ”chemical oil recovery” [1-6]. The mathematical model is formulated by a
nonlinear system of partial differential equations [7-11]. It is important to find efficient
numerical methods for simulating how the underground fluids flow and oil is displaced
more accurately. In this paper, the physical natures and the characters of mathemati-
cal model are considered carefully, then a kind of upwind method with block-centered
difference and fractional step difference together is discussed. Numerical analysis and
experimental tests are shown.
The mathematical model with initial-boundary conditions is given

_V.(K(X)Vp)EV-u:q(X,t):qI+qp, X—(y2)Te0, te]=(0T), (L1

u(c)
K(X)
u=— Vo, Xeq, tej, (1.1b)
uiey ' F
and
qbg(;+u-Vc—V-(D(u)Vc)+q1c:q1c1, XeQ, te], (1.2a)

q);(cs“)—kv-(sau—QDCK,XVs,X):Qa(X,t,c,s“), XeQ, te], a=12,--,n, (1.2b)

where Q is a bounded domain in R3. The pressure, Darcy velocity, the concentration
of water and the saturations of different chemical components are denoted by p(X,t),
u = (uy,up,u3)?, c(X,t) and s, (x =1,---,n.) respectively. Other major parameters are
interpreted as follows

¢ 9(X,t), the quantity, usually defined by the production g, and the injection gy, i.e.,
9(X,t) =q1(X,t) +qp(X,1),

c1, the concentration of injected fluid,

$(X), the porosity of rock,

k(X), the absolute permeability,

1(c), the viscosity of mixture dependent on c,

e D =D(u), the diffusion coefficient, defined by molecular diffusion and mechanical
dispersion

d 0 0 de(u) 0 0
D(X,u)=¢d, I+ uff| 0 d 0 |= 0 dy(u) 0 |, (1.3)
0 0 4
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e d,, the molecular diffusivity,

e I, a 3 x3identity matrix,

e d;, the longitudinal dispersivity,
e d;, the transverse dispersivity,

e 1., the number of components,

o K, =k, (X), the diffusion of a-component,

Qy, the source and sink term.

Initial-boundary conditions of (1.1)—=(1.2b) are defined by

u-y=0, (D(u)Vc—uc)-y=0, XeoQ), te], (1.4a)
Sa=ha (X, 1), Xed), te], a=12,---,n, (1.4b)
c(X,0)=co(X), XeQ, (1.4¢)
sa(X,0) =540(X), XeQ), a=12,--,n, (1.4d)

where 7y denotes a unit outward normal vector to d(), the boundary of Q).
To avoid the ambiguity, we introduce the following constraints

/Qq(X,t)dX:O, /Qp(x,t)dxzo, teJ. (1.5)

Using (1.1) and (1.2a), we reformulate (1.2b) as follow
0S4
gbcg +u-Vs,— V- (¢pcx, Vs, )

:Qa—s“<q+<pg‘;>, XeQ, te], a=12,n. (1.6)

Oil recovery is an open international problem, and numerical simulation of underground
oil-water gives helpful suggestions on locating oilfields and exploration. The original re-
search is discussed by Douglas, Ewing, Wheeler and other scholars [1,7-11]. Yuan and his
academic team present some stable and efficient numerical methods, and apply these on
actual productions in Shengli Oilfield [2-6,11-13]. At present, a new stage (chemical oil
recovery) is necessary. Some chemical addition agents are used for enforcing the flood-
ing and increasing recovery efficiency of existing oilfields. The mathematical model of
this problem has the convection-dominated property and conservative nature. Further-
more, its numerical simulations run on a wide region and a long time. For convection-
dominated diffusion equations, some traditional numerical methods such as finite dif-
ference and finite element give rise to numerical dispersion or nonphysical oscillation.
Thus, some new techniques appear. Douglas, Ewing, Russell, Wheeler and other schol-
ars present the method of characteristics (MOC) and give some improved schemes [8-10].
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Ewing and Lazarov put forward an upwind difference (UD) [14,15]. MOC and UD could
solve the convection-diffusion equations well. MOC introduces some additional compu-
tations at the boundary that makes the whole computation more complicated. In actual
applications, the UD becomes more popular.

Finite volume element method (FVE) shows the simplicity, high accuracy, and the
local conservation of mass in [16,17], therefore it is motivated to become a powerful tool
to solve partial differential equations. The mixed finite element method (MFE) could
solve the pressure and Darcy velocity simultaneously, and could achieve accuracy of the
first order in [18-20]. Combined FVE and MFE, a block-centered difference (BCD) is
discussed in [21,22] and computational validity is shown by experimental tests in [23,24].
A block-centered scheme and its convergence analysis are discussed for elliptic problems
in [25-27], then a frame work of its theory and application is shown. Rui and his research
group show a series work of this method to discuss numerical computation for Darcy-
Forchheimer flow problems in [28-33]. The authors apply this method to solve numerical
simulation of semiconductor device and the problem is approximated well [34, 35].

For large-scaled computations, Lions and Peaceman put forward an alternating di-
rection scheme [36, 37], while theoretical analysis is not shown. Marchuk and Yanenko
give the basic work on fractional step differences (FSD) [38,39], and computational effi-
ciency is discussed. The whole computation on a three-dimensional region is divided into
three successive one-dimensional problems so that the computational work is decreased
greatly, where the speedup solver is used [12,37]. Some composite procedures of UD
and FSD are discussed and applied in actual productions [4,12,40—42]. Based on the pre-
vious studies, an upwind block-centered fractional step difference method (UBCFSD) is
proposed for simulating a three-dimensional chemical oil recovery problem in this paper.
The pressure and Darcy velocity are computed simultaneously by the BCD, and the accu-
racy is improved by one order for the Darcy velocity. The concentration is computed by
using an upwind block-centered difference (UBCD), where the convection and diffusion
are approximated by the UD and BCD, respectively. The composite combination method
eliminates numerical dispersion and can solve convection-dominated diffusion problem
with high accuracy. We apply the block-centered scheme to address diffusion and ob-
tain the values of the unknown concentration and adjoint vector simultaneously. The
composite combination scheme is locally conservative, an important nature in numeri-
cal simulation of chemical oil recovery seepage mechanics. The saturations of different
components, whose computational work is the largest, are treated by upwind fractional
step differences. Applying the variation form, energy error estimates, duality discussion
and the theory of a priori estimates, we complete numerical analysis. Finally, numerical
experiments are given for a similar nonlinear system, illustrating high computational ef-
ficiency and theoretical results. Therefore, this presented method possibly provides an
efficient tool for solving such a challenging problem [1,6,7,11,44].

