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Abstract. In this paper, we formulate a two-way interfacial condition for simulat-
ing lattice dynamics in one space dimension. With a time history treatment, the in-
coming waves are incorporated into the motion of the boundary atoms accurately.
This condition reduces to the absorbing boundary condition when there is no in-
coming wave. Numerical tests validate the effectiveness of the proposed condition
in treating simultaneously incoming waves and outgoing waves.
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1 Introduction

Multiscale computations have become an indispensable tool in exploring fundamen-
tal issues in materials science and their applications in micro, nano and multiscale
physics for emerging technologies [7]. In concurrent multiscale computations for a
crystalline solid, one selects an atomistic region, where full atomistic computations
are performed. The atomistic region is typically a tiny portion of the full solid, where
detailed dynamics are demanded to understand nonlinearities, defects, and other im-
portant physics. In the complementary region, a coarse grid (continuum) description
is used, where short waves are neglected. This greatly reduces the computing load
and memory requirement.

Due to the domain decomposition, an artificial interface is introduced between the
atomistic and the continuum region. On this interface, suitable conditions are needed
to avoid spurious wave reflections. Such spurious waves, if not well suppressed, en-
ter the atomistic region and disturb the local physics in a nonlinear manner. Extensive
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efforts have been made in designing interfacial conditions to reduce the spurious re-
flections. In the literature, many authors adopted a handshaking region between the
atomistic and the continuum regions. In this region, a certain dissipative mechanism
is introduced [2]. These interfacial conditions are mostly local in time, namely, re-
quires only information from adjacent grid points at the current time step. A suitable
amount of dissipation needs to be tuned in such a way to balance the efficiency and
accuracy. They are therefore not accurate treatments of the interface. On the other
hand, exact-solution-based interfacial conditions have also been developed more re-
cently. For instance, when time information of an interfacial atom is available, one
may reconstruct the displacement at a nearby atom for a linear lattice. This time his-
tory treatment was proposed by Adelman and Doll [1] for a harmonic lattice, and
further developed for multiscale computations in [3, 8–10]. In contrast to absorbing
treatments with a handshaking region, the time history treatment resolves exactly the
interface for a linear infinite lattice. In numerical implementations, the accuracy may
be reached with sufficiently long time history. For careful analysis, please refer to [5].

In all aforementioned numerical interfacial treatments, fine fluctuations in the con-
tinuum region are not taken into account. No wave enters the atomistic region unless
it is resolved by the coarse grid. We notice that based on the extended space-time fi-
nite element, efforts have been made in incorporating fine scale oscillations into coarse
scale solutions [4]. In applications, however, fine scale oscillations do exist in the con-
tinuum region and may propagate into the atomistic region. Thermal fluctuation is
one such case with great importance. To our knowledge, there is yet quite limited
knowledge about how to treat accurately thermal fluctuations in a multiscale com-
putation [6, 12]. Unlike for a continuous wave propagation, a two-way interfacial
condition for discrete lattices has not been studied so far in the literature.

In this paper, we develop a two-way interfacial condition for treating both incom-
ing and outgoing waves in one space dimension. With this condition, outgoing waves
propagate freely across the interfaces without reflection. With numerical tests, we
demonstrate that incoming waves enter the atomistic domain effectively.

The rest of this paper is organized as followings. In Section 2, we derive the two-
way interfacial condition. Numerical tests are performed for the linear lattice in Sec-
tion 3. Some concluding remarks are made in Section 4.

2 Interfacial condition

We consider a harmonic lattice in one space dimension. The displacement un of the
n-th atom away from its equilibrium is governed by the following rescaled Newton’s
law.

ün = un+1 − 2un + un−1, n ∈ N. (2.1)

Consider an atomistic region ΩD containing the atoms n = 1, · · · , N, and the rest as
the continuum region ΩC. For the sake of clarity, we focus on the discussion of the left
interface. The approach applies readily to the right interface. Across the interface, we



S. Tang / Adv. Appl. Math. Mech., 2 (2010), pp. 45-55 47

refer to the first atom in ΩD (n = 1) as the interfacial atom, and the first atom in ΩC
(n = 0) as the ghost point atom. We record time history of the interfacial atom, namely
u1(τ) for τ ∈ [0, t], and reconstruct u0(t) by a convolution described as follows.

