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A SCALAR AUXILIARY VARIABLE (SAV) AND OPERATOR

SPLITTING COMPACT FINITE DIFFERENCE METHOD FOR

PERITECTIC PHASE FIELD MODEL

JIAJIE FEI, SHUSEN XIE, AND CHUNGUANG CHEN∗

Abstract. Peritectic crystallization is a process in which the solid phase precipitated in the
form of solid solution reacts with the liquid phase to form another solid phase. The process

can be described by a phase field model where two continuous phase variables, ϕ and ψ, are
introduced to distinguish the three different phases. We discretize the time variable with a scalar
auxiliary variable (SAV) method that can ensure the unconditional energy stability. Moreover,
the SAV method only requires solving a linear system at each time step and therefore reduces

the computational complexity. The space variables in a two-dimensional region are discretized by
an operator splitting method equipped with a high order compact finite difference formulation.
This approach is effective and convenient since only a series one-dimensional problems need to be
solved at each step. We prove the unconditional energy stability theoretically and test the order

of convergence and energy stability through numerical experiments. Simulations of peritectic
solidification demonstrate the patterns formed during the process.

Key words. Peritectic crystallization, phase field model, scalar auxiliary variable (SAV) method,
operator splitting, compact finite difference method.

1. Introduction

Peritectic crystallization occurs when the solution of alloy is cooled down to
critical temperature and one solid phase, denoted by α, precipitated in the form of
solid solution reacts with the liquid phase to form another solid phase, denoted by
β. This process is similar to eutectic crystallization where the two different solid
phases precipitated simultaneously from the solution. The mathematical modeling
of both processes has gradually matured with the application of phase field model.
In a typical phase field model, a variable, usually denoted by ϕ, takes two different
values in solid and liquid, e.g. +1 and −1, changes smoothly between the two
values in the region around the interface and diffuses with a limited width. Another
variable, ψ, is used to distinguish the α-solid and β-solid in the same way. The
discrete position of the interface can be defined as the set of all points where the
phase field takes a specific value, e.g. 0. In other words, the phase field model does
not track the location of the interface explicitly, unlike the sharp-interface approach
such as level-set method, hence is effective in simulations of complicated patterns
formed in alloy solidification.

Concerning the peritectic process, Trivedi [26] proposed a one-dimensional model
to explain the formation of peritectic banded structure in pure diffusion controlled
growth. This model is improved by P. Mazumder, R. Trivedi and A. Karma [20]
under the assumption of a planar solidification front and incorporation with a fully
two-dimensional convection flow field. A. Wheeler et al [29] proposed a phase
field model for eutectic solidification which is then developed for both eutectic and
peritectic phase transitions [21]. Based on [29], T. S. Lo, A. Karma and M. Plapp
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[19] developed a phase field model of the formation of microstructure mode during
directional solidification of amorphous unstable peritectic alloys. This model will
be discussed and solved numerically in the following sections.

As the evolution of phase field model is driven by energy dissipation, it is crucial
to imitate this physical law in numerical approximation. Numerical schemes that
satisfy discrete energy dissipation law are energy stable. X. Yang and D. Han [32]
developed a series of linear, unconditionally energy stable numerical schemes for
solving the phase field crystal model. The temporal discretizations are based on
the first order Euler method, the second order backward differentiation formulas
(BDF2) and the second order Crank-Nicolson method, respectively. K. Cheng, W.
Feng and C. Wang [4] proposed an energy stable numerical scheme for the Cahn-
Hilliard equation by the long stencil fourth order finite difference approximation.
In the temporal approximation, a second order BDF stencil is applied with a sec-
ond order extrapolation formula applied to the concave diffusion term, as well as a
second order artificial Douglas-Dupont regularization term, for the sake of energy
stability. K. Cheng, C. Wang and S. M. Wise [5] proposed an energy stable numer-
ical scheme for the strongly anisotropic Cahn-Hilliard model that is discretized in
space by the Fourier pseudospectral method. C. Elliott and A. Stuart [11] construct
an energy stable scheme with the convex splitting method that was applied to solve
Cahn-Hilliard equation by D. Eyre [12]. W. Chen et al [3] combined the convex
splitting method with a variable step BDF-2 approach and mixed finite element
method to approximate the Cahn-Hilliard equation and obtained second order rate
of convergence. Although the convex splitting method is unconditionally energy
stable, a nonlinear system has to be solved at every time level. J. Zhu et al [37]
proposed an efficient numerical method for the phase field model that maintains the
energy stability by adding an artificial stabilization term. However, this approach
is difficult to extend to high-order schemes.

