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Abstract

A second order accurate method in the infinity norm is proposed for general three

dimensional anisotropic elliptic interface problems in which the solution and its derivatives,

the coefficients, and source terms all can have finite jumps across one or several arbitrary

smooth interfaces. The method is based on the 2D finite element-finite difference (FE-

FD) method but with substantial differences in method derivation, implementation, and

convergence analysis. One of challenges is to derive 3D interface relations since there

is no invariance anymore under coordinate system transforms for the partial differential

equations and the jump conditions. A finite element discretization whose coefficient matrix

is a symmetric semi-positive definite is used away from the interface; and the maximum

preserving finite difference discretization whose coefficient matrix part is an M-matrix is

constructed at irregular elements where the interface cuts through. We aim to get a sharp

interface method that can have second order accuracy in the point-wise norm. We show the

convergence analysis by splitting errors into several parts. Nontrivial numerical examples

are presented to confirm the convergence analysis.
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1. Introduction

In this paper, we develop a finite element-finite difference method for three dimensional

(3D) anisotropic elliptic partial differential equations (PDEs) involving finite number of non-

overlapping interfaces across which the coefficients of the PDE may be discontinuous, and the

source term may be discontinuous and even can have a singular source term corresponding to

a jump in the flux or the solution. The problem is described as follows,

−∇ ·
(
A(x)∇u(x)

)
+ σ(x)u(x) = f(x), x = (x, y, z) ∈ Ω \ Γ, Ω = Ω+ ∪ Ω−,

u(x) = u0(x), x = (x, y, z) ∈ ∂Ω,

(1.1)
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where the coefficient matrix A(x) ∈ C1(Ω \ Γ) is a 3 × 3 symmetric positive definite (SPD)

matrix,

A(x) =




A11(x) A12(x) A13(x)

A12(x) A22(x) A23(x)

A13(x) A23(x) A33(x)


 , x ∈ Ω. (1.2)

We define the A+ and A− as the restrictions of A on Ω+ and Ω−, respectively,

A =





A+(x), if x ∈ Ω+,

A−(x), if x ∈ Ω−,
(1.3)

where A±(x) ∈ C1(Ω±). Since we use both finite element and finite difference discretization,

we assume that σ(x) ≥ 0; f(x) ∈ C (Ω \ Γ), and the interface Γ is C2 within the domain Ω, see

Fig. 1.1 for an illustration. We allow both of the solution and the flux to be discontinuous,

[u](X) = w(X), [A∇u · n](X) = Q(X), X = (X,Y, Z) ∈ Γ, (1.4)

where n(X) is the unit normal direction at a point X on the interface pointing to the Ω+ side.

For the regularity requirement, we assume that w ∈ C2(Γ), and Q ∈ C1(Γ). The above two

jump conditions along the boundary condition make the problem well-posed. The jumps on the

interface, such as [u](X) and [A∇u · n](X), are defined as the differences of the limiting values

from different sides of the interface; for example,

[
u
]
(X) = lim

x→X,x∈Ω+
u(x)− lim

x→X,x∈Ω−
u(x) = u+ − u−.

Fig. 1.1. A diagram of the anisotropic interface problem: a rectangular domain with a closed smooth

interface (surface).

The existence and uniqueness of the solution is well-known based on the Lax-Milgram lem-

ma, see for example [1]. The Galerkin finite element method can be applied to solve the problem

numerically if a body-fitted 3D mesh (unstructured) can be generated, which is non-trivial and

maybe time consuming. However, sometimes Cartesian methods are preferred for number of
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reasons. In a Cartesian mesh method, we do not need to generate the mesh. The resulting

linear system of equations can be solved by structured fast solvers; A Cartesian mesh method is

often easier to be combined with other existing packages. Challenges with Cartesian methods

include how to get accurate discretization near or on the interface and carry out the convergence

analysis. There are limited Cartesian methods for anisotropic interface problems, mostly based

on Galerkin finite element method, for example, the immersed finite element method (IFEM)

in [2] or Petrov Galerkin method in [3–5], even fewer for 3D problems except for the Petrov

Galerkin method in [5] and recent IFEM [6]. Note that the IFEM methods can be second order

accurate in L2 norm for 2D and 3D problems only if the discontinuous Galerkin (DG) correction

terms are added along the edges of interface triangles/tetrohedrons. As far as we know, there

is no proof of the convergence in the L∞ norm for IFE or Petrov Galerkin methods. There is

almost no finite difference methods for anisotropic interface problems except for the first order

maximum principle preserving scheme for elliptic anisotropic PDEs on irregular domains [7],

and our recent finite element-finite difference (FE-FD) method [8] for 2D elliptic anisotropic

interface problems.

Our new FE-FD method proposed in this paper has some important features: it is a sharp

interface method because the interface conditions are enforced and pointwise second order

accuracy except by a factor | log h|4/3 can be proved. Our method also avoids complicated

volume integrals for interface tetrahedrons. While the main ideas for 2D and 3D problems are

similar, the theoretic derivation of the jump conditions, methods design and implementation

are much challenging in 3D. In 2D, the interfaces are curves and there is a unique tangential

direction at a point on an interface. In 3D, the interfaces are surfaces and there are two arbitrary

tangent directions. There are many more terms in the interface relations in 3D compared with

that in 2D.

The rest of the paper is organized as follows. In Section 2, we describe the finite element

method based on a uniform tetrahedralization for regular anisotropic elliptic PDEs in 3D.

In Section 3, we derive new interface relations of the 3D anisotropic elliptic interface PDEs.

After those preparations, we construct the maximum principle preserving discretization at

irregular grid points and present the convergence analysis. Several numerical experiments will

be provided in Section 4. We conclude in the last section.

2. Finite Element Discretization for 3D Anisotropic Elliptic Problems

In this section, we use a standard finite element method to derive the discrete linear system

of equations at elements away from the interface. Since a uniform mesh is used, the finite

element discretization is equivalent to a finite difference discretization. We use the theory of

finite element methods for the convergence proof.

We assume that the domain Ω is a cube Ω = [a1, b1] × [a2, b2] × [a3, b3]. For simplicity of

discussion, we use a uniform Cartesian grid





xi = a1 + ih, i = 0, 1, · · · , L,

yj = a2 + jh, j = 0, 1, · · · ,M,

zk = a3 + kh, k = 0, 1, · · · , N,

(2.1)

where h = (b1 − a1)/l = (b2 − a2)/m = (b3 − a3)/n. We divide every cubic cell region

[xi−1, xi]×[yj−1, yj ]×[zk−1, zk] into six tetrahedral elements to have a uniform tetrahedralization
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T h, see Fig. 2.1 as an illustration. The interface Γ is represent by a zero level set of a Lipschitz

Fig. 2.1. A diagram of a cubic mesh and the uniform tetrahedralization.

continuous function ϕ(x) = ϕ(x, y, z), often the signed distance function,

Γ = {(x, y, z)| ϕ(x, y, z) = 0, (x, y, z) ∈ Ω} . (2.2)

At a grid point (xi, yj , zk), we define

ϕmax
ijk = max{ϕi−1,j,k, ϕijk, ϕi+1,j,k, ϕi,j−1,k, ϕi,j+1,k, ϕi,j,k−1, ϕi,j,k+1,

ϕi−1,j−1,k, ϕi+1,j+1,k, ϕi−1,j,k−1, ϕi+1,j,k+1, ϕi,j−1,k−1, ϕi,j+1,k+1,

ϕi−1,j−1,k−1, ϕi+1,j+1,k+1},

(2.3)

ϕmin
ijk = min{ϕi−1,j,k, ϕijk, ϕi+1,j,k, ϕi,j−1,k, ϕi,j+1,k, ϕi,j,k−1, ϕi,j,k+1,

ϕi−1,j−1,k, ϕi+1,j+1,k, ϕi−1,j,k−1, ϕi+1,j,k+1, ϕi,j−1,k−1, ϕi,j+1,k+1,

ϕi−1,j−1,k−1, ϕi+1,j+1,k+1},

(2.4)

where ϕijk = ϕ(xi, yj , zk). A grid point (xi, yj, zk) is called regular if ϕmax
ijk ϕ

min
ijk > 0, otherwise

it is irregular. In this section, we discuss the finite element discretization at regular grid points.

From [9], we know that there exists a piecewise smooth function ŵ : Ω → R that satisfies

[ŵ](X) = w(X), X ∈ Γ, ŵ(x) = u0(x), x ∈ ∂Ω.

Note that such a ŵ is not needed in our algorithm but useful to get the weak form. The original

interface problem can be re-formulated as: find u(x) = q(x) + ŵ(x) with q(x) ∈ H1
0 (Ω) such

that

a(q, v) =

∫

Ω

fvdxdydz −

∫

Ω

Qvds−

∫

Ω

A∇ŵ · ∇vdxdydz, v ∈ H1
0 (Ω), (2.5)

where

a(q, v) =

∫

Ω

(
A∇q · ∇v + σqv

)
dxdydz

=

∫

Ω

(
A11qxvx +A22qyvy +A33qzvz +A12(qxvy + qyvx)

+A13(qxvz + qzvx) +A23(qyvz + qzvy) + σqv
)
dxdydz.
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For convenience, we also define

H1(Ω±) = {v(x) ∈ L2(Ω)
∣∣ v(x)|x∈Ω+ ∈ H1(Ω+); v(x)|x∈Ω− ∈ H1(Ω−)}.

