Numer. Math. Theor. Meth. Appl. Vol. 15, No. 1, pp. 165-199
doi: 10.4208/nmtma.0A-2021-0123 February 2022

Finite Element Error Estimation for Parabolic
Optimal Control Problems with Pointwise
Observations

Dongdong Liang!, Wei Gong?* and Xiaoping Xie!

1 School of Mathematics, Sichuan University, Chengdu 610064, China

2 LSEC, Institute of Computational Mathematics, Academy of Mathematics
and Systems Science, Chinese Academy of Sciences & School of Mathematical
Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

Received 14 July 2021; Accepted (in revised version) 3 November 2021

Abstract. In this paper, we consider parabolic distributed control problems with
cost functional of pointwise observation type either in space or in time. First, we
show the well-posedness of the optimization problems and derive the first order op-
timality systems, where the adjoint state can be expressed as the linear combination
of solutions to two backward parabolic equations that involve the Dirac delta dis-
tribution as source either in space or in time. Second, we use a space-time finite
element method to discretize the control problems, where the state variable is ap-
proximated by piecewise constant functions in time and continuous piecewise linear
polynomials in space, and the control variable is discretized by following the varia-
tional discretization concept. We obtain a priori error estimates for the control and
state variables with order (’)(k:% + h) up to a logarithmic factor under the L?-norm.
Finally, we perform several numerical experiments to support our theoretical results.
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1. Introduction

Let 2 C R™ (n = 2,3) be a convex polygonal or polyhedron domain, and let 7' > 0
be a constant. We consider an optimal control problem of parabolic type where the cost
functional involves pointwise values of the state variable either in space or in time. The
model of controlled system is characterized by the parabolic equation
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Oy —Ay=DBu in (0,T) x Q,
y=20 on (0,7) x 09, 1.1
y(0) =0 in Q,

where y and u are the state and control variables, respectively. For convenience, we
denotes by I = (0, T) the time interval and by U = L?(I x w) the control space, where
the subdomain w C 2 with positive measure is called the control domain. We impose
additional pointwise constraints on the control variable u and define the admissible
control set as follows:

Usd i={uecU:u, <ult,z) <up, ae., (tz)elxw}

with —oco < u, < up < +00. The control operator B maps U to L%(I x §2) and is a linear
bounded operator. For example, if w = (2, then we can take B as the identity operator;
otherwise, B can be defined as a zero extension operator.

The cost functional of pointwise tracking type can be defined as

o (T
Ts(y,u) == (2= B)i(y,u) + (8 —1)J2(y,u) + 5 /0 / |u(t, x)|*dxdt. (1.2)

Here J; and J; denote respectively the spatial and time observations of state, defined
by

1<~ (7 i i 2
Jl(yau) = 5 Z 0 ‘y(x ’t) - yds(t)‘ dt,
=1

N2
Ty = 5> [ 196 =iy o+ 5 [ () = yr)’d,
=1

where Ni,No € N, yr € L%(), a > 0 is a regularization parameter and N, de-
notes the set of positive integers. The sets {z%,i = 1,...,N;} C Int(Q) and {t,i =
1,...,No} C (0,T) are respectively called the set of spatial observation points and
the set of time observation points, and {yﬁls € L*(Q),i = 1,...,N;} and {yZT €
L?(0,T),i = 1,..., No} are respectively called the spatial observations and the time
observations. The parameter 3 € [1,2] is the weight between the pointwise spatial
observations and pointwise time observations. Specifically, 3 = 1 refers to the case of
pure spatial observation and 3 = 2 refers to the case of pure time observation, while
B € (1,2) refers to the case with both observations and weights the importance of two
observations.

With the above defined cost functional, our parameter-dependent optimal control
problem reads: Find (y,u) € X x U,q such that

Ts(y,u) < Js(y,u), V(y,u) € X x Uyq subjectto (1.1), (1.3)

where X is the state space given in Section 3.
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The optimization problem (1.3) with cost functional of pointwise type serves as
a model problem for several applications, such as the parameter identification or in-
verse problems with finitely many pointwise measurements (cf. [35]), and optimal
control problems where the target states on some spatial or time points are of particu-
lar interest or can be measured by sensors [2,4,9]. We also refer the reader to [29] for
the derivation of the necessary optimality conditions, and to [2,4,5,7,9,15,35,39] for
the numerical analysis of this kind of problem:s.

There are a lot of publications concerning the analysis and approximation to opti-
mal control of parabolic equations; see, e.g., the references [8,12,25,31,33,34], where
the cost functionals are of distributed type, so that the state and adjoint equations are
all regular. As for parabolic control problems with pointwise observations, the adjoint
equations involve Dirac distributions and thus exhibit low regularity (cf. [8]). Note that
such problems are closely related to parabolic control problems with pointwise control
(cf. [18,19,26-28]), where instead the state equations involve the Dirac distributions.

In this paper, we consider a space-time finite element approximation to the parabolic
control problems with cost functional of pointwise observation type either in space or
in time. Although there are already some works on the error estimates of elliptic or
Stokes control problems with pointwise tracking (cf. [2,4,5,7,9,15]), to the authors’
best knowledge, there are no such results for the parabolic control problems with point-
wise tracking. For the discretization of the state and adjoint equations, we use a piece-
wise constant discontinuous Galerkin scheme (the DG(0) method) for the temporal dis-
cretization, and the standard linear finite element method (the CG(1) method) for the
spatial discretization. This is a special case of the so-called DG(r)-CG(s) method; see,
e.g., [33] for the error estimation of such kinds of discretization schemes for parabolic
equations. For the discretization of the control variable, we apply the variational dis-
cretization concept proposed in [22].

Our numerical analysis for the considered parabolic control problems is strongly re-
lated to the error estimation of finite element approximation to the parabolic equations
with rough right-hand side terms. We are faced with two types of backward parabolic
equations with Dirac distributions, i.e., the one with spatial Dirac measure and the
other with temporal Dirac measure. For the first type, the error estimate of order
(’)(/4:% + h?~ %) was derived in [17,18] for n-dimensions under the norm || - l22(1,02(0))
and a mesh condition k& = O(h™), where h and k denote the spatial mesh size and the
time step size, respectively. We mention that the order O(k + h?) for two-dimensions
was obtained in [26] under the norm || - |[z2(; 1)), and the order (’)(/4:% + h) for

three-dimensions was obtained in [27] under the norm || - HLZ([ L @)’ both up to a log-

arithmic term. For the second type, the error estimate of order (’)(k% + h) was derived
in [17] under the norm || - ||z2(7,2(n)) and a mesh condition k& = O(h").

The goal of this paper is to provide a finite element analysis of the optimal control
problem (1.3). To this end, we introduce two adjoint equations, one is with Dirac mea-
sure in space as the external force term and the other is with Dirac measure in time as
the force term, to study respectively the pointwise observations in space and in time
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so as to obtain the first order necessary conditions (cf. [23]); see Section 3 for details.
We also need a priori error estimates for the finite element discretizations of the two
adjoint equations under the norms || - || z2(7,.1(q)) @and || - (| z2(q 11 (1)), respectively. The
former estimate in || - [|z2(; 11 (q))-norm can be found in [26] for two dimensions, and
will be extended to three dimensions in Section 3; see Lemma 2.1. The latter estimate
in [ - || 2(q, 1 (r))-norm will be derived by using an estimate due to [32] under the norm
|+ lo(1,22()) for parabolic equations with low regularity of solutions. In conclusion,
the main result of this paper is the following error estimate between the optimal solu-
tion  of the continuous problem and the optimal solution #y;, of the discrete problem:

3
T\ %
1@ — @il 12112 < C|lnhl (111%) (k2 + h). (1.4)

The rest of this paper is organized as follows. In Section 2 we discuss the regular-
ity of the state equation, the local regularity of the parabolic equation and the well-
posedness of two types of backward parabolic equations with rough right-hand sides.
In Section 3, we give the optimal control problem and derive its first order necessary
condition. In Section 4, we describe the finite element discretization of the optimal
control problem, and give the discrete first order necessary condition. Section 5 mainly
focuses on the error analysis for the optimal control and optimal state. And the last
section is devoted to numerical experiments.

2. Preliminaries

Let the control space U be a Hilbert space with the inner product (-,-)y. Intro-
duce the following notations for inner products and norms on L*(I, L?(2)) and L?(12),
respectively:

(uvv) = (u7v)L2(Q)7 HUH = HUHLQ(Q)7 Vu,v € LQ(Q)7
(u,v); = (U7U)L2(I,L2(Q))7 H?}H[ = H?}HLQ(LLQ(Q)), Vu,v € LQ(I,LQ(Q)).

In order to define the weak solution to the state equation (1.1), for given ¢ €
L3(I, H~1(Q)) we introduce an auxiliary problem

oy — A= in I x§,
=0 on [ x 01, 2.1
¥(0) =0 in Q.

