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Abstract

In quantitative susceptibility mapping (QSM), the background field removal is an es-

sential data acquisition step because it has a significant effect on the restoration quality

by generating a harmonic incompatibility in the measured local field data. Even though

the sparsity based first generation harmonic incompatibility removal (1GHIRE) model has

achieved the performance gain over the traditional approaches, the 1GHIRE model has to

be further improved as there is a basis mismatch underlying in numerically solving Pois-

son’s equation for the background removal. In this paper, we propose the second generation

harmonic incompatibility removal (2GHIRE) model to reduce a basis mismatch, inspired

by the balanced approach in the tight frame based image restoration. Experimental results

shows the superiority of the proposed 2GHIRE model both in the restoration qualities and

the computational efficiency.
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1. Introduction

Quantitative susceptibility mapping (QSM) [1] is a novel noninvasive imaging method which

visualizes the magnetic susceptibility distribution of a human body from a given local field
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perturbation data measured from the magnetic resonance imaging (MRI) signal. The mag-

netic susceptibility χ is a physical property of a material which relates a magnetization M =

(M1,M2,M3) and a magnetic field H = (H1, H2, H3) through M = χH [2]. The physiolog-

ical and/or pathological processes alter the scalar tissue magnetic susceptibilities [2], whose

visualization is becoming reasonably robust and accurate for practical applications [3]. Con-

sequently, QSM recently covers a various range of clinical applications such as demyelination,

inflammation, and iron overload in multiple sclerosis [4], neurodegeneration and iron overload in

Alzheimer’s disease [5], Huntington’s disease [6], changes in metabolic oxygen consumption [7],

hemorrhage including microhemorrhage and blood degradation [8], bone mineralization [9], and

drug delivery using magnetic nanocarriers [10].

QSM is based on the post processing the phase data of a complex gradient echo (GRE) signal

because the magnetic susceptibility distribution in an MR scanner induces the total field which

can be captured by the phase shifts in the GRE signal [11,12]. The post processing consists of

the four stages; the phase offset correction, the phase unwrapping, the background field removal,

and the dipole inversion; see Fig. 1.1 for the brief overview of the process. Throughout this

paper, we only focus on the background field removal to estimate the local field induced by

the susceptibility in the region of interest (ROI) Ω ⊆ R3 which occupies the water and brain

tissues, and the dipole inversion to reconstruct and visualize the susceptibility distribution in

the ROI Ω using the measured local field data. Interested readers may refer to e.g. [12] and

references therein for more details on the other QSM stages such as the phase offset correction,

the phase unwrapping, etc.

Fig. 1.1. Schematic diagram of QSM reconstruction process. Dashed line indicates that the extracted

ROI is used for the background removal and/or the dipole inversion.

Given the local field f , the susceptibility reconstruction is based on solving the following

convolution relation [13–15]:

f(x) = pv

∫

Ω

d(x− y)χ(y)dy, (1.1)

where pv denotes the principal value [16] of the singular integral with the kernel d:

d(x) =
2x2

3 − x2
1 − x2

2

4π|x|5
.
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In the frequency domain, (1.1) reads

F(f)(ξ) = D(ξ)F(χ)(ξ) =

(
1

3
−

ξ23
|ξ|2

)
F(χ)(ξ) (1.2)

where D = F(d) is the Fourier transform of d, and by the definition of pv, D(0) = 0 [1, 17].

From (1.2), we can easily see that the inverse problem is ill-posed as D(ξ) = 0 for ξ satisfying

ξ21 + ξ22 − 2ξ23 = 0; whenever the measured local field data f contains the incompatibilities, the

reconstructed susceptibility image contains artifacts [18].

1.1. Effects of background field removal on susceptibility restoration

In the literature, there have been extensive studies related to the noise (e.g. [19, 20]), while

the incompatibilities arising from the background removal have received little attention. In

fact, the background field removal is one of the most crucial data acquisition steps as the

incompatibilities generated from this step is different from the additive noise, which has a

significant effect on the recovery unless it is appropriately suppressed [21].

For the brief explanation on the background field removal, assume that the susceptibility χ

is compactly supported (not necessarily strictly supported in Ω) on R3. Then the induced total

field b satisfies the following partial differential equation (PDE):

−∆b = P (D)χ :=

(
−
1

3
∆ +

∂2

∂x2
3

)
χ. (1.3)

Interested readers may consult [21] and the references therein for the detailed derivation. Hence,

b can be expressed as the following Newtonian potential (e.g. [22]):

b(x) =

∫

R3

Φ(x− y)

(
−
1

3
∆y +

∂2

∂y23

)
χ(y)dy (1.4)

where Φ(x) = 1/ (4π|x|) is the fundamental solution of −∆.

Comparing (1.1) and (1.4), and together with [18, Proposition A.1], we can see that the

goal of background field removal is to reduce the domain of integration from R3 to Ω. Namely,

given a (limited) total field b, we may obtain the local field data f by solving

−∆f = 1Ω (−∆b) , (1.5)

where 1Ω is the characteristic function of Ω. However, since (1.5) is underdetermined, we need

additional information for the unique estimation [23]. One benchmark approach is imposing

the following Dirichlet boundary condition





−∆f= −∆b, in Ω

f= 0, on ∂Ω.
(1.6)

Even though (1.6) admits the unique solution, its solution is represented as the Green’s function

G(x,y) associated to Ω [24]. Recently, based on this fact, the authors in [21] show that the

solution to (1.6) is represented as

f(x) =

∫

Ω

Φ(x− y)

(
−
1

3
∆y +

∂2

∂y23

)
χ(y)dy + v(x), (1.7)
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where v satisfies
∫

R3

v(x) (−∆ϕ) (x)dx =

∫

∂Ω

[
∂vi
∂n

(x)−
∂ve
∂n

(x)

]
ϕ(x)dσ(x) (1.8)

for ϕ ∈ C∞
0 (R3), and

∂vi
∂n

−
∂ve
∂n

6= 0 almost everywhere on ∂Ω (1.9)

whenever P (D)χ 6= 0 in Ω. Here, vi and ve are the restriction of v in Ω and R3 \Ω respectively,

n is the outward unit normal vector of ∂Ω, and σ is the surface measure on ∂Ω. Note that vi
and ve are the solutions of

−∆vi = 0, in Ω, (1.10)

−∆ve = 0, in R
3 \ Ω, (1.11)

vi = ve = −b, on ∂Ω, (1.12)

respectively, which shows that v is continuous on ∂Ω due to the common boundary condition

(1.12).

