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Abstract. We consider in this paper random batch particle methods for efficiently solv-
ing the homogeneous Landau equation in plasma physics. The methods are stochastic
variations of the particle methods proposed by Carrillo et al. [J. Comput. Phys.: X 7:
100066, 2020] using the random batch strategy. The collisions only take place inside
the small but randomly selected batches so that the computational cost is reduced to
O(N) per time step. Meanwhile, our methods can preserve the conservation of mass,
momentum, energy and the decay of entropy. Several numerical examples are per-
formed to validate our methods.
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1 Introduction

The Fokker-Planck-Landau equation, originally derived by Landau [28], is a fundamen-
tal integro-differential equation describing the evolution of the distribution for charged
particles in plasma physics [37]. It models the binary collisions between charged parti-
cles with long-range Coulomb interaction, which is the grazing limit of the Boltzmann
equation [12,14,41]. Denote by f (t,x,v) the mass distribution of charged particles at time
t, position x with velocity v, the Fokker-Planck-Landau equation is

∂t f +v·∇x f +F ·∇v f =Q( f , f ) (1.1)

∗Corresponding author. Email addresses: carrillo@maths.ox.ac.uk (J. A. Carrillo), shijin-m@sjtu.edu.cn
(S. Jin), yijia tang@sjtu.edu.cn (Y. Tang)

http://www.global-sci.com/cicp 997 c©2022 Global-Science Press



998 J. A. Carrillo, S. Jin and Y. Tang / Commun. Comput. Phys., 31 (2022), pp. 997-1019

with the Landau collision operator

Q( f , f )=∇v ·
(

∫

Rd
A(v−v∗)( f (v∗)∇v f (v)− f (v)∇v∗ f (v∗))dv∗

)

. (1.2)

Eq. (1.1) is a mean-field kinetic equation. The left-hand side is the Vlasov equation mod-
eling the transport of charged particles, where F is the acceleration due to external or
self-consistent forces under the effects of electrostatic and magnetic fields. The Landau
collision operator Q( f , f ) describes the binary collisions between charged particles of sin-
gle species with long-range Coulomb interactions. The collision kernel

A(z)=Λ|z|γ(|z|2 Id−z⊗z), −d−1≤γ≤1, Λ>0, d≥2,

is symmetric positive semi-definite, A(z) = A(−z), kerA(z) =Rz. Similar to the Boltz-
mann equation, γ>0, γ=0, γ<0 represents the hard potential, Maxwell molecules and
soft potential case respectively. The Coulomb potential where d = 3, γ=−3 is of great
significance since it is relevant in physical plasma applications [12].

In the numerical aspect of Eq. (1.1), the approximation of the nonlocal quadratic Lan-
dau collision operator Q( f , f ) is a major difficulty. Therefore, in this paper, we only focus
on the spatially homogeneous Landau equation

∂t f =Q( f , f ). (1.3)

It is well-known that Eq. (1.3) has conservation of mass, momentum and energy since
∫

Rd Q( f , f )(1,v,|v|2)dv=0. The Boltzmann entropy

E( f )=
∫

Rd
f log f dv

is dissipated through

dE

dt
=−D=−1

2

∫∫

R2d
Bv,v∗ ·A(v−v∗)Bv,v∗ f f∗dvdv∗≤0.

Here,

Bv,v∗=∇v
δE

δ f
−∇v∗

δE∗
δ f∗

,
δE

δ f
= log f +1,

and f∗= f (v∗), E∗=E( f∗) for short. Moreover, f is the equilibrium of (1.3) if and only if
f is given by the Maxwellian

Mρ,u,T =
ρ

(2πT)d/2
exp

(

−|v−u|2
2T

)

(1.4)

with ρ (density), u (velocity), T (temperature) determined from the conserved mass, mo-
mentum and total energy defined respectively by

ρ=
∫

Rd
f dv, ρu=

∫

Rd
v f dv, ρu2+ρdT=

∫

Rd
|v|2 f dv.
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The well-posedness of the homogeneous Landau equation in the hard potential [16, 17]
and Maxwell molecule [42] cases are well-understood resorting to the notion of H-solution
proposed by Villani [41]. In the soft potential case, there are still lots of open questions.
It has been partially resolved by probabilistic techniques [21] and entropy dissipation
estimate [15].

Various numerical methods have been proposed for the homogeneous Landau equa-
tion. The entropy schemes [3, 13] are widely used to provide a decay of numerical en-
tropy. Moreover, they can preserve the conserved quantities and the stationary states
are discrete Maxwellians. There are conservative implicit schemes [30] as well. To over-
come the stiffness of the collision operator and capture the fluid dynamic limit, a class of
asymptotic-preserving schemes [27] are introduced. Furthermore, a stochastic Galerkin
method is developed to deal with the Landau equation with uncertainties [23]. However,
how to solve Eq. (1.3) efficiently remains a major concern. The complexity of evaluating
the quadratic collision operator Q( f , f ) is of O(N2) where N is the number of discrete ve-
locity points. Some fast algorithms are investigated for reducing the cost to O(N logN)
including the multigrid algorithm [4] and the one combined with fast multipole expan-
sion [29]. A Fourier spectral method is developed in [39], which is O(N logN) by using
the fast Fourier transform thanks to the convolutional property. Recently, an Hermite
spectral method [35] is presented, where surrogate collision models are used to acceler-
ate the computation. For the nonhomogeneous case, time splitting strategies are adopted,
we refer readers to [18, 20, 23, 34, 43].

