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RECOVERY-BASED A POSTERIORI ERROR ESTIMATION FOR

ELLIPTIC INTERFACE PROBLEMS BASED ON PARTIALLY

PENALIZED IMMERSED FINITE ELEMENT METHODS

YANPING CHEN, ZHIROU DENG, AND YUNQING HUANG

Abstract. This paper develops a recovery-based a posteriori error estimation for elliptic interface
problems based on partially penalized immersed finite element (PPIFE) methods. Due to the
low regularity of solution at the interface, standard gradient recovery methods cannot obtain
superconvergent results. To overcome this drawback a new gradient recovery method is proposed

that applies superconvergent cluster recovery (SCR) operator on each subdomain and weighted
average (WA) operator at recovering points on the approximated interface. We prove that the
recovered gradient superconverges to the exact gradient at the rate of O(h1.5). Consequently,

the proposed method gives an asymptotically exact a posteriori error estimator for the PPIFE
methods and the adaptive algorithm. Numerical examples show that the error estimator and the
corresponding adaptive algorithm are both reliable and efficient.
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1. Introduction

Interface problems arise in many applications of fluid mechanics and material
science, where its governing partial differential equations (PDEs) have discontinu-
ous coefficients. Solving interface problems accurately and efficiently is a challenge
because these coefficients across the interface lead to low global regularity of the
solution. Finite element (FE) methods for interface problems have been widely s-
tudied, which can be roughly divided into two categories: interface-fitted FE meth-
ods [1–4] and interface-unfitted FE methods [5–7]. The interface-fitted FE methods
require the partition to be aligned with the interface. It is well known that these
methods have the optimal convergence rate in both L2 and energy norms [8, 9]
when the exact solution has sufficient regularity. However, it is usually difficult
and time-consuming to generate the required body-fitted meshes, especially when
the interface geometry is complex. There are increasing interests in developing
interface-unfitted FE methods using interface-unfitted meshes. The immersed fi-
nite element (IFE) methods proposed by Li et al. [10,11] are based on finite element
discretizations on interface-unfitted meshes. The main idea of IFE methods is to
construct basis functions satisfying the jump conditions on the interface elements
to obtain sharp solutions around the interface. In [12], Li et al. proved that the
IFE space has the optimal approximation capability. However, Chou et al. showed
in [13] that the non-conforming IFE methods do not have fully second order accu-
rate. It is second order in the L2 norm, but only first order convergence in the L∞

norm due to the consistent error resulted from the discontinuities of test functions.
Some improved IFE methods have been developed to eliminate the consistent error,
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for instance, symmetric and consistent immersed finite element (SCIFE) method-
s [14], Petrov-Galerkin immersed finite element (PGIFE) methods [15] and partially
penalized immersed finite element (PPIFE) methods [6] and so on.

Compared with the standard IFE methods, PPIFE methods introduce extra
stabilization terms only at the interface edges for penalizing the inter-element dis-
continuity. The optimal convergence rate is theoretically proved for the PPIFE
methods in the energy norm and L2 norm [6, 16]. Moreover, the PPIFE methods
were extended to the semi-linear elliptic interface problems [17], the second-order
elliptic interface problems with non-homogeneous jump conditions in [18], and other
types of interface problems in [19,20].

Error analysis is a classic topic in FE methods, and it is typically categorized
into a priori and a posteriori error estimates. The a priori error estimates of IFE
methods have been well developed in the past decade, but the a posteriori error
estimates of IFE methods are still in the initial stage. Cao et al. [21] introduced
a new approach for constructing IFE basis functions based on the theory of or-
thogonal polynomials. They proved that IFE methods for one dimensional general
elliptic interface problems have nodal superconvergence at the roots of generalized
orthogonal polynomials. For two dimensional cases, Guo et al. [22] designed an
improved polynomial preserving recovery (IPPR) method for SCIFE and PGIFE
methods, and verified its superconvergence by numerical examples. In [23], they
also showed the supercloseness results for PPIFE methods and proved that the re-
covered gradient using the IPPR operator is superconvergent to the exact gradient.
He et al. [24] proposed and analyzed the residual-based a posteriori error estimation
of the PPIFE methods for solving elliptic interface problems. The a posteriori error
estimate is proved to be reliable and efficient.

The purpose of this paper is to develop and analyze a novel recovery-based a
posteriori error estimation of the PPIFE methods for elliptic interface problem-
s. Standard gradient recovery methods, including superconvergent patch recovery
(SPR) [25,26], polynomial preserving recovery (PPR) [27–29] and superconvergent
cluster recovery (SCR) [30], cannot obtain the superconvergent recovered gradient
due to the low regularity of numerical solution at the interface. A recovery-based
a posteriori error estimator based on these methods will result in over-refinement
as studied in [31]. Therefore, these methods cannot be directly applied to the in-
terface problems. Note that the SCR method obtains the recovered gradient at
recovering points by taking derivatives of a linear polynomial, in which the linear
polynomial is acquired by least-square fitting the solution values in a cluster of sam-
pling points. This recovery procedure is simpler and effective, and maintains the
superconvergence properties of SPR and PPR methods [30]. Hence, our gradient
recovery method is based on the SCR method.

In this paper, we propose a new gradient recovery operator for PPIFE methods,
and prove that the operator is linear, bounded, and consistent. The establishment
of the operator relies on three observations: (i) IFE solution is piecewise smooth
on each subdomain, although it has low global regularity; (ii) the solution is dis-
continuous at the interface, even if the exact solution is continuous; (iii) the SCR
operator is local. Accordingly, the gradient recovery operator is constructed by two
steps: enriching and smoothing. We first design an enriching operator to make
the discontinuous FE solution continuous on a local body-fitted mesh generated
by adding extra nodes [10], and then apply the SCR operator to the enriched FE
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solution on each subdomain. One also notices that the SCR operator cannot ac-
curately obtain the steep gradient at the interface. To overcome the difficulty, we
change the gradient recovery approach of the SCR operator at recovering points on
the approximation interface. For simplicity, we draw on the idea of the weighted
average (WA) gradient recovery method. More specifically, for the recovering point
away from the interface, we use the standard SCR operator. For the recovering
point close to the interface, we design a gradient recovery operator to obtain the
derivative of a linear polynomial, where the polynomial is acquired by least-square
fitting the solution values of the sampling points only in each subdomain. For the
recovering point on the approximated interface, we use the WA gradient recovery
operator.

Furthermore, we prove that the recovered gradient using our operator supercon-
verges to the exact gradient, and the corresponding a posteriori error estimator is
asymptotically exact. Finally, we combine the PPIFE methods with the adaptive
technique to solve the elliptic interface problems, and apply the derived a posteriori
error estimation to control the adaptive mesh refinement. Numerical experiments
show that a posteriori error estimator and adaptive algorithm for the proposed
gradient recovery method are robust and effective.

The rest of the paper is organized as follows. In Section 2, we introduce some
notations and PPIFE methods. In Section 3, we review superconvergent cluster
recovery and enriching operator. Based on this, we design a new gradient recovery
method of PPIFE methods to elliptic interface problems, and give a recovery-based
a posteriori error estimator. Section 4 is devoted to the analysis of a posteriori error
estimation. Finally, in Section 5, several numerical examples are given to verify the
performance of our recovery-based a posteriori error estimator.

2. Partially Penalized IFE for Elliptic Interface Problems

Let Ω be a bounded and convex domain with Lipschitz continuous boundary ∂Ω
in R2, which is separated by a C2-curve interface Γ into two disjoint subdomains Ω+

and Ω− satisfying Ω = Ω+ ∪ Ω− ∪ Γ. We consider the following elliptic interface
problem with the homogeneous Dirichlet boundary condition:

(1)

{
−∇ · (β(z)∇u) = f, z ∈ Ω\Γ,

u = 0, z ∈ ∂Ω,

and the exact solution u is assumed to satisfy the interface jump conditions:

(2)


[u]|Γ = u+ − u− = 0,[

β
∂u

∂n

]
Γ

= β+ ∂u+

∂n
− β− ∂u−

∂n
= 0,

where u± = u|Ω± and n is the unit outward normal to the boundary ∂Ω. And the
diffusion coefficient β(z) is a positive piecewise constant function, i.e.

(3) β(z) =

{
β+, for z ∈ Ω+,

β−, for z ∈ Ω−.

We use the standard notations for the Sobolev spaces. Let

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}.
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Then the variational problem for the elliptic interface problem (1)-(2) is to find
u ∈ H1

0 (Ω) such that

(4) ah(u, v) , (β∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω),

where (·, ·) is the L2 inner product on the domain Ω.

