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Abstract. In this paper, we propose a fast second-order approximation to the vari-

able-order (VO) Caputo fractional derivative, which is developed based on L2-1σ
formula and the exponential-sum-approximation technique. The fast evaluation

method can achieve the second-order accuracy and further reduce the computa-

tional cost and the acting memory for the VO Caputo fractional derivative. This fast
algorithm is applied to construct a relevant fast temporal second-order and spatial

fourth-order scheme (FL2-1σ scheme) for the multi-dimensional VO time-fractional

sub-diffusion equations. Theoretically, FL2-1σ scheme is proved to fulfill the similar
properties of the coefficients as those of the well-studied L2-1σ scheme. There-

fore, FL2-1σ scheme is strictly proved to be unconditionally stable and convergent.

A sharp decrease in the computational cost and the acting memory is shown in the
numerical examples to demonstrate the efficiency of the proposed method.
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1. Introduction

Over the last few decades, the fractional calculus has gained much attention of both

mathematics and physical science due to the non-locality of fractional operators. In fact

the fractional calculus has been widely applied in various fields including the biology,

the ecology, the diffusion, and the control system [3, 15, 19, 21, 27, 29–31]. Recently,

more and more researchers revealed that many important dynamical problems exhibit

the fractional order behavior that may vary with time, space, or some other factors,

which leads to the concept of the variable-order (VO) fractional operator, see [13, 22,
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38,40]. This fact indicates that the VO fractional calculus is an expected tool to provide

an effective mathematical framework to characterize the complex problems in fields of

science and engineering; for instances, anomalous diffusion [7, 8, 39, 45], viscoelastic

mechanics [9,10,16,35], and petroleum engineering [28].

The VO fractional derivative can be regarded as an extension of the constant-order

(CO) fractional derivative [41]. An interesting extension of the classical fractional

calculus was proposed by Samko and Ross [33] in which they generalized the Riemann-

Liouville and Marchaud fractional operators in the VO case. Later, Lorenzo and Hartley

[22] first introduced the concept of VO operators. According to the concept, the order

of the operator is allowed to vary as a function of independent variables such as time

and space. Afterwards, various VO differential operators with specific meanings were

defined. Coimbra [9] gave a novel definition for the VO differential operator by taking

the Laplace-transform of the Caputo’s definition of the fractional derivative. Soon,

Coimbra, and Kobayashi [36] showed that Coimbra’s definition was better suited for

modeling physical problems due to its meaningful physical interpretations, see also

[32]. Moreover, the Coimbra’s VO fractional derivative could be considered as the

Caputo-type definition, which is defined as follows [9,38]:

C
0D

α(t)
t u(t) ≡

1

Γ
(
1− α(t)

)
∫ t

0

u′(τ)

(t− τ)α(t)
dτ, (1.1)

where Γ(·) denotes the Gamma function and α(t) ∈ [α,α] ⊂ (0, 1) is the VO function.

We remark that, in statistical physics community, the operator (1.1) has clear physical

meaning if α is a function of the space variable x (see [13]), while the physical sig-

nificance for the case of α(t) is still unclear. Nonetheless, the operator (1.1) has been

widely used to model some phenomena in engineering community [9,38].

Since the problems described by the VO fractional operator are difficult to han-

dle analytically, possible numerical implementations of the VO fractional problems are

given. In [44], Zhao et al. derived two second-order approximations for the VO Ca-

puto fractional derivative and provided the error analysis. For the VO time-fractional

sub-diffusion equations, Du et al. [11] proposed L2-1σ scheme, which makes use of the

piecewise high-order polynomial interpolation of the solution. The resulting method

was investigated to be unconditionally stable and second-order convergent via the en-

ergy method.

In consequence of the nonlocal property and historical dependence of the fractional

operators, the aforementioned numerical methods always require all previous function

values, which leads to an average O(n) storage and computational cost O(n2), where

n is the total number of the time levels. To overcome this difficulty, many efforts have

been made to speed up the evaluation of the CO fractional derivative [2, 4, 14, 17, 18,

23–25,42]. Nevertheless, the coefficient matrices of the numerical schemes for the VO

fractional problems lose the Toeplitz-like structure and the VO fractional derivative is

no longer a convolution operator. Therefore, those fast methods for the CO fractional

derivative cannot be directly applied to VO cases. Recently, Fang et al. [12] proposed

a fast algorithm for the VO Caputo fractional derivative based on a shifted binary block
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partition and uniform polynomial approximations of degree r. Compared with the

general direct method, the proposed algorithm reduces the memory requirement from

O(n) to O(r log n) and the complexity from O(n2) to O(rn log n). Zhang et al. [43]

developed an exponential-sum-approximation (ESA) technique to speed up L1 formula

for the VO Caputo fractional derivative. The proposed method reduces the storage

requirement to O(log2 n) and the computational cost to O(n log2 n), respectively. Both

of those fast methods were proved to achieve the convergence order of 2 − α with

expected parameters.

Motivated by the need of fast high-order approaches for the VO Caputo fractional

derivative (1.1), we combine L2-1σ formula [11] with the ESA technique [43] to pro-

duce a fast evaluation formula, which is called FL2-1σ formula later. Compared with

L2-1σ formula, the fast algorithm reduces the acting memory from O(n) to O(log2 n)
and flops from O(n2) to O(n log2 n). Then FL2-1σ formula is applied to construct a fast

temporal second-order and spatial fourth-order difference scheme (FL2-1σ scheme) for

the multi-dimensional VO time-fractional sub-diffusion equations, which significantly

reduces the memory requirement and computational complexity. We present the prop-

erties of the coefficients of FL2-1σ formula, which ensure the stability and the conver-

gence of the proposed scheme. Numerical experiments are provided to show the sharp

decrease in the CPU time and storage of the fast algorithm with the same accuracy as

the direct method. Moreover, we test the proposed scheme on the graded mesh, and it

performs well while the solution has singularity.

The paper is organized as follows. In Section 2, we present FL2-1σ formula ap-

proaching the VO Caputo fractional derivative utilizing the ESA technique. Then we

construct FL2-1σ scheme for multi-dimensional VO fractional sub-diffusion problems

in Section 3 and investigate the stability and convergence. In Section 4, reliability and

efficiency are confirmed by some numerical examples. Concluding remarks are given

in Section 5.

2. Approximation for VO fractional derivative

We firstly introduce L2-1σ formula [11] for the VO Caputo fractional derivative.

Consider the VO Caputo fractional derivative defined by (1.1) with t ∈ (0, T ] (T ≥ 1).
For a positive integer n, let ∆t = T/n and tk = k∆t for k = 0, 1, . . . , n. We denote

tk+σk
= tk + σ(tk)∆t for k = 0, 1, . . . , n − 1. The parameter σ(tk) is determined by the

equation

F (σ) = σ −
(
1−

1

2
α(tk + σ∆t)

)
= 0,

which has a unique root σ(tk) ∈ (12 , 1) being conveniently calculated by Newton’s

method [11]. In the following, we denote σk = σ(tk), αk+σk
= α(tk+σk

).