Particle methods have received profound development in the past several decades,
see the review paper [11] and the references therein. In the particle methods, the solution
is approximated by the linear combination of Dirac delta-functions located at the parti-
cles. The particle locations and weights are evolved in time according to the ODE systems
obtained from the weak formulation of the target equation. For diffusive-type equations,
it seems that the existing particle methods do not keep the gradient flow structure of the
equation except for the porous medium equation [38]. In order to make sense of the en-
tropy functional and maintain the gradient flow structure of the homogeneous Landau
equation at the particle level, Carrillo et al. [5] provided two kinds of regularizations of
the entropy functional following [9]. Hence, the deterministic particle methods can pre-
serve the basic properties of the Landau equation. Carrillo et al. [8] rigorously studied
the gradient flow structure under a tailored metric inspired by that to the Boltzmann
equation [19]. The gradient flow structures of both equations are rigorously connected
through the grazing collision limit via Γ-convergence of the gradient flows [7].

Though having the good properties, the cost of the particle method in [5] is O(N2).
With the help of treecode summation, it can be reduced to O(N logN). Motivated by
the random batch method (RBM) [24], our objective is to introduce a stochastic particle
method for the homogeneous Landau equation with only O(N) cost. RBM is devoted
to simplifying the pair-wise interactions between particles. Utilizing small but randomly
selected–for each time step– batch strategy, the interactions only occur inside the small
batches so that the computational cost is reduced from O(N2) to O(N) per time step. Us-
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ing a random mini-batch was popular in machine learning, known as the stochastic gra-
dient descent method [2]. The random binary collision idea was also proposed for mean-
field equations of flocking and swarming [1, 6]. Due to the simplicity and scalability,
it already has a variety of applications in solving mean-field Poisson-Nernst-Planck and
Poisson-Boltzmann equations [33], efficient sampling [31,32], molecular dynamics [25,36]
and so on, see [26] for the recent review of RBM.

In this paper, we propose random batch particle methods for the homogeneous Lan-
dau Eq. (1.3). The random batch idea can be applied to both types of regularizations of
the entropy functional introduced in [5]. It is used to reduce the cost of binary collisions.
In addition, taking advantage of the rapid decay property of the mollifier, we further
reduce the cost of approximation to the solution and the cost of the gradient of the first
variation of the regularized entropy. Hence, the final cost is O(N) per time step. As we
shall see, the random batch particle methods can retain the conserved quantities as well.

The rest of the paper is organized as follows. In Section 2, we briefly introduce two
types of the regularized homogeneous Landau equations and the corresponding particle
methods they induce. In Section 3, the random batch particle methods are introduced
and we also study their conservation and dissipation properties. Numerical examples
are given in Section 4, which validate the efficiency and accuracy of our random batch
particle methods. The paper is concluded in Section 5.

2 The regularized homogeneous Landau equations and their

particle approximations

2.1 The regularized homogeneous Landau equations

In this section, we give a brief review of the regularized homogeneous Landau equations
in [5]. Rewrite Eq. (1.3) as a nonlinear continuity equation

∂t f =Q( f , f )=−∇v ·(U( f ) f ), (2.1)

with velocity field

U( f )=−
∫

Rd
A(v−v∗)

(

∇v
δE

δ f
−∇v∗

δE∗
δ f∗

)

f∗dv∗.

As mentioned in the introduction, one can easily obtain a formal gradient flow structure
and generalize to the regularized equations using this form [8].

Consider the mollifier

ψǫ(v)=
1

(2πǫ)d/2
exp

(

−|v|2
2ǫ

)

. (2.2)
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We can take into consideration two types of regularizations. Define the regularized en-
tropy as follows:

type I: Eǫ( f )=
∫

Rd
( f ∗ψǫ)log( f ∗ψǫ)dv; (2.3)

type II: Ẽǫ( f )=
∫

Rd
f log( f ∗ψǫ)dv. (2.4)

Here, the operator ∗ represents for convolution. Apparently, f ∗ψǫ is smooth. By a simple
computation, one has [9]

δEǫ

δ f
=ψε∗(log( f ∗ψǫ)+1), ∇δEǫ

δ f
=∇ψε∗log( f ∗ψǫ),

δẼǫ

δ f
= log( f ∗ψǫ)+

(

f

f ∗ψǫ

)

∗ψε, ∇δẼǫ

δ f
=

f ∗∇ψǫ

f ∗ψǫ
+

(

f

f ∗ψǫ

)

∗∇ψε.

Then the regularized homogeneous Landau equation of type I is given by

∂t f =Qǫ( f , f )=−∇v ·(Uǫ( f ) f ), (2.5)

where

Uǫ( f )=−
∫

Rd
A(v−v∗)

(

∇v
δEǫ

δ f
−∇v∗

δEǫ,∗
δ f∗

)

f∗dv∗.