In order to find the weak solution of (2.1) we reformulate it as follows: Find a function
Y € L2(I,H(Q) N HY(I, H~1(Q)) such that

(O, @) - gy + (V. Vo) = (0,0)1, Vo € L (1, Hy (),
¥(0) =0,

(2.2)
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where (-, ) -1 y3 denotes the duality pairing between L*(1, H~'(Q?)) and L*(1, Hy (Q2)).
We have the followmg results on the existence, uniqueness and regularity of solu-
tion to Eq. (2.1).

Proposition 2.1. For given ¢ € L*(I,H (), there exists a unique solution, 1 €
L3I, H} () N HY(I, H1(Q)), to problem (2.1). Moreover, if p € L*(I,L?(Q)), then v
has the improved regularity
Y e L*(I,H*(Q) N Hy(Q)) N H'(I1,L*(Q)) N C (I, Hj(Q)) (2.3)
and there holds the stability estimate
[0llemiy + 1901 + V20l < Cllellr, (2.4)
where || - ||C(I’,Hé(9)) denotes the norm of the space C (I, H}(Q)).

Proof. The proof of the existence and uniqueness of solution has been given in [29].
The improved regularity and the stability estimate are classical; see, e.g., [14]. The
regularity ¢ € C(I, H}(2)) can be obtained from the fact that L?(I, H2(2) N H}(Q)) N
HY(I,L?(Q)) = C(I, H}(Q)). O

In addition, we have the following improved local regularity of the solution to (2.1).

Lemma 2.1. Assume that Q C Q is an open subdomain such that dist(Q,9Q) > 0 and
that there exists a smooth open subdomain Q such that Q@ cC Qy cC Q, and assume
that ¢ € L"(I,L*(2)) and pla, € L"(I, L*(y)) for some 1 < r < oo and 2 < s < oc.
Then the solution ) to (2.1) belongs to W (I, L*(Q))NL" (I, W?*(Q)) and the following
estimate holds:

11 o s w2 @)y + 1060l o1 oy < CrOE(lellir ooy + lelliraiz@y), (2.5

o . . . CT‘2

where C,, Cs are positive constants depending only on r and s, and satisfying C, < 5
for some C' > 0 and Cs = s for s — +oc.

Proof. The idea of proof for thisNIemrna follows from [27, Lemma 2.4], [26, Lem-
ma 2.21 and [4, Lemma 4.2]. Let ; C 2 be an open smooth subdomain such that
Q CccC Oy CcC Qy. We consider a smooth cut-off function w with the following proper-
ties:

w(x) € [0,1], VxeQ,
1 Vx € Ql,
w(x) =0, Vo € Q\ Qo,
and set ¢ = ¢)@. Therefore, ¢ satisfies the following equation:
(9,51,Z~)—A1;:¢ in IXQ(),
on I x 9y, (2.6)
(0) =0 in Qo,

)
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where p = Op — A0y — 2V&@ - Vip. By using the continuous embedding H?(Q) —
Whs(Q) for 2 < s < 6 and [27, Lemma 2.1], there exist positive constants C and C,,
with C, < %i, such that the following estimate holds:

IGlzr 1, (00 < ClllLrr, Lo(00)) + 1¥Lr (1, Lo (900)) + V¥ Lr (2, 5(520)))
< Cr(||80||Lr(I, Ls(Q0)) T ||30||L”"(I, LQ(Q)))-

The maximum parabolic regularity yields that for any ¢ € L"(I,L°(€0)), Eq. (2.6)
admits a unique solution v satisfying 9,10, A¢» € L"(I, L*(€))). Moreover, there holds

HatJ}HL”"(I,LS(Qo)) + HAJ}HLr(I,LS(Qo)) < C?"H@HL”"(I,LS(QO))
for2 <s<ooand 1 < r < oo (cf. [3,13]). Noting that 2y has a smooth boundary, we
also have . .
[l L (w25 (0)) < CsllAY | Lr (1,05 (20))

for 2 < s < oo and Cs = s for s — +oo (cf. [16]). Observing that 1/? = ¢ in Oy, we
obtain the desired estimate for ¢ as follows:

||7/)‘|Lr(1,w2,s(ﬁl)) + Haﬂﬁ”y([,p(@l)) < Cgcs(HSDHLT(I,LS(Qo)) + HSDHLT(I,B(QO)))

for2<s<6and1<r < oo.
For s > 6, we repeat the previous steps with another smooth cut-off function

1, Vze QQ,
(x) =0, VoeQ\Q,

and use the continuous embedding W2(Q;) — W'#(Qy) for any 2 < s < oo, where
Q C Q is a smooth open subdomain such that Q cc Qy cc Q. By repeating the
above procedure with ; replaced by O, we can obtain the desired conclusion. O

We denote by Cy(Q2) the space of continuous functions defined in Q) that vanish on
0. Cp(©2) endowed with the supremum-norm || - ||« is a Banach space. The dual space
of Cy(12) is identified with the space M (Q2) of real and regular Borel measures in 2
(cf. [36]). The norm in M({2) can be defined as

|12l a1 () = sup {/deu cv € Co(Q), [|v]oo < 1}

for each y € M (). Therefore, |u (o) is the total variation of measure ;1 and the
space M () is a Banach space under the norm || - || 3/(q)-

The space M () is not separable, so we need to distinguish weakly and strongly
measurability of functions u : I — M (). Hereafter, we use L?(I, M (2)) to denote the
space of weakly measurable functions « defined in I and valued in M () such that the

norm
s = [ I ayr)
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is finite. Then L?(I, M (2)) is a Banach space under the norm || - | 22(1,Mm(2)) and can be
identified with the dual space of L?(I,Cy(f2)). The space L%(I,Cy(S2)) consists of all
measurable functions defined in I and valued in C(£2), and the definition of the norm
of L*(I,Cy(2)) is similar to that of L?(1, M (£2)) with || - || y(q) replaced by || - [|o. The
duality pairing between L?(I, M (£2)) and L?(I,Cy(2)) can be given by

(W ) L2071, M(0)),L2(1,Co(9) = /1 (u(®);y(0)) s eq).co Bt
for any u € L*(I, M(Q)) and y € L*(I, Cy(12)), where (-, ) y(),co () denotes the dual-
ity pairing between M (£2) and Cy(2).
For any given p € L?(I, M()), let us introduce the following backward heat equa-
tion:
—Op —Ap=p in (0,T) x Q,
p=20 on (0,7) x 09, 2.7)
p(T)=0 in Q.

To define the weak solution of this equation, we use the method of transposition (cf.
[30D).

Definition 2.1. For any pu € L*(I, M(R)), we call a function p € L?(I,L*(Q2)) the very
weak solution of Eq. (2.7), if p satisfies

o0 = [ (0 50) oy oyt Ve € P(LLA@), 2.8)

where v € L*(I, H2(Q) N H}(Q)) N HY(I, L?(Y)) is the solution to Eq. (2.1) with right-
hand side .

Remark 2.1. It is well known that H2(Q) N H () C Cp(2) (n < 3) and the inclusion
is continuous (cf. [1]). Therefore, L%(I, H?(Q) N H}()) — L*(I,Cy(9)) and Defi-
nition 2.1 is meaningful. For 1 < s < -2, we have Wol’s/(Q) — Ch(Q2), and thus

n—1°

poe LAIL,W-15(Q)). For 2 < s < -0, we have H2(Q) N HY(Q) — Wy (Q)
so that the right-hand side of (2.8) can be viewed as the duality pairing between
LA(I,W~=1(Q)) and L*(I, W, (Q)) for s, s satisfying 2 + L = 1. This fact will be

used in the proof of Theorem 2.1.

The existence, uniqueness and regularity of the very weak solution of Eq. (2.7) are
given by the following theorem.

Theorem 2.1. For any given u € L*(I,M(S)), there exists a unique solution p €
L2(I,L*()) of Eq. (2.7) in the very weak sense, and p € L*(I, W, *()) (1 < s < -17)
with

HpHLQ([,WOl’S(Q)) <C HMHLQ(I,M(Q)) )
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where C' > 0 is a constant independent of p. In addition, there exists a constant 1 < sy < 3
such that 9;p € L*(I, W~155(Q)) for so < s < ==, and the identity

n—1°
—/I@mwwl,s’w&,s/ dt+/l(VP7 Vw)Ls,Ls’dt:/I</‘(t)7¢(t)>M(Q),CO(Q)dt

holds for any € L*(I, Wol’sl(Q)). Here ()., 1.« denotes the duality pairing be-
VW

tween W—15(Q) and Wol’s (), (+,-) s 1 denotes the duality pairing between L*(€2)" and

L¥(Q)", and s and ' satisfy 1 + L = 1.

