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Abstract. For a finite discrete topological space X with at least two elements, a
nonempty set I, and amap ¢ : T — T, 0y : X' — XTI with 0y ((xa)aer) = (Xgp(a))aer
(for (xa)aer € X') is a generalized shift. In this text for S = {oy : ¥ € I} and

H={oy:T hris bijective} we study proximal relations of transformation semi-
groups (S, X") and (#H, X!). Regarding proximal relation we prove:

P(SIXF) = {((xoc>aerr (]/vc)ael") € Xr X Xr : El:B er (x,B = yﬁ)}

and P(H,X") C {((xa)aer, (Wa)aer) € X' x X' : {B € T : xg = yg} is infinite} U
{(x,x) :x € X}.

Moreover, for infinite I, both transformation semigroups (S, Xr) and (H, Xr) are re-
gionally proximal, i.e., Q(S, X") = Q(H, X") = X! x X!, also for sydetically proximal
relation we have L(H, X') = {((xa)aer, (Va)aer) € X! x X' : {y € T : x, # y,}is
finite}.
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AMS Subject Classifications: 54H15, 37B09

1 Preliminaries

By a (left topological) transformation semigroup (S,Z, 7t) or simply (S, Z) we mean a
compact Hausdorff topological space Z (phase space), discrete topological semigroup S
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(phase semigroup) with identity e and continuous map 77 : S x Z — Z (71(s,z) = sz,s €
S,z € Z)such thatforallz € Zand s, t € Swehave ez = z, (st)z = s(tz). If S is a discrete
topological group too, then we call the transformation semigroup (S, Z), a transformation
group. We say (x,y) € Z x Z is a proximal pair of (S, Z) if there exists a net {s)} ca in S
with
%151\ SyAx = /1\161111\ SAY-
We denote the collection of all proximal pairs of (S,Z) by P(S,Z) and call it proximal
relation on (S,Z), for more details on proximal relations we refer the interested reader
to [4,8].
In the transformation semigroup (S,Z) we call (x,y) € Z X Z a regionally proximal

pair if there exists a net {(s), X1, ¥1) }rea In S X Z X Z such that

li = li = li =1li .

Alg)\ Xy =X, Alen?\y)\ y and Alg)\ SAX A A1er£1\ SAYA
We denote the collection of all regionally proximal pairs of (S, Z) by Q(S, Z) and call it re-
gionally proximal relation on (S, Z). Obviously we have P(S,Z) C Q(S, Z). In the trans-
formation group (T,Z), by [9] we call L(T,Z) = {(x,y) € Zx Z : T(x,y) C P(T,Z)} the
syndetically proximal relation of (T, Z) (for details on the interaction of L(T, Z), Q(T, Z)
and P(T, Z) with uniform structure of Z see [5,6,9]).

1.1 A collection of generalized shifts as phase semigroup

For nonempty sets X, I and self-map ¢ : I' — T define the generalized shift o, : X' — X'
by 0y ((Xa)aer) = (Xp(a))aer ((¥a)aer € XT). Generalized shifts have been introduced for
the first time in [2], in addition dynamical and non-dynamical properties of generalized
shifts have been studied in several texts like [3] and [7]. It's well-known that if X has a
topological structure, then 0, : X' — X' is continuous (when X equipped with product
topology), in addition If X has at least two elements, then 0, : X' — X' is a homeomor-
phism if and only if ¢ : I' — T’ is bijective.

Convention. In this text suppose X is a finite discrete topological space with at least two
elements, I is a nonempty set, X := X, and:

e §:= {0, : ¢ €T}, is the semigroup of generalized shifts on X',

e H:={v,: ¢ €I"and ¢ : I — T is bijective}, is the group of generalized shift
homeomorphisms on X'.

Equip X! with product (pointwise convergence) topology. Now we may consider S
(resp. H) as a subsemigroup (resp. subgroup) of continuous maps (resp. homeomor-
phisms) from X to itself, so S (resp. H) acts on X’ in a natural way.