Eq. (2.5) satisfies the following properties [5]:

1. Conservation of mass, momentum and energy:

d

dt

∫

Rd





1
v
|v|2



 f dv=0. (2.6)

2. Dissipation of entropy: let Bǫ
v,v∗=∇v

δEǫ
δ f −∇v∗

δEǫ,∗
δ f∗

, then

dEǫ

dt
=−Dǫ =−1

2

∫∫

R2d
Bǫ

v,v∗ ·A(v−v∗)Bǫ
v,v∗ f f∗dvdv∗≤0. (2.7)

3. The stationary state of (2.5) is characterized by a Maxwellian.

Similarly, the regularized homogeneous Landau equation of type II reads

∂t f = Q̃ǫ( f , f )=−∇v ·(Ũǫ( f ) f ), (2.8)

with

Ũǫ( f )=−
∫

Rd
A(v−v∗)

(

∇v
δẼǫ

δ f
−∇v∗

δẼǫ,∗
δ f∗

)

f∗dv∗.

Eq. (2.8) also shares the aforementioned conservation (2.6) and entropy dissipation (2.7)
with Eǫ being replaced by Ẽǫ.
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2.2 Deterministic particle methods

In order to numerically approximate the Landau equation, Carrillo et al. [5] derived two
deterministic particle methods based on the gradient flow structure of the regularized
Landau equations (2.5) and (2.8). The particle methods can preserve the basic conser-
vation and entropy decay properties of the Landau operator Q( f , f ). Now, we briefly
introduce these methods.

2.2.1 Type I method

Approximate f by the N particle formulation

f N(t,v)=
N

∑
i=1

wiδ(v−vi(t)). (2.9)

Here, vi(t) and wi are the velocity and weight of particle i, N is the total number of
particles. Then, the blob solution [9] can be constructed

f̃ N(t,v) := f N ∗ψ(t,v)=
N

∑
i=1

wiψǫ(v−vi(t))

so as to visualize the particle solution.

Plugging (2.9) into (2.5), one can obtain the evolution for the particle velocity

dvi(t)

dt
=Uǫ( f N)(vi(t))=−

N

∑
j=1

wj A(vi−vj)

[

∇δEN
ǫ

δ f
(vi)−∇δEN

ǫ

δ f
(vj)

]

, (2.10)

where

∇δEN
ǫ

δ f
(v)=

∫

Rd
∇ψǫ(v−u)log f̃ N(u)du. (2.11)

Furthermore, truncate the whole velocity space by a computational domain Ω=[−L,L]d

with L large enough. Applying the second order composite mid-point quadrature rule to
approximate the velocity integral in (2.11) yields

∇δĒN
ǫ

δ f
(v) :=

N

∑
l=1

hd∇ψǫ(v−vc
l )log f̃ N(vc

l )=∇δEN
ǫ

δ f
(v)+O(h2), (2.12)

where the mesh size is h = 2L/no with no = N1/d being the number of particles per di-
mension, the quadrature nodes vc

l , l = 1,··· ,N are the centers of square mesh. Eq. (2.10)
guarantees the conservation of discrete mass, momentum and energy exactly, while the
discrete entropy dissipates exactly with (2.11) or up to O(h2) with (2.12) [5].
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2.2.2 Type II method

Analogous to type I, the evolution for the particle velocity of type II is

dvi

dt
= Ũǫ( f N)(vi(t))=−

N

∑
j=1

wj A(vi−vj)

[

∇δẼN
ǫ

δ f
(vi)−∇δẼN

ǫ

δ f
(vj)

]

, (2.13)

where

∇δẼN
ǫ

δ f
(v)=

N

∑
k=1

wk
∇ψǫ(v−vk)

f̃ N(v)
+

N

∑
k=1

wk
∇ψǫ(v−vk)

f̃ N(vk)
.

Since there is no convolution outside logarithmic term in the regularized entropy (2.4),
this type of regularization is free of numerical quadrature in velocity. The discrete mass,
momentum and energy of (2.13) are conserved, while the discrete entropy is dissipated
exactly too [5].

3 Random batch particle methods for the regularized

homogeneous Landau equation

In either (2.10) or (2.13), one needs to sum over all the particles vj to evolve particle vi,
which leads to an O(N2) computational cost for each time step. To significantly reduce
the cost, we apply the random batch method [24] to this summation. At each time step,
the N particles are randomly divided into q=N/p batches Cv, v=1,··· ,q with batch size
p≪N. Then particle vi will update itself only with those particles in the same batch.

3.1 Type I RBM

Mathematically, Eq. (2.10) is changed to

dvi(t)

dt
=U∗

ǫ ( f N)(vi(t))

=−N−1

p−1 ∑
j 6=i,j∈Cv

wj A(vi−vj)

[

∇δEN
ǫ

δ f
(vi)−∇δEN

ǫ

δ f
(vj)

]

, i∈Cv. (3.1)

Since the interactions only take place with the batch of p particles, the computational cost
is O(p2 ·q)=O(pN) per time step.

Here, we explain why RBM works. Define the fluctuation of the random force on vi

by
χi=U∗

ǫ ( f N)−Uǫ( f N).