Let Vh be the standard P1 conforming linear finite element space associated with the tetrahedral

mesh. On regular nodal points at which the surrounding tetrahedrons are all on the same side

of the interface, the contribution to the resulting linear system of equations is the same as the

original weak form, that is, treating the last two terms in (2.5) as zero to have

a(uh, vh) =

∫

Ω

fvhdxdydz, vh ∈ Vh,0, vh ∈ H1(Ω±), vh ∩ Γ = ∅. (2.6)

Let {ψk(x, y, z)}
Ndof

k=1 be a set of basis functions for Vh, a finite element approximation to the

anisotropic problem is

uh =

Ndof∑

k=1

αkψk(x, y, z). (2.7)

The linear system of equations are

Ndof∑

j=1

a(ψi, ψj)αj =

∫

Ω

fψidxdydz, i = 1, 2, · · · , Ndof , (2.8)

which can be written as a matrix-vector form

KhU = F, U = (α1, α2, · · · , αNdof
)T , (2.9)

where the components of stiffness matrix Kh is

Kij =

∫

Ω

(A∇ψi∇ψj + σψiψj) dxdydz =
∑

e

∫

e

(A∇ψi∇ψj + σψiψj) dxdydz, (2.10)

and the components of load vector is

Fi =

∫

Ω

fψidxdydz =
∑

e

∫

e

fψidxdydz. (2.11)

The discrete linear system of equations (2.9) can be regarded as a linear system of equations

of a finite difference equations if the usual P1 finite element basis functions are used since we

have αm = Um that is a finite difference approximation to exact solution u(xi, yj , zk) at a grid

point xm = (xi, yj , zk). If the coefficient matrix A is a constant matrix and σ is a constant, we

can get the discrete matrix Kh exactly. For a variable coefficient matrix A(x), we use a linear

interpolation from the values at the vertices to approximate A(x),

A(x) ≈

Ndof∑

k

A(xk)ψk(x), (2.12)

with an O(h2) error. We also approximate the entries of the mass matrix at xm = (xi, yj , zk)

by
∫

Ω

σ(x)ψm(x)ψn(x)dx ≈ δmnσ(xm)h3 = δmnσijkh
3, (2.13)
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with the contribution from a local element e as,

∫

e

σ(x)ψe
m(x)ψe

n(x)dx ≈
V e

4

4∑

l=1

σ(xe
l )ψ

e
m(xe

l )ψ
e
n(x

e
l ) =

V e

4
δmnσijk , (2.14)

where σijk = σ(xi, yj , zk). Similarly, we approximate the load vector at xm = (xi, yj, zk) as

∫

Ω

f(x)ψm(x)dx ≈ fijkh
3, (2.15)

with the contribution from a local element e as

∫

e

f(x)ψe
m(x)dx ≈

V e

4

4∑

l=1

f(xe
l )ψ

e
m(xe

l ) =
V e

4
fijk, (2.16)

where fijk = f(xi, yj, zk). Note that the error in approximating the weak form ((2.13)-(2.16))

has the same order as that of the classical P1 finite element method for second order elliptic

PDES, that is, O(h2) in L2 norm globally (O(h4) on each element), see for example, [10,11] for

more details. This is in line with the piecewise linear approximation to the solution. We use

the piecewise linear approximation to approximate f(x), A(x) and σ(x).

If the coefficient matrixA(x, y, z) is a constant matrix, by some derivations and calculations,

the resulting linear equation at a node (xi, yj, zk) can be written as

6A11 + 6A22 + 6A33 − 4A12 − 4A13 − 4A23

3h2
Uijk + σUijk

−
A12 +A13 +A23

3h2

(
Ui−1,j−1,k−1 + Ui+1,j+1,k+1

)

+
−3A11 + 2A12 + 2A13 − A23

3h2

(
Ui−1,j,k + Ui+1,j,k

)

+
−3A22 + 2A12 −A13 + 2A23

3h2

(
Ui,j−1,k + Ui,j+1,k

)

+
−3A33 −A12 + 2A13 + 2A23

3h2

(
Ui,j,k−1 + Ui,j,k+1

)

+
−2A12 +A13 +A23

3h2

(
Ui−1,j−1,k + Ui+1,j+1,k

)

+
A12 − 2A13 +A23

3h2

(
Ui−1,j,k−1 + Ui+1,j,k+1

)

+
A12 +A13 − 2A23

3h2

(
Ui,j−1,k−1 + Ui,j+1,k+1

)
= fijk.

(2.17)

The resulted finite difference discretization has a fifteen-point stencil and the resulting coefficient

matrix is a symmetric positive definite. We have shown that the local truncation errors of the

finite difference discretization (2.17) at a grid point (xi, yj , zk) is bounded by (so it is consistent)

|Tijk| ≤ C max
|α|≤4

|Dαu|h2, (2.18)

where Dαu is a multi-index of partial derivatives defined as

Dαu(x) =
∂|α|u(x)

∂xα1∂yα2∂zα3
, |α| = α1 + α2 + α3, αi ≥ 0, i = 1, 2, 3. (2.19)
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From the classical finite element method convergence analysis and Nitch’s trick, see [12–14], we

also know that the finite difference scheme (2.17) (also a finite element method) is second order

accurate in the infinity norm for non-interface problems with the following error estimate,

max
ijk

∣∣∣u(xi, yj , zk)− Uijk

∣∣∣ ≤ C| log h|4/3h2, (2.20)

where Uijk is the approximate solution to u(xi, yj, zk) obtained by the scheme (2.17) at a grid

point xm = (xi, yj , zk).

The estimate (2.20) was proved in [12] for three-dimensional elliptic problems. Note that

for non-interface anisotropic problems with a constant matrix A, we can apply a scaling and

rotating transformation to transform the original problem to a scalar elliptic PDE. The transfor-

mation matrix is a constant matrix and invertible, thus the estimate is valid for 3D anisotropic

elliptic problems with a different error constant.

3. The Maximum Principle Preserving Discretization

at Irregular Grid Points

In this section, we will develop the maximum principle preserving finite difference discretiza-

tion for 3D anisotropic elliptic interface problems at irregular grid points. Because of the tensor

coefficients matrix and the mixed derivatives, uxy, uxz, and uyz, involved in PDE, the interface

relations derived in [15] for 3D isotropic elliptic interface problem are not valid for anisotropic

interface problems. We begin with derivation of new interface relations on the interface.

3.1. Interface relations for 3D anisotropic elliptic interface problems

It is more natural sometimes to use the local coordinates in the normal and tangential

directions. We establish a local coordinate system at a point (X∗, Y ∗, Z∗) on the interface Γ

using the normal direction ξ and two orthogonal directions tangential to Γ, η and τ . The local

coordinate system is defined as follows





ξ = (x−X∗)αxξ + (y − Y ∗)αyξ + (z − Z∗)αzξ,

η = (x−X∗)αxη + (y − Y ∗)αyη + (z − Z∗)αzη,

τ = (x−X∗)αxτ + (y − Y ∗)αyτ + (z − Z∗)αzτ ,

(3.1)

where αxξ is the directional cosine between x-axis and ξ, others being defined similarly. The

above local coordinate system can also be written in a matrix-vector form given below




ξ

η

τ


 = D




x−X∗

y − Y ∗

z − Z∗


 , (3.2)

where

D = (dij)3×3 =




αxξ αyξ αzξ

αxη αyη αzη

αxτ αyτ αzτ


 .
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At a neighborhood of the point (X∗, Y ∗, Z∗), the interface can be expressed as

ξ = χ(η, τ), with χ(0, 0) = 0, χη(0, 0) = 0, χτ (0, 0) = 0. (3.3)

By some simple calculations, we can easily verify that DTD = DDT = I and for any

differentiable function p(x, y, z) we have




pξ
pη
pτ


 = D




px
py
pz


 , (3.4)

and 


pξξ pξη pξτ

pηξ pηη pητ

pτξ pτη pττ


 = D




pxx pxy pxz

pyx pyy pyz

pzx pzy pzz


DT , (3.5)

where DT is the transpose of D, I is the identity matrix, and p(ξ, η, τ) = p(x, y, z). For

simplicity of the presentation, we still use p(ξ, η, τ) to represent the p(ξ, η, τ) below. From

(3.5), we have



uxx uxy uxz

uyx uyy uyz

uzx uzy uzz


 = DT




uξξ uξη uξτ

uηξ uηη uητ

uτξ uτη uττ


D. (3.6)

Let




r1 = (αxξ, αyξ, αzξ),

r2 = (αxη, αyη, αzη),

r3 = (αxτ , αyτ , αzτ ),

and define the following new coefficients

aij = riArTj , i, j = 1, 2, 3. (3.7)

If the coefficient matrix A is a piecewise constant matrix, then we can rewrite the PDE (1.1)

using the local coordinates as

− (a11uξξ + a22uηη + a33uττ + 2a12uξη + 2a13uξτ + 2a23uητ ) + σu = f. (3.8)

Under the local coordinate system, we have the following theorem of interface relations for the

anisotropic interface problem.