Our aim in this text is to study P(T, X'), Q(T, X'), and L(T, X) for T = H, S. Readers
interested in this subject may refer to [1] too.
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2 Proximal and regionally proximal relations of (S, &)

In this section we prove that

P(S, &) = {((xa)aer, (Va)aer) € X x X : I €T (xg =yp)},
X x X, Tis infinite,
Q(S, X) = { P(S,Xx), Tis finite.
Theorem 2.1. P(S, X) = {((Xa)acr, (Ya)acr) € X x X : B €T (xg =yp)}.
Proof. First consider B € T and (x4 )aer, (Ya)uer € X by xg = yp. Define ¢ : T' — T with
P(a) = Bforalla € T. Then
Tp((xa)acr) = (x)acr = (Yp)acr = 0y ((Ya)acr),
((xa)aer, (Va)aer) € P(S, X).

Conversely, suppose ((xXa)aer, (Va)aer) € P(S, X'). There exists a net {7y, }1ca in S with
}\ier?\ Utm((xtx)ael") = }\131& ‘Tqu((yrx)vcel") =1 (24 )aer-
Choose arbitrary 6 € I', then

/l\igl\ Xor(0) = /l\igl\yw(g) = Z6

in X. Since X is discrete, there exists Ag € A such that Xg,(0) = Yor(6) = Z0 forall A > Ay,
in particular for f = @, (9 we have xg = y;. ]

Lemma 2.1. For infinite T we have: Q(S,X) = Q(H, X) = X x X.

Proof. Suppose I is infinite, then there exits a bijection  : I' x Z — T, in particular
{u({a} x Z) : « € T} is a partition of I to its infinite countable subsets. Define bijection
¢ : T — T'by ¢(p(a,n)) = p(a,n+1) foralla € T and n € Z. Consider p € X and
(Xa)uer, (Ya)aer € X.Foralln > 1and a € T let:

e K a= 1(B, k) forsome peTandk <n,
“* | p, otherwise,
w. | Ya, a=u(B,k) forsome peTandk <n,
Yo := p, otherwise,
then:
ngffw(xg)aer = (xoc)zxel"/
Jm (y)eer = (Ya)aer,
1im 0, (<)aer) = (paer = lim_o,n (4 er).

By 0, € H for all n > 1 and using the above statements, we have ((Xu)aer, (Ya)uer) €
Q(H,X) CQ(S,X). O
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Lemma 2.2. For finite T and any subsemigroup T of S we have Q(T,X) = P(T, X).

Proof. We must only prove Q(7,X) C P(T,X). Suppose (x,y) € Q(T,X), then there
exists a net {(xy,yr,t1) }aea In X X X x T such that

li = li =
lim ¢ = lim ¢ =:z.

Since X' x X' x T is finite, {(x,ya, £1) }aca has a constant subnet like {(x1,, Y2, tr,) tpem,

so there exists t € 7 such that forall y € M wehavex = x,, ¥y = y), and t = ) ,

therefore tx = ty(=z) and (x,y) € P(T,X). O

Theorem 2.2. We have:

X x X, Tis infinite,
Q(S, &) = { P(S,x), Tis finite.

Proof. Use Lemmas 2.1 and 2.2. O

3 Proximal and regionally proximal relations of (#, )

Note that for finite I', H is a finite subset of homeomorphisms on X and P(H,X') =
{(x,x) : x € X'}, also using Lemmas 2.1 and 2.2 we have:

X x X, I' is infinite,
QH, &) = { P(H,X) = {(x,x):x € X}, Tis finite.

In this section we show that:
[((%)acr, (Va)aer) : max(card({B € T x5 # y5}),No) < card({B € T+ x5 = ys})}
is a subset of P(#H, X'), which is a subset of
{((xa)aer, (Ya)aer) € X x X : {B €T :xp =y} is infinite} U {(x,x) : x € X'}
in its turn. In particular, for countable I' we prove
P(H,X) = {((xa)acr, (Va)aer) € X x X : {B €T : x5 =yg} is infinite} U {(x,x) : x € X'}
Lemma 3.1. For infinite I', we have:

P(H,X) C {((xa)acr, (Va)aer) € X x X : {B €T : x5 =yg} is infinite}.
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Proof. Consider ((Xa)aer, (Va)acr) € P(H, X'), then there exists a net {0, }rea in H with
}\iél;l\a¢A((xa)aeF) = }Ligl\‘fw((ya)aer) = (Za)aer-
Choose distinct 0y, - - - ,0, € . Foralli € {1,---,n} we have