First we decompose the displacement into a left-going component vn(t), and a
right-going component wn(t). This means un = vn + wn. Due to the linearity, both
components satisfy the same Newton’s law. In particular, the left-going component
evolves according to

v̈n = vn−1 − 2vn + vn+1. (2.2)

Consider the atoms with n ≤ 0. The motion v1(t) serves as a boundary condition
for the semi-infinite chain. Considering the propagation direction, we assume that
vn(0) = v̇n(0) = 0 for n ≤ 0.

Taking the vector V = [v0 v−1 · · · ]T, we rewrite the equations in a vector form.

V̈ = DV +




v1
0
...


 , D =



−2 1
1 −2 1

. . . . . . . . .


 . (2.3)

To solve this system, we start with a finite truncation VN = [v0 · · · v−N+1]T. The
dynamics is governed by

V̈N = DNVN + [v1, 0, · · · , 0, v−N ]T. (2.4)

Here DN is an N × N tri-diagonal matrix with entries 1,−2, 1.
Using the Laplace transform, the linear system is readily solved by ( ˆ denotes the

Laplace transform)

V̂N = (s2 I − DN)−1[v̂1, 0, · · · , 0, v̂−N ]T. (2.5)

It is straightforward to compute that the (1, 1)-th and (1, N)-th entries of (s2 I−DN)−1

are

L11 =
SN − S−N

SN+1 − S−(N+1) , L1N =
1

SN+1 − S−(N+1) , (2.6)

with S = (
√

s2 + 4− s)2/2. It is easy to show that for Res > 0, we have |S| < 1.
Let the inverse transforms of L11 and L1N be η1(t) and ηN(t), respectively. The

exact solution reads

v0(t) = η1(t) ∗ v1(t) + ηN(t) ∗ v−N(t). (2.7)

Taking N → +∞, we have L11 → S and L1N → 0. Therefore, we may approximate

η1(t) → θ1(t) ≡ L−1(S) =
2J2(2t)

t
, ηN(t) → 0. (2.8)

Therefore, if we have a semi-infinite chain to the left of the atomistic region, the inter-
facial condition reads

v0(t) = v1(t) ∗ θ1(t). (2.9)
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This is an exact interfacial condition, i.e., a transparent interfacial condition. It allows
all left-going waves leave the atomistic region without reflection. The convolution
requires all information from initial state to the current time t. This may not be realized
exactly in a numerical simulation. Nevertheless, the numerical algorithm based on
this condition absorbs very well the reflected waves. We further remark that for a
finite lattice, the previous second limit indicates that we may neglect the numerical
boundary at the −N-th atom for left-going waves if the lattice is long enough. In the
literature, many authors have assumed, sometimes implicitly, to use the interfacial
condition corresponds to a semi-infinite long lattice [1, 10].

In the same way, under the assumption of a semi-infinite lattice to the right of the
atomistic region, we have

w1 = θ1 ∗ w0. (2.10)

From the definition of the left-going and right-going components, we may derive the
two-way interfacial condition

u0 = θ1 ∗ u1 + w0 − θ2 ∗ w0, (2.11)

with

θ2 = θ1 ∗ θ1 = L−1(S2) =
4J4(2t)

t
.

This is an exact interfacial condition. It transparently absorbs outgoing waves and
propagates incoming waves. However, numerical errors exist in real implementations.
There is further a trade-off between accuracy and realization cost.