2.1. Preliminaries. In this paper, we let C be a generic positive constant which
may take different values on different cases, and Pm(·) be the polynomial space of
degree less than or equal to m. W k,p(Ω) denotes the Sobolev space on Ω with norm
∥ · ∥k,p,Ω and seminorm | · |k,p,Ω. When p = 2, let Hk(Ω) = W k,2(Ω), ∥ · ∥k,Ω =
∥ · ∥k,2,Ω, | · |k,Ω = | · |k,2,Ω. For theoretical analysis, we define the piecewise Sobolev
space

W k,p(Ω+ ∪ Ω−) = {v ∈ W 1,p(Ω) : v|Ωs ∈ W k,p(Ωs), s = +,−},
equipped with the norm

∥v∥k,p,Ω+∪Ω− =
(
∥v∥pk,p,Ω+ + ∥v∥pk,p,Ω−

) 1
p

, ∀v ∈ W k,p(Ω+ ∪ Ω−),

and seminorm

|v|k,p,Ω+∪Ω− =
(
|v|pk,p,Ω+ + |v|pk,p,Ω−

) 1
p

, ∀v ∈ W k,p(Ω+ ∪ Ω−).

Similarly, when p = 2, we define Hk(Ω+∪Ω−) = W k,2(Ω+∪Ω−), and the subscript
p of its associate norm and seminorm is omitted.

Assume that the domain Ω is partitioned by a Cartesian triangulation Th = {T},
h = max

T∈Th

diam(T ). Here the edges of element T ∈ Th are not needed to align the

interface Γ. For triangulation Th, denote the set of all interior edges by Ẽh = Ẽ i
h∪Ẽn

h ,

where Ẽ i
h = {e ∈ Ẽh : e ∩ Γ ̸= ∅} and Ẽn

h = Ẽh \ Ẽ i
h. Moreover, denote by Nh the

set of vertices of all elements in the triangulation Th.
For every interior edge e ∈ Ẽh, there exist two neighboring elements Te,1 and

Te,2 sharing the common edge e. We let ne be the unit normal vector of e pointing
from Te,1 to Te,2. For v ∈ Te,1 ∪ Te,2, define its jump and average on the edge e by

[v]e = v|Te,1
− v|Te,2

, {v}e =
1

2
(v|Te,1

+ v|Te,2
).

Usually, the subscript e in [·] and {·} can be omitted if there is no confusion.
For simplicity, we assume that the interface Γ does not intersect the boundary

and cuts two different edges of the element at most once, which holds when h is
small enough. If interface Γ passes through the interior of an element T , we call it
an interface element and denote by T i

h the set of all interface elements; otherwise,
an element is called the non-interface element, and its set is denoted by T n

h . In
addition, we denote the approximated interface by Γh which is composed of all line
segments connecting the intersections of the interface and elements.

2.2. Partially Penalized Immersed Finite Element Methods. The key idea
of the immersed finite element methods is to construct piecewise linear basis func-
tions on the interface elements to satisfy (completely or approximately) the interface
jump conditions (2). Then, we introduce the IFE space Vh.

For any element T ∈ T n
h , we use standard linear nodal basis functions. However,

these basis functions cannot be used for interface elements, because it only satisfies
[u]Γ = 0, not the jump conditions

[
β ∂u

∂n

]
Γ
= 0. Therefore, the basis functions on

the interface elements need to be modified to satisfy the interface jump condition.
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For any element T ∈ T i
h , we introduce the construction of the basis functions on

the interface elements by the typical interface element T = △ABC as shown in
Figure 1.

..

A

.
B
.

C
.

D

.

E

.

n

.

T+

.

T−

.

Γ

Figure 1. A typical interface element T .

Let D and E be the intersections of the interface Γ and the edges of the element.
Then the element T is divided into two parts T+ = T ∩ Ω+ and T− = T ∩ Ω− by
using the line segment DE as the approximation of the interface Γ in the element
T . We construct a piecewise linear function on the interface element T as follows:

(5) ϕ(z) =

{
ϕ+(z) = a+ + b+x+ c+y, z = (x, y) ∈ T+,

ϕ−(z) = a− + b−x+ c−y, z = (x, y) ∈ T−,

where the coefficients satisfy the interface jump conditions:

(6) ϕ+(D) = ϕ−(D), ϕ+(E) = ϕ−(E), β+ ∂ϕ+

∂n
= β− ∂ϕ−

∂n
,

and the Lagrange conditions:

(7) ϕ(A) = V1, ϕ(B) = V2, ϕ(C) = V3,

with n being the unit normal of DE and Vi, i = 1, 2, 3 being the nodal variables.
We now introduce the following local finite element space on each element T ∈ Th:

Vh(T ) =

{
{v(z) : v(z) is linear on T}, if T ∈ T n

h ,

{v(z) : v(z) is defined by(5)− (7)}, if T ∈ T i
h .

Then, the IFE space Vh over the whole region Ω is defined to contain all functions
such that

(I) v|T ∈ Vh(T ) for all T ∈ Th;
(II) v is continuous at every vertex X ∈ Nh.
The PPIFE methods for the interface problem (1)-(2): find uh ∈ Vh,0 = {u ∈

Vh : u|∂Ω = 0} such that

(8) ah(uh, vh) = (f, vh), ∀vh ∈ Vh,0,
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where the bilinear form ah(·, ·) : Vh,0 × Vh,0 → R is defined by

(9)

ah(vh, wh) =
∑
T∈Th

∫
T

β∇vh · ∇wh dX −
∑
e∈Ẽi

h

∫
e

{β∇vh · ne} [wh]ds

+ ϵ
∑
e∈Ẽi

h

∫
e

{β∇wh · ne} [vh]ds

+
∑
e∈Ẽi

h

∫
e

σ0
e

|e|γ
[vh][wh]ds, ∀vh, wh ∈ Vh,0,

where |e| is the length of e, the parameter σ0
e ≥ 0, γ > 0 and ϵ is arbitrary. ϵ usually

takes the value -1, 0 or 1. Obviously, the bilinear form ah(·, ·) is symmetric only
when ϵ = −1, and others are non-symmetric.

We introduce the energy norm as follow:

(10) ∥vh∥h =

∑
T∈Th

∫
T

β∇vh · ∇vh dx+
∑
e∈Ẽi

h

∫
e

σ0
e

|e|γ
[vh] [vh] ds

 1
2

.

In [6], the coercivity of the bilinear form ah(·, ·) has been proved, namely, there
exists a constant C > 0 such that

(11) C∥vh∥2h ≤ ah(vh, vh), ∀vh ∈ Vh,0,

is true for ϵ = 1 unconditionally and is true for ϵ = −1 or ϵ = 0 under the condition
that the parameter σ0

e in ah(·, ·) is large enough.
Based on the above coercivity, the following optimal convergence result is proved

in [16].

Lemma 2.1. Let u ∈ H2(Ω+ ∪ Ω−) be the exact solution of the interface problem
(1)-(2) and uh be the PPIFE solution of (8) generated with γ = 1 on a Cartesian
mesh Th. Then there exists a constant C, such that

(12) ∥u− uh∥h ≤ Ch∥u∥2,Ω+∪Ω− .

Remark 2.1. As stated in the remark of [6], if u ∈ W 2,∞(Ω+ ∪ Ω−) is the exact
solution of the interface problem (1)-(2), uh is the PPIFE solution of (8) generated
with γ = 1 on a Cartesian mesh Th. Then the error estimation is

(13) ∥u− uh∥h ≤ C
(
h∥u∥2,Ω+∪Ω− + h

3
2 ∥u∥2,∞,Ω+∪Ω−

)
.

3. Gradient Recovery for PPIFE Methods

In this section, we first summarize the superconvergent cluster recovery (SCR)
method in [30]. Then, we define an enriching operator that makes discontinuous
FE solution continuous, and finally propose an improved SCR gradient recovery
method for the elliptic interface problems.

3.1. Superconvergent Cluster Recovery. The key idea of the SCR method is
that it fits a linear polynomial function to the FE solution values at a group of
symmetrical sampling points, from which the recovered gradient can be obtained
at the recovering point.
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Let T̂h be a triangulation of Ω ⊂ R2 and N̂h be the set of vertices of all elements.

Consider the C0 linear FE space X̂h associated with T̂h. The standard Lagrange

basis of X̂h is denoted by {ϕz : z ∈ N̂h}, such that

ϕz(z
′) = δzz′ , ∀z, z′ ∈ N̂h,

where δzz′ is Kronecker delta function. Next, we describe SCR operator Gh : X̂h →
X̂h × X̂h and its properties.

