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Singular Solutions to Monge-Ampère Equation
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Abstract. We construct merely Lipschitz and C1,α with rational α ∈ (0, 1− 2/n] vis-
cosity solutions to the Monge-Ampère equation with constant right hand side.
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1 Introduction

In this note, we construct (convex) Lipschitz and C1,α viscosity solutions to the Monge-
Ampère equation with constant right hand side via Cauchy-Kovalevskaya, after in-
tegerizing fractional powers in the corresponding equation for those singular profiles
from [8] and [3, 5].

Theorem 1.1. There exists a merely Lipschitz viscosity solution to det D2u = 1 in B1 ⊂ Rn for
n ≥ 3. There also exist merely C1,α−1 with rational α = q

p ∈ (1, 2− 2
n ] viscosity solutions to

det D2u = 1 in B1 ⊂ Rn for n ≥ 3.

These C1,α solutions to the Monge-Ampère equation det D2u = 1 illustrate a regu-
larity wall phenomena: merely C1,α with rational α ∈ (0, 1− 2/n] solutions can never
become better. This is in contrast with the regularity theory for Monge-Ampère equa-
tions [9] and [4]: once solutions are C1,(1−2/n)+, they self-improve to smoothness.

Note that our singular solutions via Cauchy-Kovalevskaya to the Monge-Ampère
equation det D2u = 1 are singular precisely along a segment of one axis, where the con-
vex solutions are linear, or zero, to be precise. If one tries to produce higher dimensional
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subspace singular set, where the dimension S must be less than n/2 by the theorem in [3],
a good start is the Pogorelov type profile there,

u (x) =
∣∣x′∣∣2−2S/n f

(∣∣x′′∣∣)
with x =

(
x′1, · · · , x′n−S, x′′1 , · · · , x′′S

)
. The profile with

f
(∣∣x′′∣∣) = 1 +

∣∣x′′∣∣2
satisfies the Monge-Ampère with the right hand side being a polynomial of |x′′|2 , posi-
tive near the origin. The ODE for f (|x′′|) with singular term f ′ (|x′′|) / |x′′| correspond-
ing to det D2u = 1 can be solved by the method in [2] and [1].

Alternatively, relying on the existence of solutions to the Dirichlet problem for
Monge-Ampère equations, with S dimensional singular set profile |x′|2−2S/n (1 + |x′′|2)
as boundary value in a small ball, one obtains the following

Proposition 1.1. There exist local merely C1,1−S/n viscosity solutions to det D2u = 1 in Rn for
n ≥ 3 such that singular set of the solutions is the S dimensional set

S =
{(

x′, x′′
)

:
∣∣x′∣∣ = 0

}
in a small ball for 1 ≤ S < n/2.

Let us sketch a proof for this proposition. Case S = 1 is also noted in the above.
The Lipschitz limit of a family of (convex) smooth solutions to det D2u = 1 with smooth
boundary value approximations of subsolution

u− = γ
∣∣x′∣∣2−2S/n

(
1 +

∣∣x′′∣∣2)
for γ = (1− 2S/n)−1/n on the boundary of a small ball is our viscosity solution. The
convex solution u (x) vanishes in subspace x′′ with |x′| = 0, because it is between the
convex combinations of zero boundary value and the subsolution u− there. Surely u (x)
is singular in the S dimensional subspace (0′, x′′) .

We show that u is regular everywhere else. By [4,5], the other possible singular set of u
outside S, must contain a line segment, where u is linear. This singular segment intersects
the boundary of the small ball or the set S. The barrier argument in [9] and [4, 5] shows
the two ends of the segment cannot be both on the boundary of the small ball, where u is
smooth. The only other scenario that the segment has one end on S, and the other end on
the boundary of the small ball is not possible either. This is because the linear function,
the restriction of u on the segment, equaling 0 and u− > 0 respectively on the two ends,
cannot be less than the supersolution

u+ = 2γ
∣∣x′∣∣2−2S/n
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with sublinear growth near |x′| = 0.
Note that the solution u is trapped between the supersolution u+ and the subsolution

u− = γ
∣∣x′∣∣2−2S/n

(
1 +

∣∣x′′∣∣2) .