From the definition (1.1), the VO Caputo derivative at the point tk+σk
is presented

as

C
0D

α(t)
t u(t)|t=tk+σk

=
1

Γ
(
1− αk+σk

)
∫ tk+σk

0

u′(τ)

(tk+σk
− τ)αk+σk

dτ. (2.1)
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To discretize the VO Caputo fractional derivative, we denote the quadric interpolation

on the time interval [tk−1, tk] with 1 ≤ k ≤ n − 1 and the linear interpolation over the

time interval [tk, tk+1] with 0 ≤ k ≤ n− 1 by

L2u(τ) =
1∑

p=−1

u(tk+p)
1∏

q=−1

τ − tk+q

tk+p − tk+q
, τ ∈ [tk−1, tk], (2.2)

L1u(τ) = u(tk)
τ − tk+1

tk − tk+1
+ u(tk+1)

τ − tk
tk+1 − tk

, τ ∈ [tk, tk+1]. (2.3)

2.1. L2-1σ formula

Based on the above interpolation polynomials, at time tk+σk
with k = 0, 1, . . . , n−1,

L2-1σ approximation formula to (2.1) is obtained as [11]

H
0D

αk+σk

t u(tk+σk
)

=
1

Γ(1− αk+σk
)

(∫ tk

0

(
L2u(τ)

)′

(tk+σk
− τ)αk+σk

dτ +

∫ tk+σk

tk

(
L1u(τ)

)′

(tk+σk
− τ)αk+σk

dτ

)

= s(k)
k∑

l=0

g
(k)
l

(
u(tk−l+1)− u(tk−l)

)
, (2.4)

where g
(0)
0 = σ

1−ασ0
0 , and for k ≥ 1,

g
(k)
l =

1− αk+σk

∆t2−αk+σk

×





∫ tk

tk−1

τ − tk− 1
2

(tk+σk
− τ)αk+σk

dτ +

∫ tk+σk

tk

∆t

(tk+σk
− τ)αk+σk

dτ, l = 0,

∫ tk−l

tk−l−1

τ − tk−l− 1
2

(tk+σk
− τ)αk+σk

dτ +

∫ tk−l+1

tk−l

tk−l+ 3
2
− τ

(tk+σk
− τ)αk+σk

dτ, 1 ≤ l ≤ k − 1,

∫ t1

t0

t 3
2
− τ

(tk+σk
− τ)αk+σk

dτ, l = k,

s(k) =
∆t−αk+σk

Γ(2− αk+σk
)
.

The following lemma shows the local truncation error of L2-1σ approximation for-

mula for the VO Caputo fractional derivative.

Lemma 2.1 ([11]). Suppose u ∈ C3([0, tk+1]). Let

rk =
∣∣∣C0D

α(t)
t u(t)|t=tk+σk

− H
0D

αk+σk
t u(tk+σk

)
∣∣∣.
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Then, we have

∣∣rk
∣∣ ≤

max
0≤t≤tk+1

∣∣u(3)(t)
∣∣σ−αk+σk

k

Γ(1− αk+σk
)

(
1

12
+

σk
6(1 − αk+σk

)

)
∆t3−αk+σk .

Utilizing L2-1σ approximation formula to calculate the value at the current time

level, it needs to compute the summation of a series including the values of all previous

time levels. Therefore, L2-1σ approximation formula requires O(n) storage and O(n2)
computational complexity. It inspires us to construct a fast algorithm to approach L2-1σ
approximation formula (2.4).

2.2. FL2-1σ formula

Now, we develop a fast high-order numerical formula (FL2-1σ formula) for the VO

Caputo fractional derivative. The kernel function in the VO Caputo fractional derivative

is approximated by the ESA technique, which is stated in [5,43].

Lemma 2.2. For any constant αk+σk
∈ [α,α] ⊂ (0, 1), 0 < ∆t/T ≤ (tk+σk

− τ)/T ≤ 1
for τ ∈ [0, tk−1], 1 ≤ k ≤ n − 1 and the expected accuracy 0 < ǫ ≤ 1/e, there exist a

constant h, integers N and N , which satisfy

h =
2π

log 3 + α log(cos 1)−1 + log ǫ−1
,

N =

⌈
1

h

1

α

(
log ǫ+ log Γ(1 + α)

)⌉
,

N =

⌊
1

h

(
log

T

∆t
+ log log ǫ−1 + logα+ 2−1

)⌋
,

(2.5)

such that

∣∣∣∣∣

(
tk+σk

− τ

T

)−αk+σk

−

N∑

i=N+1

θ
(k)
i e

−λi(tk+σk
−τ)

T

∣∣∣∣∣ ≤
(
tk+σk

− τ

T

)−αk+σk

ǫ, (2.6)

where the quadrature exponents and weights are given by

λi = eih, θ
(k)
i =

heαk+σk
ih

Γ(αk+σk
)
.

Now L2-1σ formula (2.4) can be approximated by

H
0D

αk+σk

t u(tk+σk
)

=
1

Γ(1− αk+σk
)

(∫ tk

0

(
L2u(τ)

)′

Tαk+σk

(
tk+σk

− τ

T

)−αk+σk

dτ +

∫ tk+σk

tk

(
L1u(τ)

)′

(tk+σk
− τ)αk+σk

dτ

)
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≈
1

Γ(1− αk+σk
)

×

(∫ tk

0

(
L2u(τ)

)′

Tαk+σk

N∑

i=N+1

θ
(k)
i e

−λi(tk+σk
−τ)

T dτ +

∫ tk+σk

tk

(
L1u(τ)

)′

(tk+σk
− τ)αk+σk

dτ

)

=
T−αk+σk

Γ(1− αk+σk
)

N∑

i=N+1

θ
(k)
i

∫ tk

0

(
L2u(τ)

)′
e

−λi(tk+σk
−τ)

T dτ

+
u(tk+1)− u(tk)

∆tΓ(1− αk+σk
)

∫ tk+σk

tk

1

(tk+σk
− τ)αk+σk

dτ

=
T−αk+σk

Γ(1− αk+σk
)

N∑

i=N+1

θ
(k)
i H

(k)
i + s(k)σ

1−αk+σk

k

(
u(tk+1)− u(tk)

)
, (2.7)

where H
(k)
i is the history part of the integral,

H
(k)
i =

∫ tk

0

(
L2u(τ)

)′
e

−λi(tk+σk
−τ)

T dτ.

We point out that H
(k)
i can be calculated by a recursive relation and quadratic interpo-

lation, i.e.,

H
(k)
i = e

−λi(1+σk−σk−1)∆t

T H
(k−1)
i +

∫ tk

tk−1

(
L2u(τ)

)′
e

−λi(tk+σk
−τ)

T dτ (2.8)

= e
−λi(1+σk−σk−1)∆t

T H
(k−1)
i +A

(k)
i

(
u(tk)− u(tk−1)

)
+B

(k)
i

(
u(tk+1)− u(tk)

)

with H
(0)
i = 0 (i = N + 1, . . . , N) and

A
(k)
i =

1

∆t2

∫ tk

tk−1

(tk+ 1
2
− τ)e

−λi(tk+σk
−τ)

T dτ

=

∫ k

k−1

(
k +

1

2
− τ

)
e

−λi(k+σk−τ)∆t

T dτ

=

∫ 1

0

(
3

2
− τ

)
e

−λi(σk+1−τ)∆t

T dτ,

B
(k)
i =

1

∆t2

∫ tk

tk−1

(τ − tk− 1
2
)e

−λi(tk+σk
−τ)

T dτ

=

∫ k

k−1

(
τ − k +

1

2

)
e

−λi(k+σk−τ)∆t

T dτ

=

∫ 1

0

(
τ −

1

2

)
e

−λi(σk+1−τ)∆t

T dτ,

where we use (2.2) and the transformation of the integration variable.
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Overall, for 0 ≤ k ≤ n− 1, we define FL2-1σ formula for C
0D

α(t)
t u(t)|t=tk+σk

by

FH
0D

αk+σk

t u(tk+σk
)

=
T−αk+σk

Γ(1− αk+σk
)

N∑

i=N+1

θ
(k)
i H

(k)
i + s(k)σ

1−αk+σk

k

(
u(tk+1)− u(tk)

)
, (2.9)

where H
(k)
i is calculated by (2.8). In addition, for k = 0, we let

FH
0D

ασ0
t u(tσ0) =

H
0D

ασ0
t u(tσ0). (2.10)

We give the following lemma to state the local truncated error of FL2-1σ formula

(2.9) for the VO Caputo fractional derivative C
0D

α(t)
t u(t)|t=tk+σk

.