This means that even in the noise-free case, the local field f obtained from (1.6) contains

an incompatibility harmonic except on ∂Ω, which we shall call v the harmonic incompatibility

in what follows. Since v is smooth, analytic, and satisfies the mean value property except on

∂Ω [24], it has slow variations compared to the additive noise [21]. Hence, it mostly affects the

low frequency components in f while the noise mainly affects the high frequency components.

Together with the ill-posedness of (1.1), the incompatibility in low frequency components of f

leads to the shadow artifacts in the reconstructed image, while that in high frequency compo-

nents leads to the streaking artifacts [21]. However, since the traditional single system based

regularization approaches cannot suppress both incompatibilities simultaneously, the unsup-

pressed incompatibility in turn leads to the erroneous susceptibility restoration results.

1.2. Motivations and contributions of our approach

Recently, the authors in [21] further observed that −∆v is sparse in the discrete setting, and

proposed the following first generation harmonic incompatibility removal (1GHIRE) model for

the susceptibility reconstruction

min
χ,v

1

2
‖Aχ+ v − f‖

2
Ξ + λ ‖Lv‖1 + ‖γ ·Wχ‖1,2 , (1.13)

where A denotes the discretization of the forward operator in (1.7), L is the discrete Lapla-

cian, W is a given wavelet frame transformation with L level of decomposition, and γ =

{γl : l = 0, · · · , L− 1} is a regularization parameter imposing different penalization on each

level. (The detailed introductions of the notation will be postponed until Subsection 2.1). By

imposing the sparse regularization of Lv, 1GHIRE model (1.13) adopts the idea of two system

regularization [25, 26] so that the incompatibility other than the additive noise can be taken

into account.

Even though the above 1GHIRE model has achieved the susceptibility image reconstruction

with less artifacts compared to the traditional single system based regularization approaches,
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it has to be further improved. It should be noted that the ℓ1 norm which promotes the sparsity

of Lv in the entire image domain may not be capable of fully reflecting the harmonic incompat-

ibility v except on ∂Ω, albeit it can be a way of relaxation when considering the error source

of the forward model in QSM. Since the measured data f can contain the outliers in Ω whose

intensity is stronger than Lv [11], ‖Lv‖1 in (1.13) may capture such outliers, leading to the

erroneous removal in the harmonic incompatibility. Most importantly, since the discrete images

and the ROI defined on the regular grids are available only, there exists a basis mismatch arising

from numerically solving (1.6); that is, a mismatch between the true supports of −∆v in the

continuous domain and those of Lv in the discrete setting. Such a basis mismatch can degrade

the sparsity of Lv, which may in turn lead to the degradation of restoration quality. Indeed,

even though we can consider the following variant model

min
χ,v

1

2
‖Aχ+ v − f‖

2
Ξ + λ ‖(Lv)Λc‖

p
p + ‖γ ·Wχ‖1,2 , (1.14)

where p = 1 or 2, and Λ is the estimated support of Lv, the underlying basis mismatch results

in the restoration result highly sensitive to the estimation of Λ.

In this paper, we improve the previous 1GHIRE model (1.13) to reduce the basis mismatch

underlying in solving (1.6). The proposed second generation harmonic incompatibility removal

(2GHIRE) model is inspired by the balanced approach (e.g. [27–29]) in the tight frame based

image restoration. More specifically, since the basis mismatch hampers Lv from being sparse

on the discrete grid, we provide a flexibility in sparse approximation of Lv instead of directly

enforcing the properties of −∆v mentioned in Subsection 1.1. Finally, experiments on both

brain phantom and in-vivo MR data consistently show that the proposed 2GHIRE model is

robust to the estimation of Λ, achieving further improvements over the previous 1GHIRE model

and its variants.

1.3. Organization of paper

In Section 2, we introduce the proposed 2GHIRE model to reduce a basis mismatch, followed

by an alternating minimization algorithm. In Section 3, we present experimental results for

both brain phantom and in vivo MR data, and Section 4 concludes this paper with some future

directions.

2. Second Generation Harmonic Incompatibility Removal (2GHIRE)

Model

2.1. Proposed 2GHIRE susceptibility reconstruction model

We begin with introducing some notations. Let O = {0, · · · , N1 − 1} × {0, · · · , N2 − 1} ×

{0, · · · , N3 − 1} denote the set of indices of N1 ×N2 ×N3 grids, and let Ω ⊆ O denote the set

of indices corresponding to the ROI. Denote ∂Ω to be the set of indices where the boundary

condition in (1.6) is active. Finally, the space of real valued functions defined on O is denoted

as I3 ≃ RN1×N2×N3 .

As in [21], we model the (noisy) measured local field data f ∈ I3 obtained from (1.6) (and

satisfying f = 0 in O \ Ω) as

f = Aχ+ v + η. (2.1)
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Here, A = F−1DF denotes the discretization of the forward operator in (1.7), χ ∈ I3 denotes

the unknown true susceptibility image supported in Ω, v ∈ I3 is the incompatibility arising

from solving (1.6), and η is the additive noise.