Proof. The idea of proof follows from [8,17,27,28], and we sketch it for complete-
ness. Let {u,}72, C C(Ix Q) be such that py = pin L2(1, M(Q)) and [|pe |l 12(1,11(0)) <
el 21 m(@y)> Yk € Ny Let pp € L2(1, H*(Q) N H§(Q)) N H' (I, L?(2)) be the solution
of the following equation:

_6tpk - Apk = Uk in (07T) X Qv
pr =0 on (0,7) x 09,
pk(T) =0 in €.
For any ¢ € 2(I x Q), let ¢ € L%(I,Cy(Q2)) be the solution of (2.1), where Z(I x Q)

denotes the set of all infinitely differentiable functions on I x Q with compact support.
For 1 < s < 5, we have

/I/kasodxdt:/I/ka(at¢—A¢)dxdt
:/I/Q(—atpk—Apkwdxdt:/I/Q%det

< pxllezaa@) - 1l 2,09
< Cllpkllz,zr @) - 10l 2w -

Now we use the maximal regularity of the heat equation for further estimate. Since
Q is convex with a Lipschitz boundary, there exists a constant § with § > 4 if n = 2,
and § > 3 if n = 3, such that A : WOI’S(Q) — W~L5(Q) is an isomorphism for each
5" < s < &, where 5 + % = 1 (cf. [24]). Furthermore, using [13, Theorem 5.4] we
obtain that, for every §' < s’ < §, there exists a constant C' > 0 such that

|| dade < Clilzagnn - 1120050
< Cllprllzzpr ) - el 2 w—1e -
Since 2(I x Q) is dense in L2(I, W1 (Q)) and

(L W™ ()" = LA(L, W (),
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one obtains
1kl 2w )y < Cllelliz@ary), VR € Ny (2.9)

Therefore, {pi}ren, C L*(I, W,%(Q)) is bounded. By the reflexivity of L2(I, W,"*(Q))
we extract a subsequence, still denoted by {py }ren, such that p, — pin L*(I, Wol’S(Q))
for some p € L*(I, Wol’S(Q)). Now we check that p is a solution to (2.7). Note that
wir = 1, and py, satisfies

//pkgod:vdt://,uk¢dxdt, Vo e 2(1 xQ), (2.10)
1JQ 1JQ

where (v, ¢) € L3(I, H*(Q) N H}(Q)) N HY(I, L?(Q)) x L*(I, L?()) satisfies Eq. (2.1).
Passing to the limit in (2.10), we then obtain the identity (2.8) for any ¢ € Z(I X
Q). Because (I x Q) is dense in L?(I,L?(Q?)) and (d; — A) is an isomorphism from
L3I, H?(2) N HY(Q)) N HY(I,L*(Q)) to L*(1,L?(f)), we arrive at (2.8). Therefore,
p is a solution to (2.7), and the estimate for p can be obtained by Eq. (2.9) for any
§<s< I9.

When

<s< ,
n+2_5 n—1

Wol’s(Q) < L?(Q) is dense and continuous. For any § < s < -, the solution of
(2.7) belongs to L2(I,W,*(R2)) and A : W,*(Q) — W~1#(1) is an isomorphism and
p € L*(I,W=15(Q)), therefore, dip € L*(I, W~15(Q)). Let so = max{¥, 2%}, then
p e L2(I,W,*(Q)) N LA(I, L*()) and d;p € L2(I, W15(Q)) for 59 < 5 < 17
When
n
50 < § < ——,
n

set
W= {¢ € L2(I, H2(Q) N HY(Q)) N HY (I, LX(Q)) :

¢ satisfies (2.1) for some ¢ € L*(I,L*(92)) }

Taking ¢ = 9p — A in (2.8) for any ¢ € W and integrating by parts (cf. [37]), we
obtain

- / <8tp’1/}>W_l’s,W01’S/ dt + /(vp’ vw)LS,LS/dt

I I

_ /I<u(t),w(t)>M(Q)7CO(Q)dt, Vi € W, (2.11)

which, together with the fact that W is dense in L2(I, Wo**' (Q)) and L2(I, M(Q)) C
L2(I,W~15(Q2)), implies the desired identity of this theorem.
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Remark 2.2. Using integration by parts (cf. [37]) for the first term in identity (2.11),
we obtain the following identity for any ¢) € W:

/I<p, 3t1,Z)>W01,s7W_1,5/dt—i—/l(Vp, V) o pordt = /I<M(t),¢(t)>M(Q)7CO(Q)dt, (2.12)
where . )
W= {v e LX(I, W () : 0 € L2(I, W= ()), v(0) = o}.

Replacing (2.8) in Definition 2.1 by the identity (2.11) or (2.12), we obtain the equiv-
alent definition of solution to (2.7) with higher regularity.

For any given g € C(I,L?(R2)) and ¢ € I, we consider the following backward in
time heat equation:
—Op— Ap=gt)®@5(t—1%) in (0,T) x Q,
p=0 on (0,7) x 0%, (2.13)
p(T)=0 in Q,

where (¢t — t) is the Dirac delta distribution concentrated on #, and g(t) ® 6(t — t;) is
a distribution defined by

P — /Qg(m,f)w(m,f)dm, Vi e 2(1 x Q).

Similarly, we can define the solution of (2.13) by the transposition method.

Definition 2.2. We call a function p € L?(I, L?(f2)) the very weak solution of Eq. (2.13),
if it satisfies the following identity:

(v, o)1 = /Q gD@)dz, Yo e L2(1,12(Q), 2.14)

where 1 € C(I, L*(Q)) satisfies (2.1) for given right-hand side .

The following proposition concerning the well-posedness of (2.13) is taken from
[17], which is very useful in the finite element error estimation for the adjoint equation.

Proposition 2.2. System (2.13) has a unique solution p € L*(I, H} (Q)) N L>(I, L*(12)).
Moreover,

(P, Ov) g 1 + (Vp, Vo)1 = / g(bv(t)dz, Yve W)
Q

and
1Pl 21,3 0)) + 11PN Lo (1. 220)) < Cllgllnee (1,020

for some constant C' > 0 independent of p, where

W(I):= {LQ(I, HL(Q)) N H (I, H(Q)), v(0) = 0}.
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3. Optimal control problems

In this section we study the optimal control problem. We denote the state space by
X = L¥I,0(Q)NC(I,L*(R)), where C(£) denotes the space of continuous functions
in Q. By using Proposition 2.1 we can see that the state equation (1.1) admits a unique
solution y(u) € X for any given control v € U. Therefore, we can define two mappings
S; : L*(I, L*(w)) — A; such that S;u = y(u) for i = 1,2, where A; = L*(I,C(Q2)) and
Ay = C(I, L3(Q)).

Using the mappings Sy, So we introduce the reduced cost functional jg :U — Ras

Ts(u) = (2= B)1u(Sru,u) + (8 = 1)(Szu,u) + 5 [ull
The optimal control problem (1.3) can be equivalently written as

min  Jp(u). (3.1

u€Uqq

By using standard arguments (cf. [29]) we can prove that the optimization problem
(3.1) admits a unique solution w € U, for any 8 € [1,2]. The first order necessary
(also sufficient) optimality condition of the optimization problem (3.1) at @ reads as
follows:

Ts(@)(v — 1) >0, Vv € Uy, (3.2)

where 7 5(u) denotes the Fréchet derivative of Js at @ that takes the form
Th(u)(v) = (2 = B)Ji(w)(v) + (B = DJy(w) (v) + a(u,v)y, Vv eU

for given u € U. Here .J|(u) and J}(u) are given by

J1(u)(v) = Z/o (y(u)(:vz,t) — yés(t))gl(v)(xl,t)dt, Yo e U,
=1
No+1

B =3 [ e t) = i (0) i) )ds, Vo e U

with ¢V2*!1 = T and yé\f“ = yr. Moreover, y;(v) = Si(u)v € A; is the solution to
(1.1) with right-hand side Bv, and is independent of . In other words, the necessary
optimality condition (3.2) is equivalent to the following variational inequality:

(2 —B)J (@) (v —a)+ (B —1)J5@) (v —a) + a(@,v—a)y >0, YveUyg (3.3)

Particularly, the above variational inequalities for the cases of 5 = 1 and 8 = 2 have
the following expressions: For any v € U, there holds

Ny T ' | |
Zz:;/o (y(ﬁ)(ﬂ’t) — yés(t))ﬁ(v —a)(zt, t)dt

T
+ a/o /wu(t,x) (v(t,2) —u(t,z))dzdt > 0 3.4
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for 5 =1, and

No+1

Z / (z,t%) — yo. (@) G — ) (z,t')dx

+ a/o /wﬂ(t,:v)(v —u)(t,x)dxdt >0 (3.5)

for g = 2.