F. Guilln-Gonzlez and G. Tierra [15, 2] proposed the invariant energy quadra-
tization (IEQ) method to solve the interface diffusion problem. The IEQ method
can be effectively extended to the higher-order schemes and only require solving
linear systems with variable coefficients at each time step [31]. The IEQ method is
then developed by J. Shen [23, 24] to scalar auxiliary variable (SAV) method and
is widely used in numerical approximations for phase field and related problems
[1, 6, 13, 34, 35, 28, 36]. In addition to maintaining unconditional energy stabil-
ity, only linear systems with constant coefficients need to be solved at each step.
And, unlike IEQ method, the SAV approach reduces the system to de-coupled Pois-
son type equations for multi-component models. In this paper, we apply the SAV
method for time discretization in the numerical approximations of the peritectic
phase transition.

To account for the two-dimensional space variable, we implement an operator
splitting approach equipped with a high order compact finite difference scheme
[14, 30]. The 2D Poisson problem is separated into two 1D equations that are solved
by fourth-order compact finite difference schemes. The operator splitting method
has been widely used to approximate high dimensional problems. C. Zhang et al [33]
proved the nonlinear stability and convergence of a second-order operator splitting
scheme applied to the “good” Boussinesq equation. Y. Cheng et al [7] proposed a
fast explicit operator splitting method for the epitaxial growth model with slope
selection. This approach is modified by X. Li, Z. Qiao and H. Zhang [16] with a
compact center-difference scheme. C. Liu, C. Wang and Y. Wang [17] suggested a
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positivity-preserving, energy stable operator splitting scheme for reaction-diffusion
equations with detailed balance.

The advantage of compact finite difference method lies in efficient approxima-
tions of derivatives with short stencils. W. E and J. Liu [10] suggested an essentially
compact schemes for unsteady viscous incompressible flows. J. Liu, C. Wang and
H. Johnston [18] proposed a fourth order finite difference method for solving the
vorticity flow function of two-dimensional unsteady viscous incompressible Boussi-
nesq equation. C. Wang, J. Liu and H. Johnston [27] established the convergence of
a fourth order finite difference method for the 2-D unsteady, viscous incompressible
Boussinesq equations by using compact fourth order scheme and long-stencil fourth
order operators.

The rest of this paper is organized as follows. The phase field model is introduced
in Section 2. In Section 3, we discuss the numerical scheme in which we discretize
the time variable by SAV method and the space variable by operator splitting
compact finite difference method. Unconditional energy stability of the scheme
is also proved. In Section 4, we test the rate of convergence and stability of the
scheme through numerical experiments and simulate various patterns formed in
the processes of peritectic crystallization. Section 5 summarizes the results of this
paper.

2. The phase field model of peritectic crystallization

The phase field model for peritectic crystallization with diffusion effect on a
two-dimensional domain Ω is given by [19]

∂ϕ

∂t
= ∆ϕ− fϕ,

∂ψ

∂t
= ∆ψ − fψ,

∂c

∂t
=
α

λ
∇ · [D(ϕ)∇fc] ,

(1)

where ϕ = ϕ(x, y, t), (x, y) ∈ Ω, is the partition variable of solid (ϕ = 1) and liquid
(ϕ = −1) in the crystallization process and the level curve ϕ = 0 represents the
solid-liquid interface. ψ = ψ(x, y, t) is the partition variable of the two different
solids α (ψ = 1) and β (ψ = −1) with the interface defined by ψ = 0 when ϕ is
positive. The scaled composition is taken as