In the ideal discrete setting where the boundary in the continuous domain is well aligned

with the discrete grid O, the properties of the harmonic incompatibility v read as follows: there

exists w ∈ I3 such that

Lv = w and supp(w) = ∂Ω (2.2)

with the discrete Laplacian L, so that we have

‖Lv‖0 = |∂Ω| ≪ |O|. (2.3)

However, it is in general difficult to directly apply (2.2) into the susceptibility reconstruc-

tion model because 1) the real MRI data may not exactly satisfy (2.2) due to the (possibly)

anisotropic spatial resolution [21]; 2) since the discrete magnitude and phase images are avail-

able only, it is inevitable to have a basis mismatch [30,31] between the true support of −∆v in

the continuous domain and the discrete grid, which in turn leads to to the loss of (2.2) in the

discrete setting. As a consequence, we propose the second generation harmonic incompatibility

removal (2GHIRE) model as follows:

min
χ,v,w

1

2
‖Aχ+ v − f‖

2
Ξ +

λ

2
‖Lv − w‖

2
2 + ‖γ ·Wχ‖1,2

subject to PΛcw = 0 and ‖w‖0 ≤ r,

(2.4)

where Λ denotes the estimation of supp(Lv), r is an estimated model order, PA is the projection

operator onto a set A, and the ℓ0 norm constraint comes from the fact that the circulant lifting

is diagonalized by the unitary discrete Fourier transform (i.e. rank (Cŵ) = ‖w‖0). Here,

‖·‖
2
Ξ = 〈Ξ·, ·〉 where the SNR weight Ξ is estimated from the MRI [14, 32], and ‖γ ·Wχ‖1,2 is

the isotropic ℓ1 norm of the B-spline wavelet frame coefficients defined as

‖γ ·Wχ‖1,2 :=
∑

k∈O

L−1∑

l=0

γl[k]

(
∑

α∈B

|(Wl,αχ) [k]|
2

)1/2

, (2.5)

where B = {0, 1, · · · ,m}3 \ {0} denotes the framelet band [33]. Interested readers can refer to

e.g. [33, 34] and the references therein for the introduction on the B-spline wavelet frames.

Note that numerous variational regularizations for the susceptibility reconstruction were

already proposed in the literature. The most widely used variational approaches include to-

tal variation [35], total generalized variation [36], weighted total variation for morphological

consistency [37], and so on. However, since D(0) = 0, the χ subproblem in the alternating di-

rection method of multipliers (ADMM) for the variational susceptibility reconstruction models

has a rank deficient system matrix. Hence, we may need additional prior information such as

the zero susceptibility value in the cerebrospinal fluid region [38] for the stable reconstruction.

In contrast, by using the tight frame regularization, the system matrix of χ subproblem has

a full column rank, which leads to the computational efficiency over the existing variational

methods [21].

In the 2GHIRE model (2.4), the first constraint (PΛcw = 0) reflects (2.2) so that we can

prevent w from capturing the outliers in Ω [11]. In addition, it is easy to see that the sparsity
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constraint (‖w‖0 ≤ r) reflects (2.3). Finally, similar to the balanced approach (e.g. [27–29])

in the tight frame based image restoration, the term ‖Lv − w‖
2
2 balances the distance between

Lv and w where w satisfies the aforementioned constraints. Obviously, if we set λ = ∞, then

w = Lv, and (2.4) becomes

min
χ,v

1

2
‖Aχ+ v − f‖

2
Ξ + ‖γ ·Wχ‖1,2

subject to PΛc (Lv) = 0 and ‖Lv‖0 ≤ r.

(2.6)

For our purpose, the choice of (2.4) instead of (2.6) and the reasons are as follows: first of all, Lv

may not exactly satisfy (2.2) due to the basis mismatch arising in solving (1.6) numerically with

a given discrete total field data and a given discrete ROI. Since this basis mismatch degrades

the sparsity of Lv on O, the restoration result will be highly sensitive to the choice of Λ when

we directly impose (2.2) and (2.3). In addition, the local field f is in general dominated by the

errors near the boundary because the GRE signal lacks information outside the ROI [12]. This

means that, the direct constraint will in fact restore a harmonic incompatibility v induced by

the errors near the boundary rather than by information of (unknown) −Aχ on ∂Ω described

in [21, Theorem 2.2]. This erroneous restoration of v affects the low frequency components of

f again, leading to the new shadow artifacts in the restored images. In contrast, the proposed

2GHIRE model (2.4) does not strictly require that Lv satisfy the above properties (2.2) and

(2.3). By balancing the distance between Lv which does not satisfy the constraint in general

and w which satisfies the constraints instead, we expect to achieve the better suppression of

incompatibilities as well as the restoration results more robust to the estimation of Λ than (2.6).

Finally, we mention that the proposed 2GHIRE model is not limited to (2.4). In fact,

as mentioned in [21], the nonlinear fidelity term 1
2

∥∥m
(
ei(Aχ+v)ω0B0TE − eiblω0B0TE

)∥∥2
2
can be

used to further compensate the errors arising in the phase unwrapping, which will be more

appropriate to the GRE signal model [3, 19]. Indeed, it is also worth noting that (1.14) with

p = 2 can be viewed as the linearized version of the nonlinear model in [11]. Nonetheless, we

forgo further discussions on the nonlinear variants as it is beyond the scope of this paper.