The notation and norms of Sobolev space are adopted in this paper. The regularity
assumptions of (1.1)-(1.5) are defined by
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peL®(H'),
(R) ue L*(H'(div)) NL®(Ws,) YW (L®)NH?(L?),
¢,s¢ €L°(H?*)NHY(HY)NL®(WL)NH?(L?), a=1,2,--,n,.

We suppose that the coefficients of (1.1)-(1.5) satisfy the following positive definite con-
ditions

0<a,<
©) u(c)
0<K*§K“(X,t)§K*, a:l/z/.../ncl

where a., a*, ¢., ¢*, D, K, and K* are positive constants.

This paper is organized as follows. In Section 1, the mathematical model is stated, and
the physical background and related research are introduced. In Section 2, three parti-
tions and preliminary statements are stated. In Section 3, the authors propose the method
of UBCFSD. The flow equation is treated by a conservative BCD, and an approximation of
the Darcy velocity with one-order improvement is shown. The UBCD method is applied
to solve the concentration equation, where the convection is assessed by the method of
BCD and the diffusion is approximated by the UD scheme. The upwind technique can
solve convection-dominated diffusion equations well because it avoids numerical dis-
persion and nonphysical oscillation and confirms high accuracy. The BCD scheme can
compute the concentration and its adjoint vector function simultaneously. It is elemen-
tally conservative. The saturations of different components are computed by the method
of upwind fractional step difference in parallel, where the whole computation is divided
into three one-dimensional problems and the simple speedup solver is used. In Section
4, an optimal order error estimates is concluded. In Section 5, numerical examples are
discussed to illustrate theoretical analysis and show the feasibility of the presented com-
posite scheme.

In the following discussions, the symbols K and ¢ denote a generic positive constant
and a generic small positive number, respectively. They have different definitions at dif-
ferent places.

2 Notation and preparations

Numerical model includes four major partial differential equations determining the pres-
sure, Darcy velocity, concentration and saturations. Considering the natures of mathe-
matical model, three partitions with different sizes are given. Suppose that the partitions
are regular. First, the concentration and saturations change more faster than pressure
and Darcy velocity. The partition with large step is for the flow equation. The middle-
size partition is for the concentration. For interpreting the effects of the chemical addition
agents during the flooding process, the saturations are computed on the small-size mesh.
Thus, the computation work is the largest.
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Figure 1: The partition of dy.

Without loss of generality, take Q={[0,1] } with the boundary 9Q). For x€[0,1], define

its partition Jy (see Fig. 1)
Oy: 0—x1/2<x3/2<---<xNx,1/2<xNx+1/2—1.

Other partitions
Oy: 0=y1/2<Vy3/2<--<Yn,-1/2 <YN,+1/2=1,

0,: O_Zl/Z<Z3/2<"'<ZN271/2<ZNZ+1/2_1/

are defined similarly. Ny, N, and N, are three positive integers, denoting the numbers of

nodes in three directions. () is partitioned by dy x 8, x .. Let
Qi = {(%,y,2)[xi—1/2 < ¥ <Xiz1/2, Yj-1/2 <Y <Yj+1/2, Zk—1/2 <Z<Zk41/2 }

xi=(Xi—1/2+%Xiv1/2)/2, e, =Xiy12—%i-1/2,
hyivi2=%Xit1—Xi, hy= max {hy,}.
The symbols y;, z, hy/, hz, By jv1/2, Bz k172, hy and h; are defined similarly. Let

hp:(hi—i—h;—f—hg)l/z and Iix:[xi,l/z,xiﬂm],

then define

M (6:)={f€C'[01]: flir € pa(l}), i - Ni}.
pa(IY) denotes a space consisting of all the polynomial functions of degree at most d
constricted on I*. f(x) is possibly discontinuous on [0,1] as [ =—1. M¥(J,) and M¥(5,)

are defined similarly. Let

Sp=M"1(5:) QM1 (6,) QM (6
:{w|w:(w w0, w?), w* € My (6
w’ € M2 (6x) R My (8,) QM (6

w-Y|an=0}.

®M0 ) QM (82)

, w'e M2 ( x)®Mg1(5y)®M(1)(5Z)
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Define the inner products and norms by

Ny Ny N

- Z Z Z he iy by Viwie,

i=1j=1k=1
Ny Ny N

(0,0), =Y Y ) hayhy e 012 jWi1 2k

i=1j=1k=1
Ny Ny N

(v,w), = YY) hahy,he 010k 1 0k

i=1j=1k=1
Ny NZ/ N,

w)z = ZZ Zhxihyjhzkfl/zvi]‘,kfl/zwl’]',kfl/ZI

i=1j=1k=1

2 — 7 — .
PIE= o), s=mxyz lolle=, o max o,

HvHoo( 1<i<N,, 13}2’& 1<k<N, v i—1/2,jk|/

HUHOO( 1<i<Ny, 1?}2)161 1<k<NZ| i,j—l/2,k|/

0 i ke— .
H Hoo( 1<i<Ny, 1?}2)155 1<k<NZ‘ ik 1/2’

For a vector w= (w*,w¥,w?)T, define its norms by

1/2
w11 = (Moo B e | el 12) 7, w1 o = o™ ooy + 0¥ oy + 1107 eoge
12
1wl = (™[5 +1w?| 7 A+ 1715) 7 wlleo = [0 |leo+] 10V [oo + 207 o
Define
v
W;/I(Q):{UEL ‘axnlraylazreLP(Q), i’l—l—rzo,l:(),l,---,n,
r=0,1,---,n,n=0,1,---,m; 0<p<oo},
and let
H™(Q)=W}(Q).
Inner product and norm in L2(Q)) are denoted by (-,-) and ||-||. For a function v € S, it
clearly holds that

o]l =1]l. (2.1)
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Introduce the difference operators and other notation as follows,

