
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2021-0059

Vol. 31, No. 1, pp. 293-330
January 2022

A Colocalized Scheme for Three-Temperature Grey

Diffusion Radiation Hydrodynamics

R. Chauvin1, S. Guisset1,∗, B. Manach-Perennou1 and L. Martaud1

1 CEA, DAM, DIF, F-91297 Arpajon, France.

Received 25 March 2021; Accepted (in revised version) 25 August 2021

Abstract. A positivity-preserving, conservative and entropic numerical scheme is pre-
sented for the three-temperature grey diffusion radiation hydrodynamics model. More
precisely, the dissipation matrices of the colocalized semi-Lagrangian scheme are de-
fined in order to enforce the entropy production on each species (electron or ion) pro-
portionally to its mass as prescribed in [34]. A reformulation of the model is then con-
sidered to enable the derivation of a robust convex combination based scheme. This
yields the positivity-preserving property at each sub-iteration of the algorithm while
the total energy conservation is reached at convergence. Numerous pure hydrodynam-
ics and radiation hydrodynamics test cases are carried out to assess the accuracy of the
method. The question of the stability of the scheme is also addressed. It is observed
that the present numerical method is particularly robust.

AMS subject classifications: 65M12, 35Q35, 82D10, 82A25

Key words: Colocalized Lagrangian scheme, radiation hydrodynamics, grey diffusion, discrete
entropy production, plasma physics simulations.

Introduction

Background

Considering a non-equilibrium plasma, the relaxation process to reach the electronic and
ionic temperature equalization occurs on time scales much shorter than the ones involved
to reach quasi-neutral regimes or electron and ion Maxwellian equilibrium distribution
functions [7]. This must be highlighted since in many practical applications, such as as-
trophysics or inertial confinement fusion, the characteristic times of interest can be of the
same order of the temperature relaxation times. When this is the case, a two-temperature
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hydrodynamics model is required [7]. In the presence of strong radiation fields, the mod-
eling of photon transport is also mandatory. Various physical descriptions are available
depending on the level of accuracy needed [22]. Here, we restrict ourselves to the study of
a three-temperature grey diffusion radiation hydrodynamics model, which is only valid
in the optically thick limit [22].

The numerical resolution of radiation hydrodynamics models has been heavily inves-
tigated over the years. If one requires a transport-type modeling, among other methods
to simulate thermal radiation propagation is the Implicit Monte-Carlo method. Early in-
vestigations may be found in [12] where the Implicit Monte-Carlo method is used for a
two-temperature (radiation and matter temperatures) model. See also [9] in which the
Implicit Monte-Carlo method is extended to the study of three-temperature models. We
also mention here that angular moments (PN) and discrete ordinate (SN) methods are
also widely used in this context [4, 22]. If the physical problem studied allows diffusion-
type approximations, i.e if the photon mean free path is very small compared to the char-
acteristic length of the problem (optically thick media) [13, 25], then standard Newton-
Raphson or fix point strategy are also widely used to solve three-temperature models.
Here it is assumed that the photon spectrum is Planckian and the radiation field is deter-
mined by many absorptions and re-emissions. In this case the radiation field rapidly be-
comes Planckian at a temperature not necessarily same as the material. We refer to [10] for
numerical comparisons between several simulation codes for solving three-temperature
models. It should also be mentioned that Jacobian-free Newton-Krylov methods enable
the derivation of efficient algorithms for radiation diffusion equations [11,24]. Finally, no-
tice that the time integration strategy of non-equilibrium radiation diffusion models has
been investigated in [16] and references therein. We also mention here that purely diffu-
sive model has a limited applicability and flux-limiting techniques are usually used [25].
The integration of limiting techniques to the numerical strategy presented in this docu-
ment does not pose any issue and is not mentioned.

The numerical resolution of three-temperature models has become an active research
field in recent years. In [29, 30] the numerical resolution of a three-temperature radiation
hydrodynamics model on unstructured grids is presented. Concerning the numerical res-
olution of diffusion operators on (strongly) deformed meshed we refer to [1,3,26] and the
references therein. We also mention that very recent studies have been published, specif-
ically dealing with the positive preserving (or maximum principle preserving) properties
for three-temperature radiation diffusion equations [27, 33].

In the present study, we do not consider pure Eulerian strategies. Indeed, even if
large material deformation may be handled by Euler codes, their diffusive feature makes
multi-material configurations difficult to handle. Of course, theses issues may be ad-
dressed with advanced material interface tracking techniques [28] inside mixed cells.
However and more importantly, the discrete entropy production (per species) is almost
never studied (or even mentioned) when working with pure Euler formalism. Gibb’s
relation cannot be easily combined with the evolution equations so that this key point is
often neglected. Even if one could expect a global entropy production by the scheme, the
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species entropy production is generally unclear. On the contrary, Lagrangian codes are
naturally less diffusive since the nodes follow the flow and therefore are naturally well
suited for multi-material configurations as well as handling source terms. In addition as
it will be seen in the present study, the discrete species entropy production may be care-
fully controlled to “mimic” species physical production. Of course, if large deformations
occur, the appearance of strongly distorted cells makes Lagrangian approaches less ro-
bust. To bypass this difficulty the numerical solution may be projected on a regular mesh
(Lagrangian plus remap strategy) considering an arbitrary Lagrangian Eulerian scheme
(ALE) [14]. If the projection step is performed carefully, the overall numerical strategy
leads to the Lagrangian advantages such as natural multi-physics couplings, sharp in-
terfaces between materials or accuracy in addition to the robustness of the Eulerian-type
approaches.

Present approach and outline

The present approach starts from the colocalized Lagrangian scheme presented in [20]
which naturally ensures the geometric conservation law (GCL), and is extended to the
three-temperature formalism. The authors are aware of staggered mesh formulation
schemes in which the velocity are defined at the nodes and the other variables at the
cell centers, working with the use of an artificial viscosity. It will be seen that despite the
diffusive character of the scheme, since it is originally based on a standard (HLLC-type)
Godunov solver, the numerical dissipation may be “tuned” while keeping the numerical
stability and achieving a physical discrete species entropy production. In addition, since
all variables are located at the cell centers the remap step used here is straightforward.
In the present case, the solution is simply projected onto the initial (Cartesian) mesh. To
extend the standard colocalized approach of [20] (in which a total energy evolution equa-
tion is used) to the three-temperature formalism, internal energy equations for electrons,
ions and photons are considered. Similar ideas may be found in [6] in which a colocalized
Lagrangian scheme is used for solving multiple internal energy equations, while keeping
the total energy conservation property. However, the discrete entropy production issue,
which is a key feature for the applications of interest (multi-material compressible flow
for inertial confinement fusion), is never addressed. In the present case the dissipation
matrices of the colocalized semi-Lagrangian scheme are defined in order to enforce en-
tropy production on each species with respect to its mass fraction as prescribed in [34].
This point is explained in details in the present study.

In [2], in the case of a two-temperature (electron and ion) model the numerical strat-
egy followed consists in computing the total energy first with a standard colocalized
scheme [20] working with a total energy evolution equation. Then, considering an isotropic
flow for electrons, the electron internal energy is easily computed and the ionic inter-
nal energy may be recovered. Finally, electron and ion conductivities and electron-ion
coupling term are taken into account using a standard Newton procedure. The present
approach is genuinely different since no operator-splitting strategy is required (except
for the electron and ion conductivities) and electron, ion and radiation energies are com-
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puted simultaneously. The positiveness of the discrete temperatures may then be en-
sured.

We believe the originality of the present work comes from the following reasons. All
the fundamental numerical properties, discrete entropy production (per species), dis-
crete total energy conservation, discrete temperatures positiveness are proved for the full
three-temperature radiation hydrodynamics model. These properties are often partially
proved only for the hydrodynamics or the diffusion part. In addition, the large numeri-
cal tests carried out, demonstrate that the overall methodology proposed is particularly
robust and is naturally well-suited for multi-physics coupling.