}\151\ Xoa(6:) = }\ler?\ Yor(6) =20, In X,

so there exists A1, -+, A, € A with Xgp(0) = Yor(6:) = Z6; for all A > A;. There exists
e Awithu > Aq,---, Ay, thus X, (0:) = You(6) fori =1,---,n. Since ¢u: T —Tis

u\Yi
bijective and 6y, - - - , 0, are pairwise distinct, {¢,(61),- - -, @, (6n) } has exactly n elements

and {¢,(01), -, @u(0n)} C{B €T :x3=ypg} Hence {B € I': xg = yg} has at least n
elements (for all n > 1) and it is infinite. O

Theorem 3.1. We have:
P(H,X) C{((xa)aer, (Ya)aer) € X x X : {B €T : x3 = yg} is infinite}
U{(x,x):xe X}

Proof. Use Lemma 3.1 and the fact that for finite I', H is a finite subset of homeomor-
phisms on X. So for finite I we have P(H, X') = {(w,w) : w € X'}. O

Lemma 3.2. For infinite countable I, we have

P(H,X) = {((xa)aer, (Ya)aer) € X x X : {p €T : x3 = yp} is infinite}.

Proof. Using Lemma 3.1 we must only prove:
P(H,X) 2 {((xa)aer, (Ya)aer) € X x X : {B €T : x5 =yp} isinfinite}.

Consider (X4)acr, (Ya)aer € X with infinite set {8 € T : x5 = yg} = {pB1,B2,---} and
distinct B;s. Also suppose I' = {aj,ay,- - - } with distinct a;s. For all n > 1 there exists
bijection ¢, : I — I with ¢, (a;) = Bifori € {1,---,n}. Leta € T, there exists i > 1 with
& = w;. Since for all n > i we have

Xou(a) = Xou(a;) = XBi = YBi = You(a:) = You(w)s
we have
Lim x,, (o) = Hm y,, (4)-

Therefore

V}i_f&(f%((xa)aer) = r}i_r&(xqon(oc))wel" = ,}g{)‘o(y%(w))aer = 7}1_{{}0 0, ((Ya)aer),

((%a)aer, (Ya)aer) € P(H, X).

Thus, we complete the proof. O
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Theorem 3.2. For countable T,
P(H,X) ={((xa)aer, (Ya)aer) € X x X : {B €T : x5 = yg} isinfinite}
U{(x,x):xeX}.
Proof. First note that for finite I', A is finite and P(#H, X) = {(x,x) : x € X'}. Now use
Lemma 3.2. O

Lemma 3.3. For infinite I', we have:

{((xa)aer, (Ya)aer) s card({p € T': x5 # yp}) < card({f € I': x5 = yp})} € P(H, X).

In particular,

{((xa)acr, (Ya)aer) : {B €T : xpg # yp} is finite} C P(H, X).
Proof. Suppose T is infinite. For (x4 )aer, (Va)aer € X, let:

A::{IXEFEX“:ya}, B.:{“Er'xﬂé#ylk}

with card(B) < card(A). There exists a one to one map A : B — A. By card(I') =
card(A) 4 card(B) and card(B) < card(A), A is infinite. Since A is infinite, we have
card(A) = card(A)N so there exists a bijection ¢ : A xIN — A. Forall 8 € A let
Ky = ¢({0} x N)UA~1(9). Thus Kgs are disjoint infinite countable subsets of T, as a
matter of fact {Ky : 6 € A} is a partition of I to some of its infinite countable subsets. For
allf € A, {a € Ky : x4 = ya} = ¢({0} x IN) is infinite and Kj is infinite countable. By
Lemma 3.2 there exists a sequence {¢9} of permutations on Ky such that

nhjr.}o o (xa)ang = nlgr.}o Oyo (ya)uceKa'

Foralln > 1 let

vn = U ¥

eA
then ¢, : I' — T is bijective and

lim oy, (Xo)aer = m oy, (Ya)aer,

which completes the proof. O

Theorem 3.3. The collection {((xa)ucr, (Va)acr) : max(card({B € T : xg # yp}),No)
card({B € I': xg = yp})} is a subset of P(H, X).

Proof. If I is finite, then
{((xa)aer, (Ya)aer) : max(card({B € I': x5 # yp}), Ro)
<card({BeT:xg=yp})} = 2.
Use Lemma 3.3 to complete the proof. O

IN
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4 Syndetically proximal relations of (#, X)
In this section we prove:

{((xa)acr) Ya)aer) € X x X : {y €T : x,, # y,} is finite}, T is infinite,

uﬁﬁg:{{uwyxexh Tis finite.