(2) c(x, y, t) =
C(x, y, t)− Cpβ

Cp − Cpα
,

where C = C(x, y, t) is the composition of the impurity and Cp, Cpα, Cpβ are con-
stants given in Table 1. For physical discussions of these constants, we refer to [19]
and the references therein. α, λ are positive constants and D(ϕ) = (1−ϕ)/2 is the
diffusion coefficient that implies diffusion effect of the solute impurities becomes
weaker as solidification goes on. fϕ, fψ, fc are the partial derivatives of f to the
subscript where f = f(ϕ, ψ, c) is the bulk free energy density of the alloy that takes
the from [19]

f(ϕ, ψ, c) =
λ

2
{c+A1h(ϕ) +

1

2
A2[1 + h(ϕ)]h(ψ)}2

−λ{B1h(ϕ) +
1

2
B2[1 + h(ϕ)]h(ψ)}+ g(ϕ)

+
1

2
[1 + h(ϕ)]g(ψ) +

1

2
[1− h(ϕ)]ψ2,
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where A1, A2 are constants and B1, B2 are functions of temperature.

g(ϕ) = 1/4− ϕ2/2 + ϕ4/4

is the double-well function with minima at ϕ = ±1 and

h(ϕ) = 3(ϕ− ϕ3/3)/2

satisfies h(±1) = ±1, h′(±1) = 0. The functions g(ψ) and h(ψ) are defined in the
same way. In order to relate the parameters in our model to a physical system, we
take

B1 = B11 +B12T,

B2 = B21 +B22T,

where T is temperature, and B11, B12, B21, B22 are constants.
The phase field model (1) is driven by the dissipation of Helmholtz free energy

(3) F =

∫
Ω

1

2
W 2
ϕ |∇ϕ|2 +

1

2
W 2
ψ|∇ψ|2 + f(ϕ, ψ, c)dx,

where Wϕ, Wψ are constants, determining the width of the diffusive interfaces.

3. Numerical methods for the peritectic phase field model

3.1. Time discretization by scalar auxiliary variable (SAV) method. In
this section, we employ a second-order, unconditionally energy stable approach of
SAV [23] for (1). For simplicity, we consider the problem on rectangular domain
Ω with periodic boundary conditions. We define a scalar auxiliary variable r as
follows:

r =
√
E1(t) + C0,

where C0 is constant that ensures the radicand positive and E1(t) =
∫
Ω
f(ϕ, ψ, c)dx.

The phase field system (1) can be rewritten as

∂ϕ

∂t
= ∆ϕ− r√

E1 + C0

fϕ,

∂ψ

∂t
= ∆ψ − r√

E1 + C0

fψ,

∂c

∂t
=
α

λ
∇ ·
[
D(ϕ)∇

(
r√

E1 + C0

fc

)]
,

dr

dt
=

1

2
√
E1 + C0

∫
Ω

fϕϕt + fψψt + fcctdx,

(4)

where ϕt, ψt, ct represent the derivatives of ϕ, ψ, c with respect to t.
Let ∆t be the time step and ϕn = ϕ(n∆t), then we can discretize the above

system in time by the second order backward difference formula (BDF-2) to obtain
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a semi-discrete scheme

3ϕn+1 − 4ϕn + ϕn−1

2∆t
= ∆ϕn+1 − rn+1√

E
n+1/2
1 + C0

f
n+1/2
ϕ ,

3ψn+1 − 4ψn + ψn−1

2∆t
= ∆ψn+1 − rn+1√

E
n+1/2
1 + C0

f
n+1/2
ψ ,

3cn+1 − 4cn + cn−1

2∆t
=
α

λ
∇ ·

D(ϕn+1/2)∇

 rn+1√
E
n+1/2
1 + C0

fn+1/2
c

 ,
3rn+1 − 4rn + rn−1

2∆t
=

1

2

√
E
n+1/2
1 + C0

∫
Ω

f
n+1/2
ϕ

3ϕn+1 − 4ϕn + ϕn−1

2∆t

+ f
n+1/2
ψ

3ψn+1 − 4ψn + ψn−1

2∆t
+ fn+1/2

c

3cn+1 − 4cn + cn−1

2∆t
dx,

(5)

here E
n+1/2
1 =

∫
Ω
f(ϕn+1/2, ψn+1/2, cn+1/2)dx, f

n+1/2
ϕ = fϕ(ϕ

n+1/2, ψn+1/2, cn+1/2),

f
n+1/2
ψ = fψ(ϕ

n+1/2, ψn+1/2, cn+1/2) and f
n+1/2
c = fc(ϕ

n+1/2, ψn+1/2, cn+1/2) are

second-order approximations for En+1
1 , fn+1

ϕ , fn+1
ψ and fn+1

c , respectively. ϕn+1/2,

ψn+1/2, cn+1/2 are implicit second-order approximations for ϕn+1, ψn+1, cn+1, re-
spectively, obtained by solving the following system:

ϕn+1/2 − ϕn

∆t
= ∆ϕn+1/2 − fϕ(ϕ

n, ψn, cn),

ψn+1/2 − ψn

∆t
= ∆ψn+1/2 − fψ(ϕ

n, ψn, cn),

cn+1/2 − cn

∆t
=
α

λ
∇ ·
[
D(ϕn+1/2)∇fc(ϕn, ψn, cn)

]
.

(6)

Denote

bnλ =
f
n+1/2
λ√

E
n+1/2
1 + C0

, with λ = ϕ, ψ, c.

The first equation in (5) can be written as

(7)

(
I − 2

3
∆t∆

)
ϕn+1 = −2

3
∆tbnϕr

n+1 +
4

3
ϕn − 1

3
ϕn−1.

Let (f(x), g(x)) =
∫
Ω
f(x)g(x)dx be the inner product on Ω and the last equation

in (5) can be written as

(8) rn+1 =
1

2

[
(bnϕ, ϕ

n+1) + (bnψ, ψ
n+1) + (bnc , c

n+1)
]
+ pn,

where

pn =
1

6

[
(bnϕ,−4ϕn + ϕn−1) + (bnψ,−4ψn + ψn−1)

+(bnc ,−4cn + cn−1)
]
+

4

3
rn − 1

3
rn−1.
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Plugging (8) into (7) to obtain that(
I − 2

3
∆t∆

)
ϕn+1 +

1

3
∆t
[
(bnϕ, ϕ

n+1) + (bnψ, ψ
n+1) + (bnc , c

n+1)
]
bnϕ

= −2

3
∆tpnbnϕ +

4

3
ϕn − 1

3
ϕn−1.

(9)

Let

A = I − 2

3
∆t∆,

gnϕ = −2

3
∆tpnbnϕ +

4

3
ϕn − 1

3
ϕn−1,

θn = (bnϕ, ϕ
n+1) + (bnψ, ψ

n+1) + (bnc , c
n+1),

and

vn1 = A−1bnϕ, wn1 = A−1gnϕ .

Then (9) can be written as the equivalent form

ϕn+1 +
1

3
∆tvn1 θ

n = wn1 .(10)

Taking inner product of both sides with bnϕ to obtain that

(bnϕ, ϕ
n+1) +

1

3
∆tθn(bnϕ, v

n
1 ) = (bnϕ, w

n
1 ).(11)

Similarly, we can get the equations for ψn+1:

(12) ψn+1 +
1

3
∆tθnvn2 = wn2 ,

(bnψ, ψ
n+1) +

1

3
∆tθn(bnψ, v

n
2 ) = (bnψ, w

n
2 ),(13)

where vn2 = A−1bnψ, w
n
2 = A−1gnψ. Moreover, the third equation in (5) can be

written as

cn+1 =
2α

3λ
∆t∇ · (Dn+1/2∇bnc )rn+1 +

4

3
cn − 1

3
cn−1,

where Dn+1/2 = D(ϕn+1/2).
Plugging (8) into the above equation gives

cn+1 − αθn

3λ
∆t∇ · (Dn+1/2∇bnc ) =

2α

3λ
∆t∇ · (Dn+1/2∇bnc )pn +

4

3
cn − 1

3
cn−1.(14)

Let gnc = 2α
3λ∆t∇ · (Dn+1/2∇bnc )pn + 4

3c
n − 1

3c
n−1 and take inner product of both

sides with bnc to obtain that

(bnc , c
n+1) +

αθn

3λ
∆t(Dn+1/2∇bnc ,∇bnc ) = (bnc , g

n
c ).(15)

Denote

γn =
1

3
∆t(bnϕ, v

n
1 ) +

1

3
∆t(bnψ, v

n
2 ) +

α

3λ
∆t(Dn+1/2∇bnc ,∇bnc ),(16)

and sum up the equations (11), (13) and (15) to get

θn(1 + γn) = (bnϕ, w
n
1 ) + (bnψ, w

n
2 ) + (bnc , g

n
c ).(17)

The solutions for the semi-discrete system (5) can be found with the following
steps:

(i) Compute γn with (16), which requires to solve the decoupled second-order
equations Avn1 = bnϕ and Avn2 = bnψ.
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(ii) Compute θn with (17), which requires to solve the decoupled second-order
equations Awn1 = gnϕ and Awn2 = gnψ.