Theorem 3.1. If u(x, y, z) ∈ C2(Ω±), f(x, y, z) ∈ C(Ω±), Γ ∈ C2, w ∈ C2, Q ∈ C1, the

coefficients A is a piecewise constant matrix, and σ is a piecewise constant, then we have the

following ten interface relations under the local coordinate system:
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u+ = u− + w, u+
η = u−

η +wη, u+
τ = u−

τ + wτ ,

u+
ξ =

a−
11

a+
11

u−
ξ −

[a12]

a+
11

u−
η −

[a13]

a+
11

u−
τ −

a+
12

a+
11

wη −
a+
13

a+
11

wτ +
Q

a+
11

,

u+
ηη = χηη

[a11]

a+
11

u−
ξ + χηη

[a12]

a+
11

u−
η + χηη

[a13]

a+
11

u−
τ + u−

ηη + χηη
a+
12

a+
11

wη + χηη
a+
13

a+
11

wτ − χηη
Q

a+
11

+wηη,

u+
ττ = χττ

[a11]

a+
11

u−
ξ + χττ

[a12]

a+
11

u−
η + χττ

[a13]

a+
11

u−
τ + u−

ττ + χττ
a+
12

a+
11

wη + χττ
a+
13

a+
11

wτ − χττ
Q

a+
11

+ wττ ,

u+
ητ = χητ

[a11]

a+
11

u−
ξ + χητ

[a12]

a+
11

u−
η + χητ

[a13]

a+
11

u−
τ + u−

ητ + χητ
a+
12

a+
11

wη + χητ
a+
13

a+
11

wτ − χητ
Q

a+
11

+ wητ ,

u+
ξη = Sm1u

−
ξ + Sm3u

−
η + Sm5u

−
τ +

a−
11

a+
11

u−
ξη −

[a12]

a+
11

u−
ηη −

[a13]

a+
11

u−
ητ + Sn1wξ + Sn3wη + Sn5Q

−
a+
12

a+
11

wηη −
a+
13

a+
11

wητ +
Qη

a+
11

,

u+
ξτ = Sm2u

−
ξ + Sm4u

−
η + Sm6u

−
τ +

a−
11

a+
11

u−
ξτ −

[a12]

a+
11

u−
ητ −

[a13]

a+
11

u−
ττ + Sn2wξ + Sn4wη + Sn6Q

−
a+
12

a+
11

wητ −
a+
13

a+
11

wττ +
Qτ

a+
11

,

u+
ξξ = C1,1u

−
ξ + C1,2u

−
η + C1,3u

−
τ +

a−
11

a+
11

u−
ξξ +

2a+
12[a12]− a+

11[a22]

(a+
11)

2
u−
ηη +

2a+
13[a13]− a+

11[a33]

(a+
11)

2
u−
ττ

+
2
(

a+
11a

−
12 − a−

11a
+
12

)

(a+
11)

2
u−
ξη +

2
(

a+
11a

−
13 − a−

11a
+
13

)

(a+
11)

2
u−
ξτ +

2
(

a+
12[a13] + a+

13[a12]− a+
11[a23]

)

(a+
11)

2
u−
ητ

+C1,4wη + C1,5wτ +
2(a+

12)
2 − a+

11a
+
22

(a+
11)

2
wηη +

2(a+
13)

2 − a+
11a

+
33

(a+
11)

2
wττ +

2(a+
12a

+
13 − a+

11a
+
23)

(a+
11)

2
wητ

+C1,6Q−
2a+

12

(a+
11)

2
Qη −

2a+
13

(a+
11)

2
Qτ +

σ+

a+
11

w +
[σ]

a+
11

u− −
[f ]

a+
11

,

where the unspecified coefficients can be found in the Appendix.

Proof. We obtain the first interface relation directly from [u] = w. Differentiating [u] = w

with respect to η and τ , respectively, we get

[uξ]χη + [uη] = wη, (3.9)

[uξ]χτ + [uτ ] = wτ . (3.10)

Using χη(0, 0) = χτ (0, 0) = 0, we have the second and third relations. Differentiating (3.9)

with respect to η and τ , respectively, yields

χη
∂

∂η
[uξ] + χηη[uξ] + χη[uηξ] + [uηη] = wηη, (3.11)

χη
∂

∂τ
[uξ] + χητ [uξ] + χτ [uηξ] + [uητ ] = wητ . (3.12)

From these two jump conditions, we get the fifth and seventh interface relations. Differentiating

(3.10) with respect to τ , we obtain the sixth identity below

χτ
∂

∂τ
[uξ] + χττ [uξ] + χτ [uτξ] + [uττ ] = wττ . (3.13)
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Let ϕ(x, y, y) = 0 be a level set representation of the interface Γ, then the normal direction

at a point (X∗, Y ∗, Z∗) ∈ Γ is

n =
∇ϕ

|∇ϕ|

∣∣∣∣
(X∗,Y ∗,Z∗)

. (3.14)

According to (3.4), we have





∇ϕ = (ϕx, ϕy , ϕz)
T = DT (ϕξ, ϕη, ϕτ )

T ,

(∇ϕ)T∇ϕ = (ϕξ, ϕη, ϕτ )DD
T (ϕξ, ϕη, ϕτ )

T = ϕ2
ξ + ϕ2

η + ϕ2
τ ,

n =
DT (ϕξ, ϕη, ϕτ )

T

√
ϕ2
ξ + ϕ2

η + ϕ2
τ

.

(3.15)

Using the equation (3.3) of the interface on the local coordinate system, we have

(ϕξ, ϕη, ϕτ )
T

√
ϕ2
ξ + ϕ2

η + ϕ2
τ

=
(1,−χη, χτ )

T

√
1 + χ2

η + χ2
τ

, n =
DT (1,−χη,−χτ )

T

√
1 + χ2

η + χ2
τ

. (3.16)

Hence, we derive that

A∇u · n =nTA∇u =
1√

1 + χ2
η + χ2

τ

(1,−χη,−χτ )DADT (uξ, uη, uτ )
T

=
1√

1 + χ2
η + χ2

τ

(1,−χη,−χτ )(r1, r2, r3)
TA(rT1 , r

T
2 , r

T
3 )(uξ, uη, uτ)

T

=
1√

1 + χ2
η + χ2

τ

(1,−χη,−χτ )




r1ArT1 r1ArT2 r1ArT3
r2ArT1 r2ArT2 r2ArT3
r3ArT1 r3ArT2 r3ArT3







uξ
uη
uτ




=
1√

1 + χ2
η + χ2

τ

(1,−χη,−χτ )




a11 a12 a13
a12 a22 a23
a13 a23 a33







uξ
uη
uτ




=
1√

1 + χ2
η + χ2

τ

{
(a11 − χηa12 − χτa13)uξ + (a12 − χηa22 − χτa23)uη

+(a13 − χηa23 − χτa33)uτ

}
.

(3.17)

From this formula, the flux jump condition [A∇u · n] = Q can be written as

[(a11 − χηa12 − χτa13)uξ] + [(a12 − χηa22 − χτa23)uη]

+ [(a13 − χηa23 − χτa33)uτ ] =
√
1 + χ2

η + χ2
τ Q,

(3.18)

which leads to the fourth interface relation. Differentiating the flux jump condition (3.18) with

respect to η and τ , respectively leads to

[a11uξη] + [a12uηη] + [a13uητ ]

− [χηηa12 + χητa13)uξ]− [χηηa22 + χητa23)uη]− [χηηa23 + χητa33)uτ ] = Qη,
(3.19)
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and

[a11uξτ ] + [a12uητ ] + [a13uττ ]

− [χητa12 + χττa13)uξ]− [χητa22 + χττa23)uη]− [χητa23 + χττa33)uτ ] = Qτ .
(3.20)

The eighth and ninth interface relations are results from these two equations. The last interface

relation is derived from the PDE using

−([a11uξξ] + [a22uηη] + [a33uττ ] + 2[a12uξη] + 2[a13uξτ ] + 2[a23uητ ]) + [σu] = [f ], (3.21)

and using the already derived interface conditions and some tedious manipulations. �

Remark 3.1. If the coefficient matrix A(x) and σ(x) are piecewise variable functions, that is,

A±(x) and σ±(x), are function of x but may have finite jumps at the interface, then the last

three identities need to be revised in Theorem 3.1, see Appendix.

3.2. The maximum principle preserving discretization of the PDE at irregular grid

points

For an irregular grid point (xi, yj, zk), we want to construct a discrete maximum principle

preserving finite difference equation with the following form

Ns∑

m=1

γijk,mUi+im,j+jm ,k+km
+ σijkUijk = fijk + Cijk , (3.22)

where im, jm, km take values in the set {−1, 0, 1}. Ns is the number of grid points involved in

the discretization, and we often choose Ns = 27 in 3D cases; Cijk is a correction term depending

on the jump conditions of the solution and the flux. The idea and procedure are similar to the

maximum principle preserving scheme [15, 16] for isotropic elliptic interface problems and the

FE-FD method [8] for 2D anisotropic elliptic interface problems while the interface relations

and the implementation are more challenging.

The local truncation error of the scheme at a grid point (xi, yj , zk) is

Tijk =

Ns∑

m=1

γijk,mu(xi+im , yj+jm , zk+km
) + σijku(xi, yj , zk)− f(xi, yj , zk)− Cijk. (3.23)

We describe the process to determine the coefficients of the difference equation (3.22) below.

Without of loss of generality, let (xi, yj, zk) ∈ Ω−. We first choose a point (X∗
i , Y

∗
j , Z

∗
k) on

the interface Γ near the grid point (xi, yj, zk), say the orthogonal projection of (xi, yj, zk) on

the interface. Then we expand each u(xi+im , yj+jm , zk+km
) at (X∗

i , Y
∗
j , Z

∗
k) under the local

coordinate system,

u(xi+im , yj+jm , zk+km
)

=u(ξm, ηm, τm) = u± + ξmu
±
ξ + ηmu

±
η + τmu

±
τ +

1

2
ξ2mu

±
ξξ +

1

2
η2mu

±
ηη

+
1

2
τ2mu

±
ττ + ξmηmu

±
ξη + ξmτmu

±
ξτ + ηmτmu

±
ητ +O(h3), (3.24)
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where the ‘+’ or ‘−’ sign depends on which side the grid point (ξm, ηm, τm) lies on the interface Γ.