Lemma 4.1. For (xy)xer, (Ya)aer, (Ua)aer € X, and p,q € X let:

Zy = { q, Xy 7& Ya, and w, := { P, Xa 7’é Ya,

Uy, Xo = Ya, Uy, Xo = Ya-
We have:
1) if((xoc)txerz (]/a)aer) S P(%/ X)/ then ((Zo()a€r/ (wa)rxer) S P(%/ X)/

2). if (xa)aer, (Ya)uer) € L(H, X), then ((za)aer, (Wa)aer) € L(H, X).
Proof. 1) Suppose ((Xa)aer, (Va)aer) € P(H, X), then there exists a net {0y, }rea in H
such that

}\ier?\ o, ((xa)acr) = }\Ig}\ Ug, ((Va)aer)-

Thus

Hm (2, (a) Jaer) = Bm (4, (@) Juer),

i.e., forall « € T there exists x, € A such that:
VA 2 Ka (x%(“) = yw(a))'

Hence, for all A > x, we have z, () = Uy, (a) = Wy,(a)- On the other hand the net
{(tg,(a))ucr}ren has a convergent subnet like {(uwg(a))aer}gef to a point of X, say

(V4 )aer, since X is compact. For all « € T there exists 6, € T such that Ay, > x,, and
moreover
Vo 2 !90( (M(P/\e(“) = UD()'

Note that for all 6 > 6, we have Ay > «,, leads us to:
Y0 2 0 (2g), ) = 0 = W, (0)-
Hence

}}EHT“T(MG((Z&)%F) = %ienT“ng((wa)aGF) and  ((za)aer, (Wa)aer) € P(H, X).

2) Now suppose ((xa)aer, (Ya)aer) € L(H, X') and ((Sq)aer, (ta)aer) is an element of
M ((za)aer, (Wa)acr). There exists a net {0y, }rea in H, with

((sa)aer, (fa)aer) = %151\ Tor ((za)uer, (Wa)aer) = }Liél;l\((zgo/\(a))txerl (ww(a))aer)'
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On the other hand the net {((x, («))aer, (Vg, (a) Jaer) }1ca has a convergent subnet in com-
pactspace X' x X', without loss of generality we may suppose { ((x,, (a))acr, (Yo, (@) )acr) Frea
itself converges to a point of X' x &’ like ((114)xer, (M2 )aer). Hence

((ma)aer, (na)aer) € H((Xa)uer, (Ya)aer) € P(H, X).

Now for o € T there exists k € A such that:

VA > 5 (Mo, 1) = (Xg, (0 Y (@)

Hence we have:

e = (92 K () Y)
= (YA > & (2g,(a) = 1A\ W, (a) = P))

= limz
A€ P

N Zg, (@) = 4 A Mwy, ()

en P

= (sa,ta) = (9,p)
and
my=mn, = (VA>« (xqb\(“) - y%(uc)))

= (VA =« <Z‘PA("‘) = ww(a)»

= 5y = }\gl\z%(a) = %151\ We, () = ta
= Sy = ly.

Hence for (vy)aer := (S )aer, we have:

Sp = { 5]1 My ?é Ny, and ttx — { p/ My ;é Ny, (41)

O, My = Ny, O, My = Ny.

Using 1), ((ma)aer, (Ma)aer) € P(H, X) and (4.1) we have ((Sqa)aer, (fa)aer) € P(H, X),
which completes the proof. O

Lemma 4.2. We have:
L(H,X) € {((xa)acr) (Va)aer) € X x X : {y €T :x, #y,}is finite}.