For any vh ∈ X̂h, the recovered gradient Ghv on the domain Ω is obtained by

the interpolation. If {(Ghv)(z) : z ∈ N̂h} is defined, then

(14) Ghv =
∑
z∈N̂h

(Ghv)(z)ϕz, z ∈ N̂h.

For any interior vertex z = z0 = (x0, y0) ∈ N̂h, we select some points zi =
(xi, yi), 1 ≤ i ≤ n, n ≥ 4 as sampling points so that they are as symmetrical as
possible around vertex z, see Figure 2 (a). In general, selecting the mesh nodes
behaved well. Let Kz be a convex polygon of the sampling points. We obtain the
linear polynomial pz ∈ P1(Kz) by least-square fitting the function value v(zi) at
those sampling points, i.e.

(15) pz = arg min
p1∈P1(Kz)

n∑
i=0

(p1(zi)− v(zi))
2
, v ∈ X̂h.

Therefore, the recovered gradient at the interior vertex z is defined as

(16) (Ghv)(z) = ∇pz(z).

For any z ∈ ∂Ω, similar to SPR method, the recovered gradient is obtained
from the interior vertices connected by the boundary point. Specifically, we define
(Ghv)(z) based on the location of z:

(I) If z ∈ ∂Ω and there is no interior vertices directly adjacent to it, see Figure
2 (b), the recovered gradient at z is defined to be

(17) (Ghv)(z) = ∇vh(z).

(II) If z ∈ ∂Ω and there are some interior vertices z1, z2, ..., zNz directly adjacent
to it, see Figure 2 (c), we first find the linear polynomial pzi(z), i = 1, 2, ..., Nz, and
then define the recovered gradient at z by

(18) (Ghv)(z) =
1

Nz

Nz∑
i=1

∇pzi(z).

In the following, we summarize the properties of the SCR operator, which has
been proved in [30].

Lemma 3.1. For the SCR operator Gh, we have
(I) Linearity. Gh is a linear operator.

(II) Boundedness. For any element T ∈ T̂h, there exists a constant C inde-
pendent of the mesh size h such that

(19) ∥Ghv∥0,T ≤ C|v|1,ω̂T
, ∀v ∈ X̂h,

where ω̂T = ∪3
i=1Ti with Ti is the elements which include the sampling points of the

ith vertex of T.
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Figure 2. Interior vertices connected by the recovering point z.
(a) z is the interior vertex; (b) z is the boundary vertex and not
adjacent to the interior points; (c) z is the boundary vertex and
adjacent to the interior points.

(III) Superconvergence. Let zi = (xi, yi), 1 ≤ i ≤ n, n ≥ 4 be the equally
distributed sampling points on the circle, and the recovering point z = z0 = (x0, y0)
be the circle center. Then we have

(20) |∇v(z)− (Ghv)(z)| ≤ Ch1+ρ, ∀v ∈ W 3,∞(ωz),

where ρ ∈ (0, 1] and ωz is a union of elements covering the sampling points required
for the recovery of (Ghv)(z).

Remark 3.1. The selection of sampling points influences the SCR method, and
the symmetry of sampling points about recovering points is the key to the supercon-
vergence of the SCR method. See [30] for detailed analysis.

Based on the above properties of SCR method, we can deduce the following
approximation property.

Lemma 3.2. Let Gh : X̂h → X̂h × X̂h be the SCR gradient recovery operator.
There exists a constant C independent of the mesh size h, such that

(21) ∥∇v −GhvI∥0,Ω ≤ Ch2(|v|3,Ω + |v|2,∞,Ω), ∀v ∈ H3(Ω) ∩W 2,∞(Ω),

where vI is a linear interpolation of v in X̂h.

Proof. Form the boundedness of SCR operator (19) and the triangle inequality, we
have

(22) ∥∇v−GhvI∥0,Ω ≤ ∥∇v−Ih(∇v)∥0,Ω+∥Ih(∇v)−Ghv∥0,Ω+∥Ghv−GhvI∥0,Ω,

where Ih(∇v) is a piecewise continuous linear vector function on T̂h, satisfying

(23) Ih(∇v)(z) = ∇v(z), ∀z ∈ N̂h.

Then, by the interpolation error estimate

(24) ∥∇v − Ih(∇v)∥0,Ω ≤ Ch2|v|3,Ω.

From the superconvergence of SCR operator, we know that

(25) |∇v(z)− (Ghv)(z)| ≤ Ch1+ρ|v|3,ωz , ∀z ∈ N̂h.
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Then, applying the fact that Ih(∇v) and Ghv are piecewise continuous linear vector
function gives

∥Ih(∇v)−Ghv∥0,T ≤ C
√

|T | ∥Ih(∇v)−Ghv∥0,∞,T

≤ Chmax
z∈T

|Ih(∇v)(z)− (Ghv)(z)|

≤ Chmax
z∈T

|∇v(z)− (Ghv)(z)|

≤ Ch2+ρ|v|3,ωz ,

where |T | is the area of T. Summarizing the above inequalities indicates

∥Ih(∇v)−Ghv∥20,Ω ≤
∑
T∈T̂h

∥Ih(∇v)−Ghv∥20,T ≤ Ch2(2+ρ)|v|23,Ω.

Therefore,

(26) ∥Ih(∇v)−Ghv∥0,Ω ≤ Ch2+ρ|v|3,Ω.

For any z = z0 = (x0, y0) ∈ N̂h, let {zi = (xi, yi), 1 ≤ i ≤ n, n ≥ 4} be the sampling
points, lz = max{|xi − x0|, |yi − y0| : 1 ≤ i ≤ n, n ≥ 4}, ei be the line segment
connecting the sampling point zi and the recovering point z, and hi be the length
of ei. In [30], it is proved that the SCR recovered gradient can be expressed as a
linear combination of the directional derivatives along ei:

(27) (Ghv)(z)− (GhvI)(z) =


−1
|B|

n∑
i=1

hi

lz
c1i

v(zi)−vI(zi)
hi

−1
|B|

n∑
i=1

hi

lz
c2i

v(zi)−vI(zi)
hi

 .

Denote by Ti the element containing zi, and the three vertices of Ti are zj , 1 ≤ j ≤ 3.
Let lj = ∥zi − zj∥ be the length of line segment zizj and λj be the area coordinate.
Form the Taylor expansion, one obtains

(28) vI(zi)− v(zi) =
1

2

3∑
i=1

D2v(ξ)l2jλj(zi).

Substituting (28) into (27), we get

|(Ghv)(z)− (GhvI)(z)| ≤ Ch|v|2,∞,Ω.

Consequently,

(29)

∥Ghv −GhvI∥0,Ω ≤ Ch∥Ghv −GhvI∥0,∞,Ω

= Chmax
z∈Ω

|(Ghv)(z)− (GhvI)(z)|

≤ Ch2|v|2,∞,Ω.

Combining (22), (24), (26) and (29) yields

(30)
∥∇v −GhvI∥0,Ω ≤ C(h2|v|3,Ω + h2+ρ|v|3,Ω + h2|v|2,∞,Ω)

≤ Ch2(|v|3,Ω + |v|2,∞,Ω).

This completes the proof of the lemma. �
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3.2. Immersed Superconvergent Cluster Recovery. The standard SCR op-
erator cannot be directly applied to elliptic interface problems for the following three
reasons. Firstly, the IFE solution is discontinuous at the interface, and superconver-
gence results are obtained only when the solution is smooth enough. Secondly, the
recovered gradient Ghvh is a piecewise continuous linear vector function, while the
exact gradient is discontinuous at the interface. Finally, the SCR method does not
accurately recover the steep gradient at the interface. Note that the IFE solution
is piecewise smooth on each subdomain although its global regularity is low, and
SCR and WA gradient recovery methods are local. Therefore, we first establish an
enriching operator. Then we construct a gradient recovery operator which applies
the standard SCR operator on each subdomain to the enriched FE solution and
adopts the WA gradient recovery method to recover the gradient of the recovering
point on the approximated interface.

3.2.1. Enriching operator. The key idea of the enriching operator is to assign

values to the nodes of the local body-fitted mesh T̂h generated based on the mesh
Th, so that the FE solution is continuous at the nodes.

To introduce the enriching operator, we first generate mesh T̂h consisting of the
following triangles [10, 22]:

(I) For any T ∈ T n
h , it remains unchanged.

(II) For any T ∈ T i
h , split it into three sub-triangles. Firstly, T is divided into

a quadrilateral and a triangle by connecting two intersection points. Then, an
auxiliary line connecting an intersection point and a vertex of the element T is
selected to separate the quadrilateral into two triangles, and at least one angle of
the two triangles is between π

4 and 3π
4 .

