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Abstract. In this paper, an efficient variational model for multiplicative noise re-

moval is proposed. By using a MAP estimator, Aubert and Aujol [SIAM J. Appl.
Math., 68(2008), pp. 925-946] derived a nonconvex cost functional. With logarith-

mic transformation, we transform the image into a logarithmic domain which makes

the fidelity convex in the transform domain. Considering the TV regularization term
in logarithmic domain may cause oversmoothness numerically, we propose the TV

regularization directly in the original image domain, which preserves more details
of images. An alternative minimization algorithm is applied to solve the optimiza-

tion problem. The z-subproblem can be solved by a closed formula, which makes the

method very efficient. The convergence of the algorithm is discussed. The numerical
experiments show the efficiency of the proposed model and algorithm.
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1. Introduction

Image recovery encompasses the large body of inverse problems, in which a mul-

tidimensional signal u is inferred from the observation data f , consisting of signals

physically or mathematically related to it. The objective is to recover the original im-

age from the observation of a contaminated image. The original image can be degraded

by different mathematical methods. The most famous variational model for additive

noise removal is Rudin-Osher-Fatemi (ROF) model [24]. Many other variational meth-

ods are also proposed, for instance [9, 11, 13, 16, 21, 27]. The ROF model introduced
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total variational minimization to image processing, which can preserve the edges well.

The additive noise model is generated from the model f = u + η, where f , u and η
are observed image, true image and the additive noise, respectively. The ROF model

defined the solution as follows:

u = argmin
u∈BV (Ω)

|u|BV +
λ

2
‖f − u‖2L2

for a regularization parameter λ > 0, where BV (Ω) denotes the space of function with

bounded variation on Ω, equipped with the BV seminorm which is formally given by

|u|BV =

∫

ω

|∇u|,

also noted as the total variation (TV) of u.

Multiplicative noise, also known as speckle noise, has not been discussed thor-

oughly when compared with additive noise. Multiplicative noise occurs in many areas,

such as magnetic field inhomogeneity in MRI [2], ultrasound images [17], synthetic

aperture radar (SAR) images [19], etc. We consider the problem of recovering the

original image u, which is corrupted by multiplicative noise η. i.e., f = uη with as-

sumption f > 0. One often assume that the noise η follows Gamma distribution, which

commonly occurs in SAR. The probability density function of η is denoted as Pη ,

Pη(x, θ,K) =
1

θKΓ(K)
xK−1e−

x

θ , (1.1)

where Γ is Gamma function, and θ and K denote the scale and shape, respectively. The

mean of η is Kθ and the variance of η is Kθ2.
The total variation approach to multiplicative noise model was proposed by Rudin

et al. [23], in which the multiplicative noise is assumed to Gaussian distribution. Al-

though [23] can restore images well, the Gaussian multiplicative noise is not common

in real applications. For the Gamma distributed multiplicative noise, Aubert and Au-

jol [1] proposed a variational model based on the maximum a posteriori (MAP) esti-

mator as follows, which is referred to as AA model

inf
u∈S(Ω)

∫

Ω

(

log u+
f

u

)

dx+ λ

∫

Ω
|Du|. (1.2)

The second term is the TV regularization term and λ is regularization parameter to

trade-off. Although the fidelity term in (1.2) is not convex, they also give the existence

of minimizer and proved the uniqueness with a sufficient condition. The nonconvex

fidelity raises the difficult to achieve the global optimal, and the numerical result often

dependent on the initial guess. Based on AA model, spatially varying regularization

parameter is discussed in [20] to get more texture details. By the logarithmic transfor-

mation, f = uη turns to log f = log u + log η, which can be treated as additive noise.