Proof. Consider (xq)xer, (Va)aer € & such that B := {a € T : x4 # y,} is infinite. Choose
distinct p, g € X and let:

s x € B,
“ 1l p aé¢B.
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By Lemma 4.1, if ((x4)aer, (Va)aer) € L(H, X), then ((za)aer, (P)acr) € L(H, X). We
show ((q)aer, (P)acr) € H((za)uer, (P)acr). Suppose U is an open neighbourhood of
((9)wer, (P)aer), then there exists distinct wy, - - - , &, € T such that for:

= {q}’ &=0Qa1, -, 0y, —
V[X_{ X, “75“1/"‘/“71/ and Wa—{p}, (VD&EF),

we have

TTVex W C U

ael ael

Since B is infinite, we could choose distinct By, -, B, € B such that {a3,---,a,} N
{B1,--+,Bn} = @.Definey : T — T by

lXi, “:511 i:l/...,n’
17[](0() = lBi’ DC:O(Z', izl/"‘,]’l,
«, otherwise,
then ¢ : T — T is bijective, oy € H and
Uw((za)ael"; (P)ael‘) = (U#J((Za)aer),(?'#,((p)“er)) = ((zlp(a))aer,<p>“€r) cu.

Hence ((9)aer, (P)acr) € H((za)aer, (P)acr). Since ((q)aer, (P)acr) € P(H, X), we have
((za)aer, (p)aer) & L(H, X), which leads to ((xy)aer, (Ya)aer) € L(H, X') and completes
the proof. O

The proof of the following lemma is similar to that of Lemma 3.1.

Lemma 4.3. For ((Xa)aer, Ya)aer) € X X X if {a € T : x4 # Yo} is finite and
((za)aer, (Wa)uer) € H((xa)uer, (Ya)aer), then {a € T : zy # wy} is finite satisfying
card({a € T :zy # wy}) < card({a € T : x4 # Ya}).

Proof. For n > 1, if there exists distinct ay,- -+ ,a, € T with z,, # w,, fori =1,---,n,
then let:

z } & =01, , &, {wa}, =01, , %y,
u, := {(X ! and V. ;:{
& {X, 06#061,---,0111, x X, 0475061,"',0611

Thus

U::HU,XXHVD(

ael ael

is an open neighbourhood of ((z4)xer, (Wa)aer), and there exists bijection ¢ : I' — I' with

(0p((xa)acr), 0p((Va)aer)) = ((Xg(a))act, (Vo(a)Jacr) € U.

Hence x,(,;) = za; and Yy(n,) = Wy, foralli = 1,---,n. Therefore x,,,) # Yg(,) for
alli = 1,---,n, which leads to {¢(a1),- - ,(p(lxn)} C{a €T : x4 7& Ya}, SO n =
card({¢(a1), -+, ¢(ayn)}) < card({a € T : x4 # ya}) (note that ¢ is one to one), which
leads to the desired result. O
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Lemma 4.4. For infinite I we have:

L(H,X) O {((xa)acr) (Ya)aer) € X x X : {y €T :x, #y,}is finite}.
Proof. Use Lemmas 4.3 and 3.3. O

Theorem 4.1. We have:

{((xa)acr) Ya)aer) € X x X : {y €T : x,, #y,} is finite}, T is infinite,

L(#, X) = { {(x,x):x € X}, Tis finite.

Proof. For infinite I' use Lemmas 4.2 and 4.4, also for finite I' note that P(#H, X') = {(x, x) :
x e X} O

5 More details

In transformation semigroup (S, W) we say a nonempty subset D of W is invariant if
SD := {sw:s € S,w € D} C W. For closed invariant subset D of W we may consider
action of S on D in a natural way. For closed invariant subset D of W one may verify
easily,

P(S,D) C P(S,W), Q(S,D)C Q(S,W), and L(S,D)C L(S,W).

Suppose Z is a compact Hausdorff topological space with at least two elements, by Ty-
chonoff’s theorem Z' is also compact Hausdorff. Again for ¢ : T — T one may consider
0y : 7zl — 7~ (09((za)acr) = (Zq)(oc))IXEF)/ also S := {0, : Z' — Z'¢ € T'}, and
H = {0y : Z" — Z'|p € I and ¢ : T — T is bijective }. Then for each finite nonenpty
subset A of Z, AT is a closed invariant subset of (S, Z") (resp. (H,Z")) and A is a discrete
(and finite) subset of Z. But using previous sections we know about P(T, Al), Q(T, A"),
and L(T, A") for T = H,S. Hence for T = H, S by:

J{P(T,A") : A is a finite subset of Z} C P(T,Z"),
{Q(T,A") : A is a finite subset of Z} C Q(T,Z"),
(J{L(T,A") : A is a finite subset of Z} C L(T,Z"),

we will have more data about P(T, Z"), Q(T, Z"), L(T, Z").
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