The document is organized as follows. Firstly, the three-temperature model is pre-
sented with its main properties. These properties will latter be enforced at the discrete
level. In a second part, the derivation of the numerical schemes is carried out to enforce
the discrete total energy conservation as well as the entropic character. More precisely,
the dissipation matrices of the colocalized semi-Lagrangian scheme are defined in order
to enforce the species entropy production on ions as prescribed in [34]. A reformulation
of the model is then considered to enable the derivation of a robust convex-combination
based scheme. This yields the positivity-preserving property at each sub-iteration of the
algorithm while the total energy conservation is reached at convergence. Finally, numer-
ous pure hydrodynamics and radiation hydrodynamics test cases are carried out to assess
the accuracy of the method. The question of the stability of the scheme is also addressed.
It is observed that the present numerical method is particularly robust.

1 Three-temperature plasma model

In this section, the physical model studied is presented with its main properties. In the
next sections, these properties will then be enforced at the discrete level.

1.1 Model and notations

In order to model the evolution of ions, electrons and photons contained in a plasma, we
consider the following three-temperature model written in updated Lagrangian formal-
ism [2, 23]
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−∇·u=0,

ρ
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dt
+∇p=0, p= pr+pe+pi,

ρ
d

dt

(
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ρ

)

+pr∇·u+∇·Fr = cσP

(

aT4
e −Er

)

,

ρ
dεe

dt
+pe∇·u+∇·Fe = cσP

(

Er−aT4
e

)

+κ(Ti−Te),

ρ
dε i

dt
+pi∇·u+∇·Fi=κ(Te−Ti),

(1.1)
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where c and a denote the speed of light and the radiation constant respectively. In ad-
dition, ρ is the density of the fluid, u denotes the speed of the fluid and p is the total
pressure obtained by summing the pressure of ions pi, the pressure of electrons pe and
the radiative pressure pr . Er is the volumetric density of radiative energy, εe and ε i de-
note the specific electronic and ionic energy densities. σP is the Planck opacity which is a
given non-linear function of Te and Tr (Er=aT4

r ). Let κ be a positive relaxation coefficient
of the electronic and ionic temperatures which depends on Te and Ti. The radiative flux
Fr is chosen according to the Rosseland diffusion approximation [23]

Fr =− c

3σR(Te)
∇Er, (1.2)

where the Rosseland opacity σR is a function of electronic temperature Te. In the same
way, the radiative pressure pr is related to the radiative energy Er according to the relation
[4, 23]

pr =Er/3. (1.3)

Finally, a standard Spitzer-Harm model is chosen for electronic and ionic conductivities
[31]

Fα =KαT5/2
α ∇Tα, α∈{e,i} . (1.4)

In the present study, the electron and ion conduction terms are taken into account using
standard operator splitting strategies. These terms are then removed from the numerical
analysis which follows since they do not directly contribute in the scheme derivation
and their discretization is straightforward. To conclude this section, we recall that by
removing the diffusion and coupling terms in (1.1), the resulting system is hyperbolic
with eigenvalues (0,0,0,−cs,cs) where the sound speed, in the case of an ideal gas closure,
is defined by

cs =
√

γ(pe+pi)/ρ+pr/ρ.

In the next section some properties of the model are presented.

1.2 Main properties

In this section the main model properties are briefly presented. In the following sections,
they will be enforced at the discrete level.

Energy conservation

From the second equation of system (1.1) the kinetic energy equation reads

ρ

2

d‖u‖2
2

dt
+∇p·u=0. (1.5)
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Adding Eq. (1.5) with the three last equations of (1.1) gives the total energy conservation
relation

ρ
d

dt

(

Er

ρ
+εe+ε i+

‖u‖2
2

2

)

+∇·(pu+Fr)=0. (1.6)

We recall here that the electron and ion conduction terms have been removed from the
numerical analysis.

Positiveness

It is considered that the electronic, ionic and radiation temperatures remain positive at
all times. Such a property is studied in [17].

Total entropy production

The total specific entropy of the system is dissipated. In order to show the total entropy
production, one considers the total specific entropy of the system η=ηr+ηe+ηi, where ηα

is the specific entropy of the species α. For the electrons and ions, consider the following
equation (Gibbs relation) which defines the specific entropy for each species

Tαdηα=dεα+pαd

(

1

ρ

)

, ∀α∈{e,i}. (1.7)

Similarly, the photon entropy is defined with the following relation

Trdηr =d

(

Er

ρ

)

+prd

(

1

ρ

)

. (1.8)

From (1.7) and (1.8), for smooth flows it is easy to show that
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= cσP

(
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ρTi
dηi
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(1.9)

so that for regular flows, the total entropy production η = ηr+ηe+ηi is due to radiation
and collision terms

ρ
dη

dt
=ρ

dηr

dt
+ρ

dηe

dt
+ρ

dηi

dt
,

=
1

Tr
∇·
(

c

3σR
∇Er

)

+cσP

(

aT4
e −Er

Tr

)
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(

Er−aT4
e
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)

+κ

(

Ti−Te

Te

)

+κ

(

Te−Ti

Ti

)

,
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=∇·
(

c

3σRTr
∇Er

)

+
4acTr

3σR
‖∇Tr‖2+

acσP

TrTe
(Te−Tr)

(

T4
e −T4

r

)

+κ
(Te−Ti)

2

TeTi
. (1.10)

For discontinuous solutions (shock waves), the last equality becomes an inequality. The
first term of the right hand side of the inequality is expressed in a conservative form while
the others are always positive. Consequently, by neglecting possible contributions at the
boundaries, the total entropy in the domain is dissipated.

Species entropy production

In addition to this entropy production result, it is well-known [34] that as a shock wave
propagates into the plasma medium, kinetic energy is converted into internal energy so
that species specific entropy is dissipated proportionally to the mass of the species con-
sidered. The total entropy production is then mainly due to the ions contribution. More
precisely, the ionic entropy production is mi/me times higher than the electron entropy
production, where mi and me denote respectively the ion and electron mass. The nu-
merical scheme derivation will also be performed in order to enforce this property at
the discrete level. Notice that this choice is more a physical one than a numerical one.
Another choice can be made leading to different results at convergence.

2 Numerical discretizations

In this section the numerical strategy is presented. The derivation is performed in order
to enforce the total energy conservation as well as a correct species entropy production.

2.1 Geometry and notations

The notations used are similar to the ones introduced in [19]. Each cell is assigned a
unique index c and is denoted ωc with a volume vc. The cells are assumed to be polygonal
so that they are defined by the set of their nodes P(c). The neighbor cells are collected
in the set N (c). For a given node p, C(p) is the set of cells that contains p. We write xp

and up for its position and velocity. We denote p+ the node in P(c) which follows p in
counterclockwise order and p− the previous node. Let n+

pc be the outward normal unit

vector to ~pp+ and consider l+pc =
1
2

∥

∥

∥

~pp+
∥

∥

∥
. Similarly, n−

pc and l−pc are defined accordingly.

Consequently, the corner outward normal unit vector npc is defined as follows

npc=
l+pcn

+
pc+l−pcn

−
pc

lpc
, lpc=

∥

∥

∥
l+pcn

+
pc+l−pcn−

pc

∥

∥

∥

2
. (2.1)

Finally, ωpc denotes the subcell formed by xc, xp,
xp+xp+

2 and
xp+xp−

2 . All the notations
introduced are illustrated in Fig. 1.
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Figure 1: Cell notations.