Relaxed inverse scale space (RISS) flow is used to solve u in [25] and we denote it
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as SO model. Huang et al. [18] use the logarithmic transformation and discuss the

image in the logarithmic domain. An auxiliary variable and a quadratic penalty term

also introduced. An alternating minimization algorithm and convergence are devel-

oped. We name it as HM model. Both SO and HM discussed images in the logarithmic

domain, which are convex models, but may cause oversmooth. Steidl and Teuber [26]

introduced the I-divergence as the fidelity term and the TV or the nonlocal means as

the regularization term. Also, [26] proves the relation between the SO model and the

I-divergence model. In [28], Yun and Woo propose the mth root transformation to

deal with the nonconvexity of AA model. By rewriting a blur and multiplicative noise

equation such that both the image variable and the noise variable are decoupled, [30]

proposed a new optimization model for multiplicative noise and blur removal. Dictio-

nary learning and sparse representation methods also been developed for multiplicative

noise removal, see [8].

In this paper, we focus on the restoration of images that are corrupted by multi-

plicative noise which is supposed to follow the Gamma distribution. As in (1.2), we

denote z = log u, i.e., u = ez. To preserve the edges and overcome the oversmooth in

the logarithmic domain, we adopt the TV regularization in the original image domain.

Furthermore we add a penalty term ‖u − ez‖22 to keep the consistence between image

domain and the logarithmic domain. Alternating minimization algorithm is discussed

to solve the proposed model. In each iteration, we observe that one can solve ez in

a closed formula, which is very efficient.

The rest of this paper is organized as follows. In Section 2 we proposes the varia-

tional model and an alternating iterative algorithm to solve it. The convergence analy-

sis is given in Section 3. In Section 4 numerical experiments are presented to show the

efficiency of the proposed model.

2. The variational model and the alternative direction algorithm

For simplicity we consider an n × n image. Let z = log u, that is u = ez . The data

fitting term is derived from the statistical perspective of Bayesian formulation in [1],

which can be written as
∑n2

i=1([z]i + [f ]ie
−[z]i). Then combining with a TV-regularizer

in image domain as well as a penalty term for the consistence of the image domain and

the logarithmic domain, we can propose the variational model as follows:

min
z,u∈Ω

E(z, u) =
n2
∑

i=1

(

[z]i + [f ]ie
−[z]i

)

+ α1‖u− ez‖22 + α2‖u‖TV , (2.1)

where f ∈ R
n2

is a given vector with positive components, α1 and α2 are two positive

constants to balance the three terms. The convex set Ω imposes the box constraints

to image u, which will be discussed in Section 3. Then we describe an alternative

minimization algorithm to solve the proposed model (2.1).

Algorithm 2.1 involves z-subproblem (2.2) and u-subproblem (2.3). Now we dis-

cuss how to solve (2.2) and (2.3) in details.
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Algorithm 2.1

1: Initialize u0 = f ;

2: Calculate z(k), u(k) from

z(k) = argmin
z

n2
∑

i=1

(

[z]i + [f ]ie
−[z]i

)

+ α1‖u
(k−1) − ez‖22, (2.2)

u(k) = argmin
u∈Ω

α1‖u− ez
(k)
‖2 + α2‖u‖TV . (2.3)

3: Stop or set k = k + 1 and go to Step 2

4: Output uk.

For the z-subproblem, the necessary condition to (2.2) is the following nonlinear

system:

1− [f ]ie
−[z]i + 2α1

(

e[z]i − [u(k−1)]i

)

e[z]i = 0, i = 1, . . . , n2. (2.4)

Multiplying e[z]i in the both sides, (2.4) can be rewritten as

e[z]i − [f ]i + 2α1e
2[z]i

(

e[z]i − [u(k−1)]i

)

= 0, i = 1, . . . , n2,

which is a cubic equation

2α1e
3[z]i − 2α1[u

(k−1)]ie
2[z]i + e[z]i − [f ]i = 0 (2.5)

and has a closed form solution. We can then compute e[z]i directly and use it in the

u-subproblem.