(iii) Use θn, vn1 , v
n
2 , w

n
1 and wn2 found in (i) and (ii) to compute the solution

ϕn+1, ψn+1, cn+1 by (10), (12) and (14).
Hence, the key problem we need to solve is the elliptic equation Au = g which

will be approximated in next section through an operator splitting scheme combined
with a high-precision compact finite difference method.

Next, we discuss the energy stability of the scheme (5).
Theorem 2.1.The scheme (5) is unconditionally energy stable which satisfies

the following discrete energy dissipation law,

1

∆t
(En+1 − En) ≤ 0,

where

En+1 =
1

2

(
|rn+1|2 + |2rn+1 − rn|2

)
+

1

4

(
∥∇ϕn+1∥2 + ∥2∇ϕn+1 −∇ϕn∥2

)
+

1

4

(
∥∇ψn+1∥2 + ∥2∇ψn+1 −∇ψn∥2

)
.

(18)

Proof. Let

(19) ξn+1 = ∆ϕn+1 − rn+1√
E
n+1/2
1 + C0

f
n+1/2
ϕ ,

(20) ηn+1 = ∆ψn+1 − rn+1√
E
n+1/2
1 + C0

f
n+1/2
ψ .

Then we have, by the first two equations in (5), that

3ϕn+1 − 4ϕn + ϕn−1

2∆t
= ξn+1,

3ψn+1 − 4ψn + ψn−1

2∆t
= ηn+1.

Take inner product of (19) and (20) with ξn+1 and ηn+1, respectively, to show thatξn+1,
rn+1√

E
n+1/2
1 + C0

f
n+1/2
ϕ

 =−
(
ξn+1, ξn+1

)
+

(
∆ϕn+1,

3ϕn+1 − 4ϕn + ϕn−1

2∆t

)
,ηn+1,

rn+1√
E
n+1/2
1 + C0

f
n+1/2
ψ

 =−
(
ηn+1, ηn+1

)
+

(
∆ψn+1,

3ψn+1 − 4ψn + ψn−1

2∆t

)
.
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Similarly, taking inner product of both sides of the third equation in (5) with
rn+1√

E
n+1/2
1 +C0

f
n+1/2
c gives

3cn+1 − 4cn + cn−1

2∆t
,

rn+1√
E
n+1/2
1 + C0

fn+1/2
c


=
α

λ

∇ ·

D(ϕn+1/2)∇

 rn+1√
E
n+1/2
1 + C0

fn+1/2
c

 , rn+1√
E
n+1/2
1 + C0

fn+1/2
c


= −α

λ

D(ϕn+1/2)∇

 rn+1√
E
n+1/2
1 + C0

fn+1/2
c

 ,∇

 rn+1√
E
n+1/2
1 + C0

fn+1/2
c

 .

Then multiply the last equation in (5) by 2rn+1 and substitute the above equalities
to show that

2rn+1 3r
n+1 − 4rn + rn−1

2∆t
= −∥ξn+1∥2 +

(
∆ϕn+1,

3ϕn+1 − 4ϕn + ϕn−1

2∆t

)
−∥ηn+1∥2 +

(
∆ψn+1,

3ψn+1 − 4ψn + ψn−1

2∆t

)

−α
λ

D(ϕn+1/2)∇

 rn+1√
E
n+1/2
1 + C0

fn+1/2
c

 ,∇

 rn+1√
E
n+1/2
1 + C0

fn+1/2
c


≤
(
∆ϕn+1,

3ϕn+1 − 4ϕn + ϕn−1

2∆t

)
+

(
∆ψn+1,

3ψn+1 − 4ψn + ψn−1

2∆t

)
,

where α, λ,D(ϕn+1/2) ≥ 0. Therefore,

2rn+1 3r
n+1 − 4rn + rn−1

2∆t
+

(
∇ϕn+1,∇3ϕn+1 − 4ϕn + ϕn−1

2∆t

)
+

(
∇ψn+1,∇3ψn+1 − 4ψn + ψn−1

2∆t

)
≤ 0.