Remark 3.2. We point out that the triangulation T̂h may contain narrow triangles,
which causes the standard linear FE method to deteriorate. However, the introduc-

tion of the local body-fitted mesh T̂h is only to enrich the existing IFE solutions,
rather than directly solving the interface problems on it.

Based on the mesh T̂h, the enriching operator Eh : Vh → X̂h is defined [22]

(31) (Ehv)(z) =
1

|ω̂z|
∑
T̂∈ω̂z

vT̂ (z), ∀z ∈ N̂h,

where ω̂z is the set of all triangles with vertex z in T̂h (see Figure 3), |ω̂z| is
the cardinality of ω̂z and vT̂ = v|T̂ . After the values (Ehv)(z) is defined at all

vertices, the enriched FE solution Ehv on Ω is obtained by interpolation in X̂h.

From the definition of T̂h and N̂h, we have Nh ⊂ N̂h. Therefore, it is easy to get

(Ehv)(z) = v(z) for any z ∈ N̂h ∩Nh.
Enriching operator Eh has the following properties [22].

Lemma 3.3. Let Eh be the enriching operator defined in (31). There exists a
constant C independent of the mesh size h and the interface location, such that

∥Ehv∥0,Ω ≤ C∥v∥0,Ω, ∀v ∈ Vh,(32)

|Ehv|1,Ω ≤ C|v|1,Ω, ∀v ∈ Vh.(33)
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Figure 3. Example of the ω̂z.

3.2.2. Immersed Superconvergent Cluster Recovery operator. Assume Γh

is the approximated interface introduced in Subsection 2.1, and separates the tri-

angulation T̂h into two disjoint sets:

T̂ +
h := {T ∈ T̂h|T belongs to Ω+},(34)

T̂ −
h := {T ∈ T̂h|T belongs to Ω−}.(35)

Let Ω+
h = ∪T∈T̂ +

h
T be the approximation of Ω+, N̂+

h be the set of vertices of all

elements in T̂ +
h , and X̂+

h be the C0 linear finite element space associated with T̂ +
h .

Similarly, we can define the Ω−
h = ∪T∈T̂ −

h
T , N̂−

h and X̂−
h .

Denote the SCR operator on X̂+
h and X̂−

h by G+
h and G−

h , respectively. For any

uh ∈ Vh, we define the global gradient recovery operator Rh : Vh → (X̂+
h × X̂−

h )×
(X̂+

h × X̂−
h ) as follows:

(36) (Rhuh)(z) =

 (G+
hEhuh)(z), if z ∈ Ω+

h ,

(G−
hEhuh)(z), if z ∈ Ω−

h .

Gradient recovery operator Rh is called immersed superconvergent cluster recovery
(ISCR) operator.

We summarize the recovery procedure of ISCR operator in Algorithm 1.

Remark 3.3. For the recovering points on the approximation interface, the ISCR
method draws on the simple average method in the WA gradient recovery method.
We point out that the gradient recovery methods for interface problems can also
be obtained by referring to the area average and area harmonic average methods.
Next, we introduce these two methods, namely, immersed superconvergent cluster
recovery - area average (ISCR-AA) method and immersed superconvergent cluster
recovery - area harmonic average (ISCR-AH) method.

If z is far from and close to the interface in each subdomain, both ISCR-AA and
ISCR-AH methods apply the ISCR operator to recover the gradient at z.

If z is on approximated interface Γh, denote the area of element Ti by |Ti|. For
uh ∈ Vh, then
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Algorithm 1 The ISCR algorithm

For a given Cartesian mesh Th and an IFE solution uh ∈ Vh, the ISCR method
obtains the recovered gradient Ghuh by the following four steps.

Setp1: Generate a local body-fitted mesh T̂h based on Th introduced in Subsection
3.2.1.
Setp2: Enrich the IFE solution uh at z ∈ N̂h.

(37) (Ehuh)(z) =
1

|ω̂z|
∑
T̂∈ω̂z

uh|T̂ (z), ∀z ∈ N̂h,

where ω̂z is the set of all triangles with vertex z in T̂h and |ω̂z| is the cardinality
of ω̂z.
Setp3: Define the ISCR recovered gradient at z ∈ N̂h.

• If z = z0 = (x0, y0) ∈ N̂+
h ∩ Ω+

h (or N̂−
h ∩ Ω−

h ) is the vertex on a non-
interface element, we select some points zi = (xi, yi), 1 ≤ i ≤ n, n ≥ 4
as sampling points so that they are as symmetrical as possible around
vertex z, see Figure 4 (a). Let Kz be a convex polygon of the sampling
points. Find a polynomial pz ∈ P1(Kz) satisfying

(38) pz = arg min
p1∈P1(Kz)

n∑
i=0

(p1(zi)− (Ehuh)(zi))
2,

and the recovered gradient at the vertex z is defined as (Rhuh)(z) =
∇pz(z).

• If z = z0 = (x0, y0) ∈ N̂+
h ∩Ω+

h (or N̂−
h ∩Ω−

h ) is the vertex on an interface
element, we select some points zi = (xi, yi), 1 ≤ i ≤ n, n ≥ 4 only from

N̂+
h (or N̂−

h ) as sampling points so that they locate around vertex z as
symmetrical as possible, see Figure 4 (b). Similarly, we can obtain the
recovered gradient at z.

• If z ∈ ∂Ω and no interior vertices directly adjacent to it, the recovered
gradient at z is defined to be

(39) (Rhuh)(z) = ∇(Ehuh)(z).

• If z ∈ ∂Ω and there are some interior vertices z1, z2, ..., zNz directly ad-
jacent to it, we first obtain the linear polynomial pzi(z), i = 1, 2, ..., Nz,
and then define the recovered gradient at z by

(40) (Rhuh)(z) =
1

Nz

Nz∑
i=1

∇pzi(z).

• If z is on approximated interface Γh, denote ωz to be the patch consisting

of elements attached to z. Let T1, ..., Tnz , Tnz+1, .., Tmz ∈ ωz ∩ T̂h are
elements around z, where T1, ..., Tnz belonging to Ω+

h and Tnz+1, .., Tmz

belonging to Ω−
h . Then we define the recovered gradient at the vertex z

by

(41) (Rhuh)(z) =
1

nz

nz∑
i=1

∇uh(z)|Ti , (Rhuh)(z) =
1

mz − nz

mz∑
i=nz+1

∇uh(z)|Ti .

Setp4: The recovered gradient Rhuh on the domain Ω is obtained by interpolation

(42) Rhuh =
∑
z∈N̂h

(Rhuh)(z)ϕz.

where ϕz is the standard Lagrange basis of Vh at the vertex z.
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Figure 4. Sampling points. (a) z is the vertex on a non-interface
element; (b) z is the vertex on an interface element.

ISCR-AA method:
(43)

(Shuh)(z) =

nz∑
i=1

|Ti|
nz∑
j=1

|Tj |
∇uh(z)|Ti , (Shuh)(z) =

mz∑
i=nz+1

|Ti|
mz∑

j=nz+1

|Tj |
∇uh(z)|Ti .

ISCR-AH method:
(44)

(Hhuh)(z) =

nz∑
i=1

1/|Ti|
nz∑
j=1

1/|Tj |
∇uh(z)|Ti , (Hhuh)(z) =

mz∑
i=nz+1

1/|Ti|
mz∑

j=nz+1

1/|Tj |
∇uh(z)|Ti .

It is easy to see that Rh is a linear operator, and one can prove the boundedness
results as follows.

Lemma 3.4. Let Rh be the ISCR gradient recovery operator. There exists a con-
stant C independent of the mesh size h and the interface location, such that

(45) ∥Rhuh∥0,Ω+
h ∪Ω−

h
≤ C|uh|1,Ω, ∀uh ∈ Vh.

Proof. We adopt the boundedness of the standard SCR operator (19) to gain its
global boundedness as

(46) ∥GhEhuh∥0,Ω ≤ C|Ehuh|1,Ω, ∀uh ∈ Vh.