With the expansions of all u(xi+im , yj+jm , zk+km
), along with

fij = f− +O(h), σij = σ− +O(h), (3.25)

the local truncation error Tijk can be expressed as a linear combination of the values u±, u±ξ ,

u±η , u
±
τ , u

±
ξξ, u

±
ηη, u

±
ττ , u

±
ξη, u

±
ξτ , u

±
ητ as the following:

Tijk =b1u
− + b2u

+ + b3u
−
ξ + b4u

+
ξ + b5u

−
η + b6u

+
η + b7u

−
τ + b8u

+
τ

+ b9u
−
ξξ + b10u

+
ξξ + b11u

−
ηη + b12u

+
ηη + b13u

−
ττ + b14u

+
ττ

+ b15u
−
ξη + b16u

+
ξη + b17u

−
ξτ + b18u

+
ξτ + b19u

−
ητ + b20u

+
ητ

+ σ−u− − f− − Cijk +O(h). (3.26)

Define two index sets K+ and K− by

K± =
{
m : (ξm, ηm, τm) ∈ Ω±

}
,

then bj ’s are given by

b1 =
∑

m∈K−

γijk,m, b2 =
∑

m∈K+

γijk,m, b3 =
∑

m∈K−

ξmγijk,m,

b4 =
∑

m∈K+

ξmγijk,m, b5 =
∑

m∈K−

ηmγijk,m, b6 =
∑

m∈K+

ηmγijk,m,

b7 =
∑

m∈K−

τmγijk,m, b8 =
∑

m∈K+

τmγijk,m, b9 =
1

2

∑

m∈K−

ξ2mγijk,m,

b10 =
1

2

∑

m∈K+

ξ2mγijk,m, b11 =
1

2

∑

m∈K−

η2
mγijk,m, b12 =

1

2

∑

m∈K+

η2
mγijk,m,

b13 =
1

2

∑

m∈K−

τ 2
mγijk,m, b14 =

1

2

∑

m∈K+

τ 2
mγijk,m, b15 =

∑

m∈K−

ξmηmγijk,m,

b16 =
∑

m∈K+

ξmηmγijk,m, b17 =
∑

m∈K−

ξmτmγijk,m, b18 =
∑

m∈K+

ξmτmγijk,m,

b19 =
∑

m∈K−

ηmτmγijk,m, b20 =
∑

m∈K+

ηmτmγijk,m.

(3.27)

Using ten interface relations defined in Theorem 3.1, we eliminate the quantities from the ‘+’

side by the quantities from the ‘−’ side, and collect terms to obtain

Tijk =B1u
− +B2u

−
ξ +B3u

−
η +B4u

−
τ +B5u

−
ξξ +B6u

−
ηη +B7u

−
ττ +B8u

−
ξη

+B9u
−
ξτ +B10u

−
ητ + σ−u− − f− +B11 − Cijk +O(h),

(3.28)
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where

B1 = b1 + b2 + b10
[σ]

a+11
,

B2 = b3 + b4
a−11
a+11

+ Sm7[a11] + b16Sm1 + b18Sm2 + b10C1,1,

B3 = b5 + b6 − b4
[a12]

a+11
+ Sm7[a12] + b16Sm3 + b18Sm4 + b10C1,2,

B4 = b7 + b8 − b4
[a13]

a+11
+ Sm7[a13] + b16Sm5 + b18Sm6 + b10C1,3,

B5 = b9 + b10
a−11
a+11

,

B6 = b11 + b12 − b16
[a12]

a+11
+ b10

2a+12[a12]− a+11[a22]

(a+11)
2

,

B7 = b13 + b14 − b18
[a13]

a+11
+ b10

2a+13[a13]− a+11[a33]

(a+11)
2

,

B8 = b15 + b16
a−11
a+11

+ b10
2
(
a+11a

−
12 − a−11a

+
12

)

(a+11)
2

,

B9 = b17 + b18
a−11
a+11

+ b10
2
(
a+11a

−
13 − a−11a

+
13

)
(
a+11

)2 ,

B10 = b19 + b20
a−11
a+11

− b16
[a13]

a+11
− b18

[a12]

a+11
+ b10

2
(
a+12[a13] + a+13[a12]− a+11[a23]

)
(
a+11

)2 ,

B11 =

(
b2 + b10

σ+

a+11

)
w +

{
b6 − b4

a+12
a+11

+ Sm7a
+
12 + b16Sn1 + b18Sn2 + b10C1,4

}
wη

+

{
b8 − b4

a+13
a+11

+ Sm7a
+
13 + b16Sn3 + b18Sn4 + b10C1,5

}
wτ

+

{
b12 − b16

a+12
a+11

+ b10
2(a+12)

2 − a+11a
+
22

(a+11)
2

}
wηη

+

{
b14 − b18

a+13
a+11

+ b10
2(a+13)

2 − a+11a
+
33

(a+11)
2

}
wττ

+

{
b20 − b16

a+13
a+11

− b18
a+12
a+11

+ b10
2(2a+12a

+
13 − a+11a

+
23)

(a+11)
2

}
wητ

+

{
b4

a+11
− Sm7 + b16Sn5 + b18Sn6 + b10C1,6

}
Q

+
1

(a+11)
2

{
b16a

+
11 − 2b10a

+
12

}
Qη +

1

(a+11)
2

{
b18a

+
11 − 2b10a

+
13

}
Qτ − b10

[f ]

a+11
.

The finite difference coefficients should be determined to have O(h) the local truncation error,

and to have an M-matrix structure for the convergence proof. So the coefficients γijk,m are

chosen such that the coefficients of u−, u−ξ , u
−
η , u

−
τ , u

−
ξξ, u

−
ηη, u

−
ττ , u

−
ξη, u

−
ξτ , u

−
ητ vanish in the local
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truncation error (3.28) and satisfy the sigh constraints. In other words, the finite difference

coefficients γijk,m should satisfy the following equality constraints

B1 = 0, B2 = 0, B3 = 0, B4 = 0, B5 = a11,

B6 = a22, B7 = a33, B8 = a12, B9 = a13, B10 = a23,
(3.29)

and inequality constraints

−
C

h2
≤ γijk,m ≤ 0 if (im, jm, km) 6= (0, 0, 0),

0 < γijk,m ≤
C

h2
if (im, jm, km) = (0, 0, 0),

(3.30)

where C is a positive constant, and Bj , j = 1, 2, · · · , 11 are defined in (3.28). Moreover, to ensure

the local truncation errors in (3.28) are bounded by O(h), we should choose the correction terms

as Cijk = B11.

This equality and inequality constraints are formulated as a quadratic optimization problem,

min
γ

{
1

2

∣∣|γ − g
∣∣|2
2

}
, (3.31)

such that the equality constraints (3.29) and the inequality constraints (3.30) are satisfied,

where g ∈ RNs and γ is a vector consisted by finite difference coefficients γijk,m. The vector g

in (3.31) is chosen in such a way that if the anisotropic coefficients A+ = A−, the coefficients

γijk,m’s are the same or close to the regular ones derived in section 2. For example, when A±

are two piecewise constant matrices, the vector g is chosen as

gm = −
6A±

11 + 6A±
22 + 6A±

33 − 4A±
12 − 4A±

13 − 4A±
23

3h2
if (im, jm, km) = (0, 0, 0),

gm =
A±

12 +A±
13 +A±

23

3h2
if (im, jm, km) ∈ {(−1,−1,−1), (1, 1, 1)},

gm = −
−3A±

11 + 2A±
12 + 2A±

13 −A23

3h2
if (im, jm, km) ∈ {(−1, 0, 0), (1, 0, 0)},

gm = −
−3A±

22 + 2A±
12 −A±

13 + 2A±
23

3h2
if (im, jm, km) ∈ {(0,−1, 0), (0, 1, 0)},

gm = −
−3A±

33 −A±
12 + 2A±

13 + 2A±
23

3h2
if (im, jm, km) ∈ {(0, 0,−1), (0, 0, 1)},

gm = −
−2A±

12 +A±
13 +A±

23

3h2
if (im, jm, km) ∈ {(−1,−1, 0), (1, 1, 0)},

gm = −
A±

12 − 2A±
13 +A±

23

3h2
if (im, jm, km) ∈ {(−1, 0,−1), (1, 0, 1)},

gm = −
A±

12 +A±
13 − 2A±

23

3h2
if (im, jm, km) ∈ {(0,−1,−1), (0, 1, 1)},

(3.32)

where the sign ‘±’ depends on which side of the interface the grid point (xi+im , yj+jm , zk+km
)

lied on.

From [15,16], we know that the optimization problem (3.31) has a solution if h is sufficiently

small, which is demonstrated numerically. We use the QL code developed by Schittkowski [17]

to solve the optimization problem. Once the γijk,m’s are determined, we get the correction term

Cijk = B11. If there is no feasible solution for optimization problem, we can add more grid
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points nearby until we get a feasible solution. Another way is to use a scaling (preconditioning)

strategy which works well, see Example 4.6 as an illustration.