Lemma 2.3. Suppose αk+σk
∈ (0, 1) and u(t) ∈ C3([0, T ]). Let L2-1σ formula be as in

(2.4), FL2-1σ formula be defined by (2.9)-(2.10) and ǫ be the expected accuracy. Then,

we have

C
0D

α(t)
t u(t)|t=tk+σk

= FH
0D

αk+σk
t u(tk+σk

) +O
(
∆t3−αk+σk + ǫ

)
, 0 ≤ k ≤ n− 1. (2.11)

Proof. Clearly, (2.10) and Lemma 2.1 imply the lemma is valid for k = 0. For k ≥ 1,

according to (2.7) and (2.9), H
0D

αk+σk

t u(tk+σk
) and FH

0D
αk+σk

t u(tk+σk
) just differ in the

approximation for (
tk+σk

−τ

T )−αk+σk , τ ∈ (0, tk+σk
), i.e.,

∣∣∣ C0D
α(t)
t u(t)|t=tk+σk

− FH
0D

αk+σk

t u(tk+σk
)
∣∣∣

≤
∣∣∣ C0D

α(t)
t u(t)|t=tk+σk

− H
0D

αk+σk
t u(tk+σk

)
∣∣∣

+
∣∣∣H0D

αk+σk
t u(tk+σk

)− FH
0D

αk+σk
t u(tk+σk

)
∣∣∣

= O
(
∆t3−αk+σk

)
+

T−αk+σk

Γ(1− αk+σk
)

×
k∑

l=1

∫ tl

tl−1

∣∣∣∣∣

(
tk+σk

− τ

T

)−αk+σk

−
N∑

i=N+1

θ
(k)
i e

−λi(tk+σk
−τ)

T

∣∣∣∣∣
(
L2u(τ)

)′
dτ

= O
(
∆t3−αk+σk

)
+

t
1−αk+σk

k+σk
max
0≤t≤tk

|u′(t)|

Γ(2− αk+σk
)

O(ǫ).

Since tk+σk
≤ T and u(t) ∈ C3([0, T ]), the proof is complete.

From Lemma 2.3, we conclude that the approximation for the VO Caputo fractional

derivative C
0D

α(t)
t u(t) at the point tk+σk

by FH
0D

αk+σk
t u(tk+σk

) is at least second-order

precision with sufficiently small ǫ.



Second-Order Evaluation for Variable-Order Caputo Fractional Derivative 207

2.3. Properties of discrete kernels

In order to prepare the subsequent analysis, we firstly show the properties of dis-

crete kernels in FL2-1σ formula. The recursive relation of H
(k)
i defined in (2.8) can be

equivalently rewritten as

H
(k)
i =

k∑

l=1

∫ tl

tl−1

(
L2u(τ)

)′
e

−λi(tk+σk
−τ)

T dτ

= ∆t−2

{∫ t1

t0

(t 3
2
− τ)e

−λi(tk+σk
−τ)

T dτ
(
u(t1)− u(t0)

)

+

k−1∑

l=1

[∫ tl

tl−1

(τ − tl− 1
2
)e

−λi(tk+σk
−τ)

T dτ +

∫ tl+1

tl

(tl+ 3
2
− τ)e

−λi(tk+σk
−τ)

T dτ

]

×
(
u(tl+1)− u(tl)

)
+

∫ tk

tk−1

(τ − tk− 1
2
)e

−λi(tk+σk
−τ)

T dτ
(
u(tk+1)− u(tk)

)
}
,

which allows to represent FH
0D

αk+σk

t u(tk+σk
) (0 ≤ k ≤ n− 1) in the form

FH
0D

αk+σk

t u(tk+σk
)

=
T−αk+σk∆t−2

Γ(1− αk+σk
)

N∑

i=N+1

θ
(k)
i

{∫ t1

t0

(t 3
2
− τ)e

−λi(tk+σk
−τ)

T dτ
(
u(t1)− u(t0)

)

+
k−1∑

l=1

[∫ tl

tl−1

(τ − tl− 1
2
)e

−λi(tk+σk
−τ)

T dτ +

∫ tl+1

tl

(tl+ 3
2
− τ)e

−λi(tk+σk
−τ)

T dτ

]

×
(
u(tl+1)− u(tl)

)
+

∫ tk

tk−1

(τ − tk− 1
2
)e

−λi(tk+σk
−τ)

T dτ
(
u(tk+1)− u(tk)

)
}

+ s(k)σ
1−αk+σk

k

(
u(tk+1)− u(tk)

)

= s(k)
k∑

l=0

ρ
(k)
l

(
u(tk−l+1)− u(tk−l)

)
, (2.12)

where

ρ
(0)
0 = σ

1−ασ0
0 , (2.13)

and for 1 ≤ k ≤ n− 1,

ρ
(k)
l =

1− αk+σk

Tαk+σk∆t2−αk+σk
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×





∫ tk

tk−1

(τ − tk− 1
2
)

N∑

i=N+1

θ
(k)
i e

−λi(tk+σk
−τ)

T dτ

+Tαk+σk

∫ tk+σk

tk

∆t

(tk+σk
− τ)αk+σk

dτ, l = 0,

∫ tk−l

tk−l−1

(τ − tk−l− 1
2
)

N∑

i=N+1

θ
(k)
i e

−λi(tk+σk
−τ)

T dτ

+

∫ tk−l+1

tk−l

(tk−l+ 3
2
− τ)

N∑

i=N+1

θ
(k)
i e

−λi(tk+σk
−τ)

T dτ, 1 ≤ l ≤ k − 1,

∫ t1

t0

(t 3
2
− τ)

N∑

i=N+1

θ
(k)
i e

−λi(tk+σk
−τ)

T dτ, l = k.

(2.14)

The coefficients {ρ
(k)
l |0 ≤ l ≤ k; 0 ≤ k ≤ n − 1} defined in (2.13) and (2.14) have

the following properties, which play the vital roles in studying the stability and conver-

gence of the finite difference schemes. Below we present the relationship between ρ
(k)
l

and g
(k)
l .

Lemma 2.4. For αk+σk
∈ (0, 1), g

(k)
l (0 ≤ l ≤ k; 0 ≤ k ≤ n − 1) defined in (2.4), ρ

(k)
l

(0 ≤ l ≤ k; 0 ≤ k ≤ n − 1) defined in (2.13) and (2.14) with σk = 1 −
αk+σk

2 . Then, we

have

ρ
(0)
0 = g

(0)
0 ,

and for 1 ≤ k ≤ n− 1,

∣∣∣ρ(k)l − g
(k)
l

∣∣∣ ≤ 1− αk+σk

∆tαk+σk





ǫ

4
, l = 0,

5ǫ

4
, 1 ≤ l ≤ k − 1,

ǫ, l = k.

(2.15)

Proof. For k = 0, ρ
(0)
0 = g

(0)
0 is obvious. For k ≥ 1, the ESA approximation (2.6)

with (2.4) and (2.12) gives

∣∣∣ρ(k)0 − g
(k)
0

∣∣∣ ≤ ∆tαk+σk
−2(1− αk+σk

)

Tαk+σk

×

{∫ tk

tk−1

∣∣τ − tk− 1
2

∣∣ ·
∣∣∣∣
(tk+σk

− τ

T

)−αk+σk
−

N∑

i=N+1

θ
(k)
i e

−λi(tk+σk
−τ)∆t

T

∣∣∣∣dτ
}

≤ ∆tαk+σk
−2(1− αk+σk

)ǫ

∫ tk

tk−1

∣∣τ − tk− 1
2

∣∣(tk+σk
− τ)−αk+σkdτ

= (1− αk+σk
)ǫ

∫ 1

0

∣∣∣∣τ −
1

2

∣∣∣∣ (σk − τ + 1)−αk+σkdτ
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≤ (1− αk+σk
)∆t−αk+σk ǫ ·

∫ 1

0

∣∣∣∣τ −
1

2

∣∣∣∣ dτ =
ǫ

4
(1− αk+σk

)∆t−αk+σk .

For 1 ≤ l ≤ k − 1, we obtain

∣∣∣ρ(k)l − g
(k)
l

∣∣∣ ≤ ∆tαk+σk
−2(1− αk+σk

)

Tαk+σk

×

{∫ tk−l

tk−l−1

∣∣τ − tk−l− 1
2

∣∣ ·
∣∣∣∣
( tk+σk

− τ

T

)−αk+σk
−

N∑

i=N+1

θ
(k)
i e

−λi(tk+σk
−τ)∆t

T

∣∣∣∣dτ

+

∫ tk−l+1

tk−l

∣∣tk−l+ 3
2
− τ
∣∣
∣∣∣∣
( tk+σk

− τ

T

)−αk+σk
−

N∑

i=N+1

θ
(k)
i e

−λi(tk+σk
−τ)∆t

T

∣∣∣∣dτ
}

≤ ∆tαk+σk
−2(1− αk+σk

)ǫ

{∫ tk−l

tk−l−1

∣∣τ − tk−l− 1
2

∣∣(tk+σk
− τ)−αk+σkdτ

+

∫ tk−l+1

tk−l

∣∣tk−l+ 3
2
− τ
∣∣(tk+σk

− τ)−αk+σkdτ

}

= (1− αk+σk
)ǫ

{∫ 1

0

∣∣∣∣τ −
1

2

∣∣∣∣ (σk − τ + l + 1)−αk+σkdτ

+

∫ 1

0

∣∣∣∣
3

2
− τ

∣∣∣∣ (σk − τ + l)−αk+σkdτ

}

≤ (1− αk+σk
)∆t−αk+σk ǫ

{∫ 1

0

∣∣∣∣
3

2
− τ

∣∣∣∣dτ +

∫ 1

0

∣∣∣∣τ −
1

2

∣∣∣∣dτ
}

=
5ǫ

4
(1− αk+σk

)∆t−αk+σk .