Vit1,jk — Vijk Ui j4+1k — Vijk
[dxv]; =" d,vl.. = _Ar2 U
1/2,jk ’ s
i+1/2,j hx,i+1/2 [ Yy ]1,]+1/2,k hy,j+1/2
Uijk+1 " Vijk Wit1/2,jk —Wi—1/2,jk
[d,0]; — A K [Dyw],; = . .
k+1/2 ’ xWlijk ’
ijk+1/ hz,k+1/2 ij hxi
Wi jt1/2,k —Wi,j—1/2k Wij k+1/2 — Wijk—1/2
[Dyw] ijk = 7 ’ [Dzw]; = h ’
Yj Zk
w¥ +w?¥ w! +w!
A Yir1/2,k T Wic1/2,k Ny Y12k T %12k
Wijk = 5 ’ Wije = 5 ’
Z Z
B — Wiik1/2Wijk—1/2 o = i TR R,
jjk = , ik = ij i+1,jks
K 2 U 2hyitan T 2hitap
hy, i j h
-y _ "yl i —z Mz k4 2
Wi =a7 Wikt 57— Wi jt1k Wi = ik Wij k+1,
T 2hy i T 2k U 2hypi1s T 2hapiay
A (X A Az \T - (X Y =z \T
Wijk = (wijk'wijk'wijk) ’ Wijk = <wifk’wijk'wifk> ’

and ds(s=x,y,z) and Ds(s = x,y,z) are difference quotient operators independent of the
coefficient D in (1.2a). Let L denote a positive integer, At=T/L, t" =nAt, v" =v(t") and
dio" = (0" —0" 1) /At

Based on the above notation, several preliminary statements can be given.

Lemma 2.1. Forve S, we V), we have

(v,Dyw*) ;= — (dyv,w"),, (v,Dywy)m:—(dyv,wy)y, (v,D;w%), = —(dv,w?),. (2.2)
Lemma 2.2. For w eV}, we have
[[Wla <I[Iwl[]. (2.3)
Lemma 2.3. For g€ Sy,
7 e <Mllgllm, 117%[ly <Mllglla,  117°]|- <Mllq]]m, (2.4)

where M is a constant independent of q and h.

Lemma 2.4. Forwe 'V,
lw*[[x <|[Dxw*|[m,  [[w?|]y <[IDyw"||s, ||w?|]z <||Dzw[ |- (2.5)

The middle-size partition is obtained by refining the large-size partition of Q={[0,1]}*
uniformly. Generally, take h.=h,/2 or hc =h, /4. Other notation is defined as above.
The small-size partition of Q)= {[0,1]}3 is defined uniformly,

Sx: OZX()<X1<"'<XM1—1<3CM]:1/
Y 0:y0<y1<---<yM2_1<yM2:1,

7. OZZo<Zl<-"<ZM3_1 <ZM3:1/
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where M;, M, and M3 are positive constants. The space steps and other notation are
denoted by

1 1 1
xzi yzi Zzi
h M, h My h My
xi:i-hx, yj:j'hy, Zk:k-]’lz,
hs = (W) (BY)?+ (h7)%)1 /2.
Let

1 1
Disijaje=5 [D(Xijk) +D(Xiy1,6)]l, Di1/26= > [D(Xijx) +D(Xi—1,x)],

and define Di,j+1/2,k/ Di,jfl/Z,k/ Dij,k+1/2/ Dij,kfl/Z similarly. Define

85 (D&W) = (W) "2 [Dig1 2,k (Wi s = W) = Dic 1/, (Wi = WiLy )], (2.6a)
33(DSyW)iz= () 2Dy js1/26 (Wi 10~ Wiie) = Dijor ok (Wi =W 1)l (2.6b)
6z(Dé- W)z]k: h* 2[ z]k+1/2(wz‘1;k+1_Wiy}k)_Dl]k l/Z(W W]k 1)] (2.6¢)
V1 (DVW)2y = 8¢ (D8 W)l + 05 (D3, W)+ 52 (DS W)y (2.6d)

3 The procedures of upwind block-centered fractional step
differences

3.1 The procedures

We rewrite (1.1) as the following normal formulation to clarify the block-centered method

V-u=g, (3.1a)
u=—a(c)Vp, (3.1b)
where a(c) =x(X)u1(c).
The concentration equation (1.2a) is rewritten in a divergent form to construct the
computational scheme. Let

g:uc:(ulc,uzc,ugc)T, z=—-Vc¢ and z=Dz.

Then,
0
gb—a(;+V-g+V-z—cV-u:q1(c1—c). 3.2)

Using the fact that V-u=q=¢q;+q,, we have

<Pat+V g+V-z—qgyc=qpcy. (3.3)
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Here we adopt the expanded block-centered method [45] to obtain the approximations
of z and z simultaneously.

A large time step, denoted by At,, is adopted for the pressure and a small time step
At for the concentration and saturations. Let At,; denote the first time step. The time
interval J=[0,T] is partitioned by 0=t <t <---<ty=T, where t;=At, 1 +(i—1)At, for i>1.
Similarly, another partition is defined by 0=t <#! <... <tN=T for the concentration and
t" =nAt.. Suppose that there exists a positive integer n such that t,, =t" for any number

m, that is, ﬁ—i’c’ is a positive integer. Let

Let P, U, C, G, Z and Z denote numerical solutions of p, u, ¢, g, zand z in S, x V}, X S, x V}, x
Vi, x V},. Based on the notation and preliminary statements in Section 2, a block-centered
scheme is defined for simulating the pressure and Darcy velocity,

(DxUy, 4 DyUl + D U5, 0) - = (G, 0) s Vo€ES, (3.4a)
(e @) +(a (@uhe) + (a1 (Ci)Uw)
X y z
_(Pm,wax+way+waz>n—1:O, VWE Vh. (3.4b)

The variational form of (3.3) is

d
(4)87?’0)m+(v'g’v>ﬁ1+(v'2'v)m_(%Crv)m:(fhcbv)m, YoeSy, (3.5a)
(28,0%) ,+ (2, 0%), + (F,07), — (¢, Dyw* + Dyw! + Dy?) ;, =0, YwWeVj,  (3.5b)
(2% W)+ (2%, w?), + (2%, W),

= (dr(u)z*,w"), (y(u)Zy,wy)y—i—(dz(u)ZZ,wz)Z, YweV,.  (3.5c¢)

The UBCD scheme is defined for (3.3),

Cn_cn—l
<¢T’v) A (VG (DxZ*"+DyZ¥*+D.Z*",0) . — (q,C",0) .

=(71C1,0) s VYoeSy, (3.6a)
(Z%"w") A+ (29" W), + (25", w*), — (C", Dxw* + Dxw" + Dxw®) , =0, VW€V, (3.6b)
(2" w"), +(Zy” w?), +(Z27",w?),
= (dx(EU")Z*",w") .+ (dy (EU") 2", w)  +(d=(EU") Z*",w7) ., Ywe V. (3.6¢)

Let Cy, replace c(t,,) in computing the nonlinear function a(c), where C,, is the approxi-
mation of ¢y,

Cpn=min{1,max(0,Cy)} €[0,1]. (3.7)
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The value at t", t,,_1 <t" <t,,, is assigned by a linear extrapolation

UO/ t0<tn§t11 m:]-/

Pt P —ty 3.8
(1+7m1)um_1—7’"1w_2, tn1 <t"<tpn, m>2. 8)
tm—1—tm—2 tm—1—tm—2

EU" =

Initial approximations:
c'=C% Xeq, (3.9)

where CU is the elliptic-projection or L?-projection of ¢y (see the details in the following
section).