2.2. Numerical algorithm

Overall alternating minimization algorithm is as follows: for n = 0, 1, · · · ,

(χn+1, vn+1) = argmin
χ,v

1

2
‖Aχ+ v − f‖

2
Ξ +

λ

2
‖Lv − wn‖

2
2 + ‖γ ·Wχ‖1,2 , (2.7)

wn+1 = argmin
PΛcw=0,‖w‖0≤r

‖w − Lvn+1‖
2
2 , (2.8)

i.e. we update (χ, v) and w alternatively.

To solve (2.7), we use the split Bregman algorithm given in [32] in the framework of alter-

nating direction method of multipliers (ADMM) [39]. For the completeness, we present the full

details of the split Bregman algorithm for solving (2.7): for m = 0, 1, · · · ,

[
χm+1

vm+1

]
= argmin

β

2
‖Aχ+ v − em + ẽm‖

2
2 +

β

2
‖Wχ− cm + c̃m‖

2
2 +

λ

2
‖Lv − wn‖

2
2 , (2.9)
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cm+1 = argmin ‖γ · c‖1,2 +
β

2
‖c−Wχm+1 − c̃m‖

2
2 , (2.10)

em+1 = argmin
1

2
‖e− f‖2Ξ +

β

2
‖e−Aχm+1 − vm+1 − ẽm‖22 , (2.11)

c̃m+1 = c̃m +Wχm+1 − cm+1, (2.12)

ẽm+1 = ẽm +Aχm+1 + vm+1 − em+1, (2.13)

where we omit the outer iteration subscript n for the notational simplicity.

Note that each subproblem has a closed form solution and it can be written as

[
χm+1

vm+1

]
=



ATA+ I AT

A I + λ/βLTL



−1 

AT (em − ẽm) +WT (cm − c̃m)

em − ẽm + λ/βLTwn


 , (2.14)

cm+1 = Tγ/β (Wχm+1 + c̃m) , (2.15)

em+1 = (Ξ + βI)
−1

{Ξf + β (Aχm+1 + vm+1 + ẽm)} , (2.16)

c̃m+1 = c̃m +Wχm+1 − cm+1, (2.17)

ẽm+1 = ẽm +Aχm+1 + vm+1 − em+1. (2.18)

It is not hard to see that the system matrix in (2.14) is invertible, and the four submatrices can

be diagonalized by the fast Fourier transform. Hence, we can easily solve (2.14) by using the

pointwise Gaussian elimination or the pointwise Kramer’s rule in the frequency domain. For

(2.15), Tγ is the isotropic soft thresholding in [33]: given c defined as

c = {cl,α : (l,α) ∈ ({0, · · · , L− 1} × B) ∪ {(L− 1,0)}} ,

and γ = {γl : l = 0, 1, · · · , L− 1} with γl ≥ 0, Tγ (c) is defined as

(Tγ (c))l,α [k] =





cl,α[k], (l,α) = (L− 1,0),

max (Rl[k]− γl[k], 0)
cl,α[k]

Rl[k]
, (l,α) ∈ {0, · · · , L− 1} × B,

where Rl[k] =
(∑

α∈B
|cl,α[k]|

2
)1/2

for k ∈ O. For (2.16), Ξ + βI is simply a diagonal matrix

and thus, no matrix inversion is needed.

For (2.8), we apply the following alternating projection:

w̃n+1 = PΛ (Lvn+1) , (2.19)

wn+1 = PΛn+1
w̃n+1, (2.20)

where Λn+1 is the set of indices corresponding to r largest absolute values in w̃n+1.

Finally, we mention that, to get an exact solution, we need to choose (χn+1, vn+1) =

(χn,∞, vn,∞). However, it would be too conservative to use infinite steps of inner iterations.

The reason is that both (χn, vn) and wn at each iteration step might not be accurate enough,

and accuracy obtained by the infinite loop will be wasted, which is typical in the split Bregman

algorithm [40,41]. Hence, we only need to perform one iteration in (2.7) for computational effi-

ciency, and we summarize the complete iteration that will be used in our algorithm for solving
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the 2GHIRE model (2.4) in Algorithm 2.1. Unfortunately, since the 2GHIRE model is noncon-

vex, the convergence of Algorithm 2.1 in theory keeps an open issue [42, 43]. Nevertheless, we

empirically observe that Algorithm 2.1 is fast convergent with the smaller number of iterations

than other models.

Algorithm 2.1. Numerical algorithm for the 2GHIRE model (2.4)

Initialization: χ0, v0, w0, c0, e0, c̃0, ẽ0
for n = 0, 1, 2, · · ·

Update

[
χn+1

vn+1

]
=

[
ATA+ I AT

A I + λ/βLTL

]−1 [
AT (en − ẽn) +WT (cn − c̃n)

en − ẽn + λ/βLTwn

]
,

cn+1 = Tγ/β (Wχn+1 + c̃n) ,

en+1 = (Ξ + βI)
−1

{Ξf + β (Aχn+1 + vn+1 + ẽn)} ,

c̃n+1 = c̃n +Wχm+1 − cn+1,

ẽn+1 = ẽn +Aχn+1 + vn+1 − en+1,

w̃n+1 = PΛ (Lvn+1) ,

wn+1 = PΛn+1
w̃n+1,

where Λn+1 is the set of indices corresponding to r largest absolute values in w̃n+1.

end for

3. Experiments

In this section, we present some experimental results on brain phantom in [44] and the single

echo (SE) data used in the QSM 2016 reconstruction challenge [45], and the multi echo (ME)

data in [18] to compare the proposed 2GHIRE model (2.4) with other existing reconstruction

methods. The brain phantom images are available on Cornell MRI Research Lab webpage1) ,

and the SE data are available on Neuroimaging Research Unit-Medical University of Graz web-

page2) . In the literature, the regularization based approaches outperform the direct approaches

including the truncated K-space division [46] and the Tikhonov regularization [47]. In addition,

since it is demonstrated in [21] that taking the harmonic incompatibility v in the measured

local field f into account leads to the performance gain over the traditional single system based

approaches such as the integral approach and the differential approaches, we focus on the com-

parison of the 2GHIRE model (2.4) with the 1GHIRE model (1.13), its variants (1.14) with

both p = 1 and 2, and the model (2.6). All experiments are implemented on MATLAB R2014a

running on a laptop with 64GB RAM and Intel(R) Core(TM) CPU i7-8750H at 2.20GHz with

6 cores.