Similarly, we have

∣∣∣ρ(k)k − g
(k)
k

∣∣∣ ≤ ∆tαk+σk
−2(1− αk+σk

)

Tαk+σk

×

{∫ t1

t0

∣∣t 3
2
− τ
∣∣
∣∣∣∣
(tk+σk

− τ

T

)−αk+σk
−

N∑

i=N+1

θ
(k)
i e

−λi(tk+σk
−τ)∆t

T

∣∣∣∣dτ
}

≤ ∆tαk+σk
−2(1− αk+σk

)ǫ

∫ t1

t0

∣∣t 3
2
− τ
∣∣(tk+σk

− τ)−αk+σkdτ

= (1− αk+σk
)ǫ

∫ 1

0

∣∣∣∣
3

2
− τ

∣∣∣∣ (k + σk − τ)−αk+σkdτ

≤ (1− αk+σk
)∆t−αk+σk ǫ

∫ 1

0

∣∣∣∣
3

2
− τ

∣∣∣∣dτ

= ǫ(1− αk+σk
)∆t−αk+σk .

The proof is complete.
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Lemma 2.5. For αk+σk
∈ (0, 1), ρ

(k)
l (0 ≤ l ≤ k; 0 ≤ k ≤ n − 1) are defined in (2.13)

and (2.14) with σk = 1−
αk+σk

2 and a sufficiently small ǫ satisfying

ǫ ≤
2(1− α)(2− 1

2α)
1−α∆tα

(6− 7
2α)(1 −

1
2α)

.

Then, we have

0 <
(1− ǫ)(1 − αk+σk

)

2(k + σk)
αk+σk

< ρ
(k)
k < ρ

(k)
k−1 < · · · < ρ

(k)
0 , (2.16)

(2σk − 1)ρ
(k)
0 − σkρ

(k)
1 ≥ 0. (2.17)

Proof. For k = 0, ρ
(0)
0 = g

(0)
0 > 0 is obvious. For k ≥ 1, from (2.14), the coefficients

can be rewritten as

ρ
(k)
l =

∆tαk+σk (1− αk+σk
)

Tαk+σk

×





N∑

i=N+1

θ
(k)
i B

(k)
i +∆t−1Tαk+σk

∫ tk+σk

tk

1

(tk+σk
− τ)αk+σk

dτ, l = 0,

N∑

i=N+1

θ
(k)
i

(
e

−λi(l−1)∆t

T A
(k)
i + e

−λil∆t

T B
(k)
i

)
, 1 ≤ l ≤ k − 1,

N∑

i=N+1

θ
(k)
i e

−λi(k−1)∆t

T A
(k)
i , l = k,

where A
(k)
i and B

(k)
i are defined by (2.8). Thanks to θ

(k)
i > 0, λi > 0 and the mono-

tonicity of eτλi∆t/T with respect to τ , A
(k)
i > 0, B

(k)
i > 0 hold and then

0 < ρ
(k)
k < ρ

(k)
k−1 < ρ

(k)
k−2 < · · · < ρ

(k)
1 .

According to g
(k)
k ≥

(1−αk+σk
)

2(k+σk)
αk+σk

[11], (2.4),(2.6), and (2.14), we have

ρ
(k)
k ≥ (1− ǫ) g

(k)
k ≥

(1− ǫ)(1− αk+σk
)

2(k + σk)
αk+σk

.

So condition (2.16) will hold if ρ
(k)
0 > ρ

(k)
1 holds, an inequality which obviously follows

from the condition (2.17). Thus it is enough to prove the latter one. By (2.15), the

left-hand side of the condition (2.17) satisfies

(2σk − 1)ρ
(k)
0 − σkρ

(k)
1 ≥ (2σk − 1) g

(k)
0 − σk g

(k)
1 − (2σk − 1)

(1 − αk+σk
)ǫ

4∆tαk+σk

− σk
(1− αk+σk

)ǫ

∆tαk+σk
, k = 1, (2.18)
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(2σk − 1)ρ
(k)
0 − σkρ

(k)
1 ≥ (2σk − 1) g

(k)
0 − σk g

(k)
1 − (2σk − 1)

(1− αk+σk
)ǫ

4∆tαk+σk

− σk
5(1 − αk+σk

)ǫ

4∆tαk+σk
, k ≥ 2. (2.19)

From (2.4), the corresponding property about g
(k)
l is

(2σk − 1) g
(k)
0 − σk g

(k)
1

=





(2σk − 1)(1 − σk)

2σk
(1 + σk)

1−αk+σk , k = 1,

(1 + σk)
1−αk+σk

(
4σk − 1

2σk
−

(
2 + σk
1 + σk

)1−αk+σk

)
, k ≥ 2,

≥





(2σk − 1)(1 − σk)

2σk(1 + σk)
αk+σk

−1 , k = 1,

(2σk − 1)(1 − σk)

2σk(1 + σk)
αk+σk

, k ≥ 2,

> 0.

Thus in order to make the condition (2.17) hold, for k = 1, we just need

(2σk − 1)(1 − σk)

2σk(1 + σk)
αk+σk

−1 − (2σk − 1)
(1 − αk+σk

)ǫ

4∆tαk+σk
− σk

(1− αk+σk
)ǫ

∆tαk+σk
≥ 0,

and for k ≥ 2,

(2σk − 1)(1 − σk)

2σk(1 + σk)
αk+σk

− (2σk − 1)
(1 − αk+σk

)ǫ

4∆tαk+σk
− σk

5(1− αk+σk
)ǫ

4∆tαk+σk
≥ 0,

that is

ǫ ≤
2(2σk − 1)∆tαk+σk

σk(1 + σk)
αk+σk

−1 min

{
1

6σk − 1
,

1

7σk − 1

}
.

In FL2-1σ formula, σk = 1−
αk+σk

2 . Thus we have

ǫ ≤
2(1 − αk+σk

)∆tαk+σk

(6− 7
2αk+σk

)(1 − 1
2αk+σk

)(2− 1
2αk+σk

)αk+σk
−1 .

So we get (2.17) if this ǫ satisfies

ǫ ≤
2(1 − α)(2 − 1

2α)
1−α∆tα

(6− 7
2α)(1−

1
2α)

≤
2(1− αk+σk

)∆tαk+σk

(6− 7
2αk+σk

)(1− 1
2αk+σk

)(2 − 1
2αk+σk

)αk+σk
−1 .

The proof is complete.
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3. Difference schemes for the sub-diffusion problem

In this section, based on FL2-1σ formula in Section 2, we construct a fast temporal

second-order and spatial fourth-order finite difference method (FL2-1σ scheme) for

the VO time-fractional sub-diffusion equations. The unconditional stability and conver-

gence of the difference method are investigated.

We consider the following multi-dimensional VO time-fractional sub-diffusion equa-

tions [11, 39], which is a promising approach to characterize time-dependent anoma-

lous diffusion, or diffusion process in inhomogeneous porous media,

C
0D

α(t)
t u(x, t) = ∆u(x, t) + f(x, t), x ∈ Ω, t ∈ (0, T ], (3.1)

u(x, 0) = ϕ(x), x ∈ Ω, (3.2)

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ], (3.3)

where Ω =
∏d

p=1(a
(p)
l , a

(p)
r ) ⊂ R

d, ∂Ω is the boundary of Ω, Ω = Ω ∪ ∂Ω, x =

(x(1), x(2), . . . , x(d)) ∈ Ω, ∆u(x, t) =
∑d

p=1 ∂
2
x(p)u(x, t), f(x, t) and ϕ(x) represent the

given sufficiently smooth functions.