By the definition of ISCR recovery operator, (46) and Lemma 3.3, we have

(47)

∥Rhuh∥0,Ω+
h ∪Ω−

h
≤ ∥Rhuh∥0,Ω+

h
+ ∥Rhuh∥0,Ω−

h

= ∥G+
h (Ehuh)∥0,Ω+

h
+ ∥G−

h (Ehuh)∥0,Ω−
h

≤ C(|Ehuh|1,Ω+
h
+ |Ehuh|1,Ω−

h
)

≤ C|Ehuh|1,Ω
≤ C|uh|1,Ω.

this completes our proof. �

Moreover, we have approximation estimate for the ISCR gradient recovery op-
erator Rh.
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Theorem 3.1. Let Rh be the ISCR gradient recovery operator, and uI is linear

interpolation of u in X̂h. Given any u ∈ H3(Ω+ ∪Ω−)∩W 2,∞(Ω+ ∪Ω−)∩C0(Ω),
then the following inequality holds

(48) ∥∇u−RhuI∥0,Ω ≤ Ch2(∥u∥3,Ω+∪Ω− + ∥u∥2,∞,Ω+∪Ω−),

where C is a constant independent of the mesh size h and the interface location.

Proof. Since u ∈ C0(Ω), then uI ∈ C0(Ω). From the definition of enriching opera-
tor, we get

(49) EhuI = uI .

Notice that G+
h and G−

h are the standard SCR operator, so we get from Lemma 3.2
that

(50) ∥∇u−G+
h uI∥0,Ω+

h
≤ Ch2(∥u∥3,Ω+ + ∥u∥2,∞,Ω+),

and

(51) ∥∇u−G−
h uI∥0,Ω−

h
≤ Ch2(∥u∥3,Ω− + ∥u∥2,∞,Ω−).

Hence, we have

(52)

∥∇u−RhuI∥0,Ω ≤ ∥∇u−RhuI∥0,Ω+
h
+ ∥∇u−RhuI∥0,Ω−

h

= ∥∇u−G+
hEhuI∥0,Ω+

h
+ ∥∇u−G−

hEhuI∥0,Ω−
h

≤ ∥∇u−G+
h uI∥0,Ω+

h
+ ∥∇u−G−

h uI∥0,Ω−
h

≤ Ch2(∥u∥3,Ω+ + ∥u∥2,∞,Ω+ + ∥u∥3,Ω− + ∥u∥2,∞,Ω−)

≤ Ch2(∥u∥3,Ω+∪Ω− + ∥u∥2,∞,Ω+∪Ω−),

which completes the proof. �

Based on the ISCR operator Rh, we can define the local error indicator ηT by

(53) ηT =


∥∥β1/2 (Rhuh −∇uh)

∥∥
0,T

, if T ∈ T n
h ,( ∑

T̂∈T̂h,T̂⊂T

∥∥β1/2 (Rhuh −∇uh)
∥∥2
0,T̂

) 1
2

, if T ∈ T i
h ,

and then the global error estimator ηh is defined by

(54) ηh =

(∑
T∈Th

η2T

)1/2

.

4. A Posteriori Error Estimates based on ISCR operator

In this section, we show that the ISCR gradient recovery method can be applied
to PPIFE methods, and prove that the recovered gradient is superconvergent to
the exact gradient.

To establish a general framework for proving the superconvergence such as
Ainsworth and Oden [32], Chen [33] lists three basic requirements with reference to
Yan [34], which are similar to but slightly different from those in [32]. These three
requirements are:

(I) Better approximation. Let vI ∈ X̂h be a linear interpolation of v. If v
is smooth enough, then

∥∇v −RhvI∥0,Ω ≪ ∥∇(v − vI)∥0,Ω.
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It is known that ∥∇(v − vI)∥0,Ω = O(h), then we have

∥∇v −RhvI∥0,Ω = O(h1+ϵ).

for some ϵ ∈ (0, 1].

(II) Linearity and stability. Rh : Vh → (X̂+
h × X̂−

h )× (X̂+
h × X̂−

h ) is a linear
operator, there exists a constant C such that

(55) ∥Rhv∥0,T ≤ C|v|1,ω̂T
, ∀v ∈ X̂h.

(III) Superclose property. There exist constant C and ρ ∈ (0, 1] independent
of h, such that

(56) ∥∇(vI − vh)∥0,Ω ≤ C(v)h1+ρ.

If the FE solution vh and the gradient recovery Rh satisfy the above requirements,
we have

(57) ∥∇v −Rhvh∥0,Ω ≤ Ch1+α, α = min{ϵ, ρ}.
With this superconvergence result, we can easily prove that the corresponding
recovery-based a posteriori error estimator is asymptotically exact.

In Section 3.2, it shows that the ISCR operator Rh has linearity, global bound-
edness and best approximation. In addition, it is a local gradient recovery operator.
Hence, the ISCR operator Rh satisfies the conditions (I) and (II). Now we just need
to consider that Rh satisfies the condition (III).

The supercloseness result has been proved in [23] as follows.

Lemma 4.1. Let u be the exact solution of (1)-(2), uh be the PPIFE solution of
(8) generated with γ = 1 on a Cartesian mesh Th and uI be the linear interpolation
of u in Vh,0. Given any u ∈ H1(Ω) ∩H3(Ω+ ∪ Ω−) ∩W 2,∞(Ω+ ∪ Ω−), then

(58) ah(u− uI , vh) ≤ Ch
3
2 (∥u∥3,Ω+∪Ω− + ∥u∥2,∞,Ω+∪Ω−)∥vh∥h, ∀vh ∈ Vh,0,

and

(59) ∥uI − uh∥h ≤ Ch
3
2 (∥u∥3,Ω+∪Ω− + ∥u∥2,∞,Ω+∪Ω−),

where C is a constant independent of the mesh size h and the interface location.

Based on the above supercloseness results, we prove that the recovery gradient
of PPIFE solution superconverges to the exact gradient.

Theorem 4.1. Let Rh be the ISCR gradient recovery operator, u be the exact
solution of (1)-(2) and uh be the PPIFE solution of (8) generated with γ = 1 on a
Cartesian mesh Th. Given any u ∈ H1(Ω)∩H3(Ω+ ∪Ω−)∩W 2,∞(Ω+ ∪Ω−), then

(60) ∥∇u−Rhuh∥0,Ω ≤ Ch
3
2 (∥u∥3,Ω+∪Ω− + ∥u∥2,∞,Ω+∪Ω−),

where C is a constant independent of the mesh size h and the interface location.

Proof. The boundedness (45) and the triangle inequality imply that

(61) ∥∇u−Rhuh∥0,Ω ≤ ∥∇u−RhuI∥0,Ω + ∥RhuI −Rhuh∥0,Ω := I1 + I2.

According to Theorem 3.1, we have

(62) I1 ≤ Ch2(∥u∥3,Ω+∪Ω− + ∥u∥2,∞,Ω+∪Ω−).

By the definition of ISCR recovery operator, we get

(63) I2 = ∥Rh(uI − uh)∥0,Ω ≤ ∥G+
hEh(uI − uh)∥0,Ω+

h
+ ∥G−

hEh(uI − uh)∥0,Ω−
h
.
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Notice that G+
h and G−

h are the standard SCR gradient recovery operator, then

(64)

∥G+
hEh(uI − uh)∥0,Ω+

h
+ ∥G−

hEh(uI − uh)∥0,Ω−
h

≤C
(
|Eh(uI − uh)|1,Ω+

h
+ |Eh(uI − uh)|1,Ω−

h

)
≤C|Eh(uI − uh)|1,Ω
≤C|uI − uh|1,Ω
≤Ch

3
2 (∥u∥3,Ω+∪Ω− + ∥u∥2,∞,Ω+∪Ω−),

where we use the boundedness of the standard SCR operator G±
h in the first in-

equality, lemma 3.3 in the three inequality, and lemma 4.1 in the last inequality.
Combining (61)-(64), we completes the proof of Theorem 4.1. �

With the superconvergence result above, we show that the ISCR-based error
estimator is asymptotically exact.

Theorem 4.2. In the hypotheses of Theorem 4.1. If there exist a constant C(u) >
0, such that

(65) ∥∇u−∇uh∥0,Ω ≥ C(u)h.

Then, it holds that

(66)

∣∣∣∣ ηh
∥β1/2∇(u− uh)∥0,Ω

− 1

∣∣∣∣ ≤ Ch
1
2 .

Proof. From the triangle inequality and Theorem 4.1, we have

(67)

∣∣∣∥β1/2(Rhuh −∇uh)∥0,Ω − ∥β1/2∇(u− uh)∥0,Ω
∣∣∣

≤∥β1/2(Rhuh −∇u)∥0,Ω
≤Ch

3
2

(
∥u∥3,Ω+∪Ω− + ∥u∥2,∞,Ω+∪Ω−

)
.