2.2 Nodal finite volume discretization

Before deriving the numerical scheme, we first define the discrete variables for the quan-
tities

{

1
ρ ,u, ε i, εe,

Er
ρ

}

with a mean over the cell weighted by the density ρ. For any cell ωc

we set

φc=
1

mc

∫

ωc

ρφdx, mc=
∫

ωc

ρdx, ∀φ∈
{

1

ρ
,u, ε i, εe,

Er

ρ

}

.

In this updated Lagrangian formalism the mesh moves with the matter so that the quan-
tity mc associated to each cell ωc does not depend on time. Consequently, integrating
system (1.1) over a cell ωc of mass mc and using the Reynold’s formula directly leads to
the following set of equations
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)
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∇·udx=0,
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dt
+
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∇pdx=0,

mc
d

dt

(

Er

ρ

)

c

+
∫

ωc

pr∇·udx+
∫

ωc

∇·Fr dx= c
∫

ωc

σp

(

aT4
e −Er

)

dx,

mc
dεe,c

dt
+
∫

ωc

pe∇·udx= c
∫

ωc

σp

(

Er−aT4
e

)

dx+
∫

ωc

κ(Ti−Te)dx,

mc
dε i,c

dt
+
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ωc

pi∇·udx=
∫

ωc

κ(Te−Ti)dx.

(2.2)
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For the mass conservation equation, we apply the Green formula

mc
d

dt

(

1

ρc

)

=
∮

∂ωc

u·ndl. (2.3)

Now, assuming that the Lagrangian cell ωc remains polygonal, vc only depends on the
nodes positions defining the cell. Then, it is possible to show [19] that ∂vc

∂xp
= lpcnpc. Con-

sequently the equation rewrites

mc
d

dt

(

1

ρc

)

=
∮

∂ωc

u·ndl= ∑
p∈P(c)

∂vc

∂xp
·dxp

dt

= ∑
p∈P(c)

lpcnpc ·up. (2.4)

Before proceeding to the analysis of the momentum conservation equation and the en-
ergy conservation equations, we first define sub-cell forces as follows

f α
pc=−

∫

∂ωpc∩∂ωc

pαndl, f pc=−
∫

∂ωpc∩∂ωc

pndl=∑
α

f α
pc, ∀α∈{e,i,r} . (2.5)

For the momentum conservation, Green formula simply leads to

mc
duc

dt
=−

∫

ωc

∇pdx=−
∫

∂ωc

pndl= ∑
p∈P(c)

−
∫

∂ωpc∩∂ωc

pndl= ∑
p∈P(c)

f pc. (2.6)

For the internal energy evolution equations, Green formula cannot be used directly since
the equations are not written in a conservative form (internal energy formulation). To
recover sub-cell forces expressions, one proceeds as follows for the ionic, electronic and
radiation pressures

−
∫

ωc

pα∇·udx=−
∫

ωc

∇·(pαu)dx+
∫

ωc

∇pα ·udx. (2.7)

Assuming
∫

ωc
∇pα ·udx≈uc ·

∫

ωc
∇pαdx and using Green formula, Eq. (2.7) becomes

−
∫

ωc

pα∇·udx=−
∫

∂ωc

pαu·ndl+uc ·
∫

ωc

∇pαdx

=− ∑
p∈P(c)

∫

∂ωpc∩∂ωc

pαu·ndl+uc ·


 ∑
p∈P(c)

∫

∂ωpc∩∂ωc

pαndl



. (2.8)

At this point, considering the following approximation

∫

∂ωpc∩∂ωc

pαu·ndl≈up ·
∫

∂ωpc∩∂ωc

pαndl, (2.9)
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Eq. (2.8) then reads

−
∫

ωc

pα∇·udx=− ∑
p∈P(c)

up ·
∫

∂ωpc∩∂ωc

pαndl+uc ·


 ∑
p∈P(c)

∫

∂ωpc∩∂ωc

pαndl





= ∑
p∈P(c)

f α
pc ·
(

up−uc

)

. (2.10)

The discretization of the radiation diffusion term is performed using a standard finite
volume method. Indeed, it will been seen in the next section that, when radiation effects
are considered, the numerical solution is projected onto the initial (Cartesian) mesh at
each time step. We then consider

∫

ωc

∇·Frdx=
∮

∂ωc

Fr ·ndl≈ ∑
d∈N (c)

cLdc

3σR,dc

Er,c−Er,d

‖xc−xd‖2

, (2.11)

where σR,dc is the Rosseland opacity evaluated at the interface between the cells ωc and ωd

and Ldc is the length of the interface between the cells. The last point consists in discretiz-
ing the right hand side terms in system (2.2). If one considers a constant approximation
on each cell the following semi-discrete scheme is obtained
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)
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mc
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= ∑
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f pc,

mc
dεe,c

dt
= ∑

p∈P(c)

f e
pc ·
(

up−uc

)

+cσP,cvc

(

Er,c−aT4
e,c

)

+vcκc(Ti,c−Te,c),
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dε i,c
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= ∑

p∈P(c)

f i
pc ·
(

up−uc

)

+vcκc(Te,c−Ti,c),

mc
d

dt

(

Er

ρ

)

c

= ∑
p∈P(c)

f r
pc ·
(

up−uc

)

+ ∑
d∈N (c)
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3σR,dc

Er,d−Er,c

‖xc−xd‖2

+cσP,cvc

(

aT4
e,c−Er,c

)

.

(2.12)

In the next section the procedure leading to the definitions of the node velocities up and
f α

pc is presented.

2.3 Closure relations

At this stage, the semi-discrete scheme (2.12) has to be completed with a procedure allow-
ing to compute the sub-cell forces f pc and the node velocities up. In the spirit of [20] this



R. Chauvin et al. / Commun. Comput. Phys., 31 (2022), pp. 293-330 303

procedure is chosen to guarantee a correct total production entropy as well as to ensure
the momentum and total energy conservation.

Semi-discrete entropy production

For ions and electrons, the semi-discrete entropy equation of the scheme (2.12) gives

mcTα,c
dηα

c

dt
=mc

dεα,c

dt
+mc pα

c

d

dt

(

1

ρc

)

, ∀α∈{e,i} . (2.13)

Similarly for the photons the semi-discrete entropy equation reads

mcTr,c
dηr

c

dt
=mc

d

dt

(

Er

ρ

)

c

+mc pr
c

d

dt

(

1

ρc

)

. (2.14)

Now, from the semi-discrete relations (2.12) we have






































































mcTi,c
dηi

c

dt
= ∑

p∈P(c)

f i
pc ·
(

up−uc

)

+lpc pi
cnpc ·up+vcκc(Te,c−Ti,c),

mcTe,c
dηe

c

dt
= ∑

p∈P(c)

f e
pc ·
(

up−uc

)

+lpc pe
cnpc ·up+cσP,cvc

(

Er,c−aT4
e,c

)

+vcκc (Ti,c−Te,c),

mcTr,c
dηr

c

dt
= ∑

p∈P(c)

f r
pc ·
(

up−uc

)

+lpc pr
cnpc ·up+ ∑

d∈N (c)

cLdc

3σR,dc

Er,d−Er,c

‖xc−xd‖2

+cσP,cvc

(

aT4
e,c−Er,c

)

.

(2.15)

Since the integral of the normal over a closed contour is zero, we then have for all cells
ωc

∫

∂ωc

ndl= ∑
p∈P(c)

lpcnpc=0, ∑
p∈P(c)

lpc pα
c uc ·npc=0, ∀α∈{r,e,i} , (2.16)

so that the set of equations (2.15) becomes






































































mcTr,c
dηr

c

dt
= ∑

p∈P(c)

(

f r
pc+lpc pr

cnpc

)

·
(

up−uc

)

+ ∑
d∈N (c)

cLdc

3σR,dc

Er,d−Er,c

‖xc−xd‖2

+cσP,cvc

(

aT4
e,c−Er,c

)

,

mcTe,c
dηe

c

dt
= ∑

p∈P(c)

(

f e
pc+lpc pe

cnpc

)

·
(

up−uc

)

+cσP,cvc

(

Er,c−aT4
e,c

)

+vcκc (Ti,c−Te,c),

mcTi,c
dηi

c

dt
= ∑

p∈P(c)

(

f i
pc+lpc pi

cnpc

)

·
(

up−uc

)

+vcκc (Te,c−Ti,c).