Denote L(p) = a
(p)
r − a

(p)
l , p = 1, . . . , d. Let m(p) be positive integers. Define

a uniform partition of Ω by x
(p)

j(p)
= a

(p)
l + j(p)∆x(p) (j(p) = 0, 1, . . . ,m(p); p = 1, . . . , d)

for ∆x(p) = L(p)/m(p) and denote ∆x = max1≤p≤d ∆x(p). Let

Ωh =
{(

x
(1)

j(1)
, x

(2)

j(2)
, . . . , x

(d)

j(d)

) ∣∣∣ j(p) = 1, . . . ,m(p) − 1; p = 1, . . . , d
}
,

Ωh =
{(

x
(1)

j(1)
, x

(2)

j(2)
, . . . , x

(d)

j(d)

) ∣∣∣ j(p) = 0, 1, . . . ,m(p); p = 1, . . . , d
}
,

∂Ωh = Ωh \Ωh.

Let j = (j(1), j(2), . . . , j(d)) and xj = (x
(1)

j(1)
, x

(2)

j(2)
, . . . , x

(d)

j(d)
), respectively denote the

index vector and the spatial point. We define the index space J by

J =
{
j|xj ∈ Ωh

}
, J = {j|xj ∈ Ωh} , ∂J = {j|xj ∈ ∂Ωh} .

Thus the grid function spaces are defined by

U =
{
u|u being a grid function on Ωh

}
,

Ů =
{
u|u ∈ U ;uj = 0 when j ∈ ∂J

}
.

We introduce the following discrete operators in the grid space U :

δpuj+ 1
2
δp

=
1

∆x(p)
(uj+δp − uj),

δ2puj =
1

(∆x(p))2
(uj+δp − 2uj + uj−δp),

∆huj =

d∑

p=1

δ2puj,
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where δp = (0, . . . , 1, . . . , 0) is an index with 1 at the p-th position and 0 at other po-

sitions. In order to construct the spatial fourth-order difference scheme, we introduce

the average operator

Apuj =





1

12
(uj−δp + 10uj + uj+δp), j ∈ J ,

uj , j ∈ ∂J .

For any u ∈ Ů , denote

Ahuj =

d∏

p=1

Apuj , Λhuj =

d∑

p=1

d∏

l=1,l 6=p

Alδ
2
puj . (3.4)

In the grid function space Ů , define the discrete inner products and norms

(u,w) =

(
d∏

r=1

∆x(r)

)
∑

j∈J

ujwj , ‖u‖ =
√

(u, u),

(u,w)Ah
= (Ahu,w), ‖u‖Ah

=
√

(u,Ahu),

(δpu, δpw) =

(
d∏

r=1

∆x(r)

)
m(p)−1∑

j(p)=0




d∏

l=1,l 6=p

m(l)−1∑

j(l)=1


 (δpuj+ 1

2
δp
)(δpwj+ 1

2
δp
),

|u|1,p =
√

(δpu, δpu), |u|1 =

√√√√
d∑

r=1

|u|21,r,

(
δ2pu, δ

2
pw
)
=

(
d∏

r=1

∆x(r)

)
∑

j∈J

(
δ2puj

) (
δ2pwj

)
,

|u|2,p =
√(

δ2pu, δ
2
pu
)
, ‖u‖∞ = max

j∈J
|uj |.

3.1. FL2-1σ scheme

Before deriving the finite difference schemes for the problem (3.1)-(3.3), we denote

the numerical solution at time tk with spatial point xj by ukj , and f(xj , tk+σk
) by fk+σk

j

for xj ∈ Ωh and 0 ≤ k ≤ n. We assume that the solution u ∈ C(6,3)(Ω × [0, T ]).
Next we recall L2-1σ scheme for the problem (3.1)-(3.3). Considering Eq. (3.1) at

(xj , tk+σk
), we have

C
0D

α(t)
t u(xj , t)|t=tk+σk

= ∆u(xj, tk+σk
) + fk+σk

j , j ∈ J , 0 ≤ k ≤ n− 1. (3.5)

By Lemma 2.3, the term on the left-hand side of (3.5) satisfies

C
0D

α(t)
t u(xj , t)|t=tk+σk

= FH
0D

αk+σk
t u(xj , tk+σk

) +O(∆t3−αk+σk + ǫ), j ∈ J , 0 ≤ k ≤ n− 1. (3.6)
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On the other hand, using [11, Lemmas 3.4 and 3.5], the first term on the right-hand

side of (3.5) satisfies

∆u(xj , tk+σk
) = σk∆u(xj , tk+1) + (1− σk)∆u(xj , tk) +O(∆t2), j ∈ J . (3.7)

Then substituting (3.6) and (3.7) into (3.5) gives

FH
0D

αk+σk
t u(xj , tk+σk

)

= σk∆u(xj , tk+1) + (1− σk)∆u(xj , tk)

+ fk+σk

j +O(∆t2 + ǫ), j ∈ J , 0 ≤ k ≤ n− 1.

Applying the averaging operator Ah in (3.4) to the above equation, we obtain

Ah
FH

0D
αk+σk
t u(xj , tk+σk

)

= σkAh∆u(xj , tk+1) + (1− σk)Ah∆u(xj , tk)

+Ahf
k+σk

j +O(∆t2 + ǫ), j ∈ J , 0 ≤ k ≤ n− 1,

where

FH
0D

αk+σk

t u(xj , tk+σk
)

=
T−αk+σk

Γ(1− αk+σk
)

N∑

i=N+1

θ
(k)
i H

(j,k)
i + s(k)σ

1−αk+σk

k

(
u(xj , tk+1)− u(xj , tk)

)

with

H
(j,k)
i = e

−λi(1+σk−σk−1)∆t

T H
(j,k−1)
i +A

(k)
i

(
u(xj , tk)− u(xj , tk−1)

)

+B
(k)
i

(
u(xj , tk+1)− u(xj , tk)

)
.

From [11], we obtain

Ah∆u(xj , tk) = Λhu(xj , tk) +O(∆x4), j ∈ J , 0 ≤ k ≤ n,

thus

Ah
FH

0D
αk+σk
t u(xj , tk+σk

)

= Λh

(
σku(xj , tk+1) + (1− σk)u(xj , tk)

)

+Ahf
k+σk

j + Sk
j , j ∈ J , 0 ≤ k ≤ n− 1, (3.8)

where there exists a constant c0 such that

|Sk
j | ≤ c0

(
∆t2 +∆x4 + ǫ

)
, j ∈ J , 0 ≤ k ≤ n− 1. (3.9)

From the initial and boundary value conditions (3.2)-(3.3), we have

u(xj , 0) = ϕ(xj), j ∈ J , (3.10)

u(xj , tk) = 0, j ∈ ∂J , 0 ≤ k ≤ n. (3.11)
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Omitting the small term Sk
j in (3.8), we construct FL2-1σ scheme for the problem

(3.1)-(3.3) as follows:

Ah
FH

0D
αk+σk

t uk+σk

j

= Λh

(
σku

k+1
j + (1− σk)u

k
j

)
+Ahf

k+σk

j , j ∈ J , 0 ≤ k ≤ n− 1, (3.12)

u0j = ϕ(xj), j ∈ J , (3.13)

ukj = 0, j ∈ ∂J , 0 ≤ k ≤ n, (3.14)

where

FH
0D

αk+σk
t uk+σk

j =
T−αk+σk

Γ(1− αk+σk
)

N∑

i=N+1

θ
(k)
i H

(j,k)
i + s(k)σ

1−αk+σk

k

(
uk+1
j − ukj

)

with

H
(j,k)
i = e

−λi(1+σk−σk−1)∆t

T H
(j,k−1)
i +A

(k)
i

(
ukj − uk−1

j

)
+B

(k)
i

(
uk+1
j − ukj

)
.

Recall L2-1σ scheme for the problem (3.1)-(3.3) as follows [11]:

Ah
H
0D

αk+σk
t uk+σk

j

= Λh

(
σku

k+1
j + (1− σk)u

k
j

)
+Ahf

k+σk

j , j ∈ J , 0 ≤ k ≤ n− 1, (3.15)

u0j = ϕ(xj), j ∈ J , (3.16)

ukj = 0, j ∈ ∂J , 0 ≤ k ≤ n, (3.17)

where

H
0D

αk+σk
t uk+σk

j = s(k)
k∑

l=0

g
(k)
l

(
uk−l+1
j − uk−l

j

)
.