Therefore,
(68)∣∣∣∣ ηh

∥β1/2∇(u− uh)∥0,Ω
− 1

∣∣∣∣ ≤ ∣∣∣∣∥β1/2(Rhuh −∇uh)∥0,Ω − ∥β1/2∇(u− uh)∥0,Ω
∥β1/2∇(u− uh)∥0,Ω

∣∣∣∣
≤

Ch
3
2

(
∥u∥3,Ω+∪Ω− + ∥u∥2,∞,Ω+∪Ω−

)
min(β+, β−)c(u)h

≤ Ch
1
2 .

This complete the proof. �

5. Numerical Experiments

In this section, we present some numerical examples to illustrate the supercon-
vergence of the ISCR method, and show adaptive algorithm using the ISCR-based
error estimator is reliable and efficient. We also demonstrate the effectiveness of this
method by numerical comparison with the standard SCR method. For simplicity,
we adopt the following error norms in all the examples:

De := ∥u− uh∥1,Ω, Die := ∥∇u−Rhuh∥0,Ω, Dse := ∥∇u− Shuh∥0,Ω,

Dhe := ∥∇u−Hhuh∥0,Ω, Dge := ∥∇u−Ghuh∥0,Ω.
Our adaptive algorithm follows the standard procedure:

Solve → Estimate → Remark → Refine.
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We solve the elliptic interface problem using the PPIFE methods in (8), then esti-
mate the ISCR-based error indicator ηT defined in (53) on each element. Mark the
elements with the maximum marking strategy, i.e., mark all elements T ∗ such that

ηT∗ ≥ θ max
T∈Th

ηT , θ ∈ (0, 1).

Finally, we refine the marked elements by newest vertex bisection.

5.1. Example 1. In first example, we consider the elliptic interface problem with a
smooth circular interface curve [6,23,24]. Assume the interface Γ is a circle centered

at origin with radius r0 = π
6.28 , and separates the domain Ω = [−1, 1]

2
into two

subdomains Ω+ =
{
(x, y) : x2 + y2 > r20

}
and Ω− =

{
(x, y) : x2 + y2 < r20

}
. The

function f is chosen to fit the following exact solution

(69) u(z) =


rp

β+
+

(
1

β− − 1

β+

)
rp0 , if z ∈ Ω+,

rp

β− , if z ∈ Ω−,

where r =
√
x2 + y2 and p = 3.

Here we take β+

β− = 1
10 ,

1
100 ,

1
1000 ,

10
1 , 100

1 , 1000
1 in Tables 1 and Tables 2. As we

see clearly that H1-semi error (De) reach the optimal convergence rate for different
jump ratios. For the convergence rate of gradients, ISCR (Die), ISCR-AA (Dse)
and ISCR-AH (Dhe) superconverges at the order of O(h1.5), but the standard SCR
(Dge) is about O(h0.5) convergence rate. One also notice that Die, Dse and Dhe
have similar superconvergence results, but the error of Die is slightly smaller than
that of Dse and Dhe.

In Figure 5, we plot the meshes generated by the uniform PPIFE and adaptive
PPIFE methods with the jump ratio β+/β− = 100/1, where Figure 5 (a) has a
similar number of elements and degrees of freedom (DOF) as Figure 5 (b). Com-
pared with the uniform mesh, it can be observed from Figure 5 (b) that there is
mainly mesh refinement around the interface for the adaptive PPIFE methods.

Cell = 11858 , Dof = 6084

(a)

Cell = 11940 , Dof = 6035

(b)

Figure 5. The mesh generated by the uniform PPIFE and adap-
tive PPIFE methods with the jump ratio β+/β− = 100/1 for Ex-
ample 5.1. (a) Uniform mesh; (b) Adaptive mesh.
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Table 1. Numerical results for Examples 5.1 with β+/β− = 1/10,
β+/β− = 1/100 and β+/β− = 1/1000 using PPIFE and four gra-
dient recovery methods.

Dof β+

β− = 1
10 Order β+

β− = 1
100 Order β+

β− = 1
1000 Order

PPIFE methods in ∥u− uh∥1,Ω
81 7.9735e− 01 − 8.0201e− 01 − 8.0214e− 01 −
289 3.9971e− 01 0.9963 4.0107e− 01 0.9998 4.0108e− 01 0.9999
1089 2.0016e− 01 0.9978 2.0060e− 01 0.9995 2.0062e− 01 0.9994
4225 1.0007e− 01 1.0001 1.0019e− 01 1.0015 1.0020e− 01 1.0016
16641 5.0062e− 02 0.9993 5.0098e− 02 0.9999 5.0100e− 02 1.0000
ISCR method in ∥∇u−Rhuh∥0,Ω
81 1.0836e+ 00 − 1.0854e+ 00 − 1.0860e+ 00 −
289 4.3127e− 01 1.3292 4.3233e− 01 1.3281 4.3251e− 01 1.3282
1089 1.6152e− 01 1.4169 1.6203e− 01 1.4159 1.6209e− 01 1.4159
4225 5.8675e− 02 1.4609 5.8927e− 02 1.4592 5.8953e− 02 1.4592
16641 2.1109e− 02 1.4749 2.1212e− 02 1.4741 2.1220e− 02 1.4741
ISCR-AA method in ∥∇u− Shuh∥0,Ω
81 1.0852e+ 00 − 1.0864e+ 00 − 1.0869e+ 00 −
289 4.3167e− 01 1.3299 4.3258e− 01 1.3285 4.3275e− 01 1.3286
1089 1.6162e− 01 1.4173 1.6208e− 01 1.4162 1.6214e− 01 1.4163
4225 5.8706e− 02 1.4610 5.8948e− 02 1.4592 5.8973e− 02 1.4591
16641 2.1113e− 02 1.4754 2.1213e− 02 1.4745 2.1222e− 02 1.4745
ISCR-AH method in ∥∇u−Hhuh∥0,Ω
81 1.0857e+ 00 − 1.0875e+ 00 − 1.0880e+ 00 −
289 4.3114e− 01 1.3324 4.3234e− 01 1.3308 4.3252e− 01 1.3309
1089 1.6151e− 01 1.4165 1.6210e− 01 1.4153 1.6216e− 01 1.4153
4225 5.8666e− 02 1.4610 5.8961e− 02 1.4590 5.8991e− 02 1.4589
16641 2.1119e− 02 1.4740 2.1221e− 02 1.4743 2.1229e− 02 1.4744
SCR method in ∥∇u−Ghuh∥0,Ω
81 1.1515e+ 00 − 1.1819e+ 00 − 1.1853e+ 00 −
289 4.4875e− 01 1.3595 4.5606e− 01 1.3738 4.5675e− 01 1.3757
1089 1.8094e− 01 1.3104 1.8589e− 01 1.2948 1.8634e− 01 1.2934
4225 8.3518e− 02 1.1154 8.8261e− 02 1.0746 8.8712e− 02 1.0708
16641 4.7320e− 02 0.8196 5.1316e− 02 0.7824 5.1707e− 02 0.7788
66049 3.1120e− 02 0.6046 3.4117e− 02 0.5889 3.4412e− 02 0.5874

Figure 6 and 7 show the numerical solutions and the recovered gradient. Figure
8 describes the error surfaces of the uniform and adaptive PPIFE methods with
similar DOFs, respectively. We can observe that the error is obviously reduced for
the adaptive solution, which can also be clearly seen from Figure 9.

In Figure 9, we present the convergence of these two methods and the ISCR-based
error estimator for the adaptive PPIFE methods. As shown in the figure, the error
of adaptive PPIFE methods is significantly less than that of uniform PPIFE meth-
ods, and the slopes of uniform and adaptive PPIEE methods log(DOF)-log(De) are
very close to −0.5 and −0.7, respectively. Hence, the application of adaptive mesh
refinement is more efficient for interface problems with moderate jump ratios. We
will also explain that it is also effective for the case of large jump ratios. And we
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(a) (b)

Figure 6. Numerical solutions of uniform and adaptive PPIFE
methods with similar DOFs and β+/β− = 100/1 for Example 5.1.
(a) Numerical solutions of uniform PPIFE methods; (b) Numerical
solutions of adaptive PPIFE methods.

..(a) . (b)

Figure 7. Recoverd gradient with β+ = 100, β− = 1 for Example
5.1. (a) x-component; (b) y-component.

(a) (b)

Figure 8. Errors of uniform and adaptive PPIFE methods with
similar DOFs and β+/β− = 100/1 for Example 5.1. (a) Errors of
uniform PPIFE methods; (b) Errors of adaptive PPIFE methods.
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Table 2. Numerical results for Examples 5.1 with β+/β− = 10/1,
β+/β− = 100/1 and β+/β− = 1000/1 using PPIFE and four gra-
dient recovery methods.