Remark 3.2. If the coefficient matrix A is a piecewise variable matrix and σ is a piecewise

variable function, then B2, B3, B4 and B11 become,





B̃2 = B2 + b10
a+11c

−
1 − a−11c

+
1

(a+11)
2

,

B̃3 = B3 + b10
c+1 [a12]− a+11[c2]

(a+11)
2

,

B̃4 = B4 + b10
c+1 [a13]− a+11[c3]

(a+11)
2

,

B̃11 = B11 + b10
a+12c

+
1 − a+11c

+
2

(a+11)
2

wη + b10
a+13c

+
1 − a+11c

+
3

(a+11)
2

wτ −
c+1

(a+11)
2
Q.

(3.33)

3.3. The convergence analysis

We show that the proposed new method for 3D anisotropic elliptic interface problems is

second order convergent except for a factor of | log h|4/3| in the pointwise norm.

Theorem 3.2. Let u(x, y, z) ∈ C3(Ω±) be the solution of problems (1.1)–(1.4) with σ(x) = 0, a

Dirichlet boundary condition. Assume that ∂Ω is Lipschitz continuous, the interface is smooth

(ϕ(x, y, z) ∈ C2), A is a symmetric positive definite and piecewise constant matrix, and the

finite difference coefficients {γijk,m} at irregular grid points satisfy

∑

ξm≥0

γijk,mξm ≥
C2

h
, (3.34)

where C2 is a positive constant that corresponds to the source strength of the singular source

term, corresponding to the magnitude of the flux jump condition, that is, ‖Q‖∞,Γ. The flux

jump condition [Aun] = Q corresponds to a source distribution along the interface (single layer

as in Peskin’s Immersed Boundary Method) model. In the discretization, the right hand side

will have O(1/h) terms at nodal points near the interface. Thus, the condition is actually a

consistency requirement, see for example, [15] for more details. Then we have the following

error estimate for the computed solution Uijk of the proposed method,

max
ijk

|u(xi, yj , zk)− Uijk| ≤ C| log h|4/3h2, (3.35)

where the constant C depends on the underlined grid, interface, u, f , and A = {aij}, and the

space Ck(Ω±) are defined as

Ck(Ω±) = {v(x)
∣∣v(x)|x∈Ω+ ∈ Ck(Ω+), v(x)|x∈Ω− ∈ Ck(Ω−)}, k = 1, 2, 3, · · · .

We remark that the condition (3.34)is a consistency condition for the maximum principle

preserving scheme, which states that finite difference coefficients should be non-negative and

bounded by C/h2, at least one of them should be O(1/h2).
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Proof. The proof is similar to the process of 2D anisotropic elliptic interface problems in [8].

We divide the error into three parts and analyze them separately. Let the discrete matrix of

the FE-FD scheme be Kh, and the error vector of the computed solution be Eh, then we have

KhEh = Th = T+
h +TΓ

h +T−
h , (3.36)

where entries of T+
h are the local truncation errors of the new finite difference scheme at regular

grid points in Ω+, and are zeros at regular grid points in Ω−, and irregular grid points in the

neighborhood of Γ and so on.

We define K+
h as the finite difference (from FEM) operator on the entire domain with the

anisotropic coefficient matrix A+ defined on Ω+, that is extended to the entire domain since

A+ is a constant matrix. K−
h is defined in the same way. K+

h and K−
h are symmetric positive

definite matrices. Note also that since A is a piecewise constant matrix, the discrete matrix

K+
h and K−

h are exact. The error in approximating the load vector is of O(h2), which has the

same order as that of the local truncation errors. Finally, we define KΓ
h as an extension of the

maximum preserving finite difference scheme at irregular grid points to all grid points. Note

that KΓ
h is a second order finite difference operator at regular grid points and it is an M-matrix

if it would be applied to a non-interface problem. Note also that the extension is used for the

theoretical purpose but not for the computational practice since it would be computational

expensive.

If we define E+
h , E

−
h , and EΓ

h in the same way as their counter-parts by replacing T with E,

then

Eh = E+
h +EΓ

h +E−
h =

(
K+

h

)−1
T+

h +
(
KΓ

h

)−1
TΓ

h +
(
K−

h

)−1
T−

h . (3.37)

We show below that each term in the right hand side is bounded by O(h2) or O(| log h|4/3h2).

The first term corresponds to the error estimate of the following problem

−∇ ·
(
A+(x)∇q(x)

)
=

{
T+
f (x) if x ∈ Ω+,

0 otherwise,
q
∣∣∣
∂Ω

= 0,

where

T+
f (x) =

∑

xm∈Ω+

Tm ψm(x), and thus, ‖T+
f ‖L∞ ≤ Ch2,

and Tm is the local truncation error at a regular nodal point xm in (2.18). Note that this

is an anisotropic elliptic problem with smooth coefficients but a L2 source term with a finite

discontinuity.

We show that q ∈ W 2,∞(Ω) below. As a matter of fact, q(x) is piecewise smooth, see for

example [18], in particular,

q(x)|Ω± ∈ C2(Ω̄±).

Define p(x) by

p(x)|Ω± = (q(x)|Ω±)xx .
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Then p(x) ∈ L∞(Ω). It can be shown as following that p(x) is the weak second derivative of

q(x) with respect to x. For any ϕ ∈ C∞
0 (Ω),

∫

Ω

pϕ dx =
2∑

i=1

∫

Ωi

qxxϕdx = −
2∑

i=1

(∫

Ωi

qxϕx dx−

∫

∂Ωi

qxϕnx ds

)

= −
2∑

i=1

(
−

∫

Ωi

qϕxx dx+

∫

∂Ωi

qϕxnxds−

∫

∂Ωi

qxϕnx ds

)

=

∫

Ω

qϕxx dx+

∫

Γ

(
−[qϕxn

Γ
x ] + [qxϕn

Γ
x ]
)
ds =

∫

Ω

qϕxx dx,

where Ω1 = Ω+, Ω2 = Ω−, (nx, ny, nz) is the normal direction of ∂Ω, (nΓ
x , n

Γ
y , n

Γ
z ) is the normal

direction of Γ. We have used the fact that q(x) ∈ C1(Ω̄) in deriving the last identity. Therefore,

qxx = p ∈ L∞(Ω). Similarly, qyy, qzz, qxy, qxz, qyz ∈ L∞(Ω). As a consequence, q ∈ W 2,∞(Ω).

Note also that when σ(x) = 0 and A is a constant matrix, we can change the regular anisotropic

PDE to a Poisson equation without alter the regularity. Thus, the finite element discretization

using P1 element satisfies the following estimate from [13, 14],

‖E+
h ‖∞ ≤ C| log h|4/3‖q‖W 2,∞(Ω) ≤ Ch2| log h|4/3‖u‖W 2,∞(Ω).

We can get the same order estimate for ‖E−
h ‖∞.

Finally, we prove the error estimate for EΓ
h. The proof is similar to the maximum preserving

IIM [16] for the scaler case. Consider the solution to the following interface problem




−∇ · (A∇φ(x)) + σφ(x) = 1,

[φ] = 0, [A∇φ · n] = 1, φ∂Ω = 1.
(3.38)

From the results in [18], we know that the solution φ exists, and it is unique and piecewise

smooth. Therefore the solution is also bounded. Let

φ̄(x, y, z) = φ(x, y, z) +

∣∣∣∣ min
(x,y,z)∈Ω

φ(x, y, z)

∣∣∣∣ . (3.39)

Note that the second term in the right hand side is a constant. If (3.34) is true, then we know

that

BΓ
hφ̄(xi, yj , zk) ≥





1 +O(h2), if (xi, yj, zk) is a regular grid point,

∑

ξm≥0

γmξm ≥
C2

h
+O(1), if (xi, yj , zk) is an irregular grid point.

Note that the second inequality above is due to the jump in the flux in φ̄ at irregular grid

points; and BΓ
hφ̄(xi, yj , zk) can be large but it is nonnegative. At regular grid points we have

|Tijk|

BΓ
hφ̄(xi, yj , zk)

≤
C3h

2

1
,

where Tijk is the local truncation error if we would apply BΓ
h to the original PDE at a regular

grid point xm = (xi, yj , zk). At irregular grid points where (3.34) is satisfied, we have

|Tijk|

BΓ
hφ̄(xi, yj, zk)

≤
C4h

C2/h
,=

C4

C2
h2
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since the local truncation errors at irregular grid points are bounded by

|Tijk| ≤ C4h

for some constant C4. Thus, from Theorem 6.2 in [19], we also have ‖EΓ
h‖∞ ≤ Ch2. This

completes the proof. �

Remark 3.3. We believe that the convergence theorem is also true for variable coefficient

matrix A and non-zero σ(x) at least asymptotically. This is because at regular grid points, the

differences of the computed coefficient matrix Ah and the exact one using the P1 finite element

method is order of O(h2).

4. Numerical Experiments

In this section, we show several numerical experiments for the 3D anisotropic elliptic inter-

face problems with piecewise constant and variable anisotropic coefficients respectively. The

discrete linear system of equations is solved using SOR. The interface are some closed surface in

the solution domain and are expressed by a level set function. We present errors in the solution

denoted as ‖EN‖∞ in the infinity norm,

‖EN‖∞ = max
ijk

|u(xi, yj, zk)− Uijk|.

Table 4.1: A grid refinement analysis for Example 4.1 with two modest jumps in the coefficients.