Due to the asymptotic property of the Bessel function, the kernel functions θ1(t)
and θ2(t) decay in the rate of t−3/2. See Fig. 1. This decay allows us to perform convo-
lution with a truncated time history of length T. That is, we record u1(τ), w0(τ) only
for τ∈[t − T, t], and approximate the convolution by neglecting time history before
t− T. A typical choice of T is about five to ten humps, namely around 15 to 30.
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Figure 1: The time history kernel functions: θ1(t) (solid) and θ2(t) (dashed).
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3 Numerical tests

To validate the proposed two-way interfacial condition, we perform several numeri-
cal tests. First, we demonstrate that the proposed condition effectively damped out
reflections when there are only outgoing waves. Then we show that a monochromatic
wave is reproduced with the incoming wave suitably incorporated by the proposed
interfacial condition. Finally, more complicated wave packets are considered.

3.1 Absorption for outgoing waves

We take a 201-atom chain in the atomistic region. Following [10], we let the atomistic
spacing at equilibrium be ha = 0.005, and the atom position be xn = nha. Under this
setting, the interfacial conditions are

u0 = θ1 ∗ u1 + w0 − θ2 ∗ w0, u200 = θ1 ∗ u199 + w200 − θ2 ∗ w200. (3.1)

We take initially a short wave modulated and carried by a Gaussian hump as follows.

un(0) =





ha
e−100(xn−0.5)2 − e−6.25

1− e−6.25 (1 + 0.1 cos(80πxn)) , for |xn − 0.5| ≤ 0.25;

0, elsewhere.
(3.2)
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Figure 2: Absorption for outgoing waves: (a) un(0); (b) un(40); (c) un(80); (d) un(120); (e) un(160); (f)
un(200).
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The initial data contains abundant wave numbers. Because there is no incoming wave,
we take

w0 = w200 = 0,

and initialize the history of u1 and u199 as purely 0. The computation is then performed
with a time step size 4t=0.01, and a time history of length T = 50.

The numerical solution at various time is depicted in Fig. 2. Notice that the scale
for the last two snapshots is one-tenth of the previous ones. The wave propagates
freely towards two boundaries, and the reflection is almost negligible. The amplitude
of reflected wave is less than 3% of the initial data. We remark that this is purely an
atomistic computation, without any multiscale treatment. Using the PMM method,
we may further reduce the reflection [9].

With this test, we demonstrate that the proposed boundary condition is effective in
reflection suppression for outgoing waves. As a matter of fact, the condition reduces
to that proposed by Adelman and Doll [1].

3.2 Monochromatic wave

Now we include an incoming wave from the left boundary x0=0. In particular, we
examine the simulation of a monochromatic wave

un(t) = 0.0005 cos(ωxn − λt), with ω = 10π.

The frequency is

λ = 2 sin(ω
ha

2
) = 0.1569,

according to the dispersion relation.
More precisely, we take initial data for the 201-atom lattice as follows.

un(0) = 0.0005 cos(ωxn), u̇n(0) = 0.0005λ sin(ωxn). (3.3)

The histories for u1 and u199 are initialized as (for t ≤ 0)

u1(t) = 0.0005 cos(λt−ωha), u199(t) = 0.0005 cos(λt− 199ωha). (3.4)

There is an incoming wave from the left. The history as well as the input are given by

w0(t) = 0.0005 cos(λt). (3.5)

No wave enters the atomistic domain from the right end, hence w200=0. The numeri-
cal solution is depicted in Fig. 3 for time t=0, 10, 20, 30, 40. There is no reflection in the
propagation. At t=40, almost one period is completed, as

40λ = 6.2767 ≈ 2π.

As a comparison, when there is no incoming wave, the wave decays at the left end
during the propagation. See Fig. 4.
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Figure 3: Propagation of monochromatic wave: (a) un(0); (b) un(10); (c) un(20); (d) un(40).
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Figure 4: Attenuation of monochromatic wave: (a) un(0); (b) un(20); (c) un(40); (d) un(80).
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3.3 More examples

To better illustrate the effectiveness of the proposed two-way interfacial condition, we
present some more complex examples.