Remark 3.1. Multiply the variational inequalities (3.4) and (3.5) by 2 — S and 8 — 1,
respectively, and add them up, then we obtain the variational inequality (3.3). In other
words, we can obtain the first order optimality condition for the case of 5 € (1,2)
by using the linear combination of the cases for 5 = 1 and § = 2, which implies the
relationship between the adjoint state variable of the case 8 € (1,2) and that of the
case f=1or g =2.

However, the above form of first order optimality condition is not friendly for nu-
merical approximation. In order to better characterize the optimal solution u to the
optimal control problem (3.1) and its first order necessary optimality condition (3.2),
we will introduce two backward in time heat equations, the so-called adjoint state
equations. The first one reads

- atpl(x7t) - Apl(.%'7t)

Ny
— Z (y(u)(@',t) — yh (1)) ® 6(x — 2') in (0,T) x 9, (2.6)
i=1 .
p(z,t) =0 on (0,T) x 9,
p'(z,T) =0 in Q,

where §(z—z") is the Dirac delta distribution concentrated on z*, and ZZN:11 (y(u)(x?, t)—
Yo, (t)) © d(x — x') is a distribution defined by

= / (y()(@ 1) — i () b(a, t)dt, Vo € DT x ),

corresponding to the case § = 1. The above equation involves singular right-hand
side and does not admit a classical variational solution, therefore, we should use the
method of transposition to define the solution to (3.6) (cf. [30]), see Definition 2.1. By
Theorem 2.1 we can infer the existence of a unique solution.

The second adjoint state equation reads

- BtPQ(x t) — Ap®(x,t)

— Z (,t") —yy,(2)) ®5(t—t') in (0,T) x Q, (3.7a)
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pi(x,t) =0 on (0,7") x 012, (3.7b)
p*(T) = y(u)(T) —yr in Q, (3.70)

where (¢ — ¢') is the Dirac delta function concentrated on #/, and S~ (y(u)(z, ') —
Yo, (x)) ® d(t — t*) is a distribution defined by

N2
UEDY /Q (y(w) (z, 1) — yis(2)) ¥ (x, ) dw, Vb € D(T x ), (3.8)
=1

corresponding to the case = 2.

The existence and uniqueness of the very weak solution to (3.7) can be obtained by
Definition 2.2 and Proposition 2.2. In fact, for given y(u)(T) — yr € L*(Q) (cf. [30]),
let p € L2(1, H}(Q)) N L>=(1, L*(Q)) satisfy the following equation:

—0p°(z,t) — Ap°(z,t) =0 in (0,7) x Q,

P’ =0 on (0,T) x 0%,

P(T) = y@)(T) —yr i Q.
Let ' be the solution of (2.13) with the right-hand side replaced by (y(u)(x,t') —
yy. (x)) ®6(t —t'). By Proposition 2.2, we know that ', i = 1,..., Ny, are well-defined.
Now let p?> = p° 4+ 3.2 5. From the superposition principle, it follows that p* is
the unique solution to (3.7). To emphasize the dependence of p', p? on u, we denote
by p'(u) and p?(u) the solutions to (3.6) and (3.7), respectively. From the optimality
condition (3.2) we see that the directional derivative of J5(@) along v — @ is non-
negative for all v € U,,4. By using the solutions to adjoint equations (3.6) and (3.7) we
can give an explicit expression for 7 5(w).

Let us introduce the adjoint variable p(u) € L?(I, L*(Q)), with

p(u) = (2 = B)p' (u) + (8 — 1)p*(u). (3.9)
Then we can obtain an explicit expression for 7, B’(u), viz.
X T
@) = [ [ xl@w) ot )dude
0 w
T
+a/ /u(t,m)v(t,x)dmdt, Yo € U. (3.10)
0 w
In fact, taking ¢ = Bv in Eq. (2.8), and letting ¢) be the solution of (2.1), we have

i = §(v). Taking pu = Y"1 (y(u)(a',t) — yi_(t)) ® 6(x — o) in (2.7) and using (2.8),
we get

N1
/I / ! (et =3 /Q (w(u) (& £) — o (£)) F(0) ()t = J, (1) (v).
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Similarly, by using Definition 2.2 and (2.14) we can derive

//pr Jvdxdt = Z/ (, tz yéT(x))g](v)(ti)dx

+/ (y(u)(z,T) — yr(x))g(v)(T)dx
Q

= Jj(u) (v).

Multiplying the first identity by 2 — 5 and the second one by 3 — 1, then adding them
up, we obtain (3.10).
By using (3.10), a more convenient expression for (3.2) is given as follows:

/I/ (xwp(@)(t,z) + au(t, z)) (v(t,z) — a(t,z))dzdt > 0, Vv € Uyq. (3.11)
The necessary optimality condition (3.11) can be equivalently formulated via the point-
wise projection
Py,, U= Uy, Pu,,(2)t z)=max(uq min(uy, 2(t,z))) ae. (t,z) €l X w.
That is,
u= Py, (—éxwa(u)) . (3.12)

Now we collect the results on the first order optimality system for the optimization
problem.

Theorem 3.1. A control u € U,y with associated state y € X is an optimal pair of
the optimal control problem (1.3) if and only if there exist p' € L2(I, W*(Q)), p% €
L%(1, H}(Q)) and an adjoint state p € L*(I, L*(Q)) such that

(&Egav)H_l,Hl + (Vga VU)I = (BZ_L,U)[, Vv € L2 (Ia H& (Q))’ ﬂ(O) = 0,
- (8t1517¢) W—l,s7wl,s’ + /] (V1517V¢) Ls7Ls’dt

Ny T

= Z/O (G(2") = yag, (")) dt, Vo € L2(1, W (), pMT) =0,

=1

( atw)Hl JH-1 + (V p’ vw)l

—Z / — g, () d + /Q (3(T) — yr)6(T)dz, W € W(I),

(pr + au,v - U)U Z 0) Vv S Uada p = (2 - /8)]31 + (5 - 1)p2

Here, (-,)p-1 1 is the dual relation between L*(I, H'(Q)) and L*(I,H}(Q)), and
(s )yy—1.s i is the dual relation between L*(I, W1 (Q)) and L*(I,W,*(Q)), and
so<s<%for50mel<so<%.
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Remark 3.2. Due to the linearity of the governing state equation, we can incorporate
an additional nonzero right-hand side f € L?(I,L?*()) and an initial data y in the
state equation (1.1), by requiring yo € H}(2) when 8 < 2 and yo € L*(Q2) when 3 = 2,
and modifying the desired observations. Moreover, the above setup is a model problem,
where, for simplicity, we choose the heat equation as the state equation. However, all
our results can be extended directly to more general self-adjoint elliptic operator of
second order with smooth coefficients (instead of —A) on the left-hand side of (1.1).

4. Finite element discretization for the control problem

In this section we consider the finite element discretization of the control problem.
To begin with, we divide I = [0, 7] into subintervals I, = (t,,_1,tm] of length k,, =
tm — tm—1, Wwhere 0 = ty < t1 < -+ < tpy = T. The maximal time step is denoted by
k = maxi<m<nr k. We impose the following conditions (cf. [27]) which are valid for
a large class of time grids:

(i) There exist constants ¢, > 0, independent of &, such that

min k,, > ck”.
1<m<M

(ii) There exists a constant « > 0, independent of k, such that form =1,..., M — 1,

k
Rl < 20

< < K.
km—i—l

(iii) The maximal time step size satisfies k& < 1 min{7, 1}.

Now we define the time semi-discrete space consisting of all piecewise constant
functions as

Xp = {2 € L2(1, B Q) : 21, € Po(Ln, HY(Q), m=1,.... M},

where Py(I,,, H}(Q2)) denotes the function space of constants on I,,, valued in H}(f2),

m =1,..., M. We will need the following notations for functions in space X:
VU =0, = Hm vty — 1), Vmyr =) = lm vty +1), [V i=v)h — v,
t—0+ t—0~+

Let .7}, = {7} be a family of quasi-uniform and shape regular partitions of 2 into
n-simplex 7 with diameter h., and denote the mesh size of .7, by h = max,c g, h,. We
assume further that there exists a constant ¢ > 0, independent of i and 7, such that
diam(7) < h < C|T|%. Let

Vi = {on € C(Q) : wil € Pi(7),¥r € T3}
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be the usual continuous piecewise linear finite element space, where P;(7) denotes the
linear polynomials on 7. We set V) =V}, N H(Q2).

Let 7, be the usual nodal Lagrange interpolation (cf. [6]) from Cy({2) to V}, or the
Clément-type interpolation (cf. [11]) from L'(Q) to V},. Let P, : L*(Q) — V}, be the
L?-projection operator defined by

(Pry,vn) = (y,vn), Vvn € Vi,
and let Ry, : H}(Q) — V;? be the Ritz projection operator defined by
(VRyp, Voy) = (Vo,Vop),  Vou € V).