The u-subproblem is a TV denoising with box constraint model

min
u∈Ω

α1

∥

∥u− ez
(k)∥
∥

2

2
+ α2‖u‖TV . (2.6)

The TV denoising model can be efficiently solved by various methods, such as split-

Bregman algorithm [14], Chambolle’ semi-implicit gradient decent method [4], semis-

mooth Newton’s method [15], alternating direction method of multipliers (ADMM)

[12] and the primal-dual hybrid gradient algorithm [5]. We will use ADMM for solving

u-subproblem, which can handle the box constraint easily. Let µ = 2α1/α2 and g = ez
k

,

then by introducing auxiliary variables x and y, problem (2.6) can be formulated as

min
x∈Ω,u,y

{

µ

2
‖u− g‖22 +

∑

i

‖yi‖2 : yi = Diu, i = 1, . . . , n2; u = x

}

, (2.7)

where

Diu :=
(

(

D(1)u
)

i
,
(

D(2)u
)

i

)⊤

∈ R
2, i = 1, . . . , n2
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and

(

D(1)u
)

i
:=

{

ui+n − ui, if 1 ≤ i ≤ n(n− 1),

u mod (i,n) − ui, otherwise,

(

D(2)u
)

i
:=

{

ui+1 − ui, if mod (i, n) 6= 0,

ui−n+1 − ui, otherwise.

The augmented Lagrangian L(u, y, x;λ, ξ) is given by

L(u, y, x;λ, ξ) ≡
∑

i

(

‖yi‖2 − λ⊤
i (yi −Diu) +

β1
2
‖yi −Diu‖

2
2

)

+
µ

2
‖u− g‖22 − ξ⊤(x− u) +

β2
2
‖x− u‖22, (2.8)

where β1, β2 > 0. Then one step iteration of ADMM reads

(

yk+1

xk+1

)

← arg min
x∈Ω,y

LA

(

uk, y, x;λk, ξk
)

,

uk+1 ← argmin
u
LA

(

u, yk+1, xk+1;λk, ξk
)

,
(

λk+1

ξk+1

)

←

(

λk − β1
(

yk+1 −Duk+1
)

ξk − β2
(

xk+1 − uk+1
)

)

.

(2.9)

The (x, y)-subproblem can be solved in closed form

xk+1 = argmin
x∈Ω

{

(ξk)
⊤
(x− uk) +

β2
2
‖x− u‖22

}

= PΩ

[

uk +
ξk

β2

]

,

yk+1
i = argmin

yi

(

‖yi‖2 − λk
i

(

yi −Diu
k
)

+
β1
2

∥

∥yi −Diu
k
∥

∥

2

2

)

= max

{

∥

∥

∥
Diu

k +
1

β1

(

λk
)

i

∥

∥

∥

2
−

1

β1
, 0

}

Diu
k + 1

β1

(

λk
)

i
∥

∥Diuk +
1
β1

(λk)i
∥

∥

2

, i = 1, . . . , n2.

The u-subproblem is a quadratic optimization problem which can be solved by FFT

efficiently

uk+1 = argmin
u

{

− (λk)⊤
(

yk+1 −Du
)

+
β1
2

∥

∥yk+1 −Du
∥

∥

2

2
+

µ

2
‖u− g‖22

− (ξk)
⊤(

xk+1 − u
)

+
β2
2

∥

∥xk+1 − u
∥

∥

2

2

}

=

(

D⊤D +
µ+ β2
β1

I

)−1(

D⊤

(

yk+1 −
λk

β1

)

+
µ

β1
g +

β2
β1

(

xk+1 −
ξk

β2

))

.
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3. Convergence of the iterative algorithm

We will study the convergence of Algorithm 2.1 in this section. First, we recall the

definition of the nonexpansive operator and asymptotically regular operator as in [22]

and [3], respectively. Let C ⊂ X be a convex closed subset of a Banach space X.

Definition 3.1 (Nonexpansive). An operator T : C → X is nonexpansive if ‖T (x) −
T (y)‖ ≤ ‖x− y‖ for any x, y in C.