(2.17)
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At this point, a sufficient condition to ensure the second principle of thermodynamics for
the semi-discrete model is to define the sub-cell forces as follows

f α
pc=−lpc pα

c npc+Mα
pc

(

up−uc

)

, ∀α∈{r,e,i} , (2.18)

where Mα
pc is a positive semi-positive matrix named in the following as a dissipation

matrix. Now, in order to enforce a correct discrete total entropy production, we extend
the standard dissipation matrix definition [20] and choose the following definitions







Me
pc=ρecs

(

l+pcn+
pc⊗n+

pc+l−pcn−
pc⊗n−

pc

)

,

M i
pc=ρics

(

l+pcn
+
pc⊗n+

pc+l−pcn
−
pc⊗n−

pc

)

,
(2.19)

where ρe,ρi,cs are respectively the density of electrons, the density of ions and the speed
of sound. In order to compute ρe and ρi one considers the definition of the total density
and the quasi-neutrality relation

ρ=ρe+ρi =mene+mini, ne =Zni, (2.20)

where ne and ni are respectively the electronic and ionic density, me and mi the electron
and ion mass and Z the atomic number of the species. These relations rewrite

ρe =
Z me

mi

1+Z me
mi

ρ, ρi =
1

1+Z me
mi

ρ, (2.21)

so that in the limit me/mi tends to zero, one recovers the infinite mass ratio conditions
ρe = 0 and ρi = ρ. One understands here that the choice (2.19) for the dissipation matri-
ces enables to enforce at the discrete level an quasi-isentropic electron transport while
the total entropy production is mainly due to ions as described in [34]. In addition, we
consider that there is no entropy production due to photons in the shock wave. We then
define the radiation dissipation matrix

Mr
pc=0. (2.22)

Discussion. We point out that in the limit me/mi tends to zero there is no numerical
viscosity on the electron and photon energy equation. This is different from standard
Godunov-type approaches in which the numerical viscosity is put on all equations lead-
ing to strong stability properties but dissipating on both electron and ion (even in the limit
me/mi tends to zero). With the present choice one could expect stability issues (when all
the internal energy is put on electrons for example). However, it will be shown in the
numerical section, that the resulting scheme remains perfectly stable in all the numerical
tests performed.



R. Chauvin et al. / Commun. Comput. Phys., 31 (2022), pp. 293-330 305

Momentum and total energy conservation

From the semi-discrete scheme equations (2.12), a direct summation leads to

mc
d

dt

((

Er

ρ

)

c

+εe,c+ε i,c+
1

2
‖uc‖2

2

)

= ∑
p∈P(c)

f pc ·
(

up−uc

)

+ ∑
d∈N (c)

cLdc

3σR,dc

Er,d−Er,c

‖xc−xd‖2

= ∑
p∈P(c)

f pc ·up+ ∑
d∈N (c)

cLdc

3σR,dc

Er,d−Er,c

‖xc−xd‖2

. (2.23)

Now, neglecting possible boundary conditions contribution and adding the conservation
of momentum and total energy equations over the whole space domain gives















































∑
c

mc
duc

dt
=∑

c
∑

p∈P(c)

f pc,

∑
c

mc
d

dt

((

Er

ρ

)

c

+εe,c+ε i,c+
1

2
‖uc‖2

)

=∑
c



 ∑
p∈P(c)

f pc ·up+ ∑
d∈N (c)

cLdc

3σR,dc

Er,d−Er,c

‖xc−xd‖2



.

(2.24)

After inverting the node and cell sums, a sufficient condition to ensure the momentum
and total energy discrete conservation is

∑
c∈C(p)

f pc=0. (2.25)

Finally the expression of the sub-cell forces leads to the following definition for the node
velocity

up=



 ∑
c∈C(p)

(

Mr
pc+Me

pc+M i
pc

)





−1

∑
c∈C(p)

lpc pcnpc+
(

Mr
pc+Me

pc+M i
pc

)

uc. (2.26)

2.4 Time discretisation and CFL condition

Standard Euler forward strategies are finally considered for the hydrodynamics part
while, because of the stiffness associated to the radiation terms, the radiation diffusion
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term and the coupling terms are chosen implicit























































































mc

∆t

(

En+1
r,c

ρn+1
c

− En
r,c

ρn
c

)

= ∑
p∈P(c)

f r,n
pc ·
(

un
p−

un+1
c +un

c

2

)

+ ∑
d∈N (c)

cLdc

3σn+1
R,dc

En+1
r,d −En+1

r,c

‖xc−xd‖2

+cσn+1
P,c vc

(

a
(

Tn+1
e,c

)4
−En+1

r,c

)

,

mc

∆t

(

εn+1
e,c −εn

e,c

)

= ∑
p∈P(c)

f e,n
pc ·
(

un
p−

un+1
c +un

c

2

)

+cσn+1
P,c vc

(

En+1
r,c −a

(

Tn+1
e,c

)4
)

+vcκ
n+1
c

(

Tn+1
i,c −Tn+1

e,c

)

,

mc

∆t

(

εn+1
i,c −εn

i,c

)

= ∑
p∈P(c)

f i,n
pc ·
(

un
p−

un+1
c +un

c

2

)

+vcκ
n+1
c

(

Tn+1
e,c −Tn+1

i,c

)

.

(2.27)

Remark 2.1. Notice here that the temporal discretization of the velocity divergence is
asymmetric, where up is taken from the time level n and uc from the average of n+1
and n. This choice is made in order to enforce an exact conservation of the discrete total
energy (see the proof in next section). However, this implies that a divergence-free ve-
locity function can produce mechanical work. Though the quantitative effects might be
negligible in most cases this maybe a disadvantage of the scheme when studying incom-
pressible flows. Of course uc may also be taken at the time level n to avoid this drawback.
Here the full discrete energy conservation is preferred.

In order to deal with the explicit part (hydrodynamics part) the following CFL condi-
tion is considered

∆tcs,c

vc



 ∑
p∈P(c)

l+pc+l−pc

2



≤ 1

2
. (2.28)

The set of equations (2.27) is nonlinear and may be solved with a standard Newton-
Raphson type procedure. However, such a strategy does not ensure a control of the
temperatures (positiveness of the discrete temperatures) during all the iterative process.
Consequently, in the next section, extending the ideas proposed in [8], a convex combi-
nation based scheme is introduced.

2.5 Numerical approach for radiation diffusion and coupling terms

System (2.27) may be reformulated in order to derive convex combination based schemes
ensuring strong stability properties. Introducing the quantities φα

φα= aT4
α , ∀α∈{r,e,i} ,
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and the coefficients βα and δie defined by

βn+1
α =

φn+1
α −φn

α

εn+1
α −εn

α

, δn+1
ie =

Tn+1
i −Tn+1

e

φn+1
e −φn+1

i

, ∀α∈{e,i} , (2.29)

system (2.27) may be rewrites as follows











































































mc

∆t

(

φn+1
r,c

ρn+1
c

− φn
r,c

ρn
c

)

= ∑
p∈P(c)

f r,n
pc ·
(

un
p−

un+1
c +un

c

2

)

+ ∑
d∈N (c)

cLdc

3σn+1
R,dc

φn+1
r,d −φn+1

r,c

‖xc−xd‖2

+cσn+1
P,c vc

(

φn+1
e,c −φn+1

r,c

)

,

mc

∆tβn+1
e,c

(

φn+1
e,c −φn

e,c

)

= ∑
p∈P(c)

f e,n
pc ·
(

un
p−

un+1
c +un

c

2

)

+cσn+1
P,c vc

(

φn+1
r,c −φn+1

e,c

)

+vcκ
n+1
c δn+1

ie,c

(

φn+1
i,c −φn+1

e,c

)

,

mc

∆tβn+1
i,c

(

φn+1
i,c −φn

i,c

)

= ∑
p∈P(c)

f i,n
pc ·
(

un
p−

un+1
c +un

c

2

)

+vcκ
n+1
c δn+1

ie,c

(

φn+1
e,c −φn+1

i,c

)

.