N
max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 30 max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 1/20

‖EN‖∞ ‖EN‖∞

20 2.6821E-01 3.7643E+00

40 5.7095E-02 1.2981E+00

60 2.4670E-02 5.9125E-01

80 1.2182E-02 3.5124E-01

100 7.5081E-03 2.2920E-01

120 5.2703E-03 1.5735E-01

−4.5 −4 −3.5 −3 −2.5 −2
−6

−5

−4

−3

−2

−1

0

1

2

X = log(h)

Y
 =

 lo
g(

 E
N

 )

Y
1
=2.2058 X + 3.7599

Y
2
=1.7783 X + 5.4934

Fig. 4.1. Linear regression of Table 4.1. The average convergence orders are 2.2058 and 1.7783,

respectively.
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Table 4.2: A grid refinement analysis for Example 4.1 with two large jumps in the coefficients.

N
max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 4000 max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 30000

‖EN‖∞ ‖EN‖∞

20 2.5033E-01 2.4788E-01

40 4.9835E-02 4.9069E-02

60 2.0528E-02 2.0032E-02

80 9.6391E-03 9.3921E-03

100 5.8327E-03 5.6424E-03

120 4.0188E-03 3.8821E-03

The order of convergence is estimated using the linear regression from the datas log(EN ) and

log(hN ) with different N ′ s.

To simplify the expression, we rewrite the coefficient matrixA as (A11, A22, A33, A12, A13, A23).

For example, A− : A+ = (4, 5, 7, 0.1, 0.2, 0.3) : (40, 60, 80, 3, 6, 9) means

A− =




4 0.1 0.2

0.1 5 0.3

0.2 0.3 7


 , A+ =




40 3 6

3 60 9

6 9 80


 .

Example 4.1. In this example, the anisotropic coefficient A of differential equation is a piece-

wise constant matrix. The jumps [u] in the solution, the flux jump condition [Aun], [f ] in the

source term, and the Dirichlet boundary are determined according to the exact solution:

u(x, y, z) =





− 10
(
x2 + y2 + z2

)2
if x2 + y2 + z2 <

( π

6.28

)2

,

(
x2 + y2 + z2

)2
if x2 + y2 + z2 ≥

( π

6.28

)2

.

(4.1)

The interface is a sphere x2+y2+z2 =
(

π
6.28

)2
within the computation domain −1 ≤ x, y, z ≤ 1.

In Tables 4.1-4.2, we show grid refinement results to get actual errors in the strongest norm

and average convergence order with a modest jump and a large jump in the coefficients A and σ

respectively, along with a convergence plot using a line fitting. In Table 4.1, the second column

lists the errors when A− : A+ = (4, 5, 7, 0.1, 0.2, 0.3) : (40, 60, 80, 3, 6, 9), σ− : σ+ = 1 : 10, while

the third column shows the errors when A− : A+ = (60, 40, 50, 10, 15, 20) : (3, 4, 5, 1, 1.5, 2),

σ− : σ+ = 10 : 1. In Table 4.2, the second column lists the errors when A− : A+ =

(0.1, 0.2, 0.3, 0.01, 0.02, 0.03) : (200, 600, 300, 40, 60, 90), σ− : σ+ = 0.1 : 100, while the third col-

umn show the errors when A− : A+ = (0.1, 0.2, 0.3, 0.01, 0.02, 0.03) : (3000, 4000, 5000, 200, 600, 900),

σ− : σ+ = 0.1 : 1000. Using the linear regression analysis, we can see a second order convergence

in the solution for all cases.

The linear regression analysis corresponding to Table 4.1 in Fig. 4.1 provided the convergence

order and error constants below:

‖ Uh − u ‖∞≈ 42.9458 h2.2058, ‖ Uh − u ‖∞≈ 243.0901 h1.7783.

The linear regression results corresponding to Table 4.2 in Fig. 4.2 provided the convergence

order and error constants below:

‖ Uh − u ‖∞≈ 52.7039 h2.3222, ‖ Uh − u ‖∞≈ 54.0428 h2.3366.
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−1.5
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Y
1
=2.3222 X + 3.9647

Y
2
=2.3366 X + 3.9898

X = log(h)

Y
 =

 lo
g(

 E
N

 )

Fig. 4.2. Linear regression of Table 4.2. The average convergence orders are 2.3222 and 2.3366,

respectively.

Table 4.3: A grid refinement analysis for Example 4.2 with two modest jumps in the coefficients.

N
max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 90 max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 1/20

‖EN‖∞ ‖EN‖∞

20 1.1902E-02 4.2480E-02

40 2.4935E-03 1.0033E-02

60 1.0046E-03 5.9599E-03

80 8.4603E-04 3.0099E-03

100 2.6913E-04 1.8888E-03

120 2.0980E-04 1.0829E-03

−4.5 −4 −3.5 −3 −2.5 −2
−9

−8

−7

−6

−5

−4

−3

Y
1
=2.2281 X + 0.7247

Y
2
=1.9753 X + 1.4160

X = log(h)

Y
 =

 lo
g(

 E
N

 )

Fig. 4.3. Linear regression of Table 4.3. The average convergence orders are 2.2281 and 1.9753,

respectively.

Example 4.2. In the second example, we also select the anisotropic coefficientA as a piecewise

constant matrix and σ is a piecewise constant, while the interface is a ellipsoid x2+4y2+2z2 = 1
4

within the computation domain −1 ≤ x, y, z ≤ 1. The jumps [u], [Aun], [f ], and the Dirichlet

boundary condition are determined from the exact solution:

u(x, y, z) =





x2 − y2 − z2 if x2 + 4y2 + 2z2 <
1

4
,

sin(x) cos(y) cos(z) if x2 + 4y2 + 2z2 ≥
1

4
.

(4.2)



902 B.Y. DONG, X.F. FENG AND Z.L. LI

Table 4.4: A grid refinement analysis for Example 4.2 with two large jumps in the coefficients.

N
max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 9000 max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 100000

‖EN‖∞ ‖EN‖∞

20 9.7614E-03 8.4578E-03

40 3.2877E-03 2.7341E-03

60 1.2099E-03 1.1676E-03

80 7.5818E-04 8.0835E-04

100 2.0947E-04 2.2079E-04

120 1.2624E-04 1.2555E-04

−4.5 −4 −3.5 −3 −2.5 −2
−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

Y
1
=2.4136 X + 1.2545

Y
2
=2.2891 X + 0.7894

X = log(h)

Y
 =

 lo
g(

 E
N

 )

Fig. 4.4. Linear regression of Table 4.4. The average convergence orders are 2.4136 and 2.2891,

respectively.

The grid refinement results presented in Tables 4.3-4.4 with a modest jump and a large jump in

the coefficients A and σ show a second order convergence in the solution. In Table 4.3, the sec-

ond column lists the errors when A− : A+ = (4, 5, 7, 0.1, 0.2, 0.3) : (80, 60, 70, 9, 6, 5), σ− : σ+ =

1 : 10, while the third column shows the errors when A− : A+ = (60, 40, 50,−10,−5,−2) :

(3, 4, 5,−1,−0.5,−0.2), σ− : σ+ = 10 : 1. In Table 4.4, the second column lists the errors

when A− : A+ = (4, 6, 5, 1, 0.5, 0.1) : (4000, 6000, 5000, 1000, 500, 900), σ− : σ+ = 1 : 5000,

while the third column shows the errors when A− : A+ = (0.1, 0.2, 0.3, 0.01, 0.02, 0.03) :

(4000, 6000, 5000, 1000, 500, 900), σ− : σ+ = 0.1 : 2000.

The linear regression results corresponding to Table 4.3 in Fig. 4.3 provided the convergence

order and error constants below:

‖ Uh − u ‖∞≈ 2.0640 h2.2281, ‖ Uh − u ‖∞≈ 4.1205 h1.9753.

The linear regression results corresponding to Table 4.4 in Fig. 4.4 provided the convergence

order and error constants below:

‖ Uh − u ‖∞≈ 3.5060 h2.4136, ‖ Uh − u ‖∞≈ 2.2020 h2.2891.

Example 4.3. In this example, we set the domain as a multi-connected domain with two

ellipsoid interfaces. The level set function of the interface is

ϕ(x, y, z) = S1(x, y, z)S2(x, y, z),
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Table 4.5: A grid refinement analysis for Example 4.3 with two modest jumps in the coefficients.

N
max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 30 max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 1/10

‖EN‖∞ ‖EN‖∞

52 4.6789E-02 1.5159E-01

62 3.3652E-02 7.3042E-02

72 2.6281E-02 5.1766E-02

82 1.8408E-02 3.6438E-02

92 1.7532E-02 1.8517E-02

102 1.3532E-02 1.5956E-02

−4 −3.8 −3.6 −3.4 −3.2
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Y
1
=1.8229 X + 2.8687

Y
2
=3.3565 X + 9.0166

X = log(h)

Y
 =

 lo
g(

 E
N

 )

Fig. 4.5. Linear regression of Table 4.5. The average convergence orders are 1.8229 and 3.3565,

respectively.

where
S1(x, y, z) = (x− 0.2)2 + 2(y − 0.2)2 + z2 − 0.01,

S2(x, y, z) = 2(x+ 0.2)2 + (y + 0.2)2 + z2 − 0.01.