Then, the following error estimates for the Ritz projection and the inverse estimates
are classical (cf. [6,10]).

Lemma 4.1. Let R), be the Ritz projection operator defined above. Then there hold

ol ooy < Ch™2 |Jugll, Yoy, € Vi,
v — thHLm(Q) < Ch?72|V2u|, Vv e HY(Q) N H?(Q),
v — Ryvll gy < Ch|V0l], Vv € HY(Q) N H?(Q),

v — Ryv|| < Ch|V (v — Rpo)||, Yo e HLQ).

Proof. The first estimate is the standard inverse estimate for finite element func-
tions (cf. [6]), the second one is the uniform estimate for Ritz projection operator and
we refer to [6,10]. The third and the last ones are standard error estimates for Ritz
projection in H' and L? norms which can also be found in [6,10]. O

Remark 4.1. The application of the operators Ry, P}, and 7, to time-dependent ar-
guments has to be understood pointwisely in time, and Lemma 4.1 holds for time-
dependent case with the corresponding estimates under the space-time norms.

In order to define the fully discrete approximation, we need to introduce the space-
time finite element space

XIS:Ilm = {Ukh € X vinln, € Po(Im, Vi), m = 1,...,M}

and the bilinear form (cf. [33])

M M
B(v’w) = Z <atvaw>lm><§2 + (VU, vw)f + Z ([U]mfl?w:;hl) + (Uar’war) (4.1)
m=1 m=2
for v,w € X)) or v,w € X,S’,ll. Here (-, )1, xn denotes the duality pairing between
L*(I,, HY(Q)) and L?(I,,, H}(Q2)). By integration by parts we obtain an equivalent
dual expression of B as follows (cf. [33]):

M M-1
B(v,w) = — (v,00w); o+ (Vv, V), Z Oy (W) + (Vi wyy).  (4.2)

m=1 m=1
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For given control v € U, the DG(0)-CG(1) approximation y;, € X,S’,ll of the state
equation (1.1) is defined by (cf. [38])

B(Yrn, vkn) = (Bu,vpn)r,  Yogn € X,S:,ll. (4.3)
It is not difficult to verify the following Galerkin orthogonality relation
B(y — yen,vkn) =0,  Vops € X (4.4)
Now we give the discretized optimal control problem
min T (ykn, 1) © (yen, 1) € X' x Usq  subject to  (4.3). (4.5)

By standard arguments, it is easy to prove that the discrete optimal control problem
(4.5) has a unique solution. Note that by following the variational discretization con-
cept (cf. [22]) the admissible control set is not discretized explicitly in (4.5). It can
be checked that the discrete control is constant on each 7,,, but may not belong to the
finite element space V},.

Similar to the continuous case, the discrete state equation (4.3) defines a mapping
w € Uyg = Yn € Xg’fll from the control space to the discrete state space. To emphasize
the dependence of the mapping on u, we write yy;, = ygn(u). Define the reduced
discrete cost functional j@kh :U — Ras

T en(u) == Tp (yen(w),u).

Then the optimal control problem (4.5) is reduced to the following optimization prob-
lem:
minj@kh(u), u € Uyg. (4.6)

We denote by uy), the solution to (4.6) and we have the following first order necessary
condition: A
T3 6n(@rn) (v — @gp) >0, Vo € Usa, (4.7)

where jﬁ’ ip, denotes the Fréchet derivative of jg,kh at uyp,. Due to the convexity of the
optimization problem (4.6), it is easy to verify that the condition (4.7) is also sufficient
for (4.6).

Given u,v € U, let ggu(v) = y;,,(u)v be the directional derivative of yy,(u) at v,
then it is easy to check that g, (v) satisfies

B(gkn(v), wxn) = (Bv, orn)1,  Yorn € X;S:}l“ (4.8)
and that jﬁ’ () has the following form:

Than(wv = (2 = B)J] (W + (8 = 1)J5 4, (w)v + a(u, v)y, (4.9)

where

S e (W)v = Z/o (yrn(u)(2") = yag ) Grn(v) (2")dt,
=1
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Tyl =3 /Q (i (0)(E) — . ) (0) () iz
=1

+/ (yrn (W) (T) = y7) G, nr (v)daz.
Q

We denote by 4, the optimal discrete state of the optimal control problem (4.5),
i.e., grp is the solution of (4.3) with the right-hand side u replaced by U Similar to
the continuous level, in what follows we use the adjoint argument for Jj ;, to derive

an explicit expression for (4.7). We firstly introduce the discrete variables pi, (u) €
X,S:}ll, i = 1,2, defined respectively by
B(prn, pin(u) =Y /0 (yen(u)(@") = ya ) rn(x")dt, (4.10)

=1
N2

B(kn, pin(w)) = Z (yrn (W) () = Yl rn () + (Wen(W)(T) — yr, Penar)  (4.11)
=1

for any ¢, € Xg’fll. We note that p, (u) are well-defined by the standard theory
(cf. [38]). Then we define the discrete adjoint state pyp(u) € X,S’}ll as follows:

prn(u) == (2 — 5)2?/1#1(“) + (B8 — 1)Pih(u)- 4.12)

Taking ¢rn = Jxn(v) in (4.10) and (4.11), multiplying (4.10) and (4.11) by 2 — § and
B — 1, respectively, and adding them up, we get

B(kn(v), pen(w)) = (2 — 5)j{,kh(u)v + (8- 1)j§,kh(u)v-
Once again, by taking ¢x, = pgn(u) in (4.8) we arrive at
B(Gkn(v), pren(w)) = (Bo, pr(u)).

Eventually, we obtain the expression of J 5 ks €45
A T
Tgan(v) = / / (Xw(2)pn(u)(t, z) + au(t, z))v(t, z)dzdt, Vv € U. (4.13)
0 w
Using this form, we also obtain the explicit expression of (4.7), i.e.,

T
/ / (Xw(x)ﬁkh(t,m) + aﬂkh(t,x)) (v(t,x) — ﬂkh)dxdt >0, YveUy, 4.14)
0 w

where pr;, = prn(ukp) is the so-called discrete adjoint state. In the following we write
Prn, = Dy (Urn) and pgy, = piy, ()
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Once again, we use the projection operator Py , to write uy, as the projection of
the adjoint

_ 1
ugn, = Py, <_anpkh> ;

or equivalently,

Ugn(t, ) = max <ua,min <ub, —éﬁkh(t,x)>> ae. (t,z)€ (0,7) xw. (4.15)

From the above discussions it follows the following conclusion on the first order
optimality system for the discretized optimal control problem (4.5).

Theorem 4.1. The pair of approximate state and control, (yxp,, uxp) € X/,S’ll1 x Uy,q, 1 the
optimal pair of problem (4.5) if and only if there exist two discrete variables pi., , s, €
X, 0,1 kh and a discrete adjoint state pyy, € X kh ! such that

B(Ykn, vkn) = (Bign, vkn)r, Yorn € X,

B(kh, Dip) = Z/o (Fkn (") — virg ) orn(@)dt, Vo, € X0,

N2
B(@rn: Pan) = Z/Q (Tkn(t") = Ya,. ) pren(t')d
i—1

+ [ @) = y)ounandz, Vow € X0,
Q
Prn = (2= BBy, + (B — 1)Pjn,

/ / XwDrh(t, ) + gy (t, x)) (v(t,x) — ﬂkh(t,x))dxdt >0, YveUyy.

Remark 4.2. In our time discretization scheme we shall avoid the situation that the
time observation points t' (i = 1,..., Ny) and the time grid points coincide, this is be-
cause we use discontinuous test functions in time for the adjoint equation. Therefore,
the Petrov-Galerkin scheme employing continuous piecewise linear states and piece-
wise constant test functions, proposed in [12,34], could be a better choice when using
a general time partition. We refer to [21] for the application of this scheme to space-
time sparse control problems. In case that some time grid points and time observation
points coincide, for example, at ¢, we may define [, vdd(t — t™) := v(t™) for any
piecewise-constant-in-time function v.

In the following we study the stability of the semi-discrete and fully discrete so-
lutions. Let ¢ be the solution of the auxiliary problem (2.1). Its time semi-discrete
approximation reads: Find ¢, € X} such that

By, ¢) = (¢, 01)1,  Yor, € X} (4.16)
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This problem admits a unique solution ), € X,S (cf. [38]) and the following conclusion
holds.

Lemma 4.2. Let 1y, be the solution of (4.16). Then vy, € X? N L*(I, H*(Q) N H(Q))
and

IV20illr < Cl|AYkl1, (4.17)
VYRl + 1Akl + 1Ykl 2,0 0)) < Clleller,z2@)) (4.18)

where C'is a positive constant independent of k and .

