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Abstract. The geometric multigrid method (GMG) is one of the most efficient solv-
ing techniques for discrete algebraic systems arising from elliptic partial differential
equations. GMG utilizes a hierarchy of grids or discretizations and reduces the error
at a number of frequencies simultaneously. Graphics processing units (GPUs) have
recently burst onto the scientific computing scene as a technology that has yielded
substantial performance and energy-efficiency improvements. A central challenge in
implementing GMG on GPUs, though, is that computational work on coarse levels
cannot fully utilize the capacity of a GPU. In this work, we perform numerical stud-
ies of GMG on CPU–GPU heterogeneous computers. Furthermore, we compare our
implementation with an efficient CPU implementation of GMG and with the most
popular fast Poisson solver, Fast Fourier Transform, in the cuFFT library developed by
NVIDIA.

AMS subject classifications: 65M10, 78A48

Key words: High-performance computing, CPU–GPU heterogeneous computers, multigrid
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1 Introduction

Simulation-based scientific discovery and engineering design demand extreme comput-
ing power and high-efficiency algorithms [7,8,31,33,34]. This demand is one of the main
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forces driving the pursuit of extreme-scale computer hardware and software during the
last few decades. It has become increasingly important for algorithms to be well-suited to
the emerging hardware architecture. In fact, the co-design of architectures, algorithms, and
applications is particulary important given that researchers are trying to achieve exascale
(1018 floating-point operations per second) computing. Although the question of what
is the best computer architecture to achieve exascale or higher remains highly debatable,
many researchers agree that hybrid architectures make sense due to energy-consumption
constraints. There are already quite a few heterogeneous computing architectures avail-
able, including the Cell Broadband Engine Architecture (CBEA), Graphics Processing
Units (GPUs), and Field Programmable Gate Arrays (FPGAs) [15, 18, 50].

A GPU is a heterogeneous co-processor that can be accessed and controlled by CPUs.
The Intel/AMD CPU accelerated by NVIDIA/AMD GPUs is probably the most com-
monly used heterogeneous high-performance computing (HPC) architecture at present.
GPU-accelerated supercomputers feature in many of the top computing systems in the
HPC Top500 [46] and the Green500 [25]. Some ”old” supercomputers, such as JAGAUR
(now known as TITAN) of the Oak Ridge National Laboratory, are being redesigned in
order to incorporate GPUs and thereby achieve better performance. GPUs have evolved
from fixed-pipeline application-specific integrated circuits into highly programmable,
versatile computing devices. Under conditions often met in scientific computing, mod-
ern GPUs surpass CPUs in computational power, data throughput, and computational
efficiency per watt by almost one order of magnitude [16, 20, 40].

Not only are GPUs the key ingredient in many current and forthcoming petaflop su-
percomputers, they also provide an affordable desktop supercomputing environment for
everyday usage, with peak computational performance matching that of the most pow-
erful supercomputers of only a decade ago. General-purpose graphics processing units
(GPGPU), as a high-performance computational device are becoming increasingly popu-
lar. NVIDIA Kepler GPU and the Intel Many Integrated Core (MIC) architecture are the
most promising heterogeneous co-processors with high energy-efficiency and computa-
tion power. The Intel Xeon Phi Coprocessor 5110P (60 cores, MIC architecture) is capable
of delivering 1 Teraflop operation in double precision per second, whereas the peak per-
formance of Tesla K20X (2688 cores) is 1.31 Teraflop operations in double precision per
second.

One of the most discussed features of the MIC architecture is that it shares the x86 in-
struction set such that users often assume that they do not need to change their existing
codebase in order to migrate to MIC. However, this assumption is subject to argument
as even if legacy code can easily be migrated, whether the application it is then used
for is able to achieve the desired performance is highly questionable. Achieving scalable
scientific applications in the exascale era is our ultimate goal. Hence, software, more im-
portantly algorithms, must adapt to unleash the power of the hardware. Unfortunately,
none of the processors envisioned at present will relieve today’s programmers from the
hard work of preparing their applications. In fact, power constraints will actually cause
us to use simpler processors at lower clock rates for the majority of our work. As an
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inevitable consequence, improvements in terms of performance will largely arise from
more parallel algorithms and implementations.

In all likelihood, different applications will benefit from any given architecture in spe-
cific ways. Thus a one-size-fits-all solution will almost certainly not arise. In many nu-
merical simulation applications, the most time-consuming aspect is usually the solution
of large linear systems of equations. Often, as they are generated by discretized par-
tial differential equations (PDEs), the corresponding coefficient matrices are very sparse.
The Laplace operator (or Laplacian) occurs in many PDEs that describe physical phe-
nomena such as heat diffusion, wave propagation and electrostatics, and gravitational
potential. For many efficient methods for solving discrete problems arising from PDEs,
a fast Poisson solver is a key ingredient in achieving a high level of efficiency [51]. Nu-
merical schemes based on fast Poisson solvers have been successfully applied to many
practical problems among which are computed tomography, power grid analysis, and
quantum-chemical simulation [36, 44, 45, 52].