Similar to [24, Lemma 3.1], we have

E(χi)=0, Var(χi)=E|χi|2=
(

1

p−1
− 1

N−1

)

Λi, (3.2)
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where

Λi =
1

N−2 ∑
j:j 6=i

∣

∣

∣
(N−1)wj A(vi−vj)BN

ij − ∑
k:k 6=i

wk A(vi−vk)BN
ik

∣

∣

∣

2
,

with BN
ij =∇ δEN

ǫ
δ f (vi)−∇ δEN

ǫ
δ f (vj). The expectation is taken over random divisions. E(χi)=

0 indicates that the random force U∗
ǫ ( f N) is unbiased. Λi is independent of the batch size

p, so the variance is smaller for larger p. Since the cross-batch interactions are neglected,
the approximation error is O(1) for a single time step. We do random reshuffling at
each time step so that any two particles will have the chance to interact with each other.
As the random force is unbiased, the random errors will roughly cancel out over time.
It means that RBM works due to the ”law of large numbers” type mechanism in time.
In other words, RBM can be regarded as sampling in time with the Monte Carlo rate√

Variance·∆t∼
√

∆t/p. The convergence of RBM has already been proved in [24,31,32]
for regular forces. Moreover, the error bound is uniform in N so that one can choose the
time step ∆t and the batch size p independent of N, see [24].

Next, we show that the random batch particle method (3.1) retains the basic conser-
vation and entropy decay properties. Define the indicator function

Iij =

{

1, i, j in the same batch,

0, i, j not in the same batch.

Then, (3.1) can be rewritten as

dvi(t)

dt
=U∗

ǫ ( f N)(vi(t))=−N−1

p−1

N

∑
j=1

wj Iij A(vi−vj)BN
ij . (3.3)

The next proposition shows that (3.3) inherits the desired properties due to the symmetry
of Iij.

Proposition 3.1. The semi-discrete random batch particle method of type I (3.3) satisfies
the following properties:

1. Conservation of mass, momentum and energy:

d

dt

N

∑
i=1

wiφ(vi)=0 for φ(v)=1,v,|v|2 .

2. Dissipation of entropy: dEN
ǫ

dt =−D∗
ǫ ≤0, where

D∗
ǫ =

N−1

2(p−1)

N

∑
i=1

N

∑
j=1

wiwj IijB
N
ij ·A(vi−vj)BN

ij .
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Proof. 1. In fact,

d

dt

N

∑
i=1

wiφ(vi)=
N

∑
i=1

wi∇φ(vi)·U∗
ǫ ( f N)(vi)

=−N−1

p−1

N

∑
i=1

N

∑
j=1

wiwj Iij∇φ(vi)·A(vi−vj)BN
ij

=− N−1

2(p−1)

N

∑
i=1

N

∑
j=1

wiwj Iij

(

∇φ(vi)−∇φ(vj)
)

·A(vi−vj)BN
ij ,

which vanishes with φ(v)=1,v,|v|2 since v∈kerA(v).

2.

dEN
ǫ

dt
=
∫

Rd

N

∑
i=1

wi∇ψǫ(v−vi)·
(

−dvi(t)

dt

)

log f̃ N(v)dv

+
∫

Rd
f̃ N(v)

∑
N
k=1 wk∇ψǫ(v−vk)·

(

−dvk(t)
dt

)

f̃ N(v)
dv=: I1+ I2.

Note that

I2=−
N

∑
k=1

∫

Rd
wk∇ψǫ(v−vk)·

dvk(t)

dt
dv=

d

dt

N

∑
k=1

wk

∫

Rd
ψǫ(v−vk)dv=0,

since
∫

Rd ψǫ(v−vk)dv=1. Besides,

I1=
N

∑
i=1

wi

(

∫

Rd
−∇ψǫ(v−vi)log f̃ N(v)dv

)

·dvi

dt
=

N

∑
i=1

wi∇
δEN

ǫ

δ f
(vi)·

dvi

dt

=−N−1

p−1

N

∑
i=1

wi∇
δEN

ǫ

δ f
(vi)·

N

∑
j=1

wj Iij A(vi−vj)BN
ij

=− N−1

2(p−1)

N

∑
i=1

N

∑
j=1

wiwj IijB
N
ij ·A(vi−vj)BN

ij

=−D∗
ǫ ≤0.

This completes the proof of entropy dissipation.

Furthermore, approximating ∇ δEN
ǫ

δ f by ∇ δĒN
ǫ

δ f , we can obtain the random batch version

of the discrete-in-velocity particle method

dvi

dt
= Ū∗

ǫ ( f N)(vi)=−N−1

p−1

N

∑
j=1

wj Iij A(vi−vj)B̄N
ij , (3.4)

where B̄N
ij =∇ δĒN

ǫ
δ f (vi)−∇ δĒN

ǫ
δ f (vj)=BN

ij +O(h2).
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Proposition 3.2. (3.4) inherits the following properties:

1. Conservation of mass, momentum and energy:

d

dt

N

∑
i=1

wi





1
vi

|vi|2



=0.

2. Dissipation of entropy up to O(h2):

ĒN
ǫ (t)− ĒN

ǫ (0)=−
∫ t

0
D̄∗

ǫ ds+O(h2),

where

D̄∗
ǫ =

N−1

2(p−1)

N

∑
i=1

N

∑
j=1

wiwj Iij B̄
N
ij ·A(vi−vj)B̄N

ij ≥0.

Proof. The proof of conservation is the same as that in Proposition 3.1. The proof of
entropy decay is the discrete version of that in Proposition 3.1, while the O(h2) error is
brought by the mid-point composite quadrature rule in I2. To be specific,

I2=−
N

∑
k=1

wk

N

∑
l=1

hd∇ψǫ(v
c
l −vk)·

dvk

dt
=

d

dt

N

∑
k=1

wk

N

∑
l=1

hdψǫ(v
c
l −vk)=

d

dt

N

∑
k=1

wk(1+O(h2)).