Dof β+

β− = 10
1 Order β+

β− = 100
1 Order β+

β− = 1000
1 Order

PPIFE methods in ∥u− uh∥1,Ω
81 1.7490e− 01 − 1.6137e− 01 − 1.6029e− 01 −
289 8.7314e− 02 1.0023 8.1182e− 02 0.9911 7.8824e− 02 1.0240
1089 4.3903e− 02 0.9919 4.0441e− 02 1.0053 3.9629e− 02 0.9921
4225 2.1828e− 02 1.0082 1.9763e− 02 1.0330 1.9538e− 02 1.0203
16641 1.1008e− 02 0.9876 9.9169e− 03 0.9949 9.8510e− 03 0.9879
ISCR method in ∥∇u−Rhuh∥0,Ω
81 1.6184e− 01 − 1.3701e− 01 − 1.8413e− 01 −
289 6.6367e− 02 1.2860 5.8274e− 02 1.2334 7.3164e− 02 1.3315
1089 2.5385e− 02 1.3865 2.3486e− 02 1.3111 2.7625e− 02 1.4052
4225 8.9172e− 03 1.5093 8.2893e− 03 1.5025 8.6265e− 03 1.6791
16641 3.3154e− 03 1.4274 3.0704e− 03 1.4328 2.9590e− 03 1.5437
ISCR-AA method in ∥∇u− Shuh∥0,Ω
81 1.6682e− 01 − 1.4271e− 01 − 1.8350e− 01 −
289 6.8006e− 02 1.2945 6.0272e− 02 1.2435 7.2129e− 02 1.3472
1089 2.5790e− 02 1.3988 2.3780e− 02 1.3417 2.6770e− 02 1.4300
4225 9.0391e− 03 1.5126 8.3087e− 03 1.5171 8.4450e− 03 1.6644
16641 3.3659e− 03 1.4252 3.1185e− 03 1.4138 5.0137e− 03 1.4866
ISCR-AH method in ∥∇u−Hhuh∥0,Ω
81 1.7515e− 01 − 1.5994e− 01 − 2.5731e− 01 −
289 6.7787e− 02 1.3695 6.4129e− 02 1.3185 1.0393e− 01 1.3079
1089 2.5815e− 02 1.3928 2.6367e− 02 1.2822 3.8395e− 02 1.4366
4225 8.9822e− 03 1.5231 9.2292e− 03 1.5145 1.0804e− 02 1.8294
16641 3.3205e− 03 1.4357 3.0751e− 03 1.5856 2.9695e− 03 1.8632
SCR method in ∥∇u−Ghuh∥0,Ω
81 3.7670e− 01 − 3.8620e− 01 − 5.9636e− 01 −
289 1.5683e− 01 1.2642 1.6631e− 01 1.2154 2.9679e− 01 1.0067
1089 9.3354e− 02 0.7484 1.0216e− 01 0.7031 1.3535e− 01 1.1327
4225 6.2711e− 02 0.5740 6.8909e− 02 0.5680 7.5100e− 02 0.8498
16641 4.3539e− 02 0.5264 4.7720e− 02 0.5301 4.8276e− 02 0.6375
66049 3.0574e− 02 0.5100 3.3581e− 02 0.5069 3.3914e− 02 0.5094

can also see that although the rate of the ISCR-based error estimator is slightly
lower than the theoretical order O(h1.5) due to the complexity of adaptive mesh,
the error estimator is still effective in guiding mesh refinement and is asymptotically
exact.

We also test the case with a large jump ratio β+/β− = 1000/1. Figure 10 (a)
shows that the mesh of the adaptive PPIFE methods is effectively refined in regions
near the interface. In Figure 10 (b), we note that the slope of uniform and adaptive
PPIFE methods is consistent with Figure 9, which illustrates that the adaptive
PPIFE methods are also more effective than the uniform PPIFE methods for the
case of large jump ratios. And the ISCR-based error estimator has superconvergence
results and asymptotically exactness.
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Figure 9. Convergence of uniform PPIFE and adaptive PPIFE
methods with β+/β− = 100/1 for Example 5.1.
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Figure 10. Adaptive mesh for PPIFE methods and convergence
of uniform and adaptive PPIFE methods with β+/β− = 1000/1
for Example 5.1. (a) Adaptive mesh; (b) Convergence.

The numerical solutions and the error surfaces on the uniform and adaptive
meshes with similar DOFs are described in Figure 11 and 12, respectively. Again,
we can see that the error of adaptive PPIFE methods is less than the error of
uniform PPIFE methods with similar degrees of freedom.

5.2. Example 2. In this example, we consider the elliptic interface problem with
a more complicated interface curve [35]. Let Ω = [−1, 1]× [−1, 1], and the interface
is the zero level set of the following function

ϕ (x, y) =
(
x2 + y2

)2 (
1 + 0.4 sin

(
6 arctan

(y
x

)))
− 0.3.

The two subdomains are defined as Ω+ = {(x, y) : ϕ (x, y) > 0} and Ω− = {(x, y) :
ϕ (x, y) < 0}. The right hand function f is selected to match the exact solution

u(z) =


1

β+
ϕ (x, y) , if z ∈ Ω+,

1

β−ϕ (x, y) , if z ∈ Ω−.
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(a) (b)

Figure 11. Numerical solutions of uniform and adaptive PPIFE
methods with similar DOFs and β+/β− = 1000/1 for Example 5.1.
(a) Numerical solutions of uniform PPIFE methods; (b) Numerical
solutions of adaptive PPIFE methods.

(a) (b)

Figure 12. Errors of uniform and adaptive PPIFE methods with
similar DOFs and β+/β− = 1000/1 for Example 5.1. (a) Errors of
uniform PPIFE methods; (b) Errors of adaptive PPIFE methods.

For this example, we choose the same jump ratios as in the Example 5.1. Because
of the complexity of the interface shape, we start with a 16×16 Cartesian triangular
mesh. Tables 3 and 4 show the corresponding numerical results, from which one
can see that H1-semi error (De) of the PPIFE numerical solution decays at an
optimal rate of O(h). ISCR (Die), ISCR-AA (Dse) and ISCR-AH (Dhe) have
an O(h1.5) superconvergence, which is consistent with Theorem 4.1. However, the
standard SCR (Dge) does not converge since the exact solution is smooth only on
each subdomain. We can also note that the error of Die is slightly less than that
of Dse and Dhe.

We present the adaptive mesh and the convergence with β+/β− = 100/1 in
Figure 13. The plot on the left shows that the interface is petal-shaped, and the
mesh refinement is concentrated near the interface. Figure 13 (b) illustrates that
the uniform and adaptive PPIFE errors have O(h) and O(h1.4) convergence rates,
respectively. And although the order of the ISCR-based error estimator is slightly
lower than that of the theoretical, it still achieves good results. Figure 14 and
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Table 3. Numerical results for Examples 5.2 with β+/β− = 1/10,
β+/β− = 1/100 and β+/β− = 1/1000 using PPIFE and four gra-
dient recovery methods.

Dof β+

β− = 1
10 Order β+

β− = 1
100 Order β+

β− = 1
1000 Order

PPIFE method in ∥u− uh∥1,Ω
289 9.7177e− 01 - 1.0573e+ 00 - 1.1147e+ 00 -
1089 4.8746e− 01 0.9953 4.9544e− 01 1.0936 5.3504e− 01 1.0589
4225 2.4455e− 01 0.9952 2.4584e− 01 1.0110 2.4896e− 01 1.1038
16641 1.2222e− 01 1.0007 1.2275e− 01 1.0020 1.2431e− 01 1.0020
ISCR method in ∥∇u−Rhuh∥0,Ω
289 1.1162e+ 00 - 1.1493e+ 00 - 1.1533e+ 00 -
1089 4.2468e− 01 1.3942 4.2762e− 01 1.4264 4.4184e− 01 1.3842
4225 1.5577e− 01 1.4470 1.5692e− 01 1.4463 1.5820e− 01 1.4818
16641 5.6097e− 02 1.4734 5.6658e− 02 1.4697 5.8180e− 02 1.4432
ISCR-AA method in ∥∇u− Shuh∥0,Ω
289 1.1170e+ 00 - 1.1493e+ 00 - 1.1529e+ 00 -
1089 4.2519e− 01 1.3935 4.2798e− 01 1.4251 4.4246e− 01 1.3816
4225 1.5588e− 01 1.4477 1.5708e− 01 1.4460 1.5842e− 01 1.4818
16641 5.6131e− 02 1.4735 5.6692e− 02 1.4703 5.8193e− 02 1.4448
ISCR-AH method in ∥∇u−Hhuh∥0,Ω
289 1.1166e+ 00 - 1.1499e+ 00 - 1.1538e+ 00 -
1089 4.2465e− 01 1.3948 4.2766e− 01 1.4270 4.4153e− 01 1.3858
4225 1.5594e− 01 1.4453 1.5705e− 01 1.4452 1.5827e− 01 1.4801
16641 5.6143e− 02 1.4738 5.6722e− 02 1.4692 5.8397e− 02 1.4384
SCR method in ∥∇u−Ghuh∥0,Ω
289 1.1487e+ 00 - 1.1905e+ 00 - 1.1966e+ 00 -
1089 4.8732e− 01 1.2371 5.0346e− 01 1.2416 5.1821e− 01 1.2073
4225 2.3573e− 01 1.0478 2.5065e− 01 1.0062 2.5330e− 01 1.0327
16641 1.3843e− 01 0.7680 1.5081e− 01 0.7329 1.5342e− 01 0.7234
66049 9.2837e− 02 0.5764 1.0197e− 01 0.5646 1.0317e− 01 0.5725

Figure 15 indicate that the error mainly comes from the interface elements, and the
adaptive PPIFE methods can significantly reduce the error.