The anisotropic coefficient A and σ are still piecewise constant. The jumps [u], [Aun], [f ] and

the Dirichlet boundary are determined from the following exact solution:

u(x, y, z) =

{
ex+2y+z if (x, y, z) ∈ Ω−,

sin(2πx) + sin(πy) + sin(4πz) if (x, y, z) ∈ Ω+.
(4.3)

We show a grid refinement results in Tables 4.5-4.6, and by a linear regression analysis we can

see a clean second order convergence for both a modest jump and a large jump in the coefficients

A and σ. In Table 4.5, the second column lists the errors when A− : A+ = (4, 5, 6, 1, 0.5, 0.3) :

(50, 60, 70, 10, 5, 9), σ− : σ+ = 1 : 10, while the third column shows the errors when A− :

A+ = (6, 4, 2,−0.1,−0.2,−0.3) : (2, 1, 0.2,−0.01,−0.02,−0.03), σ− : σ+ = 1 : 0.1. In Ta-

ble 4.6, the second column lists the errors when A− : A+ = (0.1, 0.2, 0.3, 0.01, 0.02, 0.03) :

(400, 600, 700, 60, 80, 90), σ− : σ+ = 0.1 : 100, while the third column shows the errors when

A− : A+ = (0.1, 0.2, 0.3, 0.01, 0.02, 0.03) : (1000, 2000, 3000, 100, 200, 300), σ− : σ+ = 0.1 : 1000.

The linear regression results corresponding to Table 4.5 in Fig. 4.5 provided the convergence

order and error constants below:

‖ Uh − u ‖∞≈ 17.6148 h1.8229, ‖ Uh − u ‖∞≈ 8238.5817 h3.3565.

The linear regression results corresponding to Table 4.6 in Fig. 4.6 provided the convergence



904 B.Y. DONG, X.F. FENG AND Z.L. LI

Table 4.6: A grid refinement analysis for Example 4.3 with two large jumps in the coefficients.

N
max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 6000 max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 10000

‖EN‖∞ ‖EN‖∞

20 9.7614E-03 8.4578E-03

40 3.2877E-03 2.7341E-03

60 1.2099E-03 1.1676E-03

80 7.5818E-04 8.0835E-04

100 2.0947E-04 2.2079E-04

120 1.2624E-04 1.2555E-04

−4 −3.8 −3.6 −3.4 −3.2
−4.4

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

Y
1
=2.0099 X + 3.6703

Y
2
=1.9494 X + 3.6077

X = log(h)

Y
 =

 lo
g(

 E
N

 )

Fig. 4.6. Linear regression of Table 4.6. The average convergence orders are 2.0099 and 1.9494,

respectively.

order and error constants below:

‖ Uh − u ‖∞≈ 39.2625 h2.0099, ‖ Uh − u ‖∞≈ 36.8811 h1.9494.

Example 4.4. In this example, we choose the anisotropic coefficient A and σ are piecewise

variable. A−(x, y, z) and A+(x, y, z) are fixed by

A− =




r2 + 1 r2 r2 + 1
5

r2 r2 + 2 r2 + 1
10

r2 + 1
5 r2 + 1

10 r2 + 3


 , A+ = βA−,

and the piecewise variable functions σ±(x, y, z) are

σ− = ex sin y cos z
(
r2 + 4

)
, σ+ = βσ−,

Table 4.7: A grid refinement analysis for Example 4.4.

N
β = 1 β = 2 β = 1000

‖EN‖∞ ‖EN‖∞ ‖EN‖∞

20 5.4271E-02 2.7686E-02 2.6046E-03

40 1.3710E-02 7.0787E-03 7.2667E-04

60 5.9850E-03 3.1298E-03 3.3120E-04

80 3.3527E-03 1.7622E-03 1.8191E-04

100 2.1525E-03 1.1427E-03 1.1002E-04

120 1.4781E-03 7.7950E-04 8.3248E-05
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where β is a constant and r =
√
x2 + y2 + z2. The interface is a sphere x2 + y2 + z2 =

(
π

6.28

)2

within the computation domain [−1, 1]× [−1, 1]× [−1, 1]. The jump conditions [u] and [Aun],

the Dirichlet boundary, and the source term f are derived from the following exact solution

u(x, y, z) =





r2 if r < r0,(
1

2
r4 + r2

)
/β −

(
1

2
r40 + r20

)
/β + r20 if r ≥ r0,

(4.4)

where r0 = π
6.28 . We show the grid refinement results in Table 4.7 with three different β. The

larger β corresponds to a larger jump in coefficients. From linear regressions, we obtain second

order convergence for both a modest and a large jump in the coefficient matrix A and σ.

The linear regression results corresponding to Table 4.7 in Fig. 4.7 provided the convergence

order and error constants below:

‖ Uh − u ‖∞≈ 5.6124 h2.0117, ‖ Uh − u ‖∞≈ 2.7234 h1.9901, ‖ Uh − u ‖∞≈ 0.2394 h1.9482.

Example 4.5. We show an example in which the interface is not an ellipsoid. The interface is

a perturbed sphere whose curvature can change the signs.

x2 + y2 + z2 =
(
C0 + ǫ sin(k1x) sin(k2y) sin(k3z)

)2

. (4.5)

The jumps in the solution and the flux, [u] and [Aun], [f ] in the source term, and the Dirichlet
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Fig. 4.7. Linear regression of Table 4.7. The average convergence orders are 2.0117, 1.9901, and 1.9482,

respectively.

Table 4.8: A grid refinement analysis for Example 4.5 with modest jumps in the coefficients.

N
max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 10 max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 1/10

‖EN‖∞ ‖EN‖∞

20 2.0051E-01 1.5930E-01

40 4.5430E-02 3.1351E-02

60 2.0699E-02 1.4232E-02

80 1.1173E-02 7.5786E-03

100 7.2125E-03 5.1957E-03

120 5.0008E-03 3.4735E-03
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boundary are determined according to the following exact solution:

u(x, y, z) =





sin
(
x+ 2y + 3z

)
if (x, y, z) ∈ Ω−,

(
x2 + y2 + z2

) 7
2

if (x, y, z) ∈ Ω+.
(4.6)

In Table 4.8-4.9, we show grid refinement results followed with the corresponding linear

regression of convergence order with ǫ = 0.2, k1 = k2 = k3 = 5, C0 = 0.5. In Table 4.8, the sec-

ond column shows the errors of the computed solutions when A− : A+ = (4, 5, 7, 0.1, 0.2, 0.3) :

(40, 50, 70, 1, 2, 3), σ− : σ+ = 1 : 10, while the third column is the errors when A− : A+ =

(20, 30, 20, −3,−1,−2) : (2, 3, 2,−0.3,−0.1,−0.2), σ− : σ+ = 10 : 1. In Table 4.9, the sec-

ond column lists the errors of the computed solutions when A− : A+ = (4, 6, 5, 1, 0.5, 0.1) :

(4000, 6000, 5000, 1000, 500, 900), σ− : σ+ = 1 : 5000, while the third column shows the errors

when A− : A+ = (1, 2, 3, 0.1, 0.2, 0.3) : (4 × 106, 5 × 106, 6 × 106, 1 × 105, 2 × 105, 3 × 105),

σ− : σ+ = 1 : 3× 106.

From these two tables and the corresponding linear regression results, we can see a clear

second order convergence for both small jumps and large jumps in the anisotropic coefficients.

The linear regression results corresponding to Table 4.8 in Fig. 4.8 provided the convergence

order and error constants below:

‖ Uh − u ‖∞≈ 22.3186 h2.0561, ‖ Uh − u ‖∞≈ 19.4626 h2.1166.

The linear regression results corresponding to Table 4.9 in Fig. 4.9 provided the convergence

order and error constants below:

‖ Uh − u ‖∞≈ 27.7702 h2.0396, ‖ Uh − u ‖∞≈ 21.0770 h2.0366.

Example 4.6. As suggested by one of referees, we consider an example with large jump ra-

tios in which the anisotropic coefficient A = diag
(
106, 1, 10−6

)
. As we know that efficient

numerical methods work well for well-conditioned problems, but may not work well for ill-

conditioned problems. When A = diag
(
106, 1, 10−6

)
, the condition number is 1012 which is

an ill-conditioned problem. A direct application of our method leads to inaccurate computed

-4.2 -4 -3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2

X=log(h)

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

Y
=

lo
g(

 E
N

 )

Y
1
 = 2.0561 X + 3.1054

Y
2
 = 2.1166 X + 2.9685

Fig. 4.8. Linear regression of Table 4.8. The average convergence orders are 2.0561 and 2.1166,

respectively.
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Table 4.9: A grid refinement analysis for Example 4.5 with large jumps in the coefficients.

N
max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 9000 max
i,j

{

|A+

ij
|

|A−

ij
|

}

= 106

‖EN‖∞ ‖EN‖∞

20 2.5945E-01 1.9877E-01

40 5.9344E-02 4.5099E-02

60 2.7154E-02 2.0940E-02

80 1.4782E-02 1.1342E-02

100 9.5902E-03 7.3745E-03

120 6.6548E-03 5.1060E-03

-4.2 -4 -3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2

X=log(h)

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

Y
=

lo
g(

 E
N

 )

Y
1
 = 2.0396 X + 3.3240

Y
2
 = 2.0366 X + 3.0482

Fig. 4.9. Linear regression of Table 4.9. The average convergence orders are 2.0396 and 2.0366,

respectively.

solution. We have proposed a preconditioning strategy for such problems. For example, if the

anisotropic coefficient is given as

A− =




106 102 10−3

102 1 10−6

10−3 10−6 10−6


 , A+ = βA−,

we use a scaling strategy as below

y = DΓx, DΓ =




10−3 0 0

0 1 0

0 0 103


 , x =

(
x, y, z

)T
, y =

(
x̄, ȳ, z̄

)T
.