Notice that

2(an+1, 3an+1 − 4an + an−1) = |an+1|2 + |2an+1 − an|2

+|an+1 − 2an + an−1|2 − |an|2 − |2an − an−1|2,

by dropping the positive middle term, we have

1

2∆t

(
|rn+1|2 + |2rn+1 − rn|2 − |rn|2 − |2rn − rn−1|2

)
+

1

4∆t

(
∥∇ϕn+1∥2 + ∥2∇ϕn+1 −∇ϕn∥2 − ∥∇ϕn∥2 − ∥2∇ϕn −∇ϕn−1∥2

)
+

1

4∆t

(
∥∇ψn+1∥2 + ∥2∇ψn+1 −∇ψn∥2 − ∥∇ψn∥2 − ∥2∇ψn −∇ψn−1∥2

)
≤ 0,

which is the desired result. �

3.2. Spatial discretization by operator splitting compact finite difference
method. In Section 2.2, the phase field model (4) is disretized in time with an
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SAV method. In order to compute the numerical solution, we still need to solve the
Poisson type problem:

Au = g,(21)

on a 2D domain Ω = (a1, b1) × (a2, b2), where A = I − 2
3∆t∆, u = u(x, y) is the

unknown function and g = g(x, y) is given.
The domain {(x, y)|(x, y) ∈ Ω} is discretized into grids described by the set

(xi, yj) of nodes, in which xi = a1 + ihx, yj = b1 + jhy, i = 0, 1, ..., Nx, j =
0, 1, ..., Ny, where hx, hy are the discretization parameters. Let vi,j = v(xi, yj),

Ωh = {(xi, yj)|i = 0, 1, ..., Nx, j = 0, 1, ..., Ny}. We will use the following notations
for difference operators:

δx̂vi,j =
vi+1,j − vi−1,j

2hx
, δŷvi,j =

vi,j+1 − vi,j−1

2hy
,

δ2xvi,j =
vi+1,j − 2vi,j + vi−1,j

h2x
, δ2yvi,j =

vi,j+1 − 2vi,j + vi,j−1

h2y
,

Lxvi,j =
(
1 +

h2x
12
δ2x

)
vi,j =

vi+1,j + 10vi,j + vi−1,j

12
,

Lyvi,j =

(
1 +

h2y
12
δ2y

)
vi,j =

vi,j+1 + 10vi,j + vi,j−1

12
.

Let

∆h = L−1
x δ2x + L−1

y δ2y

be an approximation of the Laplacian operator ∆ and it is easy to verify that the
truncation error is O(h4x + h4y). Define the mesh function

u = {uij , i = 0, 1, · · · , Nx − 1, j = 0, 1, · · · , Ny − 1}

and U is the finite difference approximation of u. (21) can be approximated by the
following algebraic system

(I − 2

3
∆t∆h)U = G.

Or equivalently,

(22)

(
LxLy −

2

3
∆t(Lyδ2x + Lxδ2y)

)
U = LxLyG.

The system can be written in the following operator splitting form(
Lx −

2

3
∆tδ2x

)(
Ly −

2

3
∆tδ2y

)
U = LxLyG+O(∆t2).

Instead of solving (22), we will compute the following approximate system

AhU =

(
Lx −

2

3
∆tδ2x

)(
Ly −

2

3
∆tδ2y

)
U = LxLyG,

which will be calculated through the two-step procedure(
Lx −

2

3
∆tδ2x

)
U∗ = LxLyG,(

Ly −
2

3
∆tδ2y

)
U = U∗.

(23)
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This procedure requires solving a series of one-dimensional, tridiagonal systems.
Define the discrete inner product

(U, V )h =

Nx−1∑
i=0

Ny−1∑
j=0

Ui,jVi,jhxhy,

and the fourth-order approximation of the gradient operator

∇h =

(
δx̂(I −

h2x
6
δ2x), δŷ(I −

h2y
6
δ2y)

)
.

