
INTERNATIONAL JOURNAL OF c⃝ 2022 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 19, Number 2-3, Pages 299–314

A STRESS TEST FOR THE MIDPOINT TIME-STEPPING

METHOD

JOHN BURKARDT, WENLONG PEI, AND CATALIN TRENCHEA

This paper is dedicated to our mentor and friend Max Gunzburger

Abstract. The midpoint method can be implemented as a sequence of Backward Euler and
Forward Euler solves with half time steps, allowing for improved performance of existing solvers
for PDEs. We highlight the advantages of this refactorization by considering some specifics of

implementation, conservation, error estimation, adaptivity, stability, and performance on several
test problems.

Key words. Midpoint method, local error estimation, time step adaptivity, conservation, B-

stable.

1. Introduction

In the paper [9], the midpoint method was reformulated in an unusual way, and
numerous properties and advantages of the method and its implementation were
claimed. Here, we propose to highlight these features by considering some specifics
of implementation, conservation, error estimation, adaptivity, stability, and perfor-
mance on several test problems. The refactorized method was successfully applied
to partial differential equations and partitioning algorithms for fluid-structure in-
teraction and magnetohydrodynamics [6–8,52], and the idea was further developed
for multistep methods in [34,35].

2. The midpoint method and its “relatives”

We wish to estimate some quantity y(t), for which we have an initial value y0 at
time t0, and an evolution equation:

y′(t) = f(t, y(t)).

We shall produce estimates yn at a discrete sequence of times {tn}n≥0, using
stepsizes τn = tn+1 − tn. For convenience, we define tn+1/2 = tn + 1

2τn.
The (implicit) midpoint method for this problem can now be defined by:

yn+1 − yn
τn

=f(tn+1/2,
yn+1 + yn

2
)

=f(tn+1/2, yn +
1

2
τn

yn+1 − yn
τn

).

Unless the right hand side function f(·, ·) is linear in y, each time we want to
take a step by applying this formula, we must solve an implicit nonlinear equation
for the unknown value yn+1. This implicit equation solution cost is part of the
overhead of the midpoint method. This cost varies depending on the nonlinearity
of f(·, ·) (associated with the problem), on the stepsize being used, (associated

Received by the editors October 7, 2021 and, in revised form, November 25, 2021.
2000 Mathematics Subject Classification. 34D20, 35L65, 65C20, 65D30, 65L07, 65L20, 65M12.

299

300 JOHN BURKARDT, WENLONG PEI, AND CATALIN TRENCHEA

with the midpoint method), and on the robustness of the implicit equation solver
(depending on the underlying nonlinear solver employed).

It should be noted that a number of ODE solution methods are loosely termed
“midpoint methods”. To avoid confusion, it may be helpful to first name several of
these related methods and indicate their distinguishing features.

Title Formula for yn+1−yn

τn

Implicit midpoint: f(tn+1/2, 1/2 (yn + yn+1))
Explicit midpoint: f(tn+1/2, 1/2 (yn + yn + τnf(tn, yn)))
Implicit trapezoidal: 1/2 (f(tn, yn) + f(tn+1, yn+1))
Explicit trapezoidal: 1/2 (f(tn, yn) + f(tn+1, yn + τnf(tn, yn)))

Table 1. Four related one-step ODE methods.

It should be clear now that midpoint methods evaluate the right hand side at
the midpoint of the interval [tn, tn+1], while trapezoidal methods average values at
the endpoints. Implicit methods invoke the unknown solution yn+1, while explicit
methods use an estimate, such as the Euler approximation, instead.

If we move to partial differential equations, a very popular procedure is known
as the Crank-Nicolson 1 method, which involves both space and time discretization.
For time stepping, it is possible to implement the Crank-Nicolson method using any
one of the four above methods. Interestingly, in the original paper [12], it seems
that the implicit midpoint method is described.

From now on in this discussion, the expression “midpoint method” will be used
exclusively to refer to the implicit midpoint method.

3. Implementation

The midpoint method is a single step method; that is, the approximation of yn+1

at time tn+1 depends on the current values tn and yn, but not on any previous data.
For the moment, we will assume that an appropriate stepsize τn = tn+1 − tn has
been specified, so that we only need to address the implicit equation that defines
yn+1.

While adaptivity and variable step sizes are a vital feature of modern ODE
solvers, we will defer discussion of those matters (see e.g. [8, 9] and the references

1There is some confusion on what the Crank-Nicolson method actually is. For example, the
wikipedia page (November 14, 2021) claims that Crank-Nicolson is based on the trapezoidal

rule, and also Hundsdorfer and Verwer [28, page 125] state that “In the classic numerical PDE
literature, backward Euler and the trapezoidal rule are also known under the names Laasonen
scheme [31] and Crank-Nicolson [12] scheme, respectively”. The Crank-Nicolson appellative for
the trapezoidal rule is used in Ascher [2, page 41], Canuto, Hussaini, Quarteroni and Zhang’s

book [10, page 521], Hairer, Lubich and Wanner [23, page 28], Leveque [38, pages 121, 185],
Quarteroni, Sacco and Saleri [44, page 483], Quarteroni, Valli [45, page 149], Volker [29, page
394]. Heywood and Rannacher [25, page 355] and Gunzburger [22, page 131] call trapezoidal
rule as Crank-Nicolson, and then use the midpoint rule. In [33, page 162], Layton also refers to

the midpoint rule by the trapezoidal cognomen. On the other hand, Glowinski [21, page 267],
Hoffman and Johnson [27, page 216], Kalnay [30, page 83], Layton and Rebholz [36, page 137],
refer to the midpoint rule as the Crank-Nicolson method. Finally, it is worth mentioning that the

method which John Crank and Phyllis Nicolson literally used in their 1947 paper [12] on numerical
solutions of a nonlinear partial differential equation for heat flow is the midpoint rule.

https://en.wikipedia.org/wiki/Crank-Nicolson_method

A STRESS TEST FOR THE MIDPOINT TIME-STEPPING METHOD 301

therein). We begin with the assumption that the desired task is to produce a
sequence yi of solution estimates at n + 1 time values in the interval [t0, tn], with
equal spacing dt = tn−t0

n . The solution process starts from (t0, y0) and repeatedly
calls a solver to advance the solution from time ti to time ti+1.