Definition 3.2 (Asymptotically regular). T : C → C is asymptotically regular if for

arbitrary x in C, limn→∞ T n+1x− T nx = (I − T )(T nx) = 0.

The convergence for the nonexpansive and asymptotically regular nonlinear opera-

tor is discussed in [3].

Proposition 3.1 ([3]). If T : C → C is a nonexpansive asymptotically regular map-

ping and there exists a fixed point for T , then for any x in C, the sequence of successive

approximations {T nx} is weakly convergent to a fixed point of T .

We then rewrite Algorithm 2.1 in operator form. Let z and u be the solutions of

problem (2.2) and (2.3), respectively (where we omit the sup-script k), then we define

the operator R and S by ez = R(u) and u = S(ez). With the help the composed operator

T = SR, the iteration for Algorithm 2.1 can reformulated by u(k) = SR(u(k−1)) =
T (u(k−1)). We will show that operator T satisfies all properties in Proposition 3.1.

Now we discuss the choice to the box constraint Ω. It has been discussed in [7] that

imposing box constraints on TV denoising models can achieve more accurate solutions.

A standard box constraint (for a normalized image) is Ω = {u : 0 ≤ u ≤ 1}. To obtain

the convergence of algorithm, we impose the box constraint by Ω = {u : 0 ≤ u ≤
min{2f, 1}}. This box constraint is for the technique reason, and has also been used

for other similar nonconvex problem, see, e.g. [1]. To apply Proposition 3.1, we choose

the convex set C = Ω, and need to show the operator T : Ω → Ω is nonexpansive and

asymptotically regular.

Lemma 3.1. Operator T from Ω to Ω is nonexpansive.

Proof. From definition T = SR, we only need to show

(1) Given any u and v in Ω, ‖R(u)−R(v)‖ ≤ ‖u− v‖.

(2) Given any z1 and z2, we have ‖S(ez1)− S(ez2)‖ ≤ ‖ez1 − ez2‖.

For claim (1): Let ez = R(u) and ey = R(v), then for each pixel i we have

1− [f ]ie
−[z]i + 2α1

(

e[z]i − [u]i

)

e[z]i = 0,

1− [f ]ie
−[y]i + 2α1

(

e[y]i − [v]i

)

e[y]i = 0.
(3.1)
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Since [u]i ≤ 2[f ]i, then for any [z]i such that e[z]i ≥ 2[f ]i ≥ [u]i, we have

1− [f ]ie
−[z]i + 2α1

(

e[z]i − [u]i
)

e[z]i > 1−
1

2
> 0,

which implies that

e[z]i < 2[f ]i, e[y]i < 2[f ]i. (3.2)

From (3.1) we obtain that

[u]i = e[z]i +
1

2α1

(

e−[z]i − [f ]ie
−2[z]i

)

,

[v]i = e[y]i +
1

2α1

(

e−[y]i − [f ]ie
−2[y]i

)

.

Simple computation yields that

[u]i − [v]i = e[z]i − e[y]i +
1

2α1

(

e−[z]i − e−[y]i − [f ]ie
−2[z]i + [f ]ie

−2[y]i
)

=
(

e[z]i − e[y]i
)

(

1−
1

2α1

1

e[z]ie[y]i
+

[f ]i
2α1

e[z]i + e[y]i

e2[z]ie2[y]i

)

=
(

e[z]i − e[y]i
)

(

1 +
1

2α1

1

e[z]ie[y]i

{

[f ]i

e[z]i
+

[f ]i

e[y]i
− 1

})

.

From (3.2) we obtain that

∣

∣[u]i − [v]i
∣

∣ >
∣

∣e[z]i − e[y]i
∣

∣

it implies ‖ez − ey‖ ≤ ‖u− v‖, which finished the proof to claim (1).