Because of its plausible linear complexity–i.e., the low computational cost of solv-
ing a linear system with N unknowns is O(N)–the GMG method is one of the most
popular Poisson solvers [10, 12, 14, 28, 47]. Although the GMG’s applicability is limited
as it requires explicit information on the hierarchy of the discrete system, when it can
be applied, GMG is far more efficient than its algebraic version, the algebraic multigrid
(AMG) method [11, 13, 43, 47]. Another popular choice is the direct solver based on the
fast Fourier transform or the FFT [21] on tensor product grids. The computational cost
of the FFT-based fast Poisson solver is O(N logN), and FFT can easily be called from
highly optimized software libraries, such as FFTW [23] and the Intel Math Kernel Li-
brary (MKL). These advantages make FFT an extremely appealing method [37, 45] when
it is applicable.

It is well-known that heterogeneous architectures pose new programming difficulties
compared to existing serial and parallel platforms [15, 19]. In this paper, we investigate
the performance of fast Poisson solution algorithms, more specifically, GMG and FFT,
on modern hybrid computer environment accelerated with GPUs. Considerable effort
has been devoted to developing efficient solvers on GPUs for linear systems arising from
PDEs and other applications; see, for example, [3–6, 9, 17, 22, 24, 29, 30, 32, 35].

The main purpose of this paper is to consider the following important questions, all
of which are central to understanding geometric multigrid methods on GPU architecture:

• What challenges multilevel iterative methods pose in addition to standard sparse iterative solvers

do? Is it possible to achieve a satisfactory speedup on GPUs for multigrid algorithms?

• How does the performance of multigrid algorithms on GPUs compare with their performance on

state-of-the-art CPUs?

• How much of the computational power of GPUs can be utilized for multigrid algorithms? How

cost-effective are CPU–GPU systems?

We will consider answers to these questions based on carefully designed numerical ex-
periments described herein. We will also compare a GPU-implementation of GMG with
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the optimized implementation of direct solvers based on FFT in double precision as a
numerical experiment.

The rest of the paper is organized as follows: In Section 2, we introduce the prelimi-
nary features of the hardware and algorithms under investigation. In Section 3, we give
details about our implementation of GMG in a CPU–GPU heterogeneous computing en-
vironment. In Section 4, we analyze the complexity of the GMG algorithm. We report
our numerical tests and analysis in Section 5. We then summarize the paper with some
concluding remarks in Section 6.

2 Preliminaries

Graphics processing units (GPUs) recently burst onto the scientific computing scene as
an innovative technology that has demonstrated substantial performance and energy-
efficiency improvements for many scientific applications.

2.1 A brief glance at GPU and CUDA

A typical CPU–GPU heterogeneous architecture contains one or more CPUs (host) and
a GPU (device). GPU has its own device memory, which is connected to the host via
a PCI express bus. One of the main drawbacks of using such an architecture for PDE
applications is that it is necessary to exchange data between the host and the device fre-
quently; see Fig. 1 [15]. Data must be moved to the GPU memory, and parallel kernels
are launched asynchronously on the GPU by the host.

In regard to sparse matrix operations, the memory bandwidth is usually where the
bottleneck occurs. The gap between the speed of floating-point operations and the speed
for accessing memory grows every year [1]. In this sense, we do not expect that the
iterative linear solvers, which are usually memory-bounded, to readily derive benefits
easily from increasing the number of cores. One way to address this problem is to use a
high-bandwidth memory, such as Convey’s Scatter-Gather memory [2]. Another is to add
multithreading, where the execution unit saves the state of two or more threads, and can

Figure 1: Schematic of heterogeneous architecture: a quad core CPU in combination with a GPU.
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swap execution between threads in a single cycle–either by swapping between threads
at a cache miss or by alternating between threads on every cycle. While one thread is
waiting for memory, the execution unit keeps busy by switching to a different thread.

CUDA (Compute Unified Device Architecture) [41] is a parallel computing platform
and programming model invented by NVIDIA. It delivers dramatic increases in comput-
ing performance by harnessing the power of the graphics processing unit (GPU). NVIDIA
provides a complete toolkit for programming on the CUDA architecture, supporting
standard computing languages such as C/C++ and Fortran. CUDA C and Fortran are
the most widely used programming languages for GPU programming today [50]. CUDA
was developed simultaneously with the GeForce 8 architecture (NVIDIA’s internal code
name for the latter is Tesla), and publicly announced in 2006. In addition to CUDA,
other options are OpenCL, AMD Stream SDK, and OpenACC supported by CAPS, CRAY,
NVIDIA, and PGI.

2.2 The Poisson equation and its finite difference discretizations

Consider the Poisson equation

{

−∆u= f in Ω,
u=0 on ∂Ω,

(2.1)

where Ω= (0,1)d ⊂R
d. The main reason why we choose this simplest possible setting

is to emphasize that, even for a simple problem, the new heterogeneous architectures
present challenges for numerical implementation. Another reason is to allow us to use
explicit stencils and to avoid the bottleneck of sparse matrix-vector production [27]. Fur-
thermore, in this simple setting, we can compare our program with an existing efficient
FFT implement in CUDA.