3.2. Stability and convergence of FL2-1σ scheme

As described in Lemma 2.5, the coefficients ρ
(k)
l hold the vital properties for the

stability and convergence analysis. Thus, similar to the proof given in [11], we present

the following lemmas which will be used in the analysis of FL2-1σ scheme (3.12)-

(3.14).

Lemma 3.1 ([1]). Let Ů be an inner product space and 〈·, ·〉∗ is the inner product with the

induced norm ‖·‖∗. Suppose {c
(k)
l |0 ≤ l ≤ k, k ≥ 1} satisfies 0 < c

(k)
k < c

(k)
k−1 < · · · < c

(k)
0 .

For v0, v1, . . . , vk+1 ∈ Ů , we have the following inequality:

k∑

l=0

c
(k)
l

〈
vk−l+1 − vk−l, σkv

k+1 + (1− σk)v
k
〉
∗

≥
1

2

k∑

l=0

c
(k)
l

(
‖vk−l+1‖2∗ − ‖vk−l‖2∗

)
.
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Lemma 3.2 ([11]). For any u,w ∈ Ů , define

〈u,w〉Ah
=
(
Ahu,−∆hw

)
.

Then 〈u,w〉Ah
is an inner product on Ů . We denote

|u|1,Ah
=
√

〈u, u〉Ah
.

Lemma 3.3 ([11]). For any u ∈ Ů , we have

(
2

3

)d

|u|21 ≤ |u|21,Ah
≤ |u|21.

Lemma 3.4 ([11]). For any u ∈ Ů , we have

(
2

3

)d−1

‖∆hu‖
2 ≤

(
Λhu,∆hu

)
≤ ‖∆hu‖

2.

Now we obtain the following theorem to state the unconditional stability of the

proposed scheme.

Theorem 3.1. Let {ukj |j ∈ J , 0 ≤ k ≤ n} be the solution of the difference scheme (3.12)-

(3.14). Then, we have

|uk|21,Ah
≤ |u0|21,Ah

+

(
3

2

)d−1 1

1− ǫ
c1 max

0≤l≤k−1
‖Ahf

l+σl‖2, 0 ≤ k ≤ n, (3.18)

where

‖Ahf
l+σl‖2 =

(
d∏

r=1

∆x(r)

)
∑

j∈J

(
Ahf

l+σl

j

)2
, c1 = max

0≤t≤T

{
tα(t)Γ

(
1− α(t)

)}
.

Proof. Denote uk+σk = σku
k+1 + (1 − σk)u

k. Making an inner product with

−∆hu
k+σk on both hand sides of (3.12), we obtain

(
Ah

FH
0D

αk+σk
t uk+σk ,−∆hu

k+σk
)
+
(
Λhu

k+σk ,∆hu
k+σk

)

= −
(
Ahf

k+σk ,∆hu
k+σk

)
, 0 ≤ k ≤ n− 1. (3.19)

Noticing (3.14), (2.12) and Lemmas 2.5-3.2, we get

k∑

l=0

ρ
(k)
l

〈
uk−l+1 − uk−l, σku

k+1 + (1− σk)u
k
〉
Ah

≥
1

2

k∑

l=0

ρ
(k)
l

(
|uk−l+1|21,Ah

− |uk−l|21,Ah

)
.
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By Lemma 3.4, the second term on the left-hand side of (3.19) follows that

(
Λhu

k+σk ,∆hu
k+σk

)
≥

(
2

3

)d−1

‖∆hu
k+σk‖2.

Substituting the two inequalities into (3.19) and using the Cauchy-Schwarz inequality

with the basic inequality

ab ≤

(
2

3

)d−1

a2 +

(
3

2

)d−1 1

4
b2,

we have

s(k)

2

k∑

l=0

ρ
(k)
l

(
|uk−l+1|21,Ah

− |uk−l|21,Ah

)
+

(
2

3

)d−1

‖∆hu
k+σk‖2

≤ −
(
Ahf

k+σk ,∆uk+σk
)
≤ ‖Ahf

k+σk‖‖∆uk+σk‖

≤

(
2

3

)d−1

‖∆uk+σk‖2 +

(
3

2

)d−1 1

4
‖Ahf

k+σk‖2, 0 ≤ k ≤ n− 1,

which follows that

s(k)

2

k∑

l=0

ρ
(k)
l

(
|uk−l+1|21,Ah

− |uk−l|21,Ah

)

≤

(
3

2

)d−1 1

4
‖Ahf

k+σk‖2, 0 ≤ k ≤ n− 1.

Further we get

ρ
(k)
0 |uk+1|21,Ah

≤

k−1∑

l=0

(
ρ
(k)
l − ρ

(k)
l+1

)
|uk−l|21,Ah

+ ρ
(k)
k |u0|21,Ah

+

(
3

2

)d−1 1

2s(k)
‖Ahf

k+σk‖2, 0 ≤ k ≤ n− 1.

According to Lemma 2.5, it follows that

1

2s(k)ρ
(k)
k

<
1

1− ǫ

(k + σk)
αk+σk

s(k)(1− αk+σk
)
=

1

1− ǫ
tα(t)Γ

(
1− α(t)

)
|t=tk+σk

≤
1

1− ǫ
c1,

which leads to

ρ
(k)
0 |uk+1|21,Ah

≤
k−1∑

l=0

(
ρ
(k)
l − ρ

(k)
l+1

)
|uk−l|21,Ah

(3.20)

+ ρ
(k)
k

(
|u0|21,Ah

+

(
3

2

)d−1 1

1− ǫ
c1‖Ahf

k+σk‖2

)
, 0 ≤ k ≤ n− 1.
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Next the mathematical induction will be used to prove the inequality (3.18). It is valid

for k = 0. Assume (3.18) is true for 0 ≤ k ≤ q, now we prove that (3.18) is valid for

k = q + 1. From (3.20), we obtain

ρq0|u
q+1|21,Ah

≤

q−1∑

l=0

(
ρ
(q)
l − ρ

(q)
l+1

)
|uq−l|21,Ah

+ ρ(q)q

(
|u0|21,Ah

+

(
3

2

)d−1 1

1− ǫ
c1‖Ahf

q+σq‖2

)

≤

q−1∑

l=0

(
ρ
(q)
l − ρ

(q)
l+1

)(
|u0|21,Ah

+

(
3

2

)d−1 1

1− ǫ
c1 max

0≤s≤q−l−1
‖Ahf

s+σs‖2

)

+ ρ(q)q

(
|u0|21,Ah

+

(
3

2

)d−1 1

1− ǫ
c1‖Ahf

q+σq‖2

)

≤

(
q−1∑

l=0

(ρ
(q)
l − ρ

(q)
l+1) + ρ(q)q

)(
|u0|21,Ah

+

(
3

2

)d−1 1

1− ǫ
c1 max

0≤s≤q
‖Ahf

s+σs‖2

)

≤ ρ
(q)
0

(
|u0|21,Ah

+

(
3

2

)d−1 1

1− ǫ
c1 max

0≤s≤q
‖Ahf

s+σs‖2

)
.

From the above inequality, we obtain

|uq+1|21,Ah
≤ |u0|21,Ah

+

(
3

2

)d−1 1

1− ǫ
c1 max

0≤s≤q
‖Ahf

s+σs‖2.

Therefore, inequality (3.18) is valid for k = q + 1. This completes the proof.

Theorem 3.1 reveals the stability of the difference scheme (3.12)-(3.14) with re-

spect to the initial value and the source term. The next theorem is about the conver-

gence of FL2-1σ scheme.

Theorem 3.2. Let u(x, t) ∈ C(6,3)(Ω × [0, T ]) be the exact solution of the problem (3.1)-

(3.3), and {ukj |j ∈ J , 0 ≤ k ≤ n} be the solution of the difference scheme (3.12)-(3.14).

Denote ekj = u(xj , tk)− ukj . Then, we have

|ek|1,Ah
≤

√√√√
(
3

2

)d−1 1

1− ǫ
c1

d∏

r=1

L(r)c0
(
∆t2 +∆x4 + ǫ

)
, 0 ≤ k ≤ n.