In all models, we choose W to be the tensor product Haar framelet transform with 1 level

of decomposition to avoid the memory storage problem (Note, however, that the decomposition

level and the choice ofW will do affect the restoration results), and we use the standard centered

1) http://www.weill.cornell.edu/mri/pages/qsm.html
2) http://www.neuroimaging.at/pages/qsm.php
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difference for L. Most importantly, to compare the effects of Λ on the restoration results, we

estimate Λ from Ω using 1) the finite difference L; and 2) the spherical mean value (SMV)

filter [48] with radius 1.5mm, which will be referred as “thin Λ” and “thick Λ” respectively. For

the parameters, we choose γ in (2.5) of the form γ =
{
ν2−l : l = 0, · · · , L− 1

}
with ν > 0, and

the detailed choices are summarized in Table (3.1) for each case and each model. Empirically,

we observe that the reconstructed images contain more artifacts as ν becomes smaller while

the larger ν leads to the overly smoothed restoration results. In addition, when λ is large, the

estimated harmonic incompatibility v becomes smooth near the boundary of ROI. It is also

worth noting that the proposed 2GHIRE model is relatively insensitive to the choice of r. As

a rule of a thumb, it suffices to choose r to be 0.02 ∼ 0.025% of |O|. Based on this observation,

the parameters are chosen manually to balance indices and visual qualities. For the stopping

criterion of Algorithm 2.1, we use

‖χn+1 − χn‖2
‖χn+1‖2

≤ ε = 5× 10−3. (3.1)

The models (1.13), (1.14), and (2.6) are solved using the split Bregman algorithm similar to our

algorithm with the same stopping criterion (3.1). In all cases, we set the maximum allowable

number of iterations to be 600, and all models are initialized with χ0 = v0 = w0 = 0. Finally,

for the quantitative comparison of each reconstruction model, we use the root mean square

error (RMSE), the structural similarity index map (SSIM) [49].

3.1. Brain phantom experiments

The brain phantom experiments is implemented by simulating the 12 equispaced multi echo

GREs at 3T with TE ranging from 2.5msec to 30msec, using the 256 × 256 × 98 image with

spatial resolution 0.9375×0.9375×1.5mm3. More precisely, we synthesize the local field data f

in Fig. 3.1(f) as follows. We first generate the true magnitude image m̃, and simulate the true

total field b̃ by adding four background susceptibility sources in the true susceptibility image to

generate the background field. Using m̃ and b̃, we generate the noisy multi echo complex GRE

signal by

I[k, t] = m̃[k] exp
{
− ĩb[k]ω0B0TE[t]

}
+ η[k, t], k ∈ O, & t = 1, · · · , 12,

where η is the complex white Gaussian noise whose standard deviation of both real and imagi-

nary parts are 0.04. Using this noisy multi echo GRE signal I, the magnitude image and phase

data are estimated by the method in [50], and the phase is further unwrapped by the method

in [51] to obtain the noisy and incomplete total field b. Then we solve the Poisson’s equation

(1.6) using the method in [52] to obtain the noisy local field data f (See Fig. 3.1). Finally, for

the comparison of the restored harmonic incompatibility v, we also solve (1.6) using b̃ to obtain

the true local field f̃ and the true harmonic incompatibility ṽ (See Fig. 3.3).

Table 3.2 summarizes the RMSE and the SSIM of (1.13), (1.14), (2.6), and (2.4) for each

choice of Λ, and Figs. 3.4 and 3.6 present visual comparisons of the results. We also visualize

RMSE versus iteration number in Fig. 3.9. We can see that, in any choice of Λ, the proposed

2GHIRE model (2.4) consistently outperforms the other reconstruction models. This demon-

strates that we can further achieve better susceptibility reconstruction via better removal of

the harmonic incompatibility, which arises from the background field removal stage to solve the

Poisson’s equation (1.6). Indeed, we can see that the 2GHIRE model (2.4) restores v better than



2GHIRE via Reduction of Basis Mismatch 923

Table 3.1: Parameter selection for each dataset.

Dataset Model ν λ r β

Brain phantom

1GHIRE (1.13) 2× 10−4 2.5 × 10−3
· 0.05

Model (1.14) p = 1 2× 10−4 1 · 0.05

Model (1.14) p = 2 2× 10−4 10 · 0.05

Model (2.6) 2× 10−4
· 160564 0.05

2GHIRE (2.4) 2× 10−4 50 160564 0.05

SE data

1GHIRE (1.13) 2.5× 10−5 5× 10−4
· 0.05

Model (1.14) p = 1 2.5× 10−5 0.125 · 0.05

Model (1.14) p = 2 2.5× 10−5 1.25 · 0.05

Model (2.6) 2.5× 10−5
· 81920 0.05

2GHIRE (2.4) 2.5× 10−5 6.25 81920 0.05

ME data

1GHIRE (1.13) 2.5× 10−5 1.25 × 10−3
· 0.05

Model (1.14) p = 1 2.5× 10−5 0.125 · 0.05

Model (1.14) p = 2 2.5× 10−5 1.25 · 0.05

Model (2.6) 2.5× 10−5
· 393216 0.05

2GHIRE (2.4) 2.5× 10−5 6.25 393216 0.05

(a) True χ (b) Magnitude (c) ROI (d) Phase (e) Total field (f) Local field

Fig. 3.1. Images of synthesized datasets for the brain phantom experiments. The first row describes

the sagittal slice images and the second row depicts the axial slice images.