For claim (2), we notice that problem (2.3) can be formulated as (by omitting

subscript k)

u = argmin
1

2
‖u− ez‖2 +

α2

2α1
‖u‖TV + IΩ(u),

where IΩ is an indicate function which is defined by

IΩ(u) =

{

0, u ∈ Ω,

+∞, otherwise.

Then operator S is same as the prioximal operator proxφ, where

φ(u) =
α2

2α1
‖u‖TV + IΩ(u).

Since the proximal operator is 1-Lipschitz operator, see, e.g., [6], we show the claim

(2). Combining claims (1) and (2), we have that operator T is nonexpansive. �

Next we study the asymptotical regularity of T .
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Lemma 3.2. For any initial guess u(0) ∈ Ω, T is asymptotically regular.

Proof. Using the notation

φ(u) =
α2

2α1
‖u‖TV + IΩ(u),

we write the problem (2.3) as

u(k) = argmin
1

2
‖u− ez

(k)
‖2 + φ(u).

From the first order optimality condition, we have

ez
(k)
− u(k) ∈ ∂φ

(

u(k)
)

.

From the definition for the subderivative, we obtain that

φ
(

u(k−1)
)

− φ
(

u(k)
)

≥
(

ez
(k)
− u(k)

)

·
(

u(k−1) − u(k)
)

.

It implies that

1

2

∥

∥u(k−1)−ez
(k)
∥

∥+ φ
(

u(k−1)
)

≥
1

2

∥

∥u(k)−ez
(k)
∥

∥+ φ
(

u(k)
)

+
1

2

∥

∥u(k−1) − u(k)
∥

∥

2
.

Since u(k) and u(k−1) are in Ω, the above inequality is

α1

∥

∥u(k−1)−ez
(k)
∥

∥+ α2

∥

∥u(k−1)
∥

∥

TV

≥ α1

∥

∥u(k)−ez
(k)
∥

∥+ α2

∥

∥u(k)
∥

∥

TV
+ α1

∥

∥u(k−1) − u(k)
∥

∥

2
. (3.3)

Recall (2.1) for the definition of E(z, u) by

E(z, u) =

n2
∑

i=1

(

[z]i + [f ]ie
−[z]i

)

+ α1‖u− ez‖22 + α2‖u‖TV ,

then from (3.3) and (2.2), we have

E
(

z(k), u(k)
)

+ α1

∥

∥u(k−1) − u(k)
∥

∥

2
≤ E

(

z(k), u(k−1)
)

≤ E
(

z(k−1), u(k−1)
)

.

Summing them up, we obtain that
∑∞

k=1 ‖u
(k) − u(k−1)‖22 is bounded, hence ‖u(k) −

u(k−1)‖22 → 0, as k → ∞, i.e. limn→∞ ‖T
k+1u0 − T ku0‖ = 0. Therefor operator T is

asymptotically regular. �

Lemma 3.3. There exists a fixed point for T , i.e., the set {u|u = Tu} is nonempty.
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Proof. If (z, u) is the global minimum point of E(z, u), then u is a fixed point of T .

Next we will show there exists a global minimizer of E(z, u). Clearly E is continuous,

then we need to show E(z, u) is coercive. From the box constraint Ω for u, we only

need to consider the case of ‖z‖ → +∞. For any given [f ]i > 0, the function

h(t) = t+ [f ]ie
−t ≥







t, t ≥ 0,
[f ]i
4

t2 −
1

[f ]i
, t < 0.

Hence ‖z‖ → +∞ implies that E(z, u)→ +∞, which prove the coercivity of E. �

Combining Lemmas 3.1-3.3 and Proposition 3.1, we have the following conver-

gence result.

Theorem 3.1. For arbitrary initial u(0), the sequence {u(k)} generated by Algorithm 2.1,

i.e., u(k) = SR(u(k−1)) converges weakly to a fixed point of T .

4. Numerical experiments

In this section we compare the proposed method with the other two methods: AA

model [1] and HM model [18] for three tested images, see Fig. 1. Given the true image

u and a restored image u, we use the peak signal to noise ratio (PSNR) and the relative

error to estimate the image quality.