A simple version of the midpoint method would use a fixed number n of steps
of size dt starting at �0. To handle the implicit nonlinear equation, we invoke a
“magical” routine we might call SOLUTION(variable,equation), which determines
a value for variable which satisfies the system symbolized by equation. A sketch of
the procedure might be:

1 t 1 = t0

2 y 1 = y0
3
4 for i from 1 to n
5 {
6 t h = t i + dt / 2
7 y h = SOLUTION (y h , (y h − yo) / (t h − t o) − f (th , yh)

== 0)
8

9 t i+1 = t i + dt
10 y i+1 = 2 ∗ yh − yo
11 }

Since MATLAB [51] provides a procedure fsolve which does exactly the nonlinear
solving that we need, we can demonstrate a working version of this calculation:

1 for i = 1 : n

2
3 to = t (i , 1) ;
4 yo = y(i , :) ;
5

6 th = to + 0 .5 ∗ dt ;
7 yh = yo + 0 .5 ∗ dt ∗ f (to , yo) ;
8 yh = f s o l v e (@(yh) backward eu l e r r e s i dua l (f , to , yo , th , yh) , yh) ;
9

10 tp = to + dt ;
11 yp = 2 .0 ∗ yh − yo ;
12

13 t (i +1 ,1) = tp ;
14 y (i +1 , :) = yp ;
15
16 end

Here, the first argument of fsolve() identifies the variable to be manipulated, and
the user procedure that defines the system; the second argument is the current
value of the variable. Note that a similar procedure, also called fsolve() is available
in Octave [17], Python [43], and R [46], and so the implicit midpoint method can
easily be implemented in those languages as well.

The implicit midpoint method can also be implemented in the finite element
FreeFem++ [24]. Suppose that we are solving the heat equation in a square, with a
source function f(x, y, t). Our generic finite element test function will be designated
vh. For time told, we have computed an approximate solution uold, and we now
want to advance to time t=told+dt and compute u. Inside the time loop, we simply
state:

302 JOHN BURKARDT, WENLONG PEI, AND CATALIN TRENCHEA

1 tmid = to ld + dt / 2 . 0 ;

2 //
3 // At time tmid , take a backward Euler s tep o f s ize dt /2 .
4 //
5 ha l fbackwardeu l e r s t ep ;

6 //
7 // Follow t h i s with a forward Euler s tep from time tmid o f size dt /2 .
8 //

9 u = 2 .0 ∗ umid − uold ;

The function halfbackwardeulerstep() is responsible for finding a solution umid
of the implicit equation posed by the midpoint formulation:

1 problem ha l fbackwardeu l e r s t ep (umid , vh) =

2 int2d (Th) (umid ∗ vh) − int2d (Th) (uold ∗ vh)
3 + int2d (Th) (0 .5 ∗ dt ∗ (dx (umid) ∗ dx (vh) + dy (umid

) ∗ dy (vh)))
4 − int2d (Th) (0 .5 ∗ dt ∗ f (x , y , tmid) ∗ vh)

5 + on (1 , 2 , 3 , 4 , umid = 0 .0) ;

The details of the nonlinear solution process are handled by the FreeFem++ pack-
age.

4. Sample Problems

Subsequent investigations will focus on a number of test differential equations,
written here as first order systems. The independent variable is written as t, the
unknowns are generally u, v, w, and other symbols represent problem parameters.

Title ODE
Exponential: u′ = λu
Stiff: u′ = λ(cos(t)− u)
Lotka-Volterra: u′ = 2u− 0.001uv

v′ = −10v + 0.002uv
Rigid body: u′ = (1/c− 1/b)vw

v′ = (1/a− 1/c)uw
w′ = (1/b− 1/a)uv

Vanderpol: u′ = v
v′ = µ(1− u2)v − u

Nonlinear pendulum u′ = v
v′ = − g

l sin(u)
Double pendulum u′

1 = v1
v′1 = {g(2m1 +m2) sin(u1) +m2(g sin(u1 − 2u2)

+2(l2 + v22 + l1v(1)
2 cos(u1 − u(2)) sin(u1 − u(2))))}

/{2l1(m1 +m2 −m2 cos(u1 − u2)
2)}

u′
2 = v2

v′2 =
((m1+m2)(l1v

2
1+g cos(u1))+l2m2v

2
2 cos(u1−u2)) sin(u1−u2)

l2(m1+m2−m2 cos(u1−u2)2)

Table 2: Definitions of the test differential equations.

A STRESS TEST FOR THE MIDPOINT TIME-STEPPING METHOD 303

5. Sample Problem Data

Aside from the differential equations, each test problem has a typical interval over
which it is solved, initial conditions for the unknowns, and one or more suggested
values for the problem parameters.