3.2 Type II RBM

Like in type I, in order to update the particle velocity vi, one needs to sum over all the
particles vj, which is time-consuming. So we can adopt the random batch idea to reduce
the cost of (2.13) from O(N2) to O(pN) per time step. That is, at each time step, randomly
divide the N particles into q=N/p batches Cv. For each batch Cv, v=1,··· ,q, evolve the
particles in Cv through

dvi

dt
= Ũ∗

ǫ ( f N)(vi)

=− N−1

p−1 ∑
j 6=i,j∈Cv

wj A(vi−vj)

[

∇δẼN
ǫ

δ f
(vi)−∇δẼN

ǫ

δ f
(vj)

]

=− N−1

p−1

N

∑
j=1

wj Iij A(vi−vj)B̃N
ij , (3.5)

with B̃N
ij =∇ δẼN

ǫ
δ f (vi)−∇ δẼN

ǫ
δ f (vj).
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Define

χ̃i= Ũ∗
ǫ ( f N)−Ũǫ( f N).

Again, we have

E(χ̃i)=0.

Hence, the previous Monte Carlo interpretation still holds. Since the batches will be
chosen independently at each time step, the random errors will cancel out due to the
unbiased force approximation. The time averaging effect could ensure the convergence
of RBM with

√
Variance·∆t error. See [24].

Similarly, the random batch particle method of regularization type II (3.5) inherits the
desired properties due to the symmetry of Iij, i.e., Proposition 3.1 holds correspondingly.

3.3 Algorithms

A variety of time discretizations can be applied to solve the particle systems (2.10), (2.13)
or the random batch particle systems (3.4), (3.5). High order explicit schemes such as
the Runge-Kutta methods or multistep methods are expected to achieve high accuracy.
In this paper, for simplicity, we choose the first order forward Euler in time, which is
enough to compare the random batch and original particle methods. Indeed, it is able
to see the reduction of computational time with the lowest order in time. On the other
hand, in numerical examples, instead of considering convergence in time step, we only
take into account the convergence in particle number.

Since the structures of the particle methods are almost the same, we summarize them
into a general algorithm, see Algorithm I. And the details in each particle method are
listed in Tables 1-2. They are renamed as Algorithms 1 to 4 correspondingly.

Algorithm I The framework of particle method for the homogeneous Landau equation

Input Number of particles per dimension no, truncated length L> 0 (N = nd
o , h= 2L/no,

Ω=[−L,L]d). Start time t0 and terminal time tend, time step ∆t. Regularizing parameter
ǫ. Closeness parameter σ and batch size p≪N (for random batch cases).

Initialization Particles v0
i and corresponding weights wi, k=1,··· ,N.

At each time step n=0,1,··· ,⌊ tend−t0
∆t ⌋, do the following:

1: Compute the blob solution f̃ N .
2: Compute the gradient of the first variation of the regularized entropy.
3: Update the particle velocities.

Output Particle velocities at tend.

For Algorithms 1-2, direct computations of each step require O(N2) cost per time step
due to summation of N velocity points, as listed in the last column in Table 1. To save
the cost, we apply RBM to the summation of step 3. As stated in Section 3.1, the cost
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Table 1: The three steps in the loops of deterministic particle methods.

method step cost

Type I method
(Algorithm 1)

1. f c
l =

N

∑
k=1

wkψǫ(vc
l −vn

k ), ∀ l O(N2)

2. Fi =
N

∑
l=1

hd∇ψǫ(vn
i −vc

l )log f c
l , ∀ i O(N2)

3.
vn+1

i −vn
i

∆t
=−

N

∑
j=1

wj A(vn
i −vn

j )(Fi−Fj), ∀ i O(N2)

Type II method
(Algorithm 2)

1. fi =
N

∑
k=1

wkψǫ(vn
i −vn

k ), ∀ i O(N2)

2. Fi =
N

∑
k=1

wk∇ψǫ(vn
i −vn

k )
(

1
f i
+ 1

fk

)

, ∀ i O(N2)

3.
vn+1

i −vn
i

∆t
=−

N

∑
j=1

wj A(vn
i −vn

j )(Fi−Fj), ∀ i O(N2)

Table 2: The three steps in the loops of random batch particle methods.

method step cost

Type I RBM
(Algorithm 3)

1. f c
l = ∑

k∈Al

wkψǫ(vc
l −vn

k ), Al ={k :
∣

∣vc
l −vn

k

∣

∣≤σ}, ∀ l O(N)

2. Fi = ∑
l∈Bi

hd∇ψǫ(vn
i −vc

l )log f c
l , Bi ={l :

∣

∣vn
i −vc

l

∣

∣≤σ}, ∀i O(N)

3.
vn+1

i −vn
i

∆t
=−N−1

p−1
∑

j∈Cv

wj A(vn
i −vn

j )(Fi−Fj), i∈Cv O(pN)

Type II RBM
(Algorithm 4)

1. fi = ∑
k∈Ai

wkψǫ(vn
i −vn

k ), Ai={k :
∣

∣vn
i −vn

k

∣

∣≤σ}, ∀ i O(N)

2. Fi = ∑
k∈Ai

wk∇ψǫ(vn
i −vn

k )
(

1
f i
+ 1

fk

)

, ∀ i O(N)