Proof. Note that on each time interval I,,,, the solution ;. of problem (4.16) satisfies

(Vor, Vor) 1, + (Wk)m—1, 8% 1) = (@ 08) 1, m=1,..., M, (4.19)

where 1}, o = 0. The above formulation can be equivalently written as

(Vﬂ)k,m, vﬁbk,m) + (T;Z)k,ma ¢k,m)

S

km
1

= (90 + k_wk,mflv ¢k,m> ) v¢k,m < H&(Q), (420)

where ¢|;,, is the mean value of ¢ on I,,,. Since 2 is a convex polygon or polyhedron
and ¢ + ﬁﬂ)k,m—l € L?(Q), by the theory of elliptic regularity (cf. [20]) the solution
of above equation satisfies ¢, € H2(Q2) N H}(Q) for m = 1,..., M, so that the first
estimate holds.

As for the second estimate, the result

VUil + 1A%k < Cllelirz,r2(9)
can be found in [33, Theorems 4.1 and 4.3], which, together with the embedding
H?(Q) — C(Q), also yields
1Ykl 2(1,Lo () < CllelLer,2@)-

This completes the proof. O

Consider the following fully discrete finite element scheme for the auxiliary problem
(2.1): Find vy, € X/,S’ll1 such that

B(Yrn, dkn) = (0, bxn)1,  Vorn € X;ijll- (4.21)

Let (2 be an open subset of Q and let ) be a smooth open subdomain of €, such that
Q cc Qp cc Q. Let {z/}, € Q and d = min;<;<y, dist(z?,dQ) > 0. The following
lemma concerning the interior estimation is taken from [27,28]. This result is useful
for the a priori error estimation of the optimal control problems.
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Lemma 4.3. Let ¢ and vy, satisfy (2.1) and (4.21), respectively. There exists a constant
ho > 0, independent of h,k and 1, such that forany 2 < s < oo, ¢ = 1,..., N1, and
h < hy, there hold

T .
/0 (0 — ) (8, ) el

< C|Inh|? infm1 {H’l/) XHL2 1@ )—l—h H7Tk1/1 XHL2([ L) + 1y — XHL2 (I,L2(%))

XEXph
+ It = XU sz + 219 = 0B s |

forn =2, and
T .
[ 1w - vie oyt

T
<c(m )unhr? it {10 Vgm0 0 ¥
x€X

19 = Xl T2 n200y) + 1690 = Xl 7271200
+ RV~ )220 }
for n. = 3. Here the constant C' > 0 depends only on d and hy.
From [32, Corollary 5.5 and 5.11] we have the following lemma.

Lemma 4.4. For given ¢ € L™ (I, L*(Q)), let ¢ and 1y, be the solutions to (2.1) and
(4.21), respectively. Then there exists a constant C' > 0, independent of h, k and 1, such
that

T\? T\?
% = YrnllLoor,22(0)) < C <IHE> </€ + h? (hlE) ) ol oo (1,22(02))- (4.22)

5. Error estimates for the control problem

For given u € Uy, let y(u) be the solution of the state equation (1.1). We define
the auxiliary variables p¢, (y) € X,S’,ll, i=1,2, by

N1

B(0wn: bpn(y)) = Z (y(w) (") — yhy. orn(@ ))LQ(I) Yorn € X,Sj;ll, (5.1
=1
N2

B(n: Den(y)) = Z (y(u) (") =y, ern(t’))

=1
+ (y(u)(T) = yr. ornu), Vorn € Xp0hs (5.2)
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respectively, and set
Pru(y) = (2 = B)pin(y) + (B — V)b (v)- (5.3)
In addition, we introduce another auxiliary variable yx,(u) € XI,S’}1 that solves
B(yn(w), okn) = (Bu, orn)1,  Vern € X;ijll- (5.4)

Lemma 5.1. The second order derivative of the cost functional j@kh at any u € Uyq 1S
independent of u, i.e., Jg 1, (u) is a constant operator for any u € U,q. Moreover, it holds

TEn (W) (v,0) = allvlliz 12y, Vv € Uad: (5.5)

A straightforward calculation implies the above lemma. In the following we show
the stability of the fully discrete scheme (4.21).

Proposition 5.1. For ¢ € L>(I, L*(Q)), let vy, be the solution of (4.21). Then there
exist sufficiently small constants hg, ko > 0 such that the stability estimates

lknllpee 1,2y < €

T
111%' el oo (1,2 (02)) (5.6)
lknll 2,220 + Wkl L2 r @) < Cllellrza,r2) (5.7)
hold for h < hy, k < ko, where C' > 0 is a constant independent of k and h.

Proof. Applying Proposition 2.1 and Lemma 4.4 under the conditions k£ < kq and
h < hg for some kg > 0 and hy > 0, we obtain

[knlleo1,02(0)) < 1¥kn — Yllpe 1,22 + 1Pl Lo (1,22(02))
<cC

T
hlg el zoo (1,2 (02)) 5

i.e., the first estimate holds.
The estimate for [[txn || 12(1,22()) follows similarly by using the results of [33]. The
thing left is to prove estimate ||¢xp| 127,10 (q))- In fact, we have

lknlln2 (1,000 (2))
< Ykn — Rutoellpz (oo )) + 1Bntok — Yrllrz(,no @) + Vel L2, @)
< Ch™ % |n — Rutnllcor.22 () + CP2 11Vl 2.2 o) + 10kl 2 2.2 ()
< Ch2 (|nn — Ykl 2.z + 10k — Runll 22 ()
+ O3V el 2z () + Ikl 22 2
< Ch™ % ([wn = Yl .o + CRIV (k= Buti)ll 2 22e)
+ ORI V20l 2 2y + el za(r @)
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< Ch* 3 | V2l 212y + 10kl (r poe o)
< Ch* 2 | Akl rar 220 + 19l 2 ()
< CR* % @l a2y + Cliellza o)
< Cllellp2(r,2(0))
where we used Lemmas 4.1 and 4.2 when h < hq for some hg > 0. O
We also need a stability result for the fully discrete solution of (5.2).
Proposition 5.2. Let p3, (y) be the solution of problem (5.2). Then there holds

Na
)| g g2y < O @) = i + ly()(T) — yr]|. (5.8)
i=1
Proof. It is easy to see that
-2 _ ~2 _ A2
Hpkh(y)HLoo(l,LQ(Q)) = lgr?naSXM Hpkh(y)HLoo([m,LQ(Q)) = 1§H71na§XM Hpkh,m(y)H'
Therefore, we only need to estimate H]ﬁihvm(y)H form =1,..., M in two steps.

Step 1. We firstly consider the case m = M. Introduce the following auxiliary problem:
o) — A =0 in Iy x Q,
=0 on Ip; x 09,
W(ty—1) = Prpar(y) in Q,

where Iy = (tar—1,tar]. Its discrete approximation ¢y, € X,S’}ll([ u) is defined by

(Vrns Vorn) s + (Vknus ﬂP;J{h,M_l)
= (Donar W) Pinar1):  Yeorn € X (Tnr), (5.9)
where
XIS:;L(IM) = {Ukh|IM DUy € Xg:,ll} .
Note that on the time interval I,; the solution of problem (5.2) satisfies

(Yeorn Vorn®) ;. — (ernnr, Prn @)]mr)

Iy
N2

- Z ((y(u)(tl) o y(ii)XIM (ti)a Spkh,M) (5.10)
=1

for any ¢y, € X,S:}l(l M), where x7,, is the characteristic function of I);. With p7 novi1(Y)
= y(u)(T) — yr, the above equation is equivalent to the following one:

(Yeorn, Voin(®) ;. + (ornars Denar(v))

Iy

N2
=> (W) = y)x10 ), ernnr) + (Grnar y(@)(T) = yr). (5.11)
i-1
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We take @rp, = pry, (Y)| 1, = ﬁ%,%M(y) in (5.9) and ¢y, = ¥y, in (5.11) to obtain
H (pih vy th M- 1(?/))

= (Vrn, Vi )) (T/thM,thM ()
(V%h,Vth ), + Crnots Din s (W)

Ing
= Z — ) X1ar (), Yrnar ) + (Vrnar, y(u)(T) — yr)
(ZH — yi)X1p (8| + [y (u)(T >—yT||> bk
(ZH — yi)X1p (8| + [l (u)(T >—yT||> [Fmyenl

where we have used ||¢gn || < [|92, 1, ()|, which is a direct consequence of (5.9) by
setting wrn = Yr, and using Schwarz’s inequality. Therefore, we obtain

ZH )(t)) =y X1y (8| + ly(u)(T) — yr |- (5.12)

Step 2. Now we consider the case m < M. Introduce the auxiliary problem

o) — AY =0 in I, x Q,
=0 on I, x 0€),
U(tm—1) = Prnm(y) 0 Q,
where I,,, = (ty—1, ). Similar to Step 1, the analog of Eq. (5.9) becomes