First, we compute for a combination of the previous two examples. We take initial
condition as the sum of the Gaussian hump (3.2) and the monochromatic wave (3.3).

un(0) =





ha
e−100(xn−0.5)2 − e−6.25

1− e−6.25 (1 + 0.1 cos(80πxn))

+0.1ha cos(ωxn), for |xn − 0.5| ≤ 0.25;
0.0005 cos(ωxn), elsewhere.

(3.6)

The initial velocity is taken as

u̇n(0) = 0.0005λ sin(ωxn). (3.7)

The time histories are taken as those for the monochromatic example, because the
Gaussian hump has no incoming wave. As shown in Fig. 5, these waves simply su-
perpose and pass across each other, without making any reflection at the boundaries.
The Gaussian hump is split into a left-going part and a right-going part. Both parts
propagate outward of the atomistic region. Their influence disappears at t between
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Figure 5: A monochromatic left-going incoming wave overtakes Gaussian hump: (a) un(0); (b) un(30); (c)
un(60); (d) un(100); (e) un(150); (f) un(200).
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Figure 6: Crossing of polychromatic waves: (a) un(0); (b) un(100); (c) un(250); (d) un(450); (e) un(600);
(f) un(700).

150 and 200. Because the monochromatic wave has a definite propagation direction,
the wave profiles are not symmetric. The monochromatic wave completely overtakes
the Gaussian hump eventually.

Next, we compute the crossing of polychromatic waves. We start with initial data
similar to (3.2) in a 401-atom lattice.

un(0) =





ha
e−100(xn−1)2 − e−6.25

1− e−6.25

(
1 + 0.1 cos(80πxn)

)
, for |xn − 1| ≤ 0.5;

0, elsewhere.
(3.8)

The initial velocity is taken as 0. Similar to the Gaussian hump evolution, the wave
packet splits into a left-going wave and a right-going wave. When reaching at the
boundary, these two waves produce time histories at the boundary x0 = 0 and x400 =
2. We record the time histories, and further input these two histories for incoming
waves in a later time t ≥ 350. The history at the 0-th atom is taken as the incoming
wave to the 400-th atom; and the history at the 400-th atom is taken as the incoming
wave to the 0-th atom. Moreover, the histories are input in a reversed time direction.

The evolution is depicted in Fig. 6. Before t = 350, the wave packet propagates
toward the boundary atoms and is well absorbed. See the first three subplots. The
incoming waves then propagate back to the atomistic region. We notice that the wave
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Figure 7: Wave front evolution in the crossing of polychromatic waves. The horizontal axis stands for
atomistic numbering n, and the vertical for time t.

profile at t = 450 agrees well with that at t = 250. In fact, the velocities have a different
sign, as they correspond to an incoming state and an outgoing state, respectively. This
symmetry holds also for the time pair t = 600 and t = 100. More careful study shows
that there are some phase errors occurred. In particular, the final snapshot for t = 700
obviously differs from the initial profile. As a matter of fact, the initial velocity is
identically zero, which does not hold for t = 700. Nevertheless, the incoming waves
are treated efficiently with the proposed two-way interfacial condition. The wave front
propagation is further illustrated in a contour plot in Fig. 7.

4 Conclusions

In this study, we propose a two-way interfacial condition for linear atomistic chain.
Besides effectively absorbing the outgoing waves, the condition also smoothly incor-
porates the incoming waves. To our knowledge, this is the first interfacial condition
that simultaneously treats both waves for discrete lattices. The efficiency of the pro-
posed condition is examined through several numerical tests.

This condition allows us to enhance the capability of existing concurrent multiscale
algorithms. In particular, finite temperature calculations for crystalline solids are of
great practical importance, yet remain not well-resolved. As most existing multiscale
methods introduce a certain level of unclarified dissipation to absorb the spurious re-
flection for the outgoing waves, the thermal input can not be accurately accounted
across the interfaces/boundaries. The proposed two-way interfacial condition facili-
tates treating the thermal input in an accurate manner [11].

We remark that the proposed condition is based on the assumption of a linear
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lattice, at least linear away from the atomistic region. There is a trade-off for the time
history convolution between the cut-off time and the accuracy.
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