3.
vn+1

i −vn
i

∆t
=−N−1

p−1
∑

j∈Cv

wj A(vn
i −vn

j )(Fi−Fj), i∈Cv O(pN)

is O(pN). The error bound of RBM is uniform in N so that we can choose batch size
p =O(1) independent of N. Besides, we make use of the rapid decay property of the
mollifier ψǫ to reduce the summation in steps 1 and 2. Denote σ as the velocity distance
to be considered in the summation of steps 1 and 2. Then, the blob solution and the
gradient of the first variation are computed using only the velocity points within σ to
the target velocity point. The computational cost is again O(N) per time step resorting
to the cell list data structure [22, Appendix F]. These give rise to Algorithms 3-4, whose
detailed steps are in Table 2. In Table 2, the sets Al,Bi,Ai are the indices of neighbors
within distance σ, while Cv are the random batches. If we choose p≪N, the overall cost
of Algorithms 3-4 will scale like O(N).
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Due to first order Euler in time, we have

Proposition 3.3. The discrete mass and momentum of the four algorithms are conserved
exactly, while the discrete energy is only conserved up to O(∆t). Namely,

∑
i

wi= const,

∑
i

wiv
n+1
i −∑

i
wiv

n
i

∆t
=0,

∑
i

wi

∣

∣

∣
vn+1

i

∣

∣

∣

2
−∑

i
wi

∣

∣vn
i

∣

∣

2

∆t
=O(∆t).

Proof. The mass conservation holds automatically. Denote

R(vi)=−N−1

p−1 ∑
j

wj Iij A(vi−vj)(Fi−Fj),

where p=N, Iij ≡1 for Algorithms 1-2. The Euler scheme is vn+1
i =vn

i +∆tR(vn
i ). Since

A(v)=A(−v), kerA(v)=Rv, Iij = Iji,

we have

∑
i

wiR(vi)=0, ∑
i

wivi ·R(vi)=0.

Hence,

∑
i

wiv
n+1
i =∑

i

wiv
n
i ,

∑
i

wi

∣

∣

∣
vn+1

i

∣

∣

∣

2
=∑

i

wi |vn
i |2+∆t2∑

i

wi |R(vn
i )|2 .

This implies that the discrete momentum is conserved and the discrete energy is con-
served up to O(∆t).

Remark 3.1. Higher order time discretizations lead to higher order results in energy con-
servation. Take the improved Euler method

{

v∗i =vn
i +∆tR(vn

i ),

vn+1
i = 1

2 vn
i +

1
2 v∗i +

1
2 ∆tR(v∗i ),

as an example. It follows from

∑
i

wi

∣

∣

∣
vn+1

i

∣

∣

∣

2
=∑

i

wi |vn
i |2+

1

4
∆t2∑

i

wi |R(v∗i )−R(vn
i )|2

that the discrete energy is conserved up to O(∆t3).
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4 Numerical experiments

In this section, we compare the particle methods in [5] and our random batch particle
methods for the two types of regularizations for the homogeneous Landau equation. We
give four classical numerical examples. It shows that our random batch particle methods
have almost second order accuracy as the deterministic particle methods while the cost
can be remarkably reduced to O(N).

Example 4.1 (2D BKW solution for Maxwell molecules). Consider the case when d= 2,
γ = 0, A(z) = 1

16(|z|2 Id−z⊗z). Requiring the macroscopic quantities to be ρ = 1, u = 0,
T=1 (thus

∫

Rd f |v|2dv= d=2), the exact solution of the homogeneous Landau equation
is given by

f ext(t,v)=
1

2πK
exp

(

−|v|2
2K

)(

2K−1

K
+

1−K

2K2
|v|2

)

, K=1− exp(−t/8)

2
.

Let t0=0, tend=5. The real distributions in [−4,4]2 are shown in Fig. 1.
First of all, we test the convergence and the computational cost with respect to particle

numbers. The number of particles per dimension is chosen as no =40,60,80,100,120,140,
160,180,200,220,240 respectively, the total particle number is N = n2

o. Set L= 8 for Algo-
rithms 1 and 3, L=10 for Algorithms 2 and 4. The truncated length L is chosen such that
the particles do not escape from the computational velocity domain Ω=[−L,L]2 during
the time span. We initialize the particle velocities uniformly in the support [−4,4]2, the
weights are given according to f ext(0,v). Let ∆t=0.01, the default regularization parame-
ter is ǫ=0.64h1.98 with h=2L/no as in [5]. Besides, in the random batch particle methods
(Algorithms 3 and 4), the closeness parameter is σ=4

√
ǫ, the number of batches per di-

mension qo = no/po is fixed as 5. Measured by the relative L2 norm between the exact
solution and the blob solution, the error is defined as

√

∑
N
l=1hd

∣

∣ f ext(t,vc
l )− f̃ N(t,vc

l )
∣

∣

2

√

∑
N
l=1hd

∣

∣ f ext(t,vc
l )
∣

∣

2
.

Figure 1: Left: initial distribution. Right: exact distribution at tend.
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Figure 2: Convergence result for Algorithms 1 and 3 when L= 8 and Algorithms 2 and 4 when L= 10. Left:
relative L2 error at tend = 5 with respect to particle number per dimension no; Right: CPU time (in seconds)
per time step with respect to particle number N.