The convection term of (3.6a) is treated by a simple upwind approximation where the
approximation C is used. Since g=uc=0 on d(), we assign the mean value of the integral
of G"- by 0. ¢ is the interface of ¢; and e, X] is the barycenter and -, is the unit normal
vector to e;. Let

(3.10)

Gt d CaEUm (X)), (EU"m)(X)) 20,
Coo(EU"m)(X1), - (EU™-m1) (X)) <0

C;, and Cg, are the constant values of C" on ¢; and ey, respectively. Then G" is computed
and the scheme of (3.6) is constructed. A nonsymmetric matrix is given to compute C. If
G" is defined by the values at the previous time level, then a symmetric matrix is formed

{ Ci Y (EU™ ) (x1), (EU"-71)(x1) >0,

G'y=
Ci Y (EU™ ) (x1), (EU"-71)(x;) <O0.

(3.11)
The computational accuracy of saturations should be improved and the computational
work is the largest. An upwind fractional step difference scheme is used for solving (1.6).
Since bound water exists everywhere in numerical simulation of oil reservoir [7-10], we
suppose that c(X,t) >c, >0 for a positive constant c,. The coefficients of (1.6) are positive
definite

0<D,.<D(c)<D*, 0<@.<¢pc<*, (3.12)
where D(c) = ¢cx and D., D*, ¢., $* are positive constants.

The UFSD scheme is defined as follows for (1.6),
n—2/3 _ gn-1

Lijk Jijk _ _
Pijp Cly — = N S = 6 ($C K02 S22 i+ 05 (9C" a6y Si V)i
c

+0:(¢C" ka0 i+ Qu(Clip S ), 1<i<Mi—1, (3.13a)

w,ijk
S =My ik Xk €00y,  (3.13b)
and
n—-1/3 _¢cn—-2/3
15 _gn-2 ) ) |
PG =09 (9C K8y (ST =S g, 1SjSMa=1, (l4a)
Sui =Ha ik Xk €00, (3.14b)
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and
s —Sml1/3
¢ijkcgk% =02(pC kb2 (S)—Si 1))k
— Y SeusSt 1<k<Ms—1, (3.15a)
r=x,Y,z

wherea=1,2,---,n,,
OpunrSyije = (EU")in{ H(EUY i) 0r+ (L= H(EUY ) )0r } Sy iy T=X,2,
1, z>0,
H(z):{ 0, z<0.

Initial approximations:
Sg,z‘jk =s00(Xijt), Xijx € Op, a=12,--n. (3.16)

The composite procedures run as follows. First, (3.9) and (3.4) are combined to determine
{Up,Py}. Then, {C!,Z!,Z'} is computed by using (3.6). Next, using the UFSD scheme of
(3.13)-(3.15) and using the algorithm of speedup we get {S./3},52/3}, then obtain {S}},
a=1,2,---,n., the numerical solutions of saturations at t =t!. Then, numerical solutions
at t =t! are obtained. In a similar procession, we obtain {C?,Z2,Z%}, {S2,a=1,2,---,n.},
.., {Ch, 205,200}, {0 ,0=1,2,--- ,n.}. For m>1, let

then apply (3.4a) and (3.4b) to get {U,,, Py, }. Then from (3.6a)-(3.6¢) and (3.13)-(3.15), we
can obtain the numerical solutions:

PERE

{Cj§+(m71)]‘*+1, Zj§+(m71)j*+1, Zjo+(m=1)j"+1 }/ {S§+(m_l)j*+l,a —12,... ,nc}
Repeat the computations to obtain all the numerical solutions. By positive definite con-
dition (C), the solutions exist and are unique.

3.2 The local conservation of mass

Suppose that the problem of (1.1)-(1.5) has no source or sink, i.e., § =0, and suppose that
the boundary is impermeable. On an element

e=0jk= [Xi—1/2,%i41/2] X []/j—l/2r]/j+1/2] X [zk-1/2,2k+1/2],
the local conservation of mass is addressed for the concentration
Jdc
—dX—/ - dS—/ 2-7,dS =0, 3.17
/e(PBt UG 2 Te (3-17)

de is the boundary of e and <, is the outer normal vector. The discrete formula of local
conservation is given in the following theorem.
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Theorem 3.1. If g =0, then on every element e € (), (3.6a) has the conservation of mass

Cn_cnfl
/EqudX— aeG”-fyedS—/an”-%dS:o. (3.18)
c

Proof. Forve Sy, let

1 on e=Qyj,
0=
0, otherwise,
then reformulate (3.6a) as

( cn— Cn—l

¢T,1)Q | G"qedS+(DeZ*+Dy 2"+ D7 1) =0, (319)
c ijk e

Using the notation in Section 2, we have

cn—cn-1 Cznk Cz]k _cn-1
<¢Atcll)0ijk_¢ijk<A)hxzh%hzk / q) Atc dX, (3.20a)
(Dxe'” +D,Z%" —I-DZZZ'”,l)Q”
ymn
(le-i-nl/ij le 111/2]]() h hzk+ (Z1]+1/2k Zl] 1/2, k) hxlhzk
+ (ZZ /2~ Zi - 1/2) ahy; == /aﬂijkzn “Ya0,, 45 (3.20b)
Substituting (3.20) into (3.19), we complete the proof. O

Then the whole conservation of mass is concluded.

Theorem 3.2. Under the assumptions that g=0 and the boundary is impermeable, (3.6a) has the
conservation on the whole domain

n n—1
/ (])C Af dX=0, n>0. (3.21)
c

Proof. Summing (3.18) on all the elements, we have

—_Cn- 1 Y Y
Z/cp i dX—;/aeG -'yedS—;/an 7edS=0. (3.22)

07 denotes the interface of e; and ey, X is the barycenter, and 7; is the outer normal vector
to e>. Recalling the definition of the diffusion, we can see that if

EU"-(X)>0 on ey,
then

| G mds=CLEU" 3(X)lar]. (3230)

g1
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Here |0;| denotes the measure of ;. The outer normal vector on e; is —7;, so
EU"-(—n(X)) <0.
Then,
[ 6" (—m)ds = —CLEU" 3(X)ai].
!
Since (3.23b) is opposite to (3.23a), so we have
Zg:/aec." 7,dS =0.