(a) Thin Λ (b) Thick Λ

Fig. 3.2. Images of estimated Λ for the brain phantom experiments. The first row describes the sagittal

slice images and the second row depicts the axial slice images.

other models with less singularities in Ω, as shown in Figs. 3.5 and 3.7, leading to the improve-

ments in both indices and visual quality. This means that by balancing the distance between

Lv which may not necessarily satisfy the constraint and w which satisfies the constraint, we

can prevent v from capturing the outliers in Ω, achieving the better harmonic incompatibility

removal. Indeed, since the ℓ1 norm may not necessarily reflect the locally supported property

of Lv, the 1GHIRE model in fact fails to remove the harmonic incompatibility in the local field

data, as shown in Fig. 3.5(b). In addition, we can see that the models (1.14) and (2.6) can
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(a) True χ (b) χ in O \ Ω (c) True b̃ (d) True Aχ (e) True f̃ (f) True ṽ

Fig. 3.3. Reference noise-free datasets for the brain phantom experiments. The first row describes the

sagittal slice images and the second row depicts the axial slice images.

Table 3.2: Comparison of relative error, and structural similarity index map for the brain phantom

experiments.

Λ Indices 1GHIRE (1.14) p = 1 (1.14) p = 2 (2.6) 2GHIRE

Thin
RMSE 0.4480 0.4403 0.4465 0.4403 0.4281

SSIM 0.7436 0.7512 0.7494 0.7512 0.7605

Thick
RMSE 0.4480 0.4639 0.4699 0.4639 0.4287

SSIM 0.7436 0.7450 0.7425 0.7450 0.7600

(a) True χ (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE

Fig. 3.4. Images comparing QSM reconstruction methods for the brain phantom experiments with

thin Λ. The first row describes the sagittal slice images, and the second row depicts the axial slice

images. All sagittal slice images of brain phantom experimental results are displayed in the window

level [−0.03, 0.07], and the axial slice images of brain phantom experimental results are displayed in

the window level [−0.03, 0.19] for the fair comparison.

also preserve where Lv has to be nonzero. However, since the direct penalization can make Lv

capture the Laplacian of noise as well, they restore v inferior to the 2GHIRE model, as shown

in Figs. 3.5(c), 3.5(e), 3.7(c), and 3.7(e).

In order to further see the effect of Λ on the restoration results, we also present the zoom-in

views of the axial slice images of Figs. 3.4 and 3.6 in Fig. 3.8. We can see that compared to

the case of thin Λ, the models (1.14) and (2.6) results in the loss of information in Λ, as shown

in Figs. 3.8(c), 3.8(d), and 3.8(e), which agrees with the degradation of indices given in Table

3.2. In contrast, the 2GHIRE model yields visually identical results regardless of the choice

of Λ, as shown in Fig. 3.8(f), which again coincides the indices given in Table 3.2, thereby

demonstrating the existence of basis mismatch arising from solving (1.6) and the robustness of

the proposed 2GHIRE model to the estimation of the support of Lv.

Finally, we mention that compared to the other models, the 2GHIRE model requires ap-

proximately 50% of CPU times, as shown in Table 3.3. Most importantly, the iteration number
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(a) True ṽ (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE

Fig. 3.5. Images of v for the brain phantom experiments with thin Λ. The first row describes the

sagittal slice images and the second row depicts the axial slice images. The images of v for the brain

phantom experiments are displayed in the window level [−0.025, 0.025] for the fair comparison.

(a) True χ (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE

Fig. 3.6. Images comparing QSM reconstruction methods for the brain phantom experiments with

thick Λ. The first row describes the sagittal slice images and the second row depicts the axial slice

images.

(a) True ṽ (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE

Fig. 3.7. Images of v for the brain phantom experiments with thick Λ. The first row describes the

sagittal slice images and the second row depicts the axial slice images.

of the 2GHIRE model is approximately 40% of the other reconstruction models. Even though

the further theoretical convergence analysis will be needed, we can numerically observe that our

proposed model reaches to a (local) minimum of the energy functional faster than other models.

Therefore, we can conclude that the proposed 2GHIRE model (2.4) is able to achieve the better

harmonic incompatibility removal robustly to the choice of Λ, together with the computational

efficiency over the other models (1.13), (1.14), and (2.6).

3.2. Single echo MR data experiments

The SE data experiments are conducted using 160× 160× 160 image with spatial resolution

1.0625 × 1.0625 × 1.0714mm3, which is obtained from a 3T MR system and which can be
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(a) True χ (b) 1GHIRE

(c) (1.14) p = 1 (d) (1.14) p = 2 (e) (2.6) (f) (2.4)

Fig. 3.8. Comparison of Figures 3.4 and 3.6. The first row uses thin Λ, and the second row uses the

thick Λ. The yellow arrows indicate the regions worth noticing.
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Fig. 3.9. RMSE versus iteration number for the brain phantom experiments.

Table 3.3: Comparison of the number of iterations and the CPU time for the brain phantom experi-

ments.