(2.30)
Note at this point, system (2.30) is still non-linear because of the implicit time discretiza-
tion of the opacities, the electron-ion coupling term, βα and δie. The scheme is now rewrit-
ten under convex combination form, which is solved with a standard fix point procedure.
This procedure is initialized setting

φn+1,0
α =φn

α , ∀α∈{r,e,i} ,

and denoting the subiteration with an index k. The resulting iterative scheme writes



































































































mc

∆t

(

φn+1,k+1
r,c

ρn+1
c

− φn
r,c

ρn
c

)

= ∑
p∈P(c)

f r,n
pc ·
(

un
p−

un+1
c +un

c

2

)

+ ∑
d∈N (c)

cLdc

3σn+1,k
R,dc

φn+1,k+1
r,d −φn+1,k+1

r,c

‖xc−xd‖2

+cσn+1,k
P,c vc

(

φn+1,k+1
e,c −φn+1,k+1

r,c

)

,

mc

∆tβn+1,k
e,c

(

φn+1,k+1
e,c −φn

e,c

)

= ∑
p∈P(c)

f e,n
pc ·
(

un
p−

un+1
c +un

c

2

)

+cσn+1,k
P,c vc

(

φn+1,k+1
r,c −φn+1,k+1

e,c

)

+vcκ
n+1,k
c δn+1,k

ie,c

(

φn+1,k+1
i,c −φn+1,k+1

e,c

)

,

mc

∆tβn+1,k
i,c

(

φn+1,k+1
i,c −φn

i,c

)

= ∑
p∈P(c)

f i,n
pc ·
(

un
p−

un+1
c +un

c

2

)

+vcκ
n+1,k
c δn+1,k

ie,c

(

φn+1,k+1
e,c −φn+1,k+1

i,c

)

,

(2.31)
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where

βn+1,k
α =

φn+1,k
α −φn

α

εn+1,k
α −εn

α

, δn+1,k
ie =

Tn+1,k
i −Tn+1,k

e

φn+1,k
e −φn+1,k

i

, ∀α∈{e,i}. (2.32)

so that the scheme finally writes under the following convex combination form















































φn+1,k+1
i,c =hn+1,k

c ψn+1,k
i,c +

(

1−hn+1,k
c

)

φn+1,k+1
e,c ,

φn+1,k+1
e,c = f n+1,k

c

(

gn+1,k
c ψn+1,k

e,c +
(

1−gn+1,k
c

)

ψn+1,k
i,c

)

+
(

1− f n+1,k
c

)

φn+1,k+1
r,c ,

φn+1,k+1
r,c

(

mc

ρn+1
c

+∆tcσn+1,k
P,c f n+1,k

c vc

)

+ ∑
d∈N (c)

c∆tLdc

3σn+1,k
R,dc

φn+1,k+1
r,c −φn+1,k+1

r,d

‖xc−xd‖2

=ψn+1,k
r,c mc+cvcσn+1,k

P,c ∆t f n+1,k
c

(

gn+1,k
c ψn+1,k

e,c +
(

1−gn+1,k
c

)

ψn+1,k
i,c

)

,

(2.33)

where the following notations have been used

hn+1,k
c =

1

1+vccβn+1,k
i,c κn+1,k

c δn+1,k
ie,c ∆t/mc

, gn+1,k
c

1

1+hn+1,k
c δn+1,k

ie,c vccκn+1,k
c βn+1,k

e,c ∆t/mc

,

f n+1,k
c =

1

1+gn+1,k
c vccσn+1,k

P,c βn+1,k
e,c ∆t/mc

, (2.34)

in addition to the hydrodynamics terms

ψn+1,k
α,c =φn

α,c+
βn+1,k

α,c ∆t

mc
∑

p∈P(c)

f α,n
pc ·
(

un
p−

un+1
c +un

c

2

)

, ∀α∈{e,i}, (2.35)

and

ψn+1,k
r,c =

φn
r,c

ρn
c

+
∆t

mc
∑

p∈P(c)

f r,n
pc ·
(

un
p−

un+1
c +un

c

2

)

. (2.36)

In the next section, the main scheme properties are detailed.

2.6 Numerical properties

In this section the positiveness of the temperatures, the discrete entropy production and
discrete total energy conservation are proved.

Property 2.1 (Temperatures positiveness). The positiveness of ψn+1,k
r,c , ψn+1,k

e,c and ψn+1,k
i,c is

ensured at each sub-iteration k.
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Proof. This property directly comes from the reformulation procedure and the fix point
algorithm. Indeed the third equation of system (2.33) rewrites







































φn+1,k+1
r,c

( mc

ρn+1
c

+∆tcσn+1,k
P,c f n+1,k

c vc+ ∑
d∈N (c)

1

3σn+1,k
R,dc

c∆tLdc

‖xc−xd‖2

)

− ∑
d∈N (c)

c∆tLdc

3σn+1,k
R,dc

φn+1,k+1
r,d

‖xc−xd‖2

=ψn+1,k
r,c mc+cvcσn+1,k

P,c ∆t f n+1,k
c

(

gn+1,k
c ψn+1,k

e,c +
(

1−gn+1,k
c

)

ψn+1,k
i,c

)

.

(2.37)

Solving this last system comes down to the resolution of a linear system whose asso-
ciated matrix is a M-matrix and the components of the right-hand side are all positive

thanks to the convex combination form. Consequently, the unknowns φn+1,k+1
r,c are all

positive. Finally, remarking that the two first equations of system (2.33) also writes as

convex combinations, one eventually gets the positiveness of φn+1,k+1
e,c and φn+1,k+1

i,c .

Remark 2.2. The positiveness of ψn+1,k
r,c , ψn+1,k

e,c and ψn+1,k
i,c is ensured as soon as the time

step ∆t is chosen such that











































φn
i,c+

βn+1,k
i,c ∆t

mc
∑

p∈P(c)

f i,n
pc ·
(

un
p−

un+1
c +un

c

2

)

≥0,

φn
e,c+

βn+1,k
e,c ∆t

mc
∑

p∈P(c)

f e,n
pc ·
(

un
p−

un+1
c +un

c

2

)

≥0,

φn
r,c

ρn
c

+
∆t

mc
∑

p∈P(c)

f r,n
pc ·
(

un
p−

un+1
c +un

c

2

)

≥0.

(2.38)

Thanks to the implicit-explicit strategy the constraints on the time step ∆t are only driven
by the hydrodynamics part which is not stiff.

Property 2.2 (Semi-discrete entropy production). The total semi-discrete entropy in the
domain is dissipated

∑
c

mc
dηc

dt
≥0. (2.39)

Proof. The proof is given in Appendix.