We also test the large jump case by choosing β+ = 1000 and β− = 1. Figure
16 plots an adaptively refined mesh and gives the numerical convergence rates. It
shows clearly from Figure 16 (a) that the recovery-based a posteriori error estimator
successfully directs the mesh refinement around the interface without introducing
any over-refinement. However, the a posteriori error estimator based on standard
gradient recovery operators exists the over-refinement problem discussed in [31].
One can again observe from Figure 16 (b), the optimal rate decay for the uniform
PPIFE numerical errors, and the superconvergence for the adaptive PPIFE numeri-
cal errors and estimator. And Figure 17 and 18 also illustrate the good performance
of the ISCR-based error estimator for the partially penalized IFE methods.

5.3. Example 3. In this example, we consider the interface problem where the
exact solution has singularity [24, 36]. Let Ω = [−1, 1] × [−1, 1], and the interface
Γ be an ellipse centered at (x0, y0) = (0, 0) with semi-axes a = π

6.28 , b = 3
2a. The
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Table 4. Numerical results for Examples 5.2 with β+/β− = 10/1,
β+/β− = 100/1 and β+/β− = 1000/1 using PPIFE and four gra-
dient recovery methods.

Dof β+

β− = 10
1 Order β+

β− = 100
1 Order β+

β− = 1000
1 Order

PPIFE method in ∥u− uh∥1,Ω
289 3.1103e− 01 - 2.9320e− 01 - 3.1635e− 01 -
1089 1.6164e− 01 0.9442 1.5509e− 01 0.9187 1.6215e− 01 0.9642
4225 8.1971e− 02 0.9796 7.8679e− 02 0.9791 7.9796e− 02 1.0229
16641 4.0751e− 02 1.0083 3.8959e− 02 1.0140 3.9332e− 02 1.0206
ISCR method in ∥∇u−Rhuh∥0,Ω
289 2.1753e− 01 - 2.2978e− 01 - 2.5149e− 01 -
1089 7.3522e− 02 1.5650 8.1065e−O2 1.5031 9.8192e− 02 1.3568
4225 2.9299e− 02 1.3273 3.2506e− 02 1.3184 3.5337e− 02 1.4744
16641 1.0606e− 02 1.4660 1.1950e− 02 1.4436 1.3406e− 02 1.3983
ISCR-AA method in ∥∇u− Shuh∥0,Ω
289 2.1352e− 01 - 1.9839e− 01 - 2.2476e− 01 -
1089 8.5129e− 02 1.3267 8.1655e− 02 1.2807 9.6041e− 02 1.2267
4225 3.3648e− 02 1.3391 3.3105e− 02 1.3025 3.5607e− 02 1.4315
16641 1.2154e− 02 1.4691 1.2130e− 02 1.4485 1.3417e− 02 1.4081
ISCR-AH method in ∥∇u−Hhuh∥0,Ω
289 2.1218e− 01 - 1.9545e− 01 - 2.2409e− 01 -
1089 8.6099e− 02 1.3012 8.4046e− 02 1.2175 1.0981e− 01 1.0290
4225 3.3225e− 02 1.3737 3.2590e− 02 1.3668 3.5546e− 02 1.6272
16641 1.1977e− 02 1.4720 1.1987e− 02 1.4430 1.3639e− 02 1.3819
SCR method in ∥∇u−Ghuh∥0,Ω
289 4.3123e− 01 - 4.4273e− 01 - 4.4976e− 01 -
1089 2.7652e− 01 0.6411 2.9888e− 01 0.5669 3.0839e− 01 0.5444
4225 1.8779e− 01 0.5583 2.0486e− 01 0.5449 2.0625e− 01 0.5804
16641 1.3122e− 01 0.5171 1.4347e− 01 0.5139 1.4461e− 01 0.5122

interface separates the domain Ω into two subdomains, denoted by Ω+ and Ω− such
that

Ω+ = {(x, y) : r(x, y) > 1} and Ω− = {(x, y) : r(x, y) < 1},
where

r(x, y) =

√
(x− x0)

2

a2
+

(y − y0)
2

b2
.

The right hand function f is given by the exact solution

(70) u(z) =


rp

β+
+

1

β− − 1

β+
, if z ∈ Ω+,

rp

β− , if z ∈ Ω−,

where p > 0 is the regularity parameter.
We test the case when p = 0.5 and β+/β− = 106/1. Note that the singularity

of the exact solution at origin leads to the solution is merely in H1.5−ρ(Ω) for
any ρ > 0. The adaptively refined mesh presented in Figure 19 (a) shows that
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Figure 13. Adaptive mesh for PPIFE methods and convergence
of uniform and adaptive PPIFE methods with β+/β− = 100/1 for
Example 5.2. (a) Adaptive mesh; (b) Convergence.

(a) (b)

Figure 14. Numerical solutions of uniform and adaptive PPIFE
methods with similar DOFs and β+/β− = 100/1 for Example 5.2.
(a) Numerical solutions of uniform PPIFE methods; (b) Numerical
solutions of adaptive PPIFE methods.

the refinement is around the interface and the origin where the exact solution is
singular. Figure 19 (b) displays the numerical convergence rates. As shown in
the plot, the adaptive PPIFE methods are far more accurate than the uniform
PPIFE methods with similar DOFs. Moreover, we can draw similar conclusions
as previous about the convergence of error and estimator for the adaptive PPIFE
methods. However, the uniform PPIFE methods fail to converge optimally due to
the singularity of the solution.

In Figure 20 and 21, the numerical solutions and the error surfaces on the uniform
and adaptive meshes are reported, respectively. Obviously, the numerical solution
obtained by the adaptive PPIFE methods can accurately resolve the behavior of
the exact solution at the singularity point, and the adaptive PPIFE methods can
significantly reduce the error mainly from around the singular point.
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(a) (b)

Figure 15. Errors of uniform and adaptive PPIFE methods with
similar DOFs and β+/β− = 100/1 for Example 5.2. (a) Errors of
uniform PPIFE methods; (b) Errors of adaptive PPIFE methods.
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Figure 16. Adaptive mesh for PPIFE methods and convergence
of uniform and adaptive PPIFE methods with β+/β− = 1000/1
for Example 5.2. (a) Adaptive mesh; (b) Convergence.

6. Conclusion

In this paper, we have developed an immersed superconvergent cluster recovery
method and a posteriori error estimation based on this method for elliptic inter-
face problems solved by partially penalized immersed finite element methods. The
proposed gradient recovery operator, which overcomes the shortcoming that the
standard gradient recovery methods cannot obtain superconvergence results due
to the low regularity of the solution at the interface, was proved to have linearity,
boundedness, and consistent properties. The recovered gradient converges to the
exact gradient at the superconvergent rate of O(h1.5). We present several numerical
examples to confirm our theoretical results and verify that the a posteriori error
estimator is asymptotically exact for the adaptive algorithm. In our future work,
we will consider a recovery-based a posteriori error estimate for immersed finite
element methods to parabolic interface problems.
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(a) (b)

Figure 17. Numerical solutions of uniform and adaptive PPIFE
methods with similar DOFs and β+/β− = 1000/1 for Example 5.2.
(a) Numerical solutions of uniform PPIFE methods; (b) Numerical
solutions of adaptive PPIFE methods.

(a) (b)

Figure 18. Errors of uniform and adaptive PPIFE methods with
similar DOFs and β+/β− = 1000/1 for Example 5.2. (a) Errors of
uniform PPIFE methods; (b) Errors of adaptive PPIFE methods.
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