Title Interval Initial Parameters
Exponential: 0 ≤ t ≤ 5 u(0) = 1 λ = −1,−10,−100
Stiff: 0 ≤ t ≤ 1 u(0) = 0 λ = 1, 10, 50
Lotka-Volterra: 0 ≤ t ≤ 10 u(0) = 5000

v(0) = 100
Rigid body: 0 ≤ t ≤ 50 u(0) = cos(0.9) a = 1.6

v(0) = 0 b = 1
w(0) = sin(0.9) c = 2/3

Vanderpol: 0 ≤ t ≤ 20 u(0) = 0.05 µ = 1.5, 10, 100, 1000
v(0) = 0.05

Nonlinear pendulum 0 ≤ t ≤ 50 u(0) = 0.99π g = 9.81
v(0) = 0 l = 1.0

Double pendulum 0 ≤ t ≤ 50 u1(0) = 0.25 g = 9.81
v1(0) = 0 l1 = 2
u2(0) = 0 l2 = 1
v2(0) = 0 m1 = 1

m2 = 1
Table 3: Data associated with the test problems.

6. Conservation

As systems evolve over time, there may be certain properties whose values stay
fixed. These are known as invariants or conserved quantities. Mechanical systems
in particular may undergo violent changes and yet conserve mass, momentum, and
energy. When the behavior of such a system is to be approximated by an ODE
solver, the true solution is generally unknown. Then monitoring the conservation
behavior may be a primary means of determining the quality of an approximate
solution. An approximation that does not satisfy conservation might be regarded as
physically dubious or even meaningless. Common conservation constraints involve
the state variables linearly, as in mass conservation, or quadratically, as in energy
conservation (for example, in magnetohydrodynamics, there are several quadratic
conserved hamiltonians - the kinetic energy, the magnetic helicity and cross helicity
[32, 37, 52]); more complicated relations are less common. The constraints are
sometimes thought of as defining the surface of a manifold, upon which any exact
solution curve must lie.

Although the solutions returned by a differential equation solver are approxima-
tions, they may nonetheless closely or exactly satisfy the conservation constraints.
The behavior of many physical systems can be described in terms of Hamilton’s
equations. These equations are written in terms of a Hamiltonian function, which
can be regarded as an energy measure. In the absence of outside influences or
dissipation, the system’s Hamiltonian function should have a constant value over
time. In many cases, it is possible to construct ODE solvers which exactly conserve

304 JOHN BURKARDT, WENLONG PEI, AND CATALIN TRENCHEA

a slightly perturbed value of the Hamiltonian function over all future time. Such
solvers are known as symplectic integrators. They are of great use in the study
of mechanics, planetary motion, molecular dynamics, and quantum physics. The
symplectic Euler method and the Verlet method are two popular versions of this
approach.

Symplectic methods are restricted to a particular class of differential equations.
However, the ability to conserve certain system quantities for a wider range of
ODEs is highly desirable. A number of integration methods have been identified
which do preserve certain invariants. Such an ODE solver is known as a geometric
integrator [23].

Many ODE solvers can satisfy a linear conservation constraint. However, the
midpoint method is the only single step method which also satisfies quadratic con-
servation constraints [5]. This greater power is notable, since most expressions of
energy involve quadratic terms.

It is worth repeating that for typical real-life physical systems, if no exact solution
is known, conservation constraints are a useful check on the solution. Moreover, a
sort of stress test can be performed on any ODE solver by observing the extent to
which it can preserve quantities that should be conserved. Exactly this sort of test
will be reported for the midpoint method, as well as Euler, backward Euler, RK4,
and and several of the standard MATLAB ODE solvers [48]. Several of the sample
problems have an associated conserved quantity, as listed in Table 4. These cases
will be used to explore the conservation properties of the midpoint method, and to
compare its performance to some other ODE solvers.

Title Conserved Quantity
Rigid Body: h1(u, v, w) = u2 + v2 + w2

h2(u, v, w) = u2/a+ v2/b+ w2/c
Lotka-Volterra: h(u, v) = δu− γ log(u) + βv − α log(v)

Nonlinear Pendulum: h(u, v) = mg
l (1− cos(u)) + mv2

2

Double Pendulum: h(u1, v1, u2, v2) = 0.5(m1 +m2)l
2
1v

2
1 + 0.5m2l

2
2v

2
2

+m2l1l2v1v2 cos(u1 − u2)...
−(m1 +m2)gl1 cos(u1)−m2gl2 cos(u2)

Table 4. The conserved quantities for some sample problems.

Because the rigid body ODE constraint is quadratic, we expect the midpoint
method to do an excellent conservation job there. But the appearance of functions
like log() and cos() in the constraints for the Lotka-Volterra, Nonlinear Pendulum
and Double Pendulum examples means that there we do not have such a guarantee.
It is instructive to observe the conservation behavior for these examples, and to
compare the performance of some other ODE solvers.

6.1. Rigid Body Conservation. The rigid body problem [40, 47, 50] represents
the Euler equations for a rigid body, with given moments of inertia, undergoing
rotation. There are two invariants, h1 and h2. Because these two are quite similar
in formula and behavior, we will focus solely on h1. The initial condition is chosen
to correspond to h1 = 1. The left hand plot in Figure 1 shows our first conservation
test, which runs the evolution over the relatively short time interval 0 ≤ t ≤ 50.