Property 2.3 (Discrete total energy conservation). The total discrete energy is conserved

∑
c

mc

(

φn+1
r,c

ρn+1
c

+εn+1
e,c +εn+1

i,c +

∥

∥un+1
c

∥

∥

2

2

)

=∑
c

mc

(

φn
r,c

ρn
c

+εn
e,c+εn

i,c+
‖un

c ‖2

2

)

. (2.40)

Proof. The proof is given in Appendix.
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2.6.1 Remap procedure and CFL condition

It is well-known when working with the updated Lagrangian formalism, that the mesh is
subject to strong deformations as it moves according to the fluid velocity. This motivates
a regularisation phase (projection phase) in which the numerical solution is projected
onto the initial (Cartesian) mesh. The resulting numerical strategy is referred in the lit-
erature as Lagrange-remap strategy [21]. In addition, working with a simple (Cartesian)
mesh enables a straightforward discretization of the diffusion terms, applying the dif-
fusion operator on the Eulerian cartesian mesh. The remap procedure (projection step)
considered here is standard [21] and the Lagrangian CFL condition (2.28) is replaced by
the following one

∆t

vc



(‖un
c ‖+cs,c) ∑

p∈P(c)

l+pc+l−pc

2



≤ 1

2
. (2.41)

In the next section, pure hydrodynamics and radiation hydrodynamics numerical tests
are presented. As a consequence of the above discussion, pure hydrodynamics tests are
performed in Lagrangian formalism (no remap phase) to study the robustness of the
scheme (recall here that there is no numerical viscosity on the electron and photon en-
ergy equations) while radiation-hydrodynamics tests are carried out with a second order
remap projection step on the initial mesh. In addition, since the matrix associated to the
resolution of linear system (2.37) is symmetric, a conjugate gradient algorithm coupled
with a Jacobi preconditionner (diagonal preconditionner) is chosen. For a given thresh-
old ε, the iterative procedure is carried out until the gap between two iterations becomes
small enough

max
α∈{e,i,r}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φn+1,k+1
α,c −φn+1,k

α,c

φn+1,k+1
α,c +φn+1,k

α,c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ ε. (2.42)

3 Numerical results

In this section, hydrodynamics, radiation and radiation-hydrodynamics test cases are
presented. The numerical behavior of the scheme is studied in various physical regimes
and compared with reference solutions.

3.1 Hydrodynamic test cases

3.1.1 Two temperature hydrodynamics shock wave

In order to study the electron and ion temperature decoupling as a shock wave prop-
agates in the plasma medium, consider a simple 1D compression problem. At the left
boundary of the domain the plasma is compressed by a moving piston resulting in the
propagation of a right-going shock wave. This configuration is displayed in Fig. 2. The
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Figure 2: Piston configuration studied. All the details are described in the text.

Figure 3: Temperature (on the left) and entropy (on the right) for the piston shock wave test case at time 0.4
in the case mi/me =1.

space domain is set to [0,1] and the initial conditions are the following





ρ
p
u



(t=0)=





1
1
0



, (3.1)

and a constant velocity equal to 1 is enforced at the left boundary. Consider a diatomic
perfect gas (γ=1.4) in a one dimension space. The heat capacities for ions and electrons
are taken equal to 1 and the relaxation coefficient is fixed to κ = 20. The ratio between
electron and ion masses is set to 1/2000. We choose 2000 cells and a CFL number equal
to 0.45. In Figs. 3 to 5, the temperature and entropy fields (in the case of an ideal case
closure by Sα=Cv ln(Tαρ1−γ)) are displayed at time t=0.4 for different electron-ion mass
ratios. In the case of a physically relevant ratio, (for example taking mi/me = 2000), it
is recovered that the entropy production is mainly due to the ion contribution. After
the shock, due to the fact that the entropy deposition is greater on the ions than on the
electrons, we observe a coupling of the temperatures. Further from the shock, the tem-
peratures are balancing due to the coupling term. Since the ions are heavier than the
electrons, they dissipate more entropy. Finally, we observe a wall heating phenomenon
on the left boundary which is a classical drawback of Lagrangian scheme.
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Figure 4: Temperature (on the left) and entropy (on the right) for the piston shock wave test case at time 0.4
in the case mi/me =2.

Figure 5: Temperature (left) and entropy (right) for the piston shock wave test case at time 0.4 in the case
mi/me =2000.

3.1.2 Mono-temperature Sedov test case

We now consider the Sedov problem [15], and we choose a diatomic perfect gas (γ=1.4)
characterized by its heat capacity Cv=1. At the initial time, we use a uniform density ρ(t=
0)= 1, a null velocity u(t= 0)= 0 and we set a delta-function energy source prescribing
the pressure in the cell containing the origin as follows

pe
or(t=0)=(γ−1)ρ(t=0)

εe
or

vor
, (3.2)

where vor denotes the volume of the cell that contains the origin and εe
or is the total

amount of released energy. By choosing εe
or = 0.244816, as it is suggested in [15], the

solution consists in a diverging shock whose front is located at radius r =
√

x2+y2 = 1
at time t=1. The numerical domain used is a square [0,1.2]2 discretized with 50 cells on
each direction. As the test case is a reduction of a cylindrical physical phenomenon in a
2D plane, we impose a symmetry boundary condition on the left and on the bottom. On
the right and on the top we impose a null velocity. The time step is chosen according to
a CFL number condition equal to 0.45. The final time is 1. Fig. 6 shows the density field
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(a) Density field with 20×20 cells (b) Density field with 50×50 cells

Figure 6: Density field for the Sedov test case at time t=0.05.

Figure 7: Density field for the Sedov test case (t=0.05 on the left, t=1 on the right).

as a function of the radius r and Fig. 7 displays the solution at times t= 0.05 and t= 1.
According to Figs. 6 and 7, the scheme preserves the flow symmetries and ensures the
convergence. In spite of a small dispersion of the values before the shock, all waves are
correctly captured.

3.1.3 Bi-temperature Sedov test case

As described in the previous sections, we consider a perfect diatomic gas. The heat ca-
pacity of ions and electrons are taken equal to 1. In order to examine the capability of
the scheme to simulate a bi-temperature problem we adapt the previous Sedov test case
using a mass ratio of 1/2000. The initial energy is distributed only on electrons and com-
puted according to formula (3.2). The coupling coefficient κ is constant and taken equal
to 0.01. Fig. 8 shows the sum of electronic and ionic density. By definition, this sum has
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Figure 8: Density for the Sedov bi-temperature test case at t=1.

Figure 9: Electronic and ionic temperatures for the Sedov bi-temperature test case with initial energy on
electrons at time t=0.5.

to be equal to the density field shown on Fig. 7. Graphically, we can observe that both
density fields are the same. In order to illustrate the coupling effects, we may observe
the evolution of the temperature profiles. Figs. 9 and 10 report the evolution of ionic and
electronic temperatures at different times. The ions being heavier than the electrons, the
shock process dissipates more entropy on ions, consequently ionic temperature is higher
than electronic temperature at the end of the computation. After the shock, thanks to
the relaxation process, we observe a coupling between temperatures. We choose to put
all the initial internal energy on electrons in order to assess the stability of the scheme.
Indeed, since there is almost no numerical production on the electron energy equation,
one could expect stability issues. However, it is observed the scheme always remains
perfectly stable.
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Figure 10: Electronic and ionic temperatures for the Sedov bi-temperature test case with initial energy on
electrons at time t=1.

3.2 Saltzmann test case

3.2.1 Mono-temperature Saltzmann test case

The domain is filled with a mono-atomic gas whose initial configuration is (ρ,p,u) =
(1,10−10,0). The compression is computed by applying the velocity condition on the left
boundary. On all other boundaries, we impose a symmetry condition. The exact solution
is a planar shock wave that moves from left to right. The final time is t=0.7. Figs. 11 and
12 respectively show the density field and its convergence. The scheme preserves the one-
dimensional solution very well. On the other hand we can observe that the numerical
overshoot on the head of the wave decreases while the number of cells increases.

Figure 11: Density field for the Saltzmann test case at time t=0.7.