The spatially discretized system of (5) can be solved through the following steps:
(i) Compute γnh with

γnh =
1

3
∆t(bnϕ,h, V

n
1 )h +

1

3
∆t(bnψ,h, V

n
2 )h +

α

3λ
∆t(D

n+1/2
h ∇hb

n
c,h,∇hb

n
c,h)h,(24)

where D
n+1/2
h = D(ϕ

n+1/2
h ). This requires solving the decoupled algebraic systems

AhV
n
1 = bnϕ,h and AhV

n
2 = bnψ,h.

(ii) Compute θnh with

θnh(1 + γnh ) = (bnϕ,h,W
n
1 )h + (bnψ,h,W

n
2 )h + (bnc,h, g

n
c,h)h,(25)

which requires to solve the decoupled algebraic systems AhW
n
1 = gnϕ,h and AhW

n
2 =

gnψ,h.

(iii) Use θnh , V
n
1 , V

n
2 ,W

n
1 and Wn

2 found in (i) and (ii) to compute the solution

ϕn+1
h , ψn+1

h , cn+1
h by

(26) ϕn+1
h +

1

3
∆tV n1 θ

n
h =Wn

1 ,

(27) ψn+1
h +

1

3
∆tθnhV

n
2 =Wn

2 ,

and

cn+1
h =

αθnh
3λ

∆t∇h · (Dn+1/2
h ∇hb

n
c,h)

+
2α

3λ
∆t∇h · (Dn+1/2

h ∇hb
n
c,h)p

n
h +

4

3
cnh − 1

3
cn−1
h .(28)

All the linear algebraic systems in steps (i) and (ii) can be solved by (23).
The fully discretized system of (6) can be obtained and solved in the same way

as above.

Remark 1. As SAV method guarantees unconditional energy stability, it is expected
to derive the convergence of the numerical solution following the ideas introduced
in [6, 25, 22, 28]. The theoretical analysis of convergence and error estimates will
be included in the future work.

4. Numerical tests

In this section, we test our scheme developed in previous sections with various
numerical experiments on a two-dimensional rectangular domain Ω = [−lx, lx] ×
[−ly, ly]. The time and space step sizes of discretization are denoted by ∆t and h,
respectively. The ratio of steps is defined by µ = ∆t/h2 that will be fixed during
the tests.
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4.1. Accuracy test. Firstly, we test the order of accuracy of our numerical method.
The boundary condition is periodic and the initial condition is given by

ϕ0(x, y) = sin
(
π
lx
x
)
sin
(
π
ly
y
)
, (x, y) ∈ Ω,

ψ0(x, y) = 0, (x, y) ∈ Ω,

c0(x, y) = −0.25,

(29)

where lx = ly = 0.5 and the temperature is T = −0.25. The initial composition
is negative since C0 < Cpβ . (See (2) for the definition of the scaled composition.)
The spatial step is denoted by h = hx = hy and we set the ratio of steps to be
µ = 4.2 × 10−3. Since the exact solution is unknown, we compute the order of

convergence in space by p = log2
∥u2h−uh∥h

∥uh−uh
2
∥h
, where ∥ · ∥2h = (·, ·)h is the discrete L2

norm on Ω, and the order of accuracy in time is then equal to p/2. The parameters
of the model are listed in Table 1.

Table 1. Parameters of the phase field model.

λ 2.5 Cp 38.2 wt% A1 3.30745×10−1

C0 0 Cpα 22.1 wt% A2 3.38509×10−1

T0 -0.2 Cpβ 33.0 wt% B11 -2.56790×10−3

α 1 B12 -0.5
B21 -2.62818×10−3

B22 0.0

It can be seen from Table 2 that as h decreases, the numerical solution converges
at a order close to 4, which means the convergent order in time is close to 2. This
result matches the accuracy order predicted in previous sections.

Table 2. Order of convergence.