A STRESS TEST FOR THE MIDPOINT TIME-STEPPING METHOD 305

0 5 10 15 20 25 30 35 40 45 50

<-- T -->

0

0.2

0.4

0.6

0.8

1

1.2

1.4

<
--

 H
(T

)
--

>

backward Euler
Euler
midpoint
ode45
constant

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

<-- T -->

0

0.2

0.4

0.6

0.8

1

1.2

<
--

 H
(T

)
--

>

midpoint
ode23
ode45
rk4
constant

Figure 1. Rigid body conservation for h1.

We run backward euler() and euler() with n = 1000 steps, midpoint() with
n = 100, and let ode45() adaptively chooses n = 137 steps.

We repeat the test over the more challenging interval 0 ≤ t ≤ 10, 000. Based
on their poor performance in the first test, we eliminate the backward Euler and
Euler “contestants”, and bring in another MATLAB solver ode23() and rk4(), a
fixed stepsize fourth order Runge Kutta solver. The results of this comparison are
on the right hand plot in Figure 1.

The two rigid body conservation plots show that, even over a relatively short
time interval, both backward euler() and euler() do a poor conservation job. In
fact, these methods have a reputation for “losing” or ”gaining” energy, respectively,
which is confirmed by the plot. Over the longer time interval, both ode23() and
ode45() fail the conservation test significantly. The rk4() procedure has a small
but visible deviation from the constant value. On the other hand, midpoint()
seems to do an excellent job of conservation. We note that midpoint() and rk4()

were assigned a fixed number of steps n = 20, 000, while ode23() and ode45()

adaptively chose n = 21, 266 and n = 24, 909 steps of varying size.

6.2. Lotka Volterra Conservation. The Lotka Volterra system is a predator-
prey model, with a stable equilibrium point [16, 41]. Depending on the initial
condition, the resulting solution follows an orbit about the equilibrium point. There
can be sharp curves in the orbit shape when one of the variables is near zero; an
ODE solver that does not round such a curve accurately can gradually wander away
from the correct orbit. The conserved quantity is not simply the total population,
but is expressed in a more complicated formula involving logarithms (see Table 4).
Hence it is not of the quadratic type for which the midpoint method can promise
exact conservation.

We begin with a short time interval, 0 ≤ t ≤ 10. The backward euler() and
euler() methods use n = 1000 steps, midpoint() with n = 100, and ode45()

adaptively chooses n = 137 steps. The left hand plot in Figure 2 illustrates this
test.

We repeat the test over the more challenging interval 0 ≤ t ≤ 2, 000. The MAT-
LAB solver ode23() was originally one of the “contestants”, but could not com-
plete the calculation in a reasonable time. Therefore, it was replaced by ode23s(),

306 JOHN BURKARDT, WENLONG PEI, AND CATALIN TRENCHEA

0 1 2 3 4 5 6 7 8 9 10

<-- T -->

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

<
--

 H
(T

)
--

>

backward Euler
Euler
midpoint
ode45
constant

0 200 400 600 800 1000 1200 1400 1600 1800 2000

<-- T -->

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

<
--

 H
(T

)
--

>

midpoint
ode23s
ode45
rk4
constant

0 200 400 600 800 1000 1200 1400 1600 1800 2000

<-- T -->

-86

-85.5

-85

-84.5

-84

-83.5

-83

<
--

 H
(T

)
--

>

midpoint
ode45
rk4
constant

Figure 2. Lotka Volterra conservation.

a related low-order method that is suitable for stiff problems. The results of this
comparison are on the middle plot in Figure 2.

As in the previous conservation test, backward euler() and euler() do poorly,
with the first “losing” and the second ”gaining” energy, while midpoint() and
ode45() seem to be on target. The longer time interval shows that this problem is
more challenging. All the methods tested show deviation, with ode23s() far out.
Although it is scarcely perceptible in the plot, midpoint(), ode45() and rkf() all
seem to be losing energy, at roughly the same rate. This becomes clear in a close
up of the results, displayed in the right hand plot in Figure 2.

The thickness of the line for the midpoint() results actually indicates that the
computed result aside from its gradual decline, also has an oscillation in value
whose amplitude is too low to be clearly seen. Meanwhile, rk4() seems to be on a
corresponding gradual increasing energy curve. The ode45() results deviate, after
a few sudden jolts, and then seem to level off. Overall, these results show both that
the problem is difficult (sharp turns, non-quadratic conservation law) and that the
better ODE methods perform relatively well, though not perfectly.

6.3. Nonlinear Pendulum Conservation. While the conservation quantity for
the linear pendulum is quadratic in the unknowns, the more nonlinear pendulum
[4,42] involves the cosine function. Moreover, the behavior of the nonlinear system
deviates markedly from the linear system as its energy is increased; in particular,
if the energy approaches the amount sufficient for the pendulum to reach the full
upright position, the period of the system increases without limit. For our tests,

A STRESS TEST FOR THE MIDPOINT TIME-STEPPING METHOD 307

0 5 10 15 20 25 30 35 40 45 50

<-- T -->

0

5

10

15

20

25

30

35

40

45

<
--

 H
(T

)
--

>

backward Euler
Euler
midpoint
ode45
constant

0 200 400 600 800 1000 1200 1400 1600 1800 2000

<-- T -->

0

10

20

30

40

50

60

<
--

 H
(T

)
--

> midpoint
ode23s
ode45
rk4
constant

Figure 3. Nonlinear pendulum conservation.

we chose to challenge the system by imposing an initial energy that was 0.9998%
of the flip-over energy.