Λ Indices 1GHIRE (1.14) p = 1 (1.14) p = 2 (2.6) 2GHIRE

Thin
# of Iter 105 107 101 107 43

CPU Time 400.83 409.22 386.08 471.47 191.36

Thick
# of Iter 105 105 99 107 43

CPU Time 400.83 405.33 380.49 465.99 192.56

downloaded on Neuroimaging Research Unit-Medical University of Graz webpage. We unwrap

the phase in Fig. 3.10(d) using the Laplacian based phase unwrapping in [48] to obtain the

total field data in Fig. 3.10(e). Then we solve the Poisson’s equation (1.6) by the method

in [52] to further obtain the measured local field data f in Fig. 3.10(f). Here, the ground truth

image in Fig. 3.10(a) is obtained by the calculation of susceptibility using multiple orientation
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sampling (COSMOS) method in [15] using the 12 orientation data.

(a) Ground truth (b) Magnitude (c) ROI (d) Phase (e) Total field (f) Local field

Fig. 3.10. Images of single echo datasets. The first row describes the sagittal slice images and the

second row depicts the axial slice images.

(a) Thin Λ (b) Thick Λ

Fig. 3.11. Images of estimated Λ for the SE data experiments. The first row describes the sagittal slice

images and the second row depicts the axial slice images.

Table 3.4 summarizes the RMSE and the SSIM of (1.13),(1.14) with both p = 1 and p = 2,

(2.6) and (2.4) for each choice of Λ, Figs. 3.12 and 3.14 present visual comparisons of the

results, and RMSE versus iteration number is given in Fig. 3.16. The number of iterations and

the CPU times are given in Table 3.5 as well. We can see that the overall results are almost

similar to the brain phantom experiments, including the robustness to the choice of Λ as well

as the computational efficiency. It is also worth noting that the 2GHIRE model can reduce the

shadow artifacts in all directions, as shown in Figs. 3.12(f) and 3.14(f). Indeed, as we can see

from Fig. 3.12(b), even though the previous 1GHIRE removes the shadow artifacts along the

sagittal slice direction, the axial slice images have a degradation in the contrasts as shown in

Fig. 3.12(b). In addition, even though the models (1.14) and (2.6) restore the sagittal slice

images with better contrast, the sagittal slice images contain shadow artifacts as shown in Figs.

3.12(c), 3.14(c), 3.12(d), 3.14(d), 3.12(e), and 3.14(e). In contrast, the 2GHIRE model (2.4)

can achieve the better artifact removal together with less degradation in contrasts, leading to

the performance gain.

We also compare the harmonic incompatibilities restored by each model in Figs. 3.13 and

3.15. Compared to the 1GHIRE (1.13), it seems that the 2GHIRE (2.4) as well as (1.14) and

(2.6) better restore v in the interior of Ω. However, we can also see that the models (1.14) and
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Table 3.4: Comparison of relative error, and structural similarity index map for the SE data experi-

ments.

Λ Indices 1GHIRE (1.14) p = 1 (1.14) p = 2 (2.6) 2GHIRE

Thin
RMSE 0.8025 0.8141 0.7538 0.8141 0.6995

SSIM 0.8085 0.8298 0.8248 0.8298 0.8289

Thick
RMSE 0.8025 0.8077 0.7530 0.8074 0.7004

SSIM 0.8085 0.8213 0.8236 0.8213 0.8288

(a) Ground truth (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE

Fig. 3.12. Images comparing QSM reconstruction methods for the SE data experiments with thin Λ.

The first row describes the sagittal slice images and the second row depicts the axial slice images. All

reconstructed images of SE data experiments are displayed in the window level [−0.1, 0.1].

Table 3.5: Comparison of the number of iterations and the CPU time for the SE data experiments

Λ Indices 1GHIRE (1.14) p = 1 (1.14) p = 2 (2.6) 2GHIRE

Thin
# of Iter 80 152 86 152 59

CPU Time 238.07 449.73 253.66 506.03 200.76

Thick
# of Iter 80 152 87 152 59

CPU Time 238.07 448.38 252.84 500.69 200.03

(2.6) restore v which is discontinuous across the interface between Ω and O \ Ω, as shown in

Figs. 3.13(b), 3.15(b), 3.13(c), 3.15(c), 3.13(d), and 3.15(d), while the 2GHIRE model restores

v which is continuous along the interface (Figs. 3.13(e) and 3.15(e)). As already mentioned

in Subsection 1.1, the harmonic incompatibility v (in the continuous domain) satisfies (1.10),

(1.11), and (1.12). Hence, it has to be continuous on ∂Ω. In addition, since the discrete

HIRE models are based on the characterizations of v in continuous domain, the restoration

results are desired to be mostly coincident with the theoretical discoveries as well. However,

since both (1.14) and (2.6) fail to reconstruct v which agrees with our theoretical discovery,

such an erroneous restoration of v in turn leads to another shadow artifacts in the reconstructed

susceptibility image. Hence, in the SE data experiments, we can arrive at the similar conclusion

to the brain phantom experiments.

3.3. Multi echo MR data experiments

The ME data experiments are conducted using 512×512×200 image with spatial resolution

0.46875 × 0.46875 × 0.7mm3, which is obtained from a 3T MR system. More precisely, 12

equispaced multi echo GRE sequences with TE ranging from 3.8msec to 48.9msec and time of

relaxation 53.2msec. We first unwrap the phase data in Fig. 3.17(c) to obtain total field data in
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(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE

Fig. 3.13. Images of v for the single echo MR data experiments with thin Λ. The first row describes

the sagittal slice images and the second row depicts the axial slice images. The images of v for the SE

data experiments are displayed in the window level [−0.025, 0.025] for the fair comparison.

(a) Ground truth (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE

Fig. 3.14. Images comparing QSM reconstruction methods for the single echo MR data experiments

with thick Λ. The first row describes the sagittal slice images and the second row depicts the axial slice

images.

(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE

Fig. 3.15. Images of v for the single echo MR data experiments with thick Λ. The first row describes

the sagittal slice images and the second row depicts the axial slice images.