2h h h
2 ∥u2h − uh∥ ∥uh − uh

2
∥ Order

1/10 1/20 1/40 1.773647× 10−2 1.259232× 10−3 3.816104
1/20 1/40 1/80 9.265527× 10−3 6.194922× 10−4 3.902715
1/40 1/80 1/160 4.626094× 10−3 3.083850× 10−4 3.906990
1/80 1/160 1/320 2.312237× 10−3 1.540177× 10−4 3.908121
1/160 1/320 1/640 1.156018× 10−3 7.698638× 10−5 3.908417

4.2. Peritectic crystallization and energy stability. In this test, we simulate
the peritectic crystallization on the domain Ω = [−20, 20] × [−20, 20], where the
initial state contains a piece of α-solid at the center that is surrounded by liquid of
the alloy solution. Specifically, the initial values of the phase field model are given
by

ϕ0(x, y) =

{
1, (x, y) ∈ [−2, 2]× [−2, 2],

−1, otherwise,
(30)

ψ0(x, y) =

{
1, (x, y) ∈ [−2, 2]× [−2, 2],

0, otherwise.
(31)

and
c0 = −0.25.
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The phase variable ϕ = 1 is related to solid phase, and ϕ = −1 is liquid. ψ = 1

(a) t = 0s (b) t = 10s

(c) t = 15s (d) t = 20s

(e) t = 22s (f) t = 24s

Figure 1. Peritectic crystallization. The initial liquid alloy solu-
tion (green) contains a piece of α-solid (red) in the center. The
α-phase grows up and, after 20 seconds, β-phase (blue) starts to
precipitate on the surface of α-phase to form peritectic crystal.

is related to α-solid and ψ = −1 is β-solid. The temperature is T = −0.25. As
time goes on, the α-solid grows up and then a new phase, the β-solid, starts to
precipitate on the surface of α-phase to form peritectic crystals (Fig. 1).

In the proof of stability, we calculate the discretized SAV free energy functional
(18) as follows

En+1
h =

1

2

(
|rn+1|2 + |2rn+1 − rn|2

)
+

1

4

(
∥∇hϕ

n+1∥2h + ∥2∇hϕ
n+1 −∇hϕ

n∥2h
)

+
1

4

(
∥∇hψ

n+1∥2h + ∥2∇hψ
n+1 −∇hψ

n∥2h
)
.

The change trend of free energy with time is shown in Fig. 2. With the increase of
time, the free energy decreases gradually and tends to be stable.
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Figure 2. The change trend of discrete SAV free energy En+1
h

with time.

(a) t = 0s (b) t = 5s

(c) t = 10s (d) t = 13s

(e) t = 16s (f) t = 19s

Figure 3. Development of a small β nucleus to bands. The tri-
junction points keep moving upward until the β solids merge to
form connected bands.
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4.3. Simulations of morphological evolution. In this test, we simulate the
peritectic solidification whose initial state contains a long strip of α-solid in middle
of the alloy solution with a nucleus of β-solid at one end. When the reference
temperature is held constant T = −0.2 and the initial composition is c0 = −0.21,
both α-phase and β-phase crystallize simultaneously. As β-solid grows faster than
α-solid, the β nucleus eventually spreads around α solid to form band structures
(Fig. 3).

(a) t = 0s (b) t = 5s

(c) t = 10s (d) t = 14s

(e) t = 18s (f) t = 22s

Figure 4. Development of a small β nucleus to islands. The tri-
junction points move up for a period of time and then turn down
to form isolated islands when the initial composition has a gradient
c = c0 − k|x|.

Another structure, island, can also be observed when the initial composition,
instead of being constant, has a gradient

c = c0 − k|x|,

with c0 = −0.2, k = 0.0075. As the β-phase grows up, the trijunction points move
up to the left and right. However, after a period of time, the trijunction points turn
around and isolated islands or partial bands are formed (Fig. 4).
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5. Summary

We approximate a phase field model for peritectic crystallization with the scalar
auxiliary variable (SAV) method in time. This method is linear, non-iterative and
unconditionally energy-stable. The space variable is discretized by an operator
splitting approach equipped with a high-order compact finite difference method
which only requires solving a series of one-dimensional systems at each time step.
Numerical experiments show accuracy, effectiveness and energy stability of our
schemes. Other numerical methods, such as maximum bound principles preserving
schemes [8, 9], for peritectic phase field models will be considered in the future.
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