We begin with a short time interval, 0 ≤ t ≤ 50. The backward euler() and
euler() methods use n = 5000 steps, midpoint() with n = 700, and ode45()

adaptively chooses n = 709 steps. The results are plotted in the left hand of
Figure 3.

We repeat the test over the more challenging interval 0 ≤ t ≤ 2, 000, replacing
backward euler() and euler() with ode23s() and rk4(), with the results in the
right hand of Figure 3.

For the short time interval test, the Euler routines again diverge up and down,
while midpoint() and ode45() are indistinguishable from the exact constant line.
The long time test, however, shows ode45() taking a steep path to a spurious,
seemingly stable solution of much higher energy, while midpoint() remains fixed
on the exact energy. The rk4() solver shows a gradual decrease in energy, while
ode23s() takes a strong drop and then levels off.

The conservation quantity for this problem is not quadratic. Hence the midpoint()
method cannot expect perfect conservation, and yet it seems to do a remarkably
good job, particularly in comparison to the other solvers.

6.4. Double Pendulum Conservation. The double pendulum problem [1] rais-
es the difficulty level by modeling a system in which one nonlinear pendulum is
attached to another, and the system is given an initial motion. The mass and
lengths of both pendulums are parameters that can be varied. At low energy, the
system is somewhat similar to the nonlinear pendulum, but given sufficient energy,
a variety of “flip overs” can be observed, and the behavior of the system approaches
chaos. Nonetheless, the system conserves energy, so even if the exact solution is
not known, an ODE solver can be judged at least by how well it keeps the energy
constant.

Using our more reliable solvers, we will consider three tests, involving an increas-
ing initial energy. These results are displayed in Figure 4.

The first test, at an energy level h ≈ −47.8, shows all four solvers tracking the
energy very well. In the second test, with h ≈ −37.1, the ode23s() energy begins to
decay, but the ode45() energy rises dramatically. For the final test, at h ≈ −27.6.

308 JOHN BURKARDT, WENLONG PEI, AND CATALIN TRENCHEA

0 100 200 300 400 500 600

<-- T -->

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

<
--

 H
(T

)
--

> midpoint
ode23s
ode45
rk4
constant

0 100 200 300 400 500 600

<-- T -->

-40

-35

-30

-25

-20

-15

-10

-5

0

<
--

 H
(T

)
--

> midpoint
ode23s
ode45
rk4
constant

0 100 200 300 400 500 600

<-- T -->

-40

-30

-20

-10

0

10

20

<
--

 H
(T

)
--

> midpoint
ode23s
ode45
rk4
constant

Figure 4. Double pendulum conservation with three energy levels.

Initially, the ode45() energy explodes, ode23s() and rk4() are both losing energy,
but midpoint() steadily tracks the original energy value.

6.5. Conservation Overview. Of course, the true goal of an ODE solver is direct
estimation of the solution variable. The conservation quantity is only a projection
of the solution; but it is a computable, testable value, whereas, except in academic
problems, the exact solution to the ODE is unknown. A poor conservation result
may be our principal warning that the ODE solution is untrustworthy. While
higher degree ODE solvers may promise accurate solutions at a lower cost, we may
have no independent checks to apply if we cannot rely on conservation. Hence, the
midpoint method can be recommended as doing a generally trustworthy treatment
of the more common conservation quantities.

7. Error Estimation

The fact that the midpoint method is (nonlinearly) B-stable and (linearly) A-
stable is of paramount importance for accurate computations. As the midpoint
method’s region of absolute stability is exactly the left half-plane, and the region of
instability is the right half-plane, it is ideal for both stable and unstable problems.
For example, in [54], Watanabe points out that a certain one-leg k−steps method,
with a region of instability containing a small portion of the left half-plane, even
with an adaptive algorithm, yields inaccurate solutions. Namely, for ‘a system
where the eigenvalues have large imaginary components and small negative real
components, the solution would grow rather than decay as it should.’

A STRESS TEST FOR THE MIDPOINT TIME-STEPPING METHOD 309

The other major issue mentioned in [54], in relation with stiff and unstable
problems, is the importance of error estimators and tolerances: ‘the detection of
positive eigenvalues is sensitive to the error tolerance and the details of the New-
ton iteration’. The refactorization of the midpoint method in [9] proved that the
correct estimator for the local truncation error is the differentiation defect, and it
does not involve the interpolation defect [14]. The midpoint method error constant
was shown [9] to be 1

24 , compared to the trapezoidal method’s error constant − 1
12 ,

given by Dahlquist’s first barrier [13]. Moreover, the midpoint method’s error con-
stant is the smallest among all variable-step G-stable one-leg second-order accurate
multistep methods [35].

1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1
108

ode45
ode23s
midpoint
exact solution

1.5955 1.596 1.5965 1.597
-6

-4

-2

0

2
107

1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
108

ode45
ode23s
midpoint
exact solution

1.5955 1.596 1.5965 1.597

-15

-10

-5

0
107

Figure 5. The first two components of the solution to the Lind-
berg’s example: ode45(), ode23s(), adaptive midpoint and the
exact solution.

In [54] Watanabe compared the performance of two time-adaptive codes on the
Lindberg problem [39] from the stability and error estimator viewpoints. ‘The
stability properties of the one-leg formulas are thus not ideal, but these formulas are
more likely to warn the user of possible difficulties when the eigenvalues approach
the right half-plane’. Also, ‘we have observed that decreasing the error tolerance,
evaluating the Jacobian by numerical differentiation, or increasing the number of
Newton iterations can delay the growth of the computed solution’. The Lindberg
example is a four component stiff ODE system, in which eigenvalues change from
large negative values 10−4 to large positive values 104 as t increases. Even for local
error tolerances of order 1.0e− 12, one of the algorithms in [54] failed to detect the
presence of large positive eigenvalues and produced decaying solutions.