Combining the following fact

—2/ Z”-%dS:—/ 7" y0dS=0,
e Joe Q)

and substituting (3.24), (3.25) into (3.22), we have

n n—1
Siuie ——dX=0, n>0.

1259

(3.23b)

(3.24)

(3.25)

(3.26)

The proof is completed. The conservation of mass is important in numerical simulation

of seepage mechanics.

4 Convergence analysis

First we introduce an auxiliary elliptic-projection. Define U V;,, P€S;, by
(Dxflx—i—Dyl:ly—l—DZl:lz,v)m:(q,v)m, YoeSy,
(a’l(c)flx,wx) - (a’l(c)fly,wy) + (a’l(c)flz,wz)
x y z
— (?,wa"+Dywy+Dzwz)m =0, vywev,

where c is the exact solution of (1.1) and (1.2a).
Let

ac
F=gqpct+qicr— (llfat +V: g)
Define Z,Z € V, and C € S, by

(DxZ*+DyZY+D.Z%v) . = (F,v),, YvES,,,
<ix,w")x <Zy wy) (i ) (C,Dyw* +DywY+D.w %) s ywev,

(z*w*) + (Zy,wy)y—f— VARCIES (dx(u)i",w">x+ (dy(u)iy,wy)y

+ (dz(u)iz,wz) , YweV,.

z

O

(4.1a)

(4.1b)

(4.2a)
(4.2b)

(4.2¢)
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Let t=P— P17 P—p,o=U-U,p=0-u,¢=C-C,{=C—c,a,=2-Z,B.,=Z—z,
r,=2-17, B.=2Z—2z. Suppose that (1.1)-(1.5) is positive definite (C), and the exact solu-
tions satisfy regularlty (R). From the theory of Weiser and Wheeler [22] and the discus-
sion of Arbogast Wheeler and Yotov [45], it is easy to see that the auxiliary functions

Lemma 4.1. The coeﬁﬁczents and exact solutions of (1.1)-(1.5) are supposed to satisfy (C) and
(R). Then, there exist two positive constants Cy and Cy independent of h and At, such that

dCc

|11 e+ 1z |+ ||z H\*“ _ficl{h§4-h3}f (4.32)

1]+ 112111+ |2 <c» (430

We estimate 7t and ¢ first. Subtracting (4.1a) (t =t,,) and (4.1b) (t =t,,), respectively,
from (3.4a) and (3.4b), we obtain

(Dxoyy 4 Dyoin+D.0oy,0) . =0, VoeSy, (4.4a)
(a Moo w?) +(a M (Chyahw) +(a 1 (G )
x y z
— (7tm, Dyw* + Dyw? + D, w?) -
—— ¥ (( “1(¢r) *1(cm))a,;,w’), YwWEV,.  (44b)
=X,z r
Taking v= 7, in (4.4a) and w =0, in (4.4b) to get
(a_l(C%)a,’;,a,ﬁ) +<a‘1(CZ1)(7%Z,(7,yn) —l—(a‘l((f;)ajﬂtr;)
x y z
== ¥ (@G =a (e Ty 0%, ) . (4.5)
r=x,z r

Using (4.5), Lemma 2.1-Lemma 4.1, the Taylor’s formula and the positive definiteness
(C), we have

[Howl [P <K 3= {[Ch—enl[5

r=x,Y,2

- 2 2 2
K{ X 116 —cnl Bt 1Eeml Bl Geml B+ (A7)

r=X,Y,2
<K{||Gomlly+hi+ (882} (4.6)

A duality method is used to estimate 71, € Sj, [46,47]. Consider the following elliptic
problem,
V-w=rmy,,, X= (x,y,z)TEQ, (4.7a)
w=Vp, Xeq, (4.7b)
w-y=0, X e (4.7¢)
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It follows from the regularity that

D

r=x,y,z

Consider the following equation

ow” ow’
<ar,v>m— <ar,v> K VUGS}Z, r=Xx,Yy,z.

The solution @ exists and satisfies

r=x,Y,z or m  r=xy,z or m .
By Lemma 2.4, (4.7), (4.8) and (4.6), we have

- 2 (—1(0 Um,w)+ 2 (')

r=XY,Z =X,z

1/2
<K@ ol P+ 1l -+ 1+ (8802}

Using Lemma 2.4, (4.8) and (4.9a), we obtain

l@llF< X D@ |5

r=Xx,Y,z
~7 112 r

_ Z 0w < Z Jw

r=X,Y,Z or m  r=xy,z or m
2

<K|[70m][ -

Substituting (4.11) into (4.10) gives

o (o)) Uy, @)

172013y < K 1 1P+ el [ 41+ (Ake)? } S K[|l 5+ + (882
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(4.8)

(4.9a)

(4.9b)

(4.10)

(4.11)

(4.12)

The upwind term is discussed later. Some symbols are introduced. ¢ denotes a surface
of e, and 7; is the unit outer normal vector. (c,7;) determines two adjacent elements e™
and e, where they have a common surface and 1, is defined towards e™. For f € S}, and

x € 0, define

f()= lim flxbsm), Fr(x)=lim f(x+sm),

s—0+

and let [f]=f"—f".
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Lemma 4.2. For f1,f> €Sy, we have
[V =3 3 [ (Al wrlds 53 w4005 s @419
Proof. Note that
/v- ufi fzdx:Z/ V- (ufi) fadx
-L Jlm)afi 5 +wm) fi 5+ (m)) o fi f+ (e ()7 f5 s,

where
(u-y)y=max{u-y,0} and (u-y)-=min{u-v,0}.