3.2.2 Bi-temperature Saltzmann case test

We use the configuration of the Saltzmann mono-temperature case but now set κ=20. We
choose to put all the initial internal energy on electrons in order to assess the stability of
the scheme. Indeed, since there is almost no numerical dissipation on the electron energy
equation, one could expect stability issues. However, as it is observed in Fig. 13, where
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(a) Density field with 50×20 cells (b) Density field with 100×20 cells

Figure 12: Density for the Saltzmann test case at time t=0.7.

Figure 13: Electronic and ionic temperatures for the Saltzmann bi-temperature test case with initial energy on
electrons at time t=0.7.

the electronic and ionic temperature profiles are displayed at time t= 0.7, the scheme is
perfectly stable and the one-dimension structure of the solution is preserved.

3.3 Radiation test cases

3.3.1 0D test case

We start by studying the relaxation process. To do so, four problems taken from [8]
and [9] are reproduced. For the first three problems, we set a source term Q on ions
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Table 1: Parameters and initial quantities used for 0D problems.

Problem 1 Problem 2 Problem 3 Problem 4

c 29.979 29.979 29.979 29.979

a 0.02372 0.02372 0.02372 0.02372

σP 0.5T−2
e 0.1T−2

e 0.5T−2
e 0.1T−2

e

κ 0.1 0.01379T−0.5
e 0.1 0.01379T−0.5

e

Cv,i 0.15 0.15 0.15 0.15

Cv,e 0.3 0.3Te 0.3 0.3Te

Ti(t=0) 2.52487·10−5 2.52487·10−5 2.52487·10−1 2.52487·10−5

Te(t=0) 2.52487·10−5 2.52487·10−5 2.52487·101 2.52487·10−5

Tr(t=0) 2.52487·10−5 2.52487·10−5 2.52487·10−1 2.52487·10−5

A 75.19884 15.03978 75.19884 15.03978

Figure 14: Temperatures for 0D case test (problem 1 on left, problem 2 on right).

such that
∫ t2

t1

Qdt=
A

2

(

erf

(

t2−tc√
2tw

)

−erf

(

t1−tc√
2tw

))

,

where tc = 10, tw = 1 and erf is the standard error function. For the last problem the
source term is moved on photons. Table 1 summarizes the general parameters. The final
time is t = 20. Fig. 14 shows temperatures for problems 1 and 2. After a short steady
state, we observe a decoupling of the temperatures. Due to the source term, the ionic
temperature is higher than others, the numerical scheme gives correct results according to
[8]. Fig. 15 reports the time evolution of temperatures for problems 3 and 4. Graphically,
the results presented in [8] are recovered. In particular, we denote, thanks to the convex
combinations, the robustness of the scheme to ensure the temperature positiveness even
in a stiffness context as the initial time of problem 3 for instance.
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Figure 15: Temperatures for 0D case test (problem 3 on left, problem 4 on right).

3.3.2 Marshak wave without and with electron and ion conductions

We consider a Marshak problem [32] in a one dimension domain. We set hydrodynamic
variables to ρ=1 and u=0. The speed of light c is taken equal to 299.79 and the radiation
constant a is equal to 0.01372. We set the coupling coefficient κ at a very large value
(κ=1030) to ensure a unique matter temperature Tm such that Tm=Te=Ti. The Rosseland
and Planck opacities are such that σP = σR = 300/T3

m and the heat capacities such that
Cv,i=0.27 and Cv,e=0.03. At the initial time, the temperatures Tm and Tr are equal to 10−6;
we impose a temperature Tm =Tr =1 on the left boundary of the domain and Neumann
outgoing flux condition on the right. We work on a domain [0,0.5] discretized with 500
cells. A constant time step equal to 10−3 is used. As the exact solution of this problem is
unknown, we use a refined solution computed with a reference one dimension code and
report the temperature on Fig. 16 for several final times. This numerical test case has also
been performed by taking into account electron and ion Spitzer-Harm conductivities of
the form

Fα=KT5/2
α ∇Tα, α= e,i.

Recall here that these terms are treated with a standard operator splitting strategy. The
numerical results are displayed in Fig. 17 in the case K = 0.1 (left) and K = 1 (right). It
is observed that adding the ion and electron conduction terms impacts the wave propa-
gation speed. The numerical solutions match perfectly with the reference solutions. In
addition, we recall that the coupling to matter (here to electrons and ions) makes the
problem strongly nonlinear. Since no operator splitting strategy is used here, an assess-
ment of the number of the non-linear solver iterations for different regimes of coupling
may be studied. In Fig. 18, for the Marshak wave problem without electron and ion con-
ductions, the number of iterations has been displayed with respect to time for different
Planck opacities, i.e for different regimes of coupling. It is observed that the number of
iterations decreases as the coupling between radiation and matter becomes less stiff.



R. Chauvin et al. / Commun. Comput. Phys., 31 (2022), pp. 293-330 319

Figure 16: Temperature profiles for Marshak wave (at time 0.074 on left, at time 0.74 on right and at time 7.4).

Figure 17: Temperature profiles for Marshak wave with electron and ion conductivities.
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Figure 18: Number of non-linear solver iterations for the Marshak wave problem with respect to time for different
Planck opacities (different coupling regimes).

3.4 Radiation hydrodynamics test cases

3.4.1 Shock tube problem in strong equilibrium regime

The first case coupling hydrodynamics and radiation phenomena is a shock tube problem
in the strong equilibrium regime [35]. The speed of light c and the radiation constant a
are fixed to 2.9979·1010 and 7.5657·10−15 respectively and we consider an ideal atomic
gas (γ= 5

3 ) of heat capacity Cv such that

Cv=
k

(γ−1)µmH
, (3.3)

where k is the Boltzmann constant taken equal to 1.380649·10−16 , µ is the mean molecular
weight equal to 1 and mH is the mass of a hydrogen atom equal to 1.6733·10−24. The
Planck and Rosseland opacities are respectively chosen as follows

σP =108, σR =106. (3.4)

As in the Marshak wave test case, in order to ensure a unique matter temperature, we set
the parameter κ to 1030. We work on the domain [0,100], at the initial time the radiation
is in equilibrium with the matter and we set a Riemann problem whose discontinuity is
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Figure 19: Results for shock tube problem at time t=10−6.

located at x=50 such that








ρ
u
Tr

Tm









(t=0)=









10−5

0

1.5·1061x≤50+3·1051x>50

1.5·1061x≤50+3·1051x>50









. (3.5)

Using (3.3), (3.4) and (3.5), it can be shown that the problem is nearly governed by the

Euler equations with the equation of state p=(γ−1)ρCvT+ aT4

3 . Consequently, we may
compute a reference solution with a mono temperature code. We discretize the domain
with 800 cells and we use a time step computed according to a CFL number equal to
0.45. Fig. 19 shows the physical quantities for a final time t=10−6. The numerical scheme
produces results that agrees with the reference solution in shock and rarefaction waves.

3.4.2 Radiation shock wave

The second case test implicating a coupling between hydrodynamics and radiation phe-
nomena consists in the study of a stationary radiative shock [18]. Actually, radiation may
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completely modify the structure of a shock due to diffusion and interactions with matter.
In this case, the pre-shock matter is firstly heated by diffused radiation; then an embed-
ded hydrodynamic shock produces a brutal raise of the temperature. Finally, because
of coupling coefficients, the temperature cools down to the radiation temperature in a
relaxation region. In order to illustrate the capability of the scheme to ensure a correct
capture of this shock structure, we first study a sub-critical shock and we use the param-
eters of [35]. As in previous sections, the speed of light c and the radiation constant a are
fixed to 2.9979·1010 and 7.5657·10−15 respectively and we consider an ideal atomic gas
(γ= 5

3 ) whose heat capacity is given by Eq. (3.3). We work on [0,2000] and the quantities
are initialized as follows









ρ
u
Tr

Tm









=









5.45887·10−13

(

2.35435·105 ,0
)T

100
100









1x≤1500+









1.24794·10−12

(

1.02987·105 ,0
)T

207.757
207.757









1x>1500. (3.6)

The Rosseland and Planck opacity are taken equal to 0.848902 and 3.92664·10−5 respec-
tively. From a numerical point of view, the domain is discretized with 1000 cells and
the time step is computed with a CFL number equal to 0.49. Reference solutions are com-
puted from a semi analytical solution given by the procedure of [18]. We report on Fig. 20
the density field, the radiation and matter temperatures at time t=0.05. Here, since a sta-
tionary solution is expected [18], the numerical simulation is performed until a stationary
state is reached. In order to compare the results with the semi analytical solution, we pro-
ceed with a slight shifting of the numerical solution to ensure the position of the shock
at x= 1500 [5, 35]. The numerical results are in very good agreement with the reference
solutions in the precursor region as well as in the relaxation region. In particular, it is
observed that the temperature spike is recovered with a very good accuracy.