~ 0,1
(V¢kh, V@kh)fm + (¢kh,m7 ‘P:h7mf1) = (pih,m(y)a @]i_h,mfl)a v@kh S Xk:h(Im)7

and the analog of Eq. (5.11) becomes

(V@kha vﬁih(y))[m + (kah,m,ﬁ%h,m(y))
= (W) E) = y)X1 () Prnm) + (P Prnmi1 (1))
=1

Similarly, we can obtain

Z [ (y( DX (8| + [ Bpm1 ()]

By induction for m and combining the result of Step 1, we obtain
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M N3

<SS @) ) = ) x, ()] + ly(w)(T) - yr|

m=1 i=1

Na
<D () (@) = yill + Iy () (T) = yr|
=1

for any 1 < m < M. Then we complete the proof. O

Now we are ready to give some finite element error estimates. The first estimate
is devoted to the backward parabolic equation with Dirac measure in space under the

norm || - || z2(r,1 ()
Lemma 5.2. For given u € U,g, let p*(u) be the solution of (3.6) and pi,(y) be the

solution of (5.1). Then there exists a constant C' > 0 independent of k and h, such that
the following estimates:

|p" (u) = P (v) HLQ(I,Ll(Q))

N1
<C (Z\ ~Yagsl 2r ) | Inhf* (k + A?) (5.13)
hold for n = 2, and

le () — Pra(y) HLQ(I,Ll(Q))

T
=C (ZHy yds\\Lzu)) | hf? (k + h?) (5.14)

hold for n = 3.

Proof. The proof of the first assertion follows from [26-28], and the second one
can be proved similarly. For the sake of completeness, we give the proof for the second
assertion.

Let e = p'(u) — pi,(y), and ¢ be the solution to problem (2.1) with right-hand
side (-, -) = sgn(e(-,-))lle(")[| L1 (o) where sgn(-) is the sign function. The fully discrete
solution v, € Xlg:,l1 of (2.1) is defined as

B(Yrn, vkn) = (0, vkn)1,  Yupn € X;ijll

Then from the orthogonality we obtain

lellZ2.Lr ) = (€ @)r2 2y = B(W,p' (1) = hra(y))
Ny
= Z (y(u)(xz) - yzzsﬂb(xz) - wkh(xi))L2(])
i=1

IN

N1 N1
(Z o)) - yzsum) S 40 — e
=1 =1
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Using the second inequality of Lemma 4.3 and taking x = 7,7, we obtain

/Hwtx — Y (t, )| dt<C<ln > Inh|*(Iy + I, + I3), i=1,...,Ny.

Here 7y, is the semi-discrete L? projection operator from L?(I, H}(€2)) to X}, and we
refer to [27] for its definition and properties. Using the fact that Clément interpolation
is stable with respect to L° norm (cf. [11]), and from the interpolation estimate and
the inverse estimate we conclude

= 119 = Tkl o ey + 1 It = mmill o o)
< O (110 = W g ey + 110 = Tl o)
+Cn s (W - WhlZ)HLg(I Loy THIY = Wk¢||i2(I,LS(Q))>
< ON8 (24 0%) (190 ey + 1000 sy )
By Lemma 2.1 and taking s = |Inh|, we get
I < Ol (K + 1Y) llelf2 1.0 @y)-
Applying the standard estimate and the estimate of [25, Lemma 3.13] for I3 yields
I3 = h?| V(¢ — Whﬂkw)H%%I,L?(Q))
<C (hQHV(w — )22 L2y + IV (@ — 77k¢)”%2(1,L2(Q)))
< O (W + kh2) (V20021 L2y + 100032 7 1200
<C (h*+K?) HQH%Q(I,Ll(Q))'
We apply the standard estimate for I, to obtain
L <C(h* + k) (Hv2¢”%?([,L2(Q)) + Hat¢||%2(I,L2(Q)))
<C (h4 + /<72) HGH%%I,Ll(Q))'

Combining the estimates for Iy, I and I3 completes the proof. O

The second estimate is devoted to the backward parabolic equation with Dirac mea-
sure in space under the norm || - [|2(7,72(q))-

Lemma 5.3. Given a control u € Uy, let p}, (u) be the solution of (4.10) and p}, (y) be
the solution of (5.1). Then the following estimates:

|pkn () = Prn ()|, < Clnhl? (k + h?) [Jull 12(7, 100 (w)) (5.15)
hold for n = 2, and
|pin(w) = Prn ()|, < Cln—|lnh| (k+ 22) lull 21,10 () (5.16)

hold for n = 3, where C'is a positive constant independent of k and h.
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Proof. Let eg, = piy,(u) — ppy, (y) and ¢ be the solution to problem (2.1) with right-
hand side eg,. Let ¢y, € X,S’}ll be the discretization of v satisfying

B(Y — g, vrn) =0, Yo, € X;Sj;ll-
Using the definitions of p}, (u) and p;, (y) we obtain
R 2 )
ks (w) = BraW) | = B (Yins vk (w) — ()

N1

= Z (ykh(u)(xz) - y(u)(xl)a ¢kh($i))L2(I)
~ | _

< Z \|yrn (w)(z) — y(u)(xl)HLz([)H¢thL2(I,L°°(Q))
=1

N1
< CZ lyen (=) = y(@) || ooy lernllrs
()
i—1

where we used Proposition 5.1. The rest of the proof is similar to that of the previous
lemma. O

We also need the error estimates for the backward parabolic equation with Dirac
measure in time.

Lemma 5.4. For given u € Uyg, let p*(u) be the solution of (3.7), pi, (u) be the solution
of (4.11) and ﬁ%h(y) be the solution of (5.2). Then there exists a constant C' > 0,
independent of k and h, such that

HPQ(U) - ﬁih(y) HLz(Q,Ll([))

1 Ny
(k: 2 (In%) ) (Z () (£) =y, | + Iy (u)(T) - yTH> . (5.17)
=1

1
T T\?
IHE‘ <I€+ h2 (hlE) ) HuHLoo(Lg(w)). (518)

Proof. In order to obtain the above two estimates, we need to introduce an auxiliary
problem. Given ¢ € L?(I, L%(Q)), let ) be the solution to problem (2.1) with right-
hand side ¢. Let i), be the discretization of v that is defined by

1
T2
< C'|ln—

ﬁih(y) —Pih(U)HI <C

B(vgn, Ykn) = (0,vkn),  Vogn € X;ijll-

By taking ¢ = sgn(ei(-,-))lle1l11(r) with e; = p*(u) — p}, (y), we obtain

sz(u) _ﬁ%h(y)HiQ(QLl(D)
= (@.p*(w) = ppn(®)) ; = (0, 0% (W) ; — (@, i (),
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= (P*(w), 00 — AY) , = B (pin(y), Yrn)

N2

= (p°(w),0) ; + (VP*(u), V) ; = > (w(w)(t') = vy n(th))

i1
— (y(u)(T) — yr, Y (T))

2

2

(YW (') =y, ¥(') = Yan(t")) + (y(u)(T) = yr, »(T) — Yun(T))

Z ly(u) () — i, || + ly(u)(T) - yTH) 1% — Yrnll Lo (1,22())
=1

1 1
T2 T\?
IDE' <k + h2 (h’l%> ) ||S0||L°°(I,L2(Q))
In—

1 1
T2 T\?2
k <k+h2 <IHE> )”elHLQ(Q,Ll(D)'

In above estimates we used Propositions 2.1, 2.2 and Lemma 4.4.
Similarly, by taking ¢ = es with e2 = p2, (y) — p3,, (u) we can also obtain

i

IN
Q (\

IN

No
D Ny = v || + lly(u)(T) - yTII)
i=1

N2
<C (Z [y(w) () =y, || + lly(w)(T) = yTH>

152,(v) — P ()|

Na
= > (@)t = yhp Yrn(t) + (y()(T) = yr, Yin(T))
=1
N2
= > (@) (&) = gy G (1)) = (rn(@)(T) = yr, Yrn(T))
=1
Na

= (y(@)(t") = yin () (), Yrn () + (()(T) = yrn(u)(T), e (T))
< Clly(u) = ykn (W)l Loo (1,2 |1¥knll oo (1,220
<C IHE ly(u) — ykh(U)HLOO(I,L2(Q))Hﬁzh(u) - pzh(u)HLOO(L[Q(Q))

T
< C [In | fly(u) - Yen (W) 200 (1 12(0)

1\ 2
T|? T\?
< C <k+h2 <IDE> ) ull oo (1,20

where we have used Propositions 2.2, 5.2, 5.1, Lemma 4.4, and the pointwise con-
straints for the optimal control. Eventually, we obtain the second estimate. O

Some simple calculations lead to the following stability result for the state equation.
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Lemma 5.5. Let u € U,y be the solution of the optimal control problem (1.3), and let
y = y(u) be the corresponding optimal state. Then there exists a constant C' > 0 such that

1 2
> 9" = vigll oy + D N5E) = vl |+ 15(T) = yrll + il 222, 22w
()
‘ i=1

Nl ) N2 ]
<C <Z sl oy + D v || + HyTH> : (5.19)
i=1 i=1

Now we are ready to give our main result.