Using the equalities
(w-(=7)s=—(wy)-,  (w(=m))-=—(amn)y,
fe+ :fr, ff :fl/
we have
Jo V- () =1 / W)+ L= )+ (wem)- FL(fo— )] ds
WAL )R+ ) T+ A (- )]s

IZ/U [yl (fi= ) (fa=f3) +lwml A (= 1)+ ) - (f+ 1) (2~ f3)]ds
== [ [Slwnl A==+ =15 (Glanl (= )+l

()= (f+£)) |ds
= [ [l A= A=)+ A=) (Glanl (4 + @) (D) as

o Jo

= [ [l =) A=)+ () (Al (A= £D)] as,

o JOo
where f"= f*, fl=f~. Then, the proof is completed. O

The concentration equation (1.2a) is considered now. Subtracting (4.2) at t =t" from
(3.6), we have

(¢Cn;in_1,v>m +(V-G"o) (Z Dal™, )

r=xy,z

ac”
= (qp(€?+é?)+¢§+v-g”,v) o YoESy (4.14a)
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(a2 ") 4 (2" )+ (85" 07), = (&2, Drwr>m, YweV, (4.14b)

r=xy,2

(a2, w") + (a2", w'),

= (de(BUMZ* —dy () 25" 0, )+ (dy(EU) 29"~ dy (") 22" 0,
X y

X + (a?n’wz)z

+ (dZ(EU”)ZZ'” —d, (u”)im,wz) , Ywe V. (4.14c)

z

Taking v=¢ in (4.14a), w=a in (4.14b) and w =& in (4.14c), then subtracting (4.14c)
from the sum of (4.14a) and (4.14b), we have

) (veer-gnE)
At,

n n

— (42,80 o+ (1022 - ¢€” ac)_+<¢<a§ ),
p xyz( (EU")& f”) +r%2( L(EU")] Z’”‘”’) (4.15)
Continue,
(), X (wewmea) (V@ gz,
o

:(qpas,cz>m+<qp@z—¢€c;f,cz)m+ <¢<a;:f”;;“> &)

+ ¥ (o) —d (BUMZ 82

o

=T+ T+ T3+Ty. (4.16)

The terms on the left-hand side of (4.16) are estimated as follows,

(ﬁgtfl,a) > (e, - (o rer ) (4172)
Y (d(Eumaznaz) >D.||a|| (4.17b)
e

The third term is divided into
(V-(G"~g"),¢!),, = (V-(G"~T1g"), &) ,, + (V- (T11g" —g"),&l) - (4.18)
Ilg is defined similarly to G,

oy — ey, (EU" ) (x1), (EU"-71)(x1) >0,
BT M (BUT ) (), (BUMp) () <O,
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Using Lemma 4.2 and (4.13) to obtain
(V-(G"—Tig" &1, = L [, V(6" Tig"gtax =1 | V-(FU"g)5dx
=5 X [ IEUn s -5 7 [ (BUm et e (e

=Q01+Q2
=3 L [ 10l s 2o,
Qo= T [[(BUm (@ (@ Plds=3 T | 9-EU(@

72/ (e de
Move Q> to the right-hand side of (4.16). Since q is bounded, we have
|Qa| < KI[E2 [
For the second term of (4.17c), we have
(V-(g"~Tig"),2) , =1 | ("'~ TIe"EU" -} g1 s
:Z/g{c"u”—C”Eu”+C”Eu”—c”EU”+c”EU”—Hc”EU”}-’yl [&"]2ds
7
=(V-(c"u"—c"Eu"),&!)  + (V-c”E(u”—U”),@?)m—kZ/UEU” v (c"—TIc") [EF]ds
v
<k{Ath I UM gy, + GG K [ 1BU" " —11e" Pas
3L [ Ew s
Using (4.6), (4.12), Lemma 4.1 and the discussion in [22,45], we have
|c" —TIc" | = O(h?),
then
(V-(g"~TIg"),&0),, <I<{At4+h4+h2+ucc 1Bt ool el 3}

+1; /U [EU" -, |[E7]2ds. (4.19)
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Consider the terms on the right-hand side of (4.16),
9%c |2
ﬁ L2(¢n=1

Ty is estimated by using (4.6), (4.12) and Lemma 4.1,

|T1|+|T2| +|T5| < KAt

)+K{H§’§H2m+h§}. (4.20a)

112 ou ||2
Tl <ell[azllP+ k@7 [y HEGemallt omal . (4200)

Substituting (4.17) and (4.20) into (4.16), we have

1 2 —111(2 D, _ 2 1
aap, 19728 L0728 [+ Nl [P+, X 1Bum g s

2

o
ar?

1
HllEom-alh+h2+hs b+ T [ |EU" ][22 ds. (4.21)
g

gK{Atc +(Atp)3H%‘; ’

L? (tm—lztm?m

e lgemal

L2(t=1 107

Move the last term on the right-hand side to the left-hand side. Multiplying both sides
by 2At., summing them on 1, and using ¢/ =0 and (3.8), we have

1/2xN||2 A —n ZAt
I Cch+ZlH\azH\ c
n=

N
<K{ 12+ (At )P+ (b1 )°+ (A, b+ K Y [ At (4.22)
n=1
Applying the discrete Gronwall lemma gives
N
&N 15 Lo 1| At <K {3 +h2+ (At + (At P+(81) }. - (4.23)
n=0
It follows from (4.6), (4.12) and (4.23),
sup {| |7l |5+ lllowl [P} <K{mé+h2+ a0+ (At )°+(a0)4 . @29
0<m<M
Next, the UFSD is argued. Let
Cavijie = Sa(XKijier ") — Siy e

Eliminating 5;‘*2/ 3, S;‘*l/ 3 and writing a combination equation of (3.13)-(3.15) as follows,

St —Sm
a,ij a,ij
PinCi—pr _r:;y Z(Sf(C”<p;<“5rsg )ik
cr —cn-l
-1 1 ijk ijk
== ) SrunsSy i+ Qu(CliuSiin) —Suiik <q?jk o L >

r=x,Y,z
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— (M) 02(C o ((C) 783/ cady (S ™1)) et

07 (C"rady ((C" ) ~0:(Cprad (S5 7)) i}
+(Bte) 05 (C"prads (€ >15y<c"q>my<<c"¢>—1csz<c"q>xaaz<dtsz—1>>>>>>zjk

—Atc{ (C" iy ((c Ly 5EUn,rsg*1))ijk

r=X,Y,2
C" K0 OpunrSy
(e T awst)), )
25 n n n Y -
+ (k)05 (€ preade ((C) 7107 (€7t ((CM . ;Z(SEU ))))Uk,
Xijk € Qh/ &= 1/2/ =N, (425&)
Suije =hijkr Xig€0Qy, a=12,---,n (4.25b)
Error equation is concluded from (1.6) (t=t") and (4.25),
Coije— St
‘PleCz]k% Y O5(CMpradely )ik
¢ r=X,Y,Z
sk
:{47((3"—6 87} + ) 6 (<" =CM)Pradysy)ik+ Y, {Orun Sy —durrsy Yk
r=Xx,y,z r=Xx,y,z