Figure 3: Time evolution of the total energy (left), entropy (middle) and the relative L2 error (right) for
Algorithms 1-4 when no =120.

Figure 4: Time evolution of the total energy (left), entropy (middle) and the relative L2 error (right) with
respect to no for Algorithm 3.
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It is clear from Fig. 2 (left) that all the four algorithms have second order decay in the rela-
tive L2 error in no. As for the computational cost, we can conclude from Fig. 2 (right) that
the costs for the original particle methods (Algorithms 1-2) are a bit lower than O(N2),
while the costs for the random batch particle methods (Algorithms 3-4) are O(N).

Next, we check the conservation and entropy dissipation properties. The total mass,
determined by the initialization, remains unchanged during the evolution. The momen-
tum is always in the order of 1e−16, which means it is conserved within machine pre-
cision. These coincide with Proposition 3.3 and we will not present them any more. In
Fig. 3, we show the time evolution for the four algorithms with fixed no. It is clear that
the total energy is conserved up to a small error, the entropy is dissipated and the relative
L2 error is stable. In Fig. 4, we plot the time evolution for Algorithm 3 with regard to dif-
ferent particle numbers. Similar performance can be observed for the other algorithms.

This example verifies that the random batch particle methods can preserve the con-
servation and entropy dissipation properties of the homogeneous Landau equation as ex-
pected. They have second order accuracy like the deterministic particle methods, while
benefit from the O(N) cost.

Example 4.2 (3D BKW solution for Maxwell molecules). Consider the case when d= 3,
γ = 0, A(z) = 1

24(|z|2 Id−z⊗z). Requiring the macroscopic quantities to be ρ = 1, u = 0,
T=1 (thus

∫

Rd f |v|2dv= d=3), the exact solution of the homogeneous Landau equation
is given by

f ext(t,v)=
1

(2πK)3/2
exp

(

−|v|2
2K

)(

5K−3

2K
+

1−K

2K2
|v|2

)

, K=1−exp(−t/6).

Let t0 = 5.5, tend = 6. As in Example 4.1, we test the convergence and the computa-
tional cost. The number of particles per dimension is chosen as no =30,40,50,60,70,80,90
respectively, then the total particle number is N = n3

o. Initialize the particles uniformly
in [−4,4]3 and take L= 8 to ensure that the particles always stay in Ω. Take ∆t = 0.01,
h = 2L/no, ǫ = 0.64h1.98, σ = 4

√
ǫ. For the random batch cases, choose the number of

batches per dimension to be qo = 2 or 5, correspondingly, the batch size p= (no/qo)d is
N/8 or N/125. The results are given in Fig. 5. From Fig. 5 (left), one can observe roughly
second order convergence rate in no and the orders are lower for regularization type II
(Algorithms 2 and 4) compared to regularization type I (Algorithms 1 and 3). For the ran-
dom batch cases (Algorithms 3-4), the errors for larger qo (red and green dashed lines) are
bigger than those for smaller qo (red and green solid lines), since the noise level of RBM
is lower for smaller p (larger qo). From Fig. 5 (right), we see the costs for the original
particle methods (magenta and blue solid lines) are a bit lower than O(N2). Meanwhile,
the random batch methods with qo=2 (red and green solid lines) are also very expensive
since p=N/8 does not satisfy p≪N, so pN scales like N2. While for qo=5 (red and green
dashed lines), i.e., p = N/125, the cost is O(N). This comparison tells that the choice
of batch size p is a compromise between complexity and accuracy, one would sacrifice
somewhat from accuracy for efficiency.
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Figure 5: Convergence results for Algorithms 1-4 when L=8. Left: relative L2 error at tend=6 with respect to
particle number per dimension no; Right: CPU time (in seconds) per time step with respect to particle number
N.

Figure 6: Time evolution of the total energy (left), entropy (middle) and the relative L2 error (right) for
Algorithms 1-4 when no =70.

Next, we show the performance of the four algorithms. Fig. 6 shows the conserved
total energy, the dissipated entropy and the relative L2 error. The behavior is similar to
that in Example 4.1.

Fig. 7 depicts the error to snapshots of the solutions f (:, no
2 , no

2 ) at t=5.5,5.75,6 respec-
tively when no = 70. The curves in the left subfigure are overlapped due to the same
initialization. And the error is smaller for larger p (smaller qo), see the middle and right
subfigures. We also plot snapshots of the solutions versus different no at t=5.5,5.75,6 in
Fig. 8 computed by Algorithm 3 with qo =5, where we can observe a better match as no

increases.

We can conclude from the example that the random batch particle methods are ap-
plicable to high dimensional problems. It is very efficient if the required precision is not
high.

Example 4.3 (2D anisotropic solution with Coulomb potential). Consider the case when
d= 2, γ=−3. The collision kernel is A(z)= 1

16
1
|z|3 (|z|2 Id−z⊗z). The initial condition is
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Figure 7: Error profiles at t=5.5 (left), t=5.75 (middle) and t=6 (right) for Algorithms 1-4 when no=70.

Figure 8: Snapshots f (:, no
2 , no

2 ) at t=5.5 (left), t=5.75 (middle) and t=6 (right) for Algorithm 3 with qo =5
with respect to different no.

chosen to be bi-Maxwellian

f (0,v)=
1

4π

{

exp

(

− (v−u1)
2

2

)

+exp

(

− (v−u2)2

2

)}

, u1=(−2,1), u2=(0,−1).