Theorem 5.1. Let u € U,y and g be the solution of the optimal control problem (1.3) and
the corresponding optimal state, respectively, and let u;, and gy, be the solution of discrete
optimal control problem (4.5) and the corresponding discrete optimal state, respectively.
Then there exists a constant C' > 0, independent of k and h, such that

3
T4, 1
@ = tknllL2(r,22(w)) + 18 = Genll 21,2 () < C'|Inh| h?‘ (kz +h). (5.20)

Proof. Let p and py;, be the optimal adjoint state of (1.3) and the optimal adjoint
state of the discretized problem (4.5), respectively, and let py,(u) be defined in (5.3).
Then we obtain

allt = w72 s 1200y < Thwn(@nn) (@ — Gap, @ — )

= T o (W) (W — Un) — T5 (W) (@ — )

< T g (@) (@ — ) — Th(w) (@ — )

= (XwPrn (@), U — Ugn) L2(1,12(w)) — (Xwb> & — Ukh) £2(1,12(w))

= (Xw [pkh(ﬂ) - ﬁkh(g)] U — ﬁkh)L2(] L2(w)) + (Xw [ﬁkh(g) - ]5], U — ﬁkh)L2(I,L2(w))

=(2-p) (Xw[th(a) Prn (37)] “kh)m([ L2(w))

+(8-1) (xw [Pin(@) — P (0)] 0 — ukh)LQ(l,LQ(w))
+2-8) (x| b (Y) — ] - akh)LQ(l,LQ(w))
+(B=1) (xw [Pin(®) — P7] 1 — akh)LQ(l,LQ(w))

(@

< (2 = B)llpka(@ = Bha@)I|, + (8 = DlIpE@) = B0 @), )l = il 21 2200y

+ <(2 — B)||prn @) — P HL2(I,L1(Q)) + (8= 1)[|5n() — ﬁQHLQ(Q,Ll(I)))
X ||ﬂ’ - akh”Loo(IXw)’
where we have used the fact that
—Th (@) (@ — i) < 0 < —TJ4(@) (@ — g

and the estimates (5.3) and (4.12).



194 D. Liang, W. Gong and X. Xie

Due to the box constraints for the control we have @, uy, € L*(I x w), and then
from Lemmas 5.2-5.5 it follows

@ = trnll L2 (r,02(w) < C(Hﬁih(ﬁ) — e @)1 + lpin (@) — Drn (@)1

1
+ 10k @) — P2 (r,010)) + 1B7n (@) — 152HL2(Q,L1(1))) ’

T 3
In—

4 1
<C ’ Inh| (k= + h).

In the following, we need to estimate the error between the discretized optimal state
yrn, and the continuous one. Let yi,(u) be the solution of (5.4), we conclude from
Proposition 5.1 that

19 = rnllr < 19 — yen(@) |1 + lyen(@) — Gralls
< C (17 = yen (@)l L2(r,2(0)) + 1@ — @rnll 21, 22(0)))

T 3
In—

1 1
<C|np| k| (k7 + ),

where we have used Proposition 5.1 as well as an L?-error estimate of finite element
approximation to parabolic equations in [33]. O

6. Numerical results

In this section we provide two numerical examples for the parabolic optimal control
problem (1.3) in two dimensions to verify the theoretical result in Theorem 5.1. The
first example (with 5 = 1) corresponds to the problem with only spatial observations,
while the second example (with 5 = 2) corresponds to the problem with only temporal
observations.

For the sake of simplicity, we set @ = (—1,1)2 and I = (0,1). We choose the
regularization parameter o = 0.8, the control domain w = 2 and the control bounds
ug = —0.4, up = 0.4 in our numerical experiments, and use N x N uniform triangular
spatial meshes (cf. Fig. 1) and M uniform temporal grids. We compute the errors of the

Figure 1: The spatial domain: 2 x 2 mesh (left) and 16 x 16 mesh (right).
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state and control approximations, i.e. ||J—Yknllr2(1,2(q)) and [|@—n| 127, 12(0))- Here
we take the approximate solutions on the spatial and temporal meshes with N = 64
and M = 128 as our referential solutions for (g, u).

Example 6.1. We take § = 1 to investigate the order of convergence for the control
and state variables corresponding to the case of spatial observations. Let N; = 4 and
choose the spatial observation points 2! = (—%,-2), 22 = (3,3), 2* = (3,3) and
z* = (=3, 3). The target spatial observations are chosen as y;_(t) = €', y3_(t) = sint,
ygs (t) = cost and yﬁs (t) = 2t.

We illustrate in Fig. 2 the profiles of the referential optimal state ¢, adjoint state p
and control w at time point ¢ = 0.5, and can see that the optimal adjoint state variable
is very singular, while the optimal state is smooth. This observation is consistent with
our regularity results in Theorem 3.1.

008

!
1 05 0 05 i

Figure 2: The profiles of g, p and @ at ¢ = 0.5 for Example 6.1.

Tables 1 and 2 list error results of the state and control approximations to investi-
gate the spatial accuracy with k& = O(h?) and the temporal accuracy with h = O(k),
respectively. From Table 1 we can observe almost second order convergence for the
state, and three halves convergence rate for the control which are better than our pre-
dicted result O(h|In h|). From Table 2 we can see first order convergence for the state

and control variables, which is again better than our predicted result O(k'/?|In %\3/ 4).
This observation is consistent with the convergence behaviors of parabolic equations
with right-hand side involving spatial Dirac measure (cf. [17,18]).

Table 1: Convergence history of spatial discretization for Example 6.1: M = N2

N | 19 = Uknller,r2@)) | Rate | ||u — agnllr2,r2(q) | Rate
2 0.0491 - 0.2054 -

4 0.0120 2.0327 0.1070 0.9408
8 0.0035 1.7776 0.0374 1.5165
16 0.0010 1.8074 0.0125 1.5811
32 2.9415e-04 1.7654 0.0033 1.9214
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Table 2: Convergence history of temporal discretization for Example 6.1: N = M.

M | g = Oknllzz.e2) | Rate | || —tgnllr2(r,r2() | Rate
2 0.0306 - 0.1986 -

4 0.0172 0.8311 0.1429 0.4749
8 0.0086 1.0000 0.0764 0.9034
16 0.0043 1.0000 0.0423 0.8529
32 0.0018 1.2563 0.0189 1.1623

Example 6.2. We take § = 2 to examine the convergence behaviors of the control and
state variables corresponding to the case of temporal observations. Let N, = 3 and
choose the temporal observation points t! = 0.3, t> = 0.4 and > = 0.7. The target
temporal observations are chosen as

1
?/clzT($1,$2) = —x1(1 — 29), ?/?zT(l“l,m) = —(33% + $%)2$1,

yZT(wl,xz) = 2cos Ty, yT(%,ﬂﬂg) — et1taa

From Fig. 3 we find that the adjoint state p is smoother than the one for the case
B =1, as is consistent with the regularity result in Theorem 3.1.

Figure 3: The profiles of g, p and @ at t = 0.5 for Example 6.2.

From Table 3 we find that the spatial accuracy is of second order for the state
variable and is of first order for the control variable. The better convergence behaviour
of the state than the predicted result is a common phenomenon for PDE-constrained

Table 3: Convergence history of spatial discretization for Example 6.2: M = N2

N | g = Uknll2r,r2()) | Rate | ||u — tgnllr2(,r2(q) | Rate
2 0.0746 - 0.4418 -

4 0.0199 1.9064 0.2701 0.7099
8 0.0052 1.9362 0.1360 0.9899
16 0.0013 2.0000 0.0640 1.0875
32 3.5966e-04 1.8538 0.0276 1.2134




Finite Element Error Estimation for Parabolic OCPs with Pointwise Observations 197

Table 4: Convergence history of temporal discretization for Example 6.2: N = M.

M |y = Oknllr2a.e2) | Rate | || —tgnllr2(r,r2() | Rate
2 0.0723 - 0.4831 -

4 0.0336 1.1055 0.3846 0.3290
8 0.0198 0.7630 0.2675 0.5238
16 0.0088 1.1699 0.1870 0.5165
32 0.0032 1.4594 0.1020 0.8745

optimal control problems (cf. [32,33]), while the convergence order of the control is
almost consistent with our theoretical result (cf. Theorem 5.1). From Table 4 we can
also observe the first order convergence for the state variable and half an order for the
control variable. The results in Tables 3 and 4 confirm the orders of convergence for
the control variable for the control problems with pointwise observations in time.
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