Fig. 3.17(d), and then we solve the Poisson’s equation (1.6) using the method in [52] to obtain

the local field data f in Fig. 3.17(e).

Figs. 3.19 and 3.21 display the visual comparisons of (1.13),(1.14) with both p = 1 and
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Fig. 3.16. RMSE versus iteration number for the single echo MR data experiments.

(a) Magnitude (b) ROI (c) Phase (d) Total field (e) Local field

Fig. 3.17. Images of ME datasets. The first row describes the sagittal slice images and the second row

depicts the axial slice images.

(a) Thin Λ (b) Thick Λ

Fig. 3.18. Images of estimated Λ for the ME data experiments. The first row describes the sagittal

slice images and the second row depicts the axial slice images.

p = 2, (2.6) and (2.4) for each choice of Λ. Since the reference image is not available for in the

ME data, it is in general more difficult to provide quantitative evaluations than the previous

two cases. Nonetheless, we can see from the viewpoint of visual comparison that the pros

and cons are almost the same as the numerical brain phantom experiments and the SE data

experiments. We also compare the harmonic incompatibilities reconstructed by each model

with different choice of Λ in Figs. 3.20 and 3.22. It is worth noting that compared to other

reconstruction models, the 2GHIRE model reconstructs v less containing the outliers in Λ. As

previously mentioned in [21, Theorem 2.2], the harmonic incompatibility v is induced by the

Dirichlet boundary condition of (1.6), i.e. by information of (unknown) −Aχ on ∂Ω. However,

since the models (1.14) and (2.6) restore a harmonic function induced by the outliers, such an
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(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE

Fig. 3.19. Images comparing QSM reconstruction methods for the ME data experiments with thin Λ.

The first row describes the sagittal slice images and the second row depicts the axial slice images. All

reconstructed images for ME data experiments are displayed in the window level [−0.5, 0.5].

(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE

Fig. 3.20. Images of v for the ME data experiments with thin Λ. The first row describes the sagittal

slice images and the second row depicts the axial slice images. The images of v for the ME data

experiments are displayed in the window level [−0.15, 0.15] for the fair comparison.

erroneous reconstruction of v eventually generates another incompatibility in the low frequency

components of f , leading to the shadow artifacts in the reconstructed image. In contrast,

since the term ‖Lv − w‖
2
2 keeps the distance between Lv and w (containing the Laplacian of

outliers), the 2GHIRE model is likely to make v on the boundary closer to Aχ, leading to the

better harmonic incompatibility removal.

We further mention that compared to the noticeable differences in v among the reconstruc-

tion models, the differences in the reconstructed susceptibility images are relatively marginal.

One possible reason would be the outliers in the measured local field data lying in the ROI Ω.

As mentioned in [12], the local field data is prone to outliers where the MRI image has a low

SNR. Moreover, in the region where the MRI image contains outliers, the phase unwrapping

stage may introduce outliers in the total field data in the same region [19]. In any case, the

forward model (2.1) does not hold in that region any more, so the susceptibility reconstruction

model will need improving so that such outliers can be suppressed at the same time. Moreover,

it is known in the literature that the susceptibility of the white matter is anisotropic, i.e. χ is

a 3 × 3 symmetric tensor in the white matter [44]. Since (2.1) does not hold in this case ei-

ther, we may need to remove the effect of anisotropic susceptibility for the better susceptibility

reconstruction as a future work. Finally, compared to the smallest number of iterations, the

CPU time for the 2GHIRE model is relatively long. This indicates that the implementation of

Algorithm 2.1 has to be further improved so that the application to the high resolution MR

data is also available with high computational efficiency.
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Table 3.6: Comparison of the number of iterations and the CPU time for the ME data experiments.

Λ Indices 1GHIRE (1.14) p = 1 (1.14) p = 2 (2.6) 2GHIRE

Thin
# of Iter 90 107 85 107 75

CPU Time 3038.80 3619.58 3105.35 4635.73 3286.33

Thick
# of Iter 90 105 85 105 75

CPU Time 3038.80 4042.78 3173.09 4440.30 3204.26

(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE

Fig. 3.21. Images comparing QSM reconstruction methods for the ME data experiments with thick Λ.

The first row describes the sagittal slice images and the second row depicts the axial slice images.

(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE

Fig. 3.22. Images of v for the ME data experiments with thick Λ. The first row describes the sagittal

slice images and the second row depicts the axial slice images.

4. Conclusions and Future Directions

In this paper, we proposed a new harmonic incompatibility removal model for the suscep-

tibility imaging. The proposed 2GHIRE model is inspired by the balanced approach in the

wavelet frame image restoration which provides a flexibility in the sparse representation and

the regularity of an image. More precisely, since the discrete grid and the discrete data are

available only, the basis mismatch arising from solving (1.6) numerically is inevitable. However,

by promoting a flexibility between the Lv and w which satisfies (2.2) and (2.3), we can achieve

the better artifact suppression in the reconstructed susceptibility image as well as the robust-

ness to the estimation of supp(Lv). Finally, the experimental results show that the proposed

approach (2.4) outperforms the previous 1GHIRE model (1.13) in [21] as well as its variants in

both brain phantom and in vivo MR data.

For the future work, we will consider taking the anisotropic susceptibility (i.e. 3×3 symmet-

ric susceptibility tensor) in the white matter into account for the better coincidence with the

real cases. Since such an anisotropic susceptibility already destroys the forward model of QSM,

it is necessary to consider the anisotropy correction to overcome the bottleneck in restoration

performance. It would be also interesting to apply the idea of harmonic incompatibility re-
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moval into the susceptibility tensor imaging [44], which aims to reconstruct a 3× 3 symmetric

susceptibility tensor image.
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