For this example, we do not have the exact solution. Therefore, we use no=200 as the
reference solution and test no =40,60,80,100,120,140,160,180 for the four algorithms. Let
t0 = 0, tend = 20, ∆t= 0.1, L= 10, qo = 5, the results are shown in Fig. 9. Once again, the
convergence rate is second order, the cost for the original and the random batch particle
methods is O(N2) and O(N) respectively. Fig. 10 shows the error of snapshots f (:, no

2 )
and f ( no

2 ,:) with different no, where the magnitude of error profile decreases as no in-
creases.

This example shows that the random batch particle methods can be applied to the
case where the collision kernel is singular.

Example 4.4 (3D Rosenbluth problem with Coulomb potential). Consider the case when
d= 3, γ=−3. The collision kernel is A(z)= 1

4π
1
|z|3 (|z|2 Id−z⊗z). The initial condition is

given by

f (0,v)=
1

S2
exp

(

−S
(|v|−µ)2

µ2

)

, µ=0.3, S=10.
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Figure 9: Convergence results for Algorithms 1-4 when L=10. Left: relative L2 error at tend=20 with respect to
particle number per dimension no; Right: CPU time (in seconds) per time step with respect to particle number
N.

Figure 10: Error profiles of snapshots f (:, no
2 ) (left) and f ( no

2 ,:) (right) for Algorithm 3 at tend=20.

Let ∆t= 0.2, L= 1, qo = 4. The cross sections f (vx,0,0) of the four algorithms at t=
0,5,10 are shown in Fig. 11. As time goes by, it occurs to Algorithm 1 that the particles
collide for large no. As the Coulomb kernel A(z) is singular, the computation would
break down once two particles collide. This can be overcome with a smaller time step.
Since the homogeneous Landau equation is of diffusive type, ∆t=O(∆v2), ∆v=h=2L/no

which is time-consuming. However, when using the random batch particle methods, the
probability of two particles being close all the time is sufficiently small due to random
reshuffling at each time step. So one can use a relatively bigger time step. Hence, in order
to get the long time behavior of the Landau equation, it is preferable to use Algorithms
3 and 4. The cost is O(N) for Algorithms 3-4 as shown in Fig. 12. In Fig. 13 (left), the
cross sections of the distribution function at times t=0,9,36,81,144,225,900 by Algorithm
3 are depicted. The results are in good agreement with those given in [3,39]. The profiles
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Figure 11: Cross section f (vx,0,0) at t= 0 (left), t= 5 (middle) and t= 10 (right) for Algorithms 1-4 when
no=40.

Figure 12: CPU time (in seconds) for one step for Algorithms 3-4 with respect to N.

approach the Maxwellian (1.4) with

ρ=
2πµ3

S2

[(

1

2S
+1

)
√

π

S
erfc(−

√
S)+

1

S
exp(−S)

]

, u=0,

T=
1

3ρ

2πµ5

S2

[(

1+
3

S
+

3

4S2

)
√

π

S
erfc(−

√
S)+

(

1

S
+

5

2S2

)

exp(−S)

]

in time as expected. As can be seen in Fig. 13, the energy and entropy reach the steady
states as well.

The last example demonstrates that the random batch particle methods can efficiently
approximate the equilibrium as well as the dynamics of the homogeneous Landau equa-
tion.

5 Conclusion

In this paper, we introduced random batch implementations of the particle methods for
the homogeneous Landau equation proposed in [5]. For the collision term, at each time,
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Figure 13: Results for Algorithm 3 when no =40. Left: Cross section f (vx,0,0) of the distribution function at
different times. The real equilibrium state is shown in the black dashed line. Middle: Time evolution of the
total energy. Right: Time evolution of the entropy.

we randomly group the N-particles into small batches and each particle collides only
with particles in the same batch. We also utilize the rapid decay property of the mollifier,
hence the overall computational cost of our methods is O(N), instead of O(N2). The
conservation and entropy dissipation properties of these methods are also proved and
numerical experiments verify the desired performance and theoretical results.

The random batch particle methods can be extended to deal with the homogeneous
Landau equation for binary collisions of multi-species. It might be a promising way
to efficiently solve the Fokker-Planck-Landau equation (1.1) integrating the particle-in-
cell method [40] for the Vlasov equation and our random batch particle methods, so
as to describe complex phenomena including Landau damping, two-stream instability,
etc [10, 18, 20]. This is left for our future study.
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diffusives non linéaires, Comptes Rendus de l’Académie des Sciences Series I Mathematics,
332 (2001), 369-376.

[39] L. Pareschi, G. Russo and G. Toscani, Fast spectral methods for the FokkerPlanckLandau
collision operator, J. Comput. Phys., 165 (2000), 216-236.

[40] D. Tskhakaya, K. Matyash, R. Schneider and F. Taccogna, The particle-in-cell method, Con-
trib. Plasma Phys., 47 (2007), 563–594.

[41] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and
Landau equations, Arch. Ration. Mech. Anal., 143 (1998), 273-307.

[42] C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math.
Models Methods Appl. Sci., 8 (1998), 957-983.

[43] C. Zhang and I. M. Gamba, A conservative scheme for Vlasov Poisson Landau modeling
collisional plasmas, J. Comput. Phys., 340 (2017), 470-497.