The precision of an error estimator is paramount for the stability and overall
performance of adaptive algorithms [18, 19, 26]. We tested our error estimator and
the adaptive midpoint method [6, 9, 35] on the Lindberg example. In Figure 5 we
compare the solutions of ode45() and the stiff solver ode23s(), both with relative
tolerance 10−10 and absolute tolerance 10−15, versus the adaptive midpoint method
with tolerance 10−14, and the exact solution. Neither ode45() nor ode23s() diag-
nose the presence of large positive eigenvalues, giving the incorrect zero solutions.
The adaptive midpoint with a comparable tolerance for the absolute error estimator
notices the change in the eigenvalues and stays close to the exact solution.

310 JOHN BURKARDT, WENLONG PEI, AND CATALIN TRENCHEA

8. Adaptive Stepsize

We compare the solutions obtained with the constant stepsize (‘midpoint’) ver-
sus the adaptive midpoint (‘midpointVS’) methods, for the Van Der Pol’s equation
x′ = y, y′ = µ(1−x2)y−x, where x(0) = 2, y(0) = 0, and µ = 1000. This problem is
considered to be very stiff (see e.g., [3,11,23,53]) when the parameter µ is this big.
Both solutions are computed with the same number of time steps, and the adaptive
algorithm is the one described in [9], with an absolute tolerance of 1.0e-6. The local
truncation error was evaluated by the differentiation defect [9], by comparing the
midpoint and the Adams-Bashforth 2 solutions. The plots in Figure 6 also show
the solutions obtained with the ode45() and ode23s() algorithms, which overlap
with the adaptive midpoint solution. The number of ode45() steps is of the same
order, only slightly larger than the number of the midpoint steps. Although the
constant step algorithm computes correctly the amplitude of the solution, there is
an increasing error in the phase.

0 5000 10000 15000
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

ODE45
ode23s
midpoint
midpointVS

0 5000 10000 15000
-1500

-1000

-500

0

500

1000

1500

ODE45
ode23s
midpoint
midpointVS

Figure 6. The components of the solution to the Van Der Pol’s
equation, with fixed step size midpoint and adaptive midpoint.

9. Stability

Dahlquist et al. used in [49] a simple ODE example, from Stetter [15, pp. 181-
182], to argue in favor of one-leg multistep methods versus linear multistep methods,
when considering variable time steps. The equation is non-autonomous y′ = λ(t)y,
with Reλ(t) ≤ 0, and therefore is stable. Nonetheless, with the particular choice
of time steps h2m = 7, h2m+1 = 1

2 , and with the values of λ(t) being such that
λ(t2m) = 0, λ(t2m+1) = −1, the trapezoidal method is unstable resulting in y2m =
(−2)my0, while the midpoint method, with the same choice of time steps is stable
|ym+1| ≤ |ym|. This is illustrated in Figure 7.

A STRESS TEST FOR THE MIDPOINT TIME-STEPPING METHOD 311

0 5 10 15 20 25 30 35 40

<-- t -->

-40

-30

-20

-10

0

10

20

<
--

 y
(t

)
--

>
midpoint
trapezoidal

Figure 7. The Stetter [15] example with variable time steps: the
trapezoidal method is unstable, while the midpoint method is sta-
ble.

10. Conclusion

In [9], a number of claims were made about the implicit midpoint method. This
discussion provides concrete implementations, example problems, and numerical
results that back up those claims.

One important assertion in [9] was on the unconditional A- and B-stability of the
midpoint method, which is a critical ingredient in the convergence of any numerical
method. This means that the midpoint method, with constant or with variable
time steps, is both linearly and nonlinearly stable. In Section 9 we showed on the
Stetter example [15] that the variable step trapezoidal method is unstable, while
the midpoint method is stable.

The midpoint method is a symplectic method for general Hamiltonian systems,
conserving all quadratic Hamiltonians. In Section 6 we compared the performance
of the constant step midpoint method versus the backward- and forward-Euler,
Runge-Kutta 4 method, and also Matlab’s adaptive algorithms ode45, ode23, and
the stiff solver ode23s. The test problems were the rigid body problem, the Lotka-
Volterra predator-prey model, the nonlinear simple pendulum, and the double pen-
dulum.

The refactorization of the midpoint method in [9] proved that the correct es-
timator for the local truncation error is only the differentiation defect, and does
not involve the interpolation defect [14]. In Section 7 we evaluated the importance
of a performant error estimator for adaptive algorithms [18, 19, 26]. We tested the
variable-step midpoint method with tolerance 10−14 versus ode45 and ode23s, both
with relative tolerance 10−15 and absolute tolerance 10−15 on the Lindberg exam-
ple [39]. A comparison of constant versus adaptive step versions of the midpoint
method is provided in Section 8, on a stiff case of the Van Der Pol’s equation.