We see that u is exactly C1,1−2S/n. This finishes the sketch of the proof for Proposition 1.1.
In closing, we remark that Mooney [6] recently showed that the n − 1 dimensional

Hausdorff measure of the singular set of every subsolution to det D2u = 1 is zero, and
the collection of S-dimensional affine singular sets, on each of which the subsolution
is linear, also has zero n − S dimensional Hausdorff measure. In particular, the affine
dimension S is less than n/2. This provides a new proof for the theorem in [3]. The no
better than C1,β with β ∈ [0, 1/3] solutions in [6, 7] have almost n− 1 and exactly n− 1
respectively Hausdorff dimensional singular sets, where each of the solutions is not a
single linear function.

2 Proof of Theorem 1.1

Proof. Lipschitz case. We seek for solutions in the Lipschitz profile from [5]

u
(
x′, xn

)
= ρ + ρn/2 f (ρ, xn)

with
ρ =

∣∣x′∣∣ = ∣∣(x′1, · · · , x′n−1
)∣∣ .

The upper half Hessian D2u is

1+ n
2 ρ

n
2 −1 f+ρ

n
2 fρ

ρ

· · ·
1+ n

2 ρ
n
2 −1 f+ρ

n
2 fρ

ρ
n
2

( n
2 − 1

)
ρ

n
2−2 f

+2 n
2 ρ

n
2−1 fρ + ρ

n
2 fρρ

n
2 ρ

n
2−1 fn

+ρ
n
2 fρn

ρ
n
2 fnn


,

and its determinant

det D2u =

[
1 + n

2 ρ
n
2−1 f + ρ

n
2 fρ

ρ

]n−2

[ n

2

( n
2 − 1

)
ρ

n
2−2 f

+2 n
2 ρ

n
2−1 fρ + ρ

n
2 fρρ

]
ρ

n
2 fnn

−
(

n
2 ρ

n
2−1 fn + ρ

n
2 fρn

)2


=
(

1 +
n
2

ρ
n
2−1 f + ρ

n
2 fρ

)n−2
{ [ n

2

( n
2 − 1

)
f + nρ fρ + ρ2 fρρ

]
fnn

−
( n

2 fn + ρ fρn
)2

}
.
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We make the following change of variable to move to an analytic equation.
Set

s = ρ1/2 and h (s, xn) = f
(
s2, xn

)
,

then

∂s = 2s∂ρ or ∂ρ =
1
2s

∂s, and ∂2
ρ =

1
4

(
−1
s3 ∂s +

1
s2 ∂2

s

)
.

The determinant becomes

det D2u =

(
1 + n

2 sn−2h
+ 1

2 sn−1hs

)n−2


[ n

2

( n
2 − 1

)
h

+ n
2 shs +

1
4

(
−shs + s2hss

) ] hnn

−
( n

2 hn +
1
2 shsn

)2

 .

Now we solve the reduced Monge-Ampère equation
hnn =

(
1 + n

2 sn−2h + 1
2 sn−1 fs

)2−n
+
( n

2 hn +
1
2 shsn

)2

n
2

( n
2 − 1

)
h + (2n−1)

4 shs +
1
4 s2hss

,

hn (s, 0) = 0,
h (s, 0) = 1.

Cauchy-Kovalevskaya gives the analytic solution in Br1 (0) ⊂ R2

h (s, xn) = 1 +
2

n (n− 2)
x2

n + · · · .

Thus we have a Lipschitz solution to det D2u = 1

u (x) =
∣∣x′∣∣+ ∣∣x′∣∣ n

2 h
(∣∣x′∣∣ 1

2 , xn

)
in B1 (0) ⊂ Rn by scaling.

Lastly, let us check our u is a viscosity to det D2u = 1. For any convex quadratic
Q (x) touching u (x) from above, observe that the touching point can never be a singular
Lipschitz point of u (x) , and in turn, det D2Q ≥ 1 at the smooth touching point of u (x) .
On the lower side, for any quadratic Q (x) touching u (x) from below, when the touching
point is at x′ = 0, observe that convex Q (x) must vanish along x′ = 0 as u (x′, xn)
vanishes, then det D2Q = 0 < 1; when the touching point is at x′ 6= 0, immediately
det D2Q ≤ 1 as u (x) is smooth nearby.