PSNR(u, u) = 10 log10

(

max
(

max(u),max(u)
)2

| u− u |2

)

,

ReErr(u, u) =
‖u− u‖22
‖u‖22

.

The multiplicative noise follows Gamma distribution (1.1) with Kθ = 1 and we test

three different noise levels: K = 33, K = 13, K = 5, respectively. We consider two

Figure 1: Original images, (a) Lena, (b) cameraman, and (c) shape.
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different initial guesses of u in Algorithm 2.1, observed image f and the mean of f . Let

the number of maximum iterations be 3000, and the stopping criteria be as

‖u(k+1) − u(k)‖2
‖uk‖2

< 10−4.

For technique reason, we consider the box constraint Ω = {u : 0 ≤ u ≤ min{1, 2f}}
in Section 3. A more natural choice is Ω = {u : 0 ≤ u ≤ 1}. We let K = 30 in Fig. 1(b)

and compare the numerical results for two different box constraints. One can find

them are very close, i.e., the PSNR are 28.0728 and 28.0686 for two box constraints,

respectively. In later computation, we will use Ω = {u : 0 ≤ u ≤ 1} for simplicity.

There are two hyper parameters α1 and α2 in the proposed model. When α2 is

fixed, the choice of α1 does not affect the results, see Table 1 for α2 = 0.2 and K = 35.

Table 1: Different choices to parameter α1.

α1 20 15 10 5

ReErr 0.0725 0.0716 0.0716 0.0717

PSNR 28.4037 28.4739 28.4874 28.4273

We will choose α1 = 5 in all numerical tests except for K = 5 (we slightly change α1 =
6 in the large noise case to get a better result). The choice of α2 is similar as parameters

selection for TV denoise model, which can be determined by a lot of method, e.g.,

discrepancy principle [29]. The numerical results are shown in Tables 2-4. It can be

found that the proposed model recovers a comparable results with AA model and HM

model but with less CPU time and iteration steps. The noisy and recovered images can

be found in Figs. 2-9, where Figs. 2, 4, 8 are the images degraded by different noise

level, and Figs. 3, 5, 9 are the images restored by our method and HM method with

different initial guess for u.

In Table 2, when the noise is small (K = 33), our method is superior to the other

two in PSNR, time and iteration number. Our method is also stable for two different

initialization, while AA model relies on the initialization.

Figure 2: Noisy images with K = 33.
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Table 2: Restoration results with K = 33.

Images Methods
u(0) = mean(f) u(0) = f

ReErr PSNR(db) #Iter Time(s) ReErr PSNR(db) #Iter Time(s)

(a)

Our model 0.0703 28.5047 27 9.77 0.0719 28.4020 21 7.28

AA model 0.1003 25.6286 726 24 0.0706 28.6831 436 12.53

HM model 0.0706 28.4479 192 15.52 0.0708 28.3664 115 16.63

(b)

Our model 0.0744 28.1057 24 9.13 0.0758 28.1196 20 9.28

AA model 0.0998 25.5335 726 20.47 0.0755 28.0180 489 14.99

HM model 0.0767 27.8963 193 16.55 0.0763 27.9684 111 10.03

(c)

Our model 0.0371 31.9875 53 5.84 0.0386 31.8012 24 3.48

AA model 0.2466 15.1182 3000 19.3941 0.2459 15.1463 3000 19.3784

HM model 0.0402 31.8308 196 7.16 0.0413 32.0106 198 7.09

In Tables 3-4, for the moderate noise (K = 13) and large noise (K = 5), our

method is comparable with the other two in PSNR, and superior in time. In Fig. 5, we

can see that our method can preserve textures and details well. To see the details more

clearly, we test K = 15 in Fig. 6 and enlarge part of the image to view the details of

the restored image by our method and HM method. Local details such as the mouth

of the cameraman and the pillar of the building are better restored with our method

Figure 3: Images restored by our method and HM method with K = 33. First two columns are our method,
the last two columns are HM method. Initial guess of u: column 1,3 are observed image while column 2,4
are the mean of observed image. α1 = 5, α2 = 0.2
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Figure 4: Noisy images with K = 13.