11. Source Code

Source code for the example problems and some of the tests presented is available
in subdirectories of
https://people.sc.fsu.edu/∼jburkardt/. In particular, going to the indicated web

https://people.sc.fsu.edu/~jburkardt/

312 JOHN BURKARDT, WENLONG PEI, AND CATALIN TRENCHEA

page will enable you to download the source code for the midpoint method, and to
navigate to associated test codes, results, and plots:

• Freefem++: /freefem src/midpoint/midpoint.html

• MATLAB: /m src/midpoint/midpoint.html

• Octave: /octave src/midpoint/midpoint.html

• Python: /py src/midpoint/midpoint.html

• R: /r src/midpoint/midpoint.html

The “free software” GNU Scientific Library (GSL) [20] includes an implemen-
tation of the implicit midpoint method, which they term the “implicit Gaussian
second order Runge Kutta method”. The algorithm is accessible under the name
gsl odeiv2 step rk2imp. An example applied to the van der Pol equation is avail-
able at /c src/midpoint gsl test/midpoint gsl test.html.

Acknowledgments

Wenlong Pei was partially supported by the NSF grant 2110379.

References

[1] Vladimir Igorevich Arnold. Mathematical methods of classical mechanics, volume 60 of
Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1989. Translated
from the Russian by K. Vogtmann and A. Weinstein.

[2] Uri M. Ascher. Numerical methods for evolutionary differential equations, volume 5 of Com-

putational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2008.

[3] J. Van der Mark B. Van der Pol. Frequency demultiplication. Philos. Mag., 120:363C364,
1927.

[4] Augusto Beléndez, Carolina Villalobos, David Méndez, Tarsicio Vázquez, and Cristian Neipp.
Exact solution for the nonlinear pendulum. Revista Brasileira de Ensino de F́ısica, 29, 01
2007.

[5] Pavel B. Bochev and Clint Scovel. On quadratic invariants and symplectic structure. BIT,

34(3):337–345, 1994.
[6] Martina Bukač, Anyastassia Seboldt, and Catalin Trenchea. Refactorization of Cauchy’s

Method: A Second-Order Partitioned Method for Fluid-Thick Structure Interaction Prob-
lems. J. Math. Fluid Mech., 23(3):64, 2021.

[7] Martina Bukač and Catalin Trenchea. Boundary update via resolvent for fluid–structure
interaction. J. Numer. Math., 29(1):1–22, 2021.

[8] Martina Bukač and Catalin Trenchea. Adaptive, second-order, unconditionally stable parti-

tioned method for fluid-structure interaction. Comput. Methods Appl. Mech. Engrg., 393:Pa-
per No. 114847, 2022.

[9] John Burkardt and Catalin Trenchea. Refactorization of the midpoint rule. Appl. Math.
Lett., 107:106438, 2020.

[10] Claudio Canuto, Mohammed Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang. Spec-
tral methods. Scientific Computation. Springer, Berlin, 2007. Evolution to complex geometries
and applications to fluid dynamics.

[11] Mary Lucy Cartwright. Balthazar van der Pol. J. London Math. Soc., 35:367–376, 1960.

[12] John Crank and Phyllis Nicolson. A practical method for numerical evaluation of solutions
of partial differential equations of the heat-conduction type. Proc. Cambridge Philos. Soc.,
43:50–67, 1947.

[13] Germund G. Dahlquist. A special stability problem for linear multistep methods. Nordisk

Tidskr. Informationsbehandling (BIT), 3:27–43, 1963.
[14] Germund G. Dahlquist. On one-leg multistep methods. SIAM J. Numer. Anal., 20(6):1130–

1138, 1983.

[15] Germund G. Dahlquist, Werner Liniger, and Olavi Nevanlinna. Stability of two-step methods
for variable integration steps. SIAM J. Numer. Anal., 20(5):1071–1085, 1983.

A STRESS TEST FOR THE MIDPOINT TIME-STEPPING METHOD 313

[16] Fasma Diele, Marcus R. Garvie, and Catalin Trenchea. Numerical analysis of a first-order in
time implicit-symplectic scheme for predator–prey systems. Comput. Math. Appl., 74(5):948–

961, 2017.
[17] John W. Eaton, David Bateman, Soren Hauberg, and Rik Wehbring. GNU Octave version

4.2.1 manual: a high-level interactive language for numerical computations (2017). http-
s://www.gnu.org/software/octave/doc/v4.2.1/.

[18] Wayne H. Enright. Analysis of error control strategies for continuous Runge-Kutta methods.
SIAM J. Numer. Anal., 26(3):588–599, 1989.

[19] C. William Gear and K. W. Tu. The effect of variable mesh size on the stability of multistep
methods. SIAM J. Numer. Anal., 11:1025–1043, 1974.

[20] Mark Gelassi, Jim Davies, James Tyler, Bryan Gough, Reid Priedhorsky, Gerard Jungman,
Michael Booth, and Fabrice Rossi. GNU Scientific Library Reference Manual, volume Third
Edition. 2009.

[21] Roland Glowinski. Numerical methods for nonlinear variational problems. Springer Series in

Computational Physics. Springer-Verlag, New York, 1984.
[22] Max D. Gunzburger. Navier-Stokes equations for incompressible flows: finite-element meth-

ods. In Handbook of computational fluid mechanics, pages 99–157. Academic Press, San

Diego, CA, 1996.
[23] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration,

volume 31 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2010.
Structure-preserving algorithms for ordinary differential equations, Reprint of the second

(2006) edition.
[24] Frédéric Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–265, 2012.
[25] John G. Heywood and Rolf Rannacher. Finite-element approximation of the nonstationary

Navier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J.

Numer. Anal., 27(2):353–384, 1990.
[26] Desmond J. Higham. Robust defect control with Runge-Kutta schemes. SIAM J. Numer.