Then we use our new method for the following transformed problem

−∇ ·
(
Ā∇ū(y)

)
= f̄(y), (4.7)

when σ = 0. The new anisotropic coefficient is

Ā− =




1 10−1 10−3

10−1 1 10−3

10−3 10−3 1


 , Ā+ = βĀ−.

The analytic solution and the interface are the same as in Example 4.5.
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Table 4.10: A grid refinement analysis for Example 4.6 with β = 10.0 and β = 1000.

N
β = 10 β = 1000

‖EN‖∞ ‖EN‖∞

20 2.0061E-01 2.0296E-01

40 4.5340E-02 4.6526E-02

60 2.0675E-02 2.1291E-02

80 1.1196E-02 1.1571E-02

100 7.2277E-03 7.5267E-03

120 5.0289E-03 5.2366E-03

-4.2 -4 -3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2

X=log(h)

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

Y
=

lo
g(

 E
N

 )

Y
1
 = 2.0534 X + 3.0975

Y
2
 = 2.0373 X + 3.0730

Fig. 4.10. Linear regression of Table 4.10. The average convergence orders are 2.0534 and 2.0373,

respectively.

After the preconditioning, our method worked well for the problem. Note that, the domain

will also be changed after the scaling. However, a 3D rectangular domain will still be a 3D

rectangular domain and our method can still apply maybe with different mesh size hx, hy,

and hz. For convenience, we still use the cubic in the scaled system in our numerical test.

In Table 4.10, we show the grid refinement results and linear regression analysis to get the

convergence order when β = 10 and β = 1000. We can see a second order convergence for both

modest jump and large jump in anisotropic coefficients.

The linear regression results corresponding to Table 4.10 in Fig. 4.10 provided the conver-

gence order and error constants below:

‖ Uh − u ‖∞≈ 22.1432 h2.0534, ‖ Uh − u ‖∞≈ 21.6056 h2.0373.

Example 4.7. Next, we show a comparison example with the Petrov-Galerkin immersed finite

element method in [3], in which

A− =




cos(x + y)2 + 3 z 0.2 sin(z − x)

z z2 + 5 y

0.2 sin(z − x) y sin(z)2 + 2


 , (4.8)

A+ =




4x2 + 6 sin(x+ y) xy

sin(x+ y) 2z2 + 3 0.5 sin(x)

xy 0.5 sin(x) cos(xy + z)2 + 5


 , (4.9)
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Table 4.11: A grid refinement analysis of the proposed method and the method developed in [3] for

Example 4.7.

N
FE-FD Method Method in [3]

‖E‖∞ Order ‖E‖∞ Order

6 0.02525 0.01579

12 0.00696 1.86 0.00512 1.62

24 0.00167 2.06 0.00140 1.87

48 0.00048 1.80 0.00035 2.00

Average 1.90 1.83

with σ = 0, and the analytic solution

u(x, y, z) =

{
− cos(x) + 3y + z3 if (x, y, z) ∈ Ω−,

5− sin(x3) + 3y2 + z if (x, y, z) ∈ Ω+.
(4.10)

The interface is a sphere, the zero level set of ϕ(x, y, z) = 0.25− x2 − y2 − z2.

In Table 4.11, we show grid refinement results obtained by our new method and the method

developed in [3]. The grid refinement results indicate that the two methods have comparable

magnitude of errors and order of convergence. But the convergence of the method in [3] has not

been proved theoretically yet except for some simple scalar cases such as for one-dimensional

(1D) problems or two-dimensional (2D) problems with line interfaces that are parallel to coor-

dinate axes.

5. Conclusions

In this paper, we have developed a FE-FD method for solving 3D anisotropic elliptic inter-

face problems. The new FE-FD method is a Cartesian mesh method. For regular grid points,

we apply a fifteen-point stencil scheme, which is derived from the linear finite element method

based on a uniform tetrahedralization, and corresponding discrete matrix of the linear system

of equations is symmetric semi-positive definite. For irregular grid points, we have derived new

interface relations and constructed a maximum principle preserving finite difference scheme

using these new jump relations and a quadratic constraint optimization. The resulting coef-

ficient matrix of linear system of equations is an M-matrix. The mew method is tested with

non-homogeneous/homogeneous jump conditions and singular source terms. Both theoretical

analysis and numerical results show that the computed solution have second order convergence

in the infinity norm.

A. Coefficients Relations Use in Theorem 3.1

We list the definition of the unspecified coefficients in Theorem 3.1 below.

d1 = χηηa
+
12 + χητa

+
13, d2 = χηηa

+
22 + χητa

+
23, d3 = χηηa

+
23 + χητa

+
33,
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d4 = χητa
+
12 + χττa

+
13, d5 = χητa

+
22 + χττa

+
23, d6 = χητa

+
23 + χττa

+
33,

Sm0 =
χηηa

+
22 + χττa

+
33 + 2χητa

+
23

a+11
,

Sm1 =
a+11[d1]−

(
d+1 + χηηa

+
12 + χητa

+
13

)
[a+11]

(a+11)
2

,

Sm2 =
a+11[d4]−

(
d+4 + χητa

+
12 + χττa

+
13

)
[a+11]

(a+11)
2

,

Sm3 =
a+11[d2]−

(
d+1 + χηηa

+
12 + χητa

+
13

)
[a+12]

(a+11)
2

,

Sm4 =
a+11[d5]−

(
d+4 + χητa

+
12 + χττa

+
13

)
[a+12]

(a+11)
2

,

Sm5 =
a+11[d3]−

(
d+1 + χηηa

+
12 + χητa

+
13

)
[a+13]

(a+11)
2

,

Sm6 =
a+11[d6]−

(
d+4 + χητa

+
12 + χττa

+
13

)
[a+13]

(a+11)
2

,

Sm7 =
χηηb12 + χττb14 + χητ b20

a+11
,

Sn1 =
a+11d

+
2 −

(
d+1 + χηηa

+
12 + χητa

+
13

)
a+12

(a+11)
2

,

Sn2 =
a+11d

+
5 −

(
d+4 + χητa

+
12 + χττa

+
13

)
a+12

(a+11)
2

,

Sn3 =
a+11d

+
3 −

(
d+1 + χηηa

+
12 + χητa

+
13

)
a+13

(a+11)
2

,

Sn4 =
a+11d

+
6 −

(
d+4 + χητa

+
12 + χττa

+
13

)
a+13

(a+11)
2

,

Sn5 =
d+1 + χηηa

+
12 + χητa

+
13

(a+11)
2

, Sn6 =
d+4 + χητa

+
12 + χττa

+
13

(a+11)
2

,

C1,1 = −
1

a+11

(
Sm0[a11] + 2a+12Sm1 + 2a+13Sm2

)
,

C1,2 = −
1

a+11

(
Sm0[a12] + 2a+12Sm3 + 2a+13Sm4

)
,

C1,3 = −
1

a+11

(
Sm0[a13] + 2a+12Sm5 + 2a+13Sm6

)
,

C1,4 = −
1

a+11

(
Sm0a

+
12 + 2a+12Sn1 + 2a+13Sn2

)
,

C1,5 = −
1

a+11

(
Sm0a

+
13 + 2a+12Sn3 + 2a+13Sn4

)
,

C1,6 =
1

a+11

(
Sm0 − 2a+12Sn5 − 2a+13Sn6

)
.



An L
∞ Second Order Cartesian Method for 3D Anisotropic Interface Problems 911

B. Jump Relations for a Variable Coefficients A(x, y, z)

If the coefficient matrix A(x, y, z) and σ(x, y, y) are piecewise variable, the last three iden-

tities in Theorem 3.1 need to be changed. For the eighth and ninth interface relations, we need

to redefine dj , j = 1, 2, 3, 4, 5, 6 as follows,

d1 = χηηa
+
12 + χητa

+
13 −

∂a+11
∂η

, d2 = χηηa
+
22 + χητa

+
23 −

∂a+12
∂η

,

d3 = χηηa
+
23 + χητa

+
33 −

∂a+13
∂η

, d4 = χητa
+
12 + χττa

+
13 −

∂a+11
∂τ

,

d5 = χητa
+
22 + χττa

+
23 −

∂a+12
∂τ

, d6 = χητa
+
23 + χττa

+
33 −

∂a+13
∂τ

.

In the local coordinates, the PDE becomes

−(a11uξξ + a22uηη + a33uττ + 2a12uξη + 2a13uξτ + 2a23uητ + c1uξ + c2uη + c3uτ ) + σu = f,

where

c1 =
∂a11
∂ξ

+
∂a12
∂η

+
∂a13
∂τ

, c2 =
∂a12
∂ξ

+
∂a22
∂η

+
∂a23
∂τ

, c3 =
∂a13
∂ξ

+
∂a23
∂η

+
∂a33
∂τ

.

This leads to the last relation followed by some terms about c±j , j = 1, 2, 3 as below

uξξ = S +
a+11c

−
1 − a−11c

+
1

(a+11)
2

uξ +
c+1 [a12]− a+11[c2]

(a+11)
2

uη +
c+1 [a13]− a+11[c3]

(a+11)
2

uτ

+
a+12c

+
1 − a+11c

+
2

(a+11)
2

wη +
a+13c

+
1 − a+11c

+
3

(a+11)
2

wτ −
c+1

(a+11)
2
Q,

where S is the term of the right hand side defined in the last relation in Theorem 3.1.
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