3 B Cn_cnfl
+Qu(clisy ) — Qa(Ci S ) + {(Sa—sa)ﬂl”ﬂL(Sg 14’T—SZ‘P§) }i].k

—(Afc)z{532(C”¢Ka5x((Cnéb)_15y‘(cn¢’<a5y(dt5§_1))))z’jk
—05(C"Pradx ((C"p) "85 (C" prady (di Sy~ 1))))1’jk+"'}

+ (At ) {53 (" Prad (") " 67 (c" Pprady (") " 62 (c" Pprcad (dts )i
— 02 (C"prad ((C" )~ 65(C" prcady ((C”qb)‘lé—(cnw (deSEI)N)) )i}

— At { [0 (" gradi (") ) 05 (" grady ]r;yfu”fs )

— 65 (Crgmade ((C") ™)+ (C ety (( ]r;yf“” )
+(Atc)2{5,g(c”(PKaéx((Cn‘P)_l‘S( " iy ( r;yfu”s >>)>ijk

05 (Cgradi ((C9) 7107 (C gt ((Cngb)_lr—;/,z(SEUn'rSZ_l)> ) Z.].k}

teijr Xik€Q, a=12,n, (4.26a)

ik =0, Xig€0Qy, a=12,-n (4.26b)



C.Li, Y. Yuan, A. Cheng and H. Song / Adv. Appl. Math. Mech., 14 (2022), pp. 1246-1275 1267

where

leh ik SK{m+AL}, a=12, nc.

Noting that bound water exists everywhere, so we have that c¢(X,t) >c, >0 for a positive
constant c,. The concentration of water c(X,t) is estimated by (4.24). If h. and At. are
sufficiently small, then

C(X,t)>* > (4.27a)
C(X,t) has the following regularity,
sup‘dtC”_l‘ng*, (4.27b)
n
where K* is a positive constant.
Multiplying both sides of (4.26) by
5t§zx Ajk ™ dtgaqkAtC 1]k (:oc Jijk’
we get
(9ot B s ¥ (Cpmadia-a)
r=X,Y,2
a n
:<¢(C”—c”)%,dt(;‘ Datet ¥ (G((c" = CMgradisi) digh™ ) Ate
t r=xy,z
+ 2 (runsSt—Gun i ) At { Qe 57 = Qal(CSETY) digi ! ) e

e
B L e Gl s L S Y3
—(Atc)3{<f5x(C”4>Ka5x((0”4>)’159(0”4>Ka5y(dt5§’1))))

05 (C"prads ((C"9) ~8y/(C" 9oy (diSL)))) i ) +--- |

(D) (G (" rad (") ~ 0y (" prady ((c") ~0z(c"pradz (disi ™))

_‘Sf(Cn4’Ka5x((Cn‘f’)il@'(cn‘f”{a&y((Cn‘f’)il‘SZ(Cn‘PKaéz (dtszil))»))rdt‘:giw

—(Atc)2<{5f(c”cpxa(5x((c”cp) 1) 4 65(c"prody L;y;sunrs ))
~ [ae(Crprade((C"9) ™) +3y(CMprad, }rxzyzégun )t

+(Atc)3<(5x(Cn¢Ka5x<(Cn47)_ ( Prad ( DY dwasi) )))

r=XY,2
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o5 (Crgrat ((C9) 7105 (Chgmady ((C'9) ! Y SpunsSiT))) ) i)

r=x,Y,z
+<ea,dt§Z_1>Atc. (4.28)
The left-hand side terms of (4.28) are estimated as follows
(pCrdigi ! digi™ Yot > %w*! i P, (4.292)
Z <Cn¢Ka5r§Zr5r(CZ_ Z_l)>
r=Xx,Y,z
1
> C" i 0,E", 0,8 ) — { CMprcy6, "1, 6,8 1) L (4.29b)
2r_xz,]/,z{< 4) X Véa T’Ca> < (P ® Ygzx i’gtx >}
The right-hand side terms of (4.28) are estimated,
<<p(C” —c")%i‘;,dtggl>AtC <e| @ P A4+ K{I2+ (At)?), (4.30a)
Y (e = CMpradsi), did™" ) e e[|+ K {2+ (At 2, (4.30b)
r=X,Y,Z
Z <(5EU”,7'S;¢[_5u”,r521dtgg_1>Atc
r=X,Y,Z
<e| &Y P At + K| |Vagh||P+ B2+ (At)? ) At (4.30c)
(Qu(e" s = Qu(C", 85 71),digi 1 )t
<e||digi " Ao+ K{| & P+ 2+ (At)?} At (4.30d)
(4" (Su—su) i~ e <e| g™ | Pt K{ |2 | [P+ ()2} A, (4.30¢)
n—1 Cn_Cn—l_ n ain n—1
<So¢ ¢T 2955 /8y >Atc
Sstté‘g*l\|2Afc+K{HCZ}’2+h3+(Atc)2}, (4.301)

— (At { (05" pradi (" p) 07 ("ol (dis ™))

05 (C"prads ((C"9) ™ 83(C" 9oy (diSL ) A ) oo+ [+ (endii ™" ) At

<e||dign |2+ K| | Vgl | [P+ 12Hhd (At At (4.30g)
Substituting (4.29) and (4.30) into (4.28), we have

Soc e |[aty T {(Combin o)~ (Conaii o))

r=x,Y,2

<e| i | [P+ K{ | Vi P+ |68 P+ R2+hé+ (Ak)? At (4.31)
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Summing on # (0 <n <L), and noting that ¢, =0, we have

ZHd gt Patt Y {(Cromonchonct) = (Cogras, gl 08t ) |

r=X,Y,2

<Y ¥ {0 gracod)

n=0r=x,y,z
: n||2 n|12 1,2, 1.4 2
K3 { [V [P+ ||l [*+ B2+ (ate)? .
n=0

The first term on the right-hand side of (4.32) is estimated by

Y ¥ (lc-c 1¢wscw(saa><l<2uvhcau Ate.

n=0r= XY,z

Then,

L 1112 L2 L 2 2 42 14 2
3 [Jdegi [P atet || Vagh|[* < K Y {1V [P+ lg| [P+ 12+ b+ (8t f Ate.
n=1 n=0

The fact that {; =0 indicates

L1|2 L n—1112 L 112
||Ea|["<e o |l |["Ate+ K Y [|G7]| At
n=1 n=0
Thus,
L n—112 L||2 = (12, 1,2 | 1.4 2
3 Nl | Pate+|[g][F <K Y {|lgul[F+2+hE+ (at)? b,
n=1 n=0

where ) ) 5
[l [y = 1G] 1"+ [ Vsl |
Applying the Gronwall Lemma, we have

L
Z | ‘dté’;‘lil ‘ |2At€+ ‘ ‘C§| ‘i SK{hg_{—hg—}_(AtC)z}/ DC:l/Z/' - Ne.
n=1

The following theorem is concluded by using (4.23), (4.24), (4.36) and Lemma 4.1.
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(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