Figure 5: Images restored by our method and HM method with K = 13. First two columns are our method,
the last two columns are HM method. Initial guess of u: column 1,3 are observed image while column 2,4
are the mean of observed image.α1 = 5, α2 = 0.4.

Figure 6: Images restored by our method (left) and HM method (right) with K=15 and the middle two
columns are local enlargement.
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Table 3: Restoration results with K = 13.

Images Methods
u(0) = mean(f) u(0) = f

ReErr PSNR(db) #Iter Time(s) ReErr PSNR(db) #Iter Time(s)

(a)
Our model 0.0903 26.5433 24 10.41 0.0901 26.5596 33 13.94

AA model 0.1080 24.9893 741 20.8890 0.0909 26.4985 718 21.29

HM model 0.1004 25.4771 176 19.08 0.0922 25.5423 153 19.14

(b)
Our model 0.0955 25.9181 24 11.80 0.0961 25.8605 24 9.91

AA model 0.0908 26.3536 3000 92.09 0.0908 26.3509 3000 86.41

HM model 0.1001 25.5780 197 19.03 0.1005 25.5127 163 18.92

(c)
Our model 0.0580 27.5966 27 5.13 0.0587 27.4908 22 5.27

AA model 0.2489 15.0025 3000 19.4495 0.2471 15.1058 3000 20.2544

HM model 0.0671 28.6940 200 7.72 0.0680 27.9683 153 6.92

Table 4: Restoration results with K = 5.

Images Methods
u(0) = mean(f) u(0) = f

ReErr PSNR(db) #Iter Time(s) ReErr PSNR(db) #Iter Time(s)

(a)
Our model 0.1123 24.6848 53 16.53 0.1234 24.1731 27 12.96

AA model 0.1577 21.7011 2445 69.77 0.1726 20.9538 1055 30.53

HM model 0.1216 24.4320 187 17.53 0.1176 24.1783 185 17.51

(b)
Our model 0.1234 23.6855 35 12.75 0.1281 23.2025 21 10.19

AA model 0.1584 21.7303 3000 87.11 0.1636 21.5035 3000 87.24

HM model 0.1241 23.6398 166 14.22 0.1245 23.5762 162 14.20

(c)
Our model 0.0748 25.5368 41 10.45 0.0806 25.3146 37 9.39

AA model 0.2583 14.7390 3000 21.2425 0.2624 14.5658 3000 20.2399

HM model 0.0931 26.7822 290 11.41 0.0963 26.6074 272 11.2

since we take TV regularization in the original image domain in our method, while HM

takes regularization in the logarithmic domain of image which tend to oversmooth. To

illustrate the advantages of our method in preserving details, we also compared with

DZ model [10] in Fig. 7 with K = 10. DZ model is based on the statistical property

of the noise, and a quadratic penalty function technique is utilized in order to obtain

a strictly convex model under mild condition. But when K is small, the quadratic

penalty can not fit the real noise well which may affect the restored results.

5. Conclusion

In this paper, we propose a multiplicative noise removal model and take TV regu-

larization directly in the image domain, which preserves more details of images. An

alternating iterative minimize algorithm is used to solve the minimization problem and

convergence is provided under mildly condition. Several numerical examples with dif-

ferent noise levels are given to indicate the efficient of the proposed model.
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Figure 7: Images restored by our method, HM method, and DZ method with K = 10.

Figure 8: Noisy images with K = 5.

Figure 9: Images restored by our method and HM method with K = 5. First two columns are our method,
the last two columns are HM method. Initial guess of u: column 1,3 are observed image while column 2,4
are the mean of observed image. α1 = 6, α2 = 0.85.
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