Furthermore, we obtain

|ek|1 ≤

√√√√
(
3

2

)2d−1 1

1− ǫ
c1

d∏

r=1

L(r)c0
(
∆t2 +∆x4 + ǫ

)
, 0 ≤ k ≤ n.
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Proof. Subtracting (3.12)-(3.14) from (3.8), (3.10)-(3.11), respectively, we obtain

the error equations as follows:

Ah
FH

0D
αk+σk
t ekj = Λh

(
σke

k+1
j + (1− σk)e

k
j

)
+ Sk

j , j ∈ J , 0 ≤ k ≤ n− 1,

e0j = 0, j ∈ J ,

ekj = 0, j ∈ ∂J , 0 ≤ k ≤ n.

Applying (3.9) and the priori estimation (3.18), it leads to

|ek|21,Ah
≤ |e0|21,Ah

+

(
3

2

)d−1 1

1− ǫ
c1 max

0≤l≤k−1
‖Sl‖2

≤

(
3

2

)d−1 1

1− ǫ
c1

d∏

r=1

L(r)
(
c0
(
∆t2 +∆x4 + ǫ

))2
, 0 ≤ k ≤ n.

Consequently, we have

|ek|1,Ah
≤

√√√√
(
3

2

)d−1 1

1− ǫ
c1

d∏

r=1

L(r)c0
(
∆t2 +∆x4 + ǫ

)
, 0 ≤ k ≤ n.

Furthermore, from Lemma 3.3, we obtain

|ek|1 ≤

√(
3

2

)d∣∣ek
∣∣
1,Ah

≤

√√√√
(
3

2

)2d−1 1

1− ǫ
c1

d∏

r=1

L(r)c0
(
∆t2 +∆x4 + ǫ

)
, 0 ≤ k ≤ n.

The proof is complete.

4. Numerical results

In this section, some numerical examples are presented to verify the effectiveness

of FL2-1σ scheme (3.12)-(3.14) compared with L2-1σ scheme (3.15)-(3.17). Besides,

FL2-1σ scheme is extended to the graded mesh to test the problem with a non-smooth

solution. All experiments are performed based on Matlab 2016b on a laptop with the

configuration: Intel(R) Core(TM) i7-7500U CPU 2.70GHz and 8.00 GB RAM.

Example 4.1. We show the efficiency of FL2-1σ scheme (3.12)-(3.14) in 2D case com-

paring with the corresponding L2-1σ scheme (3.15)-(3.17). Take Ω = (0, π) × (0, π),
T = 1, and the exact solution is given as [11]

u(x, t) =
(
t3 + 3t2 + 1

)
sinx(1) sinx(2).

Based on the exact solution, we calculate the initial value and the source term

ϕ(x) = sinx(1) sinx(2),

f(x, t) =

(
6t3−α(t)

Γ(4− α(t))
+

6t2−α(t)

Γ(3− α(t))
+ 2

(
t3 + 3t2 + 1

)
)
sinx(1) sinx(2).
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We take ∆x(1) = ∆x(2) = ∆x, m(1) = m(2) = m, denote

E(m,n) =
∥∥un − u(x, tn)

∥∥
∞
,

Ordert = log2

(
E(m, 2n)

E(m,n)

)
,

Orderx,t = log2

(
E(2m, 2n)

E(m,n)

)
.

In the calculations, we set the expected accuracy ǫ = ∆t2 and different spatial and

temporal step sizes. Note that the linear systems arising from the two-dimensional

problems provide coefficient matrices possessing block-tridiagonal-Toeplitz with tridia-

gonal-Toeplitz-blocks, which can be diagonalized by the discrete sine transforms [6,

34]. Therefore, as a global after-processing optimization, a fast implementation of the

inversion, in our numerical experiments, is carried out by the fast sine transforms to

reduce the computational cost.

Tables 1 and 2 list the results of Example 4.1. Fine spatial size is fixed at ∆x =
π/320 in Table 1. Both L2-1σ scheme and FL2-1σ scheme can achieve the second-order

temporal accuracy. Table 1 also shows the developments of the CPU time and memory

of the two schemes with respect to n. The CPU time of FL2-1σ scheme is increasing half

as fast as that of L2-1σ scheme, which reveals the O(n log2 n) and O(n2) computational

complexity of the two schemes, respectively. We note that as n goes up, the memory of

FL2-1σ scheme grows slowly, while the storage requirement of L2-1σ scheme increases

linearly with n. Especially, when n = 16000, FL2-1σ scheme is finished in 40 min,

Table 1: Convergence rates and the CPU time, memory of L2-1σ scheme and FL2-1σ scheme for Exam-

ple 4.1 with α(t) = (2 + sin t)/4, m = 320, ǫ = ∆t2.

n
L2-1σ scheme FL2-1σ scheme

E(m,n) Ordert CPU(s) Memory E(m,n) Ordert CPU(s) Memory

2000 2.3592e-7 - 152.77 1.64e+9 2.3497e-7 - 194.70 1.01e+8

4000 5.8588e-8 2.01 642.33 3.27e+9 5.8411e-8 2.01 470.72 1.17e+8

8000 1.4339e-8 2.03 2510.36 6.52e+9 1.4319e-8 2.03 1021.68 1.34e+8

16000 - - - - 3.3034e-9 2.12 2311.46 1.53e+8

Table 2: Convergence rates and the CPU time, memory of L2-1σ scheme and FL2-1σ scheme for Exam-

ple 4.1 with α(t) = (2 + sin t)/4, n = m2, ǫ = ∆t2.

m
L2-1σ scheme FL2-1σ scheme

E(m,n) Orderx,t CPU(s) Memory E(m,n) Orderx,t CPU(s) Memory

20 1.1392e-6 - 0.15 1.20e+6 1.1971e-6 - 0.14 2.56e+5

40 7.2797e-8 3.97 3.23 1.96e+7 7.4374e-8 4.01 2.05 1.48e+6

80 4.6192e-9 3.98 185.32 3.20e+8 4.6405e-9 4.00 52.46 7.95e+6

160 2.4931e-10 4.21 7158.69 5.18e+9 2.4589e-10 4.24 1073.38 4.15e+7
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while L2-1σ scheme is failed due to excessive storage requirements. Table 2 gives

the numerical results with m varying from 20 to 160 and n = m2. The convergence

rates satisfy the theoretical result in Section 3. Nevertheless, a significant reduction is

reflected in computational cost and storage memory of FL2-1σ scheme on the refined

mesh, compared with L2-1σ scheme.

Example 4.2. We also show the efficiency of FL2-1σ scheme (3.12)-(3.14) in 3D case.

Take Ω = (0, π) × (0, π) × (0, π), T = 1, and the exact solution is given as

u(x, t) =
(
t3 + 3t2 + 1

)
sinx(1) sinx(2) sinx(3).

Based on the exact solution, we calculate the initial value and the source term

ϕ(x) = sinx(1) sinx(2) sinx(3),

f(x, t) =

(
6t3−α(t)

Γ(4− α(t))
+

6t2−α(t)

Γ(3− α(t))
+ 3

(
t3 + 3t2 + 1

)
)
sinx(1) sinx(2) sinx(3).

We take ∆x(1) = ∆x(2) = ∆x(3) = ∆x, m(1) = m(2) = m(3) = m, and set the

expected accuracy ǫ = ∆t2. The errors and convergence orders, CPU time and storage

of L2-1σ scheme and FL2-1σ scheme are shown in Table 3 with m = 100 and temporal

step sizes refined from ∆t = 1
200 to ∆t = 1

1600 , while in Table 4 m varies from 10 to 80
and n = (2m)2. The fast sine transforms is used to reduce the computational cost.