Theorem 4.1. Suppose that exact solutions of (1.1)-(1.5) are reqular (R), and the coefficients are
positive definite (C). Numerical solutions are obtained by using the composite scheme of (3.4),

(3.6) and (3.13)-(3.15). Then,
1P =Pl (1) + 10=Ullz g0 e =Cllzes (rm) 12— Z |22

+Z{Hdt S)llz2gey +llsa—Sallgsm) }

<M* {h§+hc+h§+Atc+(Atp,1)3/2+(Atp)2},

(4.37)
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where
L 1/2
2
1811z 0 = sup 118" lIx,  [I8lr2(jx) = sup {:X:Hg”HxAt} ,
nAt<T LAt<T | n=0

and the constant M* depends on p, ¢, s, («=1,2,---,n.) and their derivatives.

5 Numerical experiments

In this section, a nonlinear system is considered by using the presented scheme. The
mathematical model is defined as follows

—V-(D1(c,t)Vp)=f1, (x,y,z)€Q, te(0,T],

u=—D;(c,t)Vp, (x,y,z)€Q, te(0,T],

gi—V(Dz(u)Vc)—i—u-Vc:fz, (x,y,2)€Q), te(0,T],

gi—V-(Dg(c)Vs)+u-Vs:f3, (x,y,z)€Q, te(0,T], 51)
51

p(x,y,2,0) = po(x,y,2), (xy,z)€Q,

c(x,y,2z,0) =co(x,y,2), (x,y,2)€Q

s(x,y,2,0) =so(x,1,2), (x,y,z)€Q),

Ve-rlaa=0, te (0,T],

VS“)/’aQ:O, tE(O,T].

0 =10,1] x[0,1] x [0,1]. Exact solutions are defined by

p(xyzt) =exp(—t) (x(x—Dy(y—1)z(z~1))",
c(x,y,z,t) =exp(—2t)cos(
p(—2)cos

27tx)cos(27ty) cos(2mz),

s(x,y,z,t) =ex ntx) cos(rty)cos(mz),

with initial values

polxy,2) = (x(x=Dy(y-1)z(z-1))’,
co(x,y,z) =cos(27tx)cos(27ty)cos(27z),
so(x,y,z) = cos(7tx)cos(7ty)cos(mz).

p, u ¢ and s denote the pressure, Darcy velocity, concentration and saturation of a com-
ponent. The diffusions are defined by
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D;(c,t) =15410c,

0.1+1o—3D1(c)gZ 0 0
)
D (u) =0.14+10"u= 0 0.14+1073Dy (c) a]r; 0 ,
op
141073D1(c) =~
0 0 0.1+107°Ds (c) 5~

Ds(c,t)=0.1+10"2c.

f1, f2 and f3 are the right-hand functions. An upwind block-centered scheme is used
for solving (5.1). The experiments are carried out on the MATLAB 2018a (MathWorks,
Natick, MA). The partition is uniform with space step h=1/N and time size At=h?. Take
T=0.1. N is a positive integer. P, U, C and S denote numerical approximations of p, u, c
and s. Error estimates are illustrated in Tables 1-3. Let

1/2 ~1/2
Mp =max|pjj — Py, EP:<Z]:<|p;;‘k_Pz?k‘2h3) , REP:EP(Z}J ;;kyzh’o‘) )
ij, i,

denote the errors of the pressure p in the maximum norm, />-norm and their relative
errors, respectively. Define M., M;, E., Es, RE. and RE; similarly. Error of Darcy velocity
in I>-norm is defined by

Ea=Y (uric1ya—Uric1/2u)* B+ Y (unj1/26—Unjijo1/2k)*H°
ik ik

+ Y (uzijp-1/2—Usijk—1/2)H.
ik

RE,=E,/|||U]|| denotes relative error, where

2 2 3 2 3 2 3
U =Y_UT gy ulh® + ) Uz ioq o+ ) Us i 51 00
Y Lk Y

From the tables, we find that the presented method is valid for solving (5.1). Numer-
ical results are consistent with theoretical results. Thus, some complicated problems are
possibly solved by this method.

Table 1: Error estimates.

N 10 20 40 50 80

M, 64364e—6 1.6002¢e—6 4.0191e—7 2.5712¢—7 1.0031e—7
E, 28766e—6 7.1626e—7 1.7884e—7 1.1442¢—7 4.4636¢—8
M, 1.8102¢e—2 5.1966e—3 1.3446e—3 8.6411le—4 3.3906¢—4
E. 7.3369—3 1.8829¢—3 4.7392¢—4 3.0355¢—4 1.1868e—4
My 1.2425e—3 3.2695e—4 8.2799¢—5 5.3073¢—5 2.066e—5
Es 42742¢e—4 1.078le—4 2.7014e—5 1.7294e—5 6.7576e—6
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Table 2: Relative error estimates.

N 10 20 40 50 80
RE, 44934e—2 1.155%¢—2 2.9103¢e—3 1.8638¢—3 7.2785e—4
RE; 24720e—2 6.4629¢—3 1.6345¢—3 1.0475e—3 4.0983e—4
RE; 1.2196e—3 3.0792¢e—4 7.7171e—5 4.9404e—5 1.9305e—5

Table 3: Error estimates of Darcy velocity.

N 10 20 40 50 80
Ea 3.4800e—5 1.8619¢—5 9.5391e—6 7.6632¢—6 4.8191e—6
RE, 7.9746e—3 2.0284—3 5.1297¢e—4 3.2917¢—4 1.2916e—4

6 Conclusions and discussions

An upwind block-centered fractional step difference method is proposed and theoretical
analysis is presented. Three-dimensional seepage displacement of chemical oil recovery
in porous media is discussed in this paper. Several interesting conclusions are stated as
follows.

(I) The scheme has the conservation of mass, which is an important nature in numeri-
cal simulation of seepage mechanics especially for chemical oil recovery.

(I) The numerical method combines block-centered difference, upwind approximation
and fractional step difference, so it has high accuracy and strong stability. Further-
more, it is easily to be used for solving large-scale actual engineering problems on
three-dimensional complicated region.

(Il) The boundary conditions are treated simply for the presented scheme and the ap-
plications are carried out easily.
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