The previous test case is a sub-critical shock wave because the maximal temperature
of the precursor region is smaller than the right temperature. Another possible test case
is a super-critical shock wave. In this case the maximal temperature of the precursor
region is equal to the right temperature. In order to simulate this type of shock, we use,
as previously, the parameters of [35]. We work on [0,5000], the quantities are initialized
as follows









ρ
u
Tr

Tm









(t=0)=









5.45887·10−13

(

5.885885·105 ,0
)T

100
100









1x≤3500+









1.24794·10−12

(

1.63592·105 ,0
)T

855.72
855.72









1x>3500. (3.7)

The space domain is discretized with 2500 cells and the time step is chosen with a CFL
number equal to 0.49. As previously, the reference solution is computed with the proce-
dure of [18]. Fig. 21 shows the numerical results at time t= 0.04. As in the sub-critical
case, the numerical results are very satisfying. In particular the ZelDovich peak [34] is
captured with a good accuracy.
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Figure 20: Density and temperature fields for the sub-critical test case at time 0.05.

3.4.3 Radiative blast wave

In order to test the performance of the scheme in a two dimensional space, we adapt
the test case of [35] to a two dimensional plan. As previously, the speed of light c and
the radiation constant a are fixed to 2.9979·1010 and 7.5657·10−15 respectively and we
consider an ideal atomic gas (γ = 5

3 ) whose heat capacity is given by Eq. (3.3). Since
the problem has a cylindrical symmetry, we work on the square [0,1014]2 and we use
symmetry conditions on the left and on the lower boundaries. Initially, the matter verifies
ρ(t= 0) = 5·10−6 , u(t= 0) = 0, the radiation is at equilibrium with matter and we set a
high temperature in a circle centered around the origin

Tm(t=0)=Tr(t=0)=1071r<2·1012+1031r≥2·1012 .

The Rosseland and Planck opacities are taken equal to 2·10−10 and 2·10−16 respectively.
We discretize the spatial domain with 100 cells on each direction and we use a time step
computed according to a CFL number of 0.49. Numerical results are summarized on
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Figure 21: Density and temperature fields for the super-critical test case at time 0.4.

Figs. 22 to 24. We denote a very good wave symmetry conservation. The geometry of
the wave and its maximal values are very close to the ones of the wave introduced on
axisymmetric problem in [35].
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Figure 22: Density field at time 5·105.

Figure 23: Matter temperature field at time 5·105.

Figure 24: Radiative temperature field at time 5·105.
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4 Conclusion

A positivity-preserving and entropy dissipative (per species) Eucclhyd-like scheme has
been presented for three-temperature grey diffusion radiation hydrodynamics. To achieve
the correct entropy production for each species we choose to work with internal energy
quantities (the global scheme remains conservative in energy) and the dissipation ma-
trices are chosen in order to enforce a discrete entropy production as prescribed in [34].
Then, the positivity-preserving property of all temperatures is obtained thanks to a re-
formulation of the model which enables the derivation of a convex-combination based
scheme. The iterative procedure leads to the resolution of a linear set of equations asso-
ciated to a M-matrix and a positive right-hand side. Pure hydrodynamics, pure radiation
and radiation-hydrodynamics numerical tests demonstrate the claimed properties at the
discrete level. In addition, the robustness of the studied numerical strategy has been ob-
served as well as its efficiency (even setting all the internal energy on electrons) even if
the number of subiterations increases as the coupling between radiation and matter be-
comes stiff. As natural perspectives, we intend to extend the present numerical strategy
to include multi-material aspects and mixtures.

Appendix

In this section the proofs of the semi-discrete entropy production and discrete total en-
ergy conservation are detailed.

Property A.1 (Semi-discrete entropy production). The total semi-discrete entropy in the
domain is dissipated

∑
c

mc
dηc

dt
≥0. (A.1)

Proof. Using definitions (1.7) and (1.8), the discrete entropy evolution equations read
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Consequently, the total entropy production verifies
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. (A.3)

Integrating over the space domain finally leads to the expected result.

Property A.2 (Discrete total energy conservation). The total discrete energy is conserved

∑
c

mc

(

φn+1
r,c

ρn+1
c

+εn+1
e,c +εn+1

i,c +

∥

∥un+1
c

∥

∥

2

2

)

=∑
c

mc

(

φn
r,c

ρn
c

+εn
e,c+εn

i,c+
‖un

c ‖2

2

)

. (A.4)

Proof. Multiplying the second equation of system (2.12) by (un+1
c +un

c )/2, one obtains

mc

2∆t

(

∥

∥

∥un+1
c

∥

∥

∥

2
−‖un

c ‖2

)

= ∑
p∈P(c)

f n
pc ·
(

un+1
c +un

c

2

)

. (A.5)

On the other hand, summing the equations of system (2.31), one gets

mc

∆t

(φn+1,k+1
r,c

ρn+1
c

− φn
r,c

ρn
c

+
φn+1,k+1

e,c −φn
e,c

βn+1,k
e,c

+
φn+1,k+1

i,c −φn
i,c

βn+1,k
i,c

)

= ∑
p∈P(c)

f n
pc ·
(

un
p−

un+1
c +un

c

2

)

+ ∑
d∈N (c)

cLdc

3σn+1,k
R,dc

φn+1,k+1
r,d −φn+1,k+1

r,c

‖xc−xd‖2

. (A.6)
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Now, by using the definition of βα, we have

mc

∆t

(
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− φn
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ρn
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+
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(
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e,c

)
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i,c
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(
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i,c −φn

i,c

)

)

= ∑
p∈P(c)

f n
pc ·
(

un
p−

un+1
c +un

c

2

)

+ ∑
d∈N (c)

cLdc

3σn+1,k
R,dc

φn+1,k+1
r,d −φn+1,k+1

r,c

‖xc−xd‖2

.

At convergence of the iterative procedure (k→+∞), the previous equation reads

mc

∆t

(

φn+1
r,c

ρn+1
c

− φn
r,c

ρn
c

+εn+1
e,c −εn

e,c+εn+1
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)
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p∈P(c)

f n
pc ·
(

un
p−

un+1
c +un

c

2

)

+ ∑
d∈N (c)

cLdc

3σn+1
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r,d −φn+1

r,c

‖xc−xd‖2

. (A.7)

By adding Eqs. (A.5) and (A.7) we get

mc

∆t

(

φn+1
r,c

ρn+1
c

− φn
r,c

ρn
c

+εn+1
e,c −εn

e,c+εn+1
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∥
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c

∥

∥

2

2
−‖un
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2

)
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p∈P(c)

f n
pc ·un

p+ ∑
d∈N (c)

cLdc

3σn+1
R,dc

φn+1
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r,c

‖xc−xd‖2

. (A.8)

Since all terms of the right-hand side of the previous equation are conservative the prop-
erty is proven.
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