C1, q
p−1 case. We search for solutions in the form

u
(
x′, xn

)
= ρα f (ρ, xn) = ρα

[
1 + ρβg (ρ, xn)

]
with β = 2 (n− 1)− nα.



L. Caffarelli and Y. Yuan / Anal. Theory Appl., 38 (2022), pp. 121-127 125

The upper half Hessian D2u is

αρα−1 f+ρα fρ

ρ

· · ·
αρα−1 f+ρα fρ

ρ

α (α− 1) ρα−2 f
+2αρα−1 fρ + ρα fρρ

αρα−1 fn + ρα fρn

ρα fnn


,

and its determinant

det D2u =
[
ρα−2 (α f + ρ fρ

)]n−2
ρ2α−2

{ [
α (α− 1) f + 2αρ fρ + ρ2 fρρ

]
fnn

−
(
α fn + ρ fρn

)2

}

=
(
α f + ρ fρ

)n−2

{ [
α (α− 1) f + 2αρ fρ + ρ2 fρρ

]
fnn

−
(
α fn + ρ fρn

)2

}
ρnα−2(n−1).

Note that

f = 1 + ρβg (ρ, xn) ,

fρ = βρβ−1g + ρβgρ,

fρρ = β (β− 1) ρβ−2g + 2βρβ−1gρ + ρβgρρ,

then

det D2u =
[
α + αρβg + βρβg + ρβ+1gρ

]n−2
ρnα−2(n−1)

[
α (α− 1)

(
1 + ρβg

)
+ 2α

(
βρβg + ρβ+1gρ

)
+β (β− 1) ρβg + 2βρβ+1gρ + ρβ+2gρρ

]
ρβgnn

−
(
αρβgn + βρβgn + ρβ+1gρn

)2


=
[
α + (α + β) ρβg + ρβ+1gρ

]n−2
ρnα−2(n−1)+β

[
α (α− 1) + (α + β) (α + β− 1) ρβg

+2 (α + β) ρβ+1gρ + ρβ+2gρρ

]
gnn

−ρβ
[
(α + β) gn + ρgρn

]2


=
[
α + (α + β) ρβg + ρβ+1gρ

]n−2


[

α (α− 1) + (α + β) (α + β− 1) ρβg
+2 (α + β) ρβ+1gρ + ρβ+2gρρ

]
gnn

−ρβ
[
(α + β) gn + ρgρn

]2

 ,

where we used nα− 2 (n− 1) + β = 0.
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We make the following change of variable for α = q/p to move to an analytic equa-
tion.

Set

s = ρ1/p and h (s, xn) = g (sp, xn) ,

then

∂s =psp−1∂ρ or ∂ρ =
1

psp−1 ∂s, and ∂2
ρ =

1
p2

(
1− p
s2p−1 ∂s +

1
s2p−2 ∂2

s

)
.

The determinant becomes

det D2u =

[
α + (α + β) spβh + spβ 1

p
shs

]n−2


{

α (α− 1) + (α + β) (α + β− 1) spβh
+2 (α + β) spβ 1

p shs + spβ 1
p2

[
(1− p) shs + s2hss

] } hnn

−spβ
[
(α + β) hn +

1
p shsn

]2

 .

Now we solve the reduced Monge-Ampère equation
hnn =

[
α + (α + β) spβh + spβ 1

p shs

]2−n
+ spβ

[
(α + β) hn +

1
p shsn

]2

α (α− 1) + (α + β) (α + β− 1) spβh + 2 (α + β) spβ 1
p shs + spβ 1

p2 [(1− p) shs + s2hss]
,

hn (s, 0) = 0,
h (s, 0) = 1,

where integer pβ = 2p (n− 1)− nq ≥ 0. Cauchy-Kovalevskaya gives the analytic solu-
tion in Brq/p (0) ⊂ R2

h (s, xn) = 1 +
1
2

α2−n

α (α− 1)
x2

n + · · · .

Thus we have a C1, q
p−1 solution to det D2u = 1

u
(
x′, xn

)
=
∣∣x′∣∣ q

p
[
1 +

∣∣x′∣∣2(n−1)−n q
p h
(∣∣x′∣∣ 1

p , xn

)]
in B1 (0) ⊂ Rn by scaling.

Exactly as in the Lipschitz case, we verify that our u (x) is a viscosity solution to the
Monge-Ampère equation det D2u = 1.
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