Tables 3 and 4 show that both FL2-1σ scheme and L2-1σ scheme can achieve

the optimal convergence for three-dimensional problems. Nevertheless, complexity

Table 3: Convergence rates and the CPU time, memory of L2-1σ scheme and FL2-1σ scheme for Exam-

ple 4.2 with α(t) = (2 + sin t)/4, m = 100, ǫ = ∆t2.

n
L2-1σ scheme FL2-1σ scheme

E(m,n) Ordert CPU(s) Memory E(m,n) Ordert CPU(s) Memory

200 2.6755e-5 - 41.64 1.64e+9 2.6587e-5 - 99.77 5.59e+8

400 6.6637e-6 2.01 156.85 3.19e+9 6.6318e-6 2.00 233.83 6.6.e+8

800 1.6528e-6 2.01 680.60 6.30e+9 1.6475e-6 2.01 564.19 7.84e+8

1600 - - - - 4.0177e-7 2.04 1358.80 9.24e+8

Table 4: Convergence rates and the CPU time, memory of L2-1σ scheme and FL2-1σ scheme for Exam-

ple 4.2 with α(t) = (2 + sin t)/4, n = (2m)2, ǫ = ∆t2.

m
L2-1σ scheme FL2-1σ scheme

E(m,n) Orderx,t CPU(s) Memory E(m,n) Orderx,t CPU(s) Memory

10 1.2679e-4 - 0.32 2.41e+6 1.2682e-4 - 0.52 5.06e+5

20 7.9012e-6 4.00 13.54 8.84e+7 7.9021e-6 4.00 12.61 6.56e+6

40 4.9351e-7 4.00 1047.68 3.04e+9 4.9351e-7 4.00 508.26 7.46e+7

80 - - - - 3.0832e-8 4.00 20550.89 8.01e+8
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of FL2-1σ scheme is much cheaper than that of L2-1σ scheme on the refined mesh. For

the fine mesh, however, L2-1σ scheme has very low efficiency or even cannot proceed

because of the limit of memory, while FL2-1σ scheme solves the relevant problem very

well.

Example 4.3. An essential feature of the problem (3.1)-(3.3) is the weak singularity

at the initial time. In order to capture the dramatic solution, we apply the fast scheme

on the graded mesh [20, 26, 37]. Set tk = T (k/n)r for k = 0, 1, . . . , n, where the

constant mesh grading r ≥ 1 is chosen according to the singularity of the solution.

Especially, the mesh is uniform if r = 1. Set ∆tk = tk+1− tk and tk+σk
= tk+σk∆tk for

k = 0, 1, . . . , n− 1. Similarly to (2.9), we have FL2-1σ formula on the graded mesh as

FH

0D̂
αk+σk

t uk+σk

j =
T−αk+σk

Γ(1− αk+σk
)

N∑

i=N+1

θ
(k)
i Ĥ

(j,k)
i

+
∆t

−αk+σk

k

Γ(2− αk+σk
)
σ
1−αk+σk

k

(
uk+1
j − ukj

)

with

Ĥ
(j,k)
i = e

−λi(∆tk−1−σk−1∆tk−1+σk∆tk)

T Ĥ
(j,k−1)
i + Â

(k)
i

(
ukj − uk−1

j

)
+ B̂

(k)
i

(
uk+1
j − ukj

)
,

where Ĥ
(j,0)
i = 0 and

Â
(k)
i =

2

(∆tk +∆tk−1)∆tk−1

∫ tk

tk−1

(tk+ 1
2
− τ)e

−λi(tk+σk
−τ)

T dτ,

B̂
(k)
i =

2

(∆tk +∆tk−1)∆tk

∫ tk

tk−1

(τ − tk− 1
2
)e

−λi(tk+σk
−τ)

T dτ.

Remark 4.1. The quadrature exponents λi and weights θ
(k)
i in the ESA technique are

chosen by Lemma 2.2. All the other parameters remain the same as the uniform mesh,

the only difference is that on the graded mesh we take

N =

⌊
1

h

(
log

T

∆t1
+ log log ǫ−1 + logα+ 2−1

)⌋
.

Now we have FL2-1σ scheme on the graded mesh as follows

Ah
FH

0D̂
αk+σk

t uk+σk

j

= Λh

(
σku

k+1
j + (1− σk)u

k
j

)
+Ahf

k+σk

j , j ∈ J , 0 ≤ k ≤ n− 1, (4.1)

u0j = ϕ(xj), j ∈ J , (4.2)

ukj = 0, j ∈ ∂J , 0 ≤ k ≤ n. (4.3)
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We show the efficiency of the fast algorithm on the graded mesh comparing with

the corresponding direct scheme. Take Ω = (0, π) × (0, π), T = 1, the initial value

ϕ(x) = 1 and the source term f(x, t) = 1. In the calculations, we use the numerical

solutions Û to the corresponding problem discretized with m(1) = m(2) = m = 160,

n = 51200 as the reference solutions. Define the error and the convergence rate in time

by

E(m,n) = ‖un − Ûn‖∞, Ordert = log2

(
E(m, 2n)

E(m,n)

)
,

respectively.

To test the convergence rate in time, we take different n and set the expected ac-

curacy ǫ = (1/n)2, while the spatial size is fixed at m(1) = m(2) = m = 160. Table 5

shows the errors and orders in the computed solutions for Example 4.3 with different

values of the mesh grading exponent r. In the case of a uniform mesh (r = 1) we ob-

serve a first-order accuracy, while for a grading of r = 2/α, the optimal rate is obtained.

FL2-1σ scheme saves much memory and computational complexity than L2-1σ scheme

on the graded mesh. It certifies that the fast algorithm is valid on the graded mesh and

can efficiently solve the problem even the solution has singularity at the initial time.

Table 5: Convergence rates and the CPU time, memory of L2-1σ scheme and FL2-1σ scheme on the graded

mesh for Example 4.3 with α(t) = (2 + sin t)/4, m = 160, ǫ = (1/n)2.

n
L2-1σ scheme FL2-1σ scheme

E(m,n) Ordert CPU(s) Memory E(m,n) Ordert CPU(s) Memory

r = 1

2000 9.1313e-6 - 61.98 4.08e+8 1.4450e-5 - 99.22 4.84e+7

4000 4.5713e-6 1.00 256.86 8.12e+8 7.2617e-6 0.99 235.02 5.65e+7

8000 2.2877e-6 1.00 1011.09 1.62e+9 3.6445e-6 0.99 534.67 6.51e+7

16000 1.1440e-6 1.00 4099.87 3.24e+9 1.8273e-6 1.00 1235.64 7.42e+7

r = 4

2000 3.7084e-8 - 63.37 4.08e+8 3.7725e-8 - 149.07 7.31e+7

4000 9.2642e-9 2.00 242.00 8.12e+8 9.5153e-9 1.99 356.87 8.57e+7

8000 2.2777e-9 2.02 1018.81 1.62e+9 2.3866e-9 2.00 814.74 9.87e+7

16000 5.4073e-10 2.07 4122.61 3.24e+9 5.8921e-10 2.02 1886.16 1.13e+8

5. Concluding remarks

In this paper, we consider the fast high-order evaluation for the VO Caputo frac-

tional derivative. FL2-1σ formula can efficiently reduce the computational storage and

cost for the VO fractional derivative. The fast formula is applied to construct FL2-1σ
scheme for the multi-dimensional VO fractional sub-diffusion equations. We show the

properties of FL2-1σ scheme to study the stability and convergence. Numerical exam-

ples are given to verify the theoretical results. The fast algorithm is also tested on the

graded mesh, which is efficient to solve the problem possessing weak singularity at the

start of the solution.



224 J.-L. Zhang, Z.-W. Fang and H.-W. Sun

Acknowledgements

The authors thank Professor Zhi-Zhong Sun and the anonymous reviewers of this

article for their helpful comments and suggestions to improve the quality of this article.

This work is supported in part by research grants of the Science and Technology De-

velopment Fund, Macau SAR (0122/2020/A3), and University of Macau (MYRG2020-

00224-FST).

References

[1] A. A. ALIKHANOV, A new difference scheme for the time fractional diffusion equation, J.
Comput. Phys. 280 (2015), 424–438.

[2] D. BAFFET AND J. S. HESTHAVEN, A kernel compression scheme for fractional differential

equations, SIAM J. Numer. Anal. 55 (2017), 496–520.
[3] D. A. BENSON, S. W. WHEATCRAFT, AND M. M. MEERSCHAERT, Application of a fractional

advection dispersion equation, Water Resour. Res. 36 (2000), 1403–1412.

[4] D. BERTACCINI AND F. DURASTANTE, Block structured preconditioners in tensor form for the

all-at-once solution of a finite volume fractional diffusion equation, Appl. Math. Lett. 95

(2019), 92–97.
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