Anal., 26(5):1175–1183, 1989.
[27] Johan Hoffman and Claes Johnson. Computational turbulent incompressible flow, volume 4

of Applied Mathematics: Body and Soul. Springer, Berlin, 2007.
[28] Willem Hundsdorfer and Jan Verwer. Numerical solution of time-dependent advection-

diffusion-reaction equations, volume 33 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin, 2003.

[29] Volker John. Finite element methods for incompressible flow problems, volume 51 of Springer
Series in Computational Mathematics. Springer, Cham, 2016.

[30] Eugenia Kalnay. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge

University Press, 2003.
[31] Pentti Laasonen. Über eine Methode zur Lösung der Wärmeleitungsgleichung. Acta Math.,

81:309–317, 1949.
[32] Alexander Labovsky and Catalin Trenchea. Large eddy simulation for turbulent magnetohy-

drodynamic flows. J. Math. Anal. Appl., 377(2):516–533, 2011.
[33] William Layton. Introduction to the numerical analysis of incompressible viscous flows,

volume 6 of Computational Science & Engineering. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 2008. With a foreword by Max Gunzburger.

[34] William Layton, Wenlong Pei, Yi Qin, and Catalin Trenchea. Analysis of the variable step
method of Dahlquist, Liniger and Nevanlinna for fluid flow. Numer. Methods Partial Differ-
ential Equations, pages 1–25, 2021.

[35] William Layton, Wenlong Pei, and Catalin Trenchea. Refactorization of a variable step,

unconditionally stable method of Dahlquist, Liniger and Nevanlinna. Appl. Math. Lett.,
125:Paper No. 107789, 2022.

[36] William Layton and Leo Rebholz. Approximate Deconvolution Models of Turbulence :

Analysis, Phenomenology and Numerical Analysis. Springer Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2011.

[37] William Layton, Myron Sussman, and Catalin Trenchea. Bounds on energy, magnetic helicity
and cross helicity dissipation rates of approximate deconvolution models of turbulence for

MHD flows. Numer. Funct. Anal. Optim., 31(4-6):577–595, 2010.

314 JOHN BURKARDT, WENLONG PEI, AND CATALIN TRENCHEA

[38] Randall J. LeVeque. Finite difference methods for ordinary and partial differential equations.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007. Steady-state

and time-dependent problems.
[39] Bengt Lindberg. On a dangerous property of methods for stiff differential equations. Nordisk

Tidskr. Informationsbehandling (BIT), 14:430–436, 1974.
[40] Cleve Moler. Tumbling Box ODE. August 2015, http-

s://blogs.mathworks.com/cleve/2015/08/10/ tumbling-box-ode/.
[41] James Dickson Murray. Mathematical biology. I, volume 17 of Interdisciplinary Applied

Mathematics. Springer-Verlag, New York, third edition, 2002. An introduction.
[42] Karlheinz Ochs. A comprehensive analytical solution of the nonlinear pendulum. European

Journal of Physics, 32(2):479–490, feb 2011.
[43] Python Software Foundation. Python Language Reference, version 3.9.4. http-

s://www.python.org.
[44] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics, volume 37 of

Texts in Applied Mathematics. Springer-Verlag, Berlin, second edition, 2007.
[45] Alfio Quarteroni and Alberto Valli. Numerical approximation of partial differential equations,

volume 23 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1994.

[46] R Core Team (2017). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria, https://www.R-project.org/.

[47] Lawrence F. Shampine and Marilyn K. Gordon. Computer solution of ordinary differential
equations. W. H. Freeman and Co., San Francisco, Calif., 1975. The initial value problem.

[48] Lawrence F. Shampine and Mark W. Reichelt. The MATLAB ODE suite. SIAM J. Sci.
Comput., 18(1):1–22, 1997. Dedicated to C. William Gear on the occasion of his 60th birthday.

[49] Hans J. Stetter. Analysis of discretization methods for ordinary differential equations.
Springer-Verlag, New York-Heidelberg, 1973. Springer Tracts in Natural Philosophy, Vol.

23.
[50] Gilbert Strang. Differential Equations and Linear Algebra. Wellesley-Cambridge Press, 2014.
[51] The MathWorks, Inc. MATLAB 2020a, Natick, Massachusetts, United States, http-

s://www.mathworks.com.

[52] Catalin Trenchea. Partitioned conservative, variable step, second-order method for magneto-
hydrodynamics in Elsässer variables. ROMAI J., 15(2):117–137, 2019.

[53] Balthasar van der Pol. A theory of the amplitude of free and forced triode vibrations, 1 (1920)
701C710. Radiol. Rev., 1:701–710, 1920.

[54] Daniel S. Watanabe and Qasim M. Sheikh. One-leg formulas for stiff ordinary differential
equations. SIAM J. Sci. Statist. Comput., 5(2):489–496, 1984.

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
E-mail : jvb25@pitt.edu and wep17@pitt.edu and trenchea@pitt.edu

	1. Introduction
	2. The midpoint method and its ``relatives''
	3. Implementation
	4. Sample Problems
	5. Sample Problem Data
	6. Conservation
	6.1. Rigid Body Conservation
	6.2. Lotka Volterra Conservation
	6.3. Nonlinear Pendulum Conservation
	6.4. Double Pendulum Conservation
	6.5. Conservation Overview

	7. Error Estimation
	8. Adaptive Stepsize
	9. Stability
	10. Conclusion
	11. Source Code
	Acknowledgments
	References