The standard central finite difference method is applied to discretize (2.1) [39]. In
other words, the Laplace operator is discretized by the classical second-order central dif-
ference scheme. After discretization, we end up with a system of linear equations:

A~u=~f . (2.2)

We use the five-point central difference scheme and the seven-point central difference
scheme in 2D and 3D, respectively. Consider a uniform square mesh of Ω= [0,1]2 with
size h=1/n and in which xi= ih, yj= jh (i, j=0,1,··· ,n). Let ui,j be the numerical approxi-
mation of u(xi,yj). The five-point central difference scheme for solving (2.1) in 2D can be
written as follows:

−ui−1,j−ui,j−1+4ui,j−ui+1,j−ui,j+1=h2 f (xi,yj), i, j=1,2,··· ,n−1.

Similar to the 2D case, we consider a uniform cube mesh of Ω=[0,1]3 with size h=1/n
and in which xi = ih, yj = jh and zk = kh, i, j,k = 0,1,··· ,n. Let ui,j,k ≈ u(xi,yj,zk) be the
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approximate solution. The seven-point central difference scheme for solving (2.1) in 3D
reads

−ui−1,j,k−ui,j−1,k−ui,j,k−1+6ui,j,k−ui+1,j,k−ui,j+1,k−ui,j,k+1=h2 f (xi,yj,zk),

for all i, j,k=1,2,··· ,n−1.

2.3 Fast Fourier transform

A fast Fourier transform (FFT) is an efficient algorithm for computing the discrete Fourier
transform (DFT) and its inverse. DFT decomposes a sequence of values into components
of different frequencies. Computing DFT directly from its definition is usually too slow
to be practical. The FFT can be used to compute the same result, but much more quickly.
In fact, computing a DFT of N points directly, according to its definition, takes O(N2)
arithmetical operations, whereas FFT can compute the same result in O(N logN) opera-
tions [48].

On tensor product grids, FFT can be used to solve the Poisson equation efficiently. We
now explain the key steps for using FFT to solve the 2D Poisson equation (the 3D case is
similar):

1. Apply 2D forward FFT to f (x,y) to obtain f̂ (kx,ky), where kx and ky are the wave numbers.
The 2D Poisson equation in the Fourier space can then be written as

−∆u(x,y)= f (x,y)FFT−−→−(k2
x+k2

y)û(kx,ky)= f̂ (kx,ky). (2.3)

2. Apply the inverse of the Laplace operator to f̂ (kx,ky) to obtain û(kx,ky), which is the
element-wise division in the Fourier space

û(kx,ky)=−
f̂ (kx,ky)

k2
x+k2

y
.

3. Apply 2D inverse FFT to û(kx,ky) to obtain u(x,y).

The NVIDIA CUDA Fast Fourier Transform (cuFFT version 4.1) library provides a
simple interface for computing FFTs up to 10 times faster than MKL 10.2.3 for single
precision†. By using hundreds of processor cores on NVIDIA GPUs, cuFFT is able to
deliver the floating point performance of a GPU without necessitating the development
of custom GPU FFT implementation [42].

3 Geometric multigrid method for GPU

Multigrid (MG) methods in numerical analysis comprise a group of algorithms for solv-
ing differential equations using a hierarchy of discretizations. The main idea driving

†cuFFT 4.1 on Telsa M2090, ECC on, MKL 10.2.3, and TYAN FT72-B7015 Xeon x5680 Six-Core 3.33GHz.
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multigrid methodology is that of accelerating the convergence of a simple (but usually
slow) iterative method by global correction from time to time, accomplished by solving
corresponding coarse-level problems. Multigrid methods are typically applied to numer-
ically solving discretized partial differential equations [28, 47]. In this section, we briefly
review standard multigrid and full multigrid (V-cycle) algorithms and their respective
implementations in a CPU–GPU heterogeneous computing environment.

3.1 Geometric multigrid method

The key steps in the multigrid method (see Fig. 2) are as follows:

• Relaxation or Smoothing: Reduce high-frequency errors using one or more smooth-
ing steps based on a simple iterative method, like Jacobi or Gauss-Seidel.

• Restriction: Restrict the residual on a finer grid to a coarser grid.

• Prolongation: Represent the correction computed on a coarser grid to a finer grid.

One of the simplest multilevel iterative methods is the multigrid V-cycle (see Fig. 3),
in which the algorithm proceeds from top (finest grid) to bottom (coarsest grid) and back
up again.

Suppose we have L levels of nested spaces, numbered from 0 to L−1. Let Rl
l+1 and

Pl+1
l be the restriction (from level l to l+1) and prolongation (from level l+1 to l) oper-

ators, respectively. The V-cycle algorithm (Fig. 3) can be written as Algorithm 3.1. Note
that, instead of using the standard recursive formulation, we use for loops, which coin-
cides the actual implementation.

✻
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n
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n

Coarse Grid

Fine Grid

Figure 2: Pictorial representation of a multigrid method with three grid levels.
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Figure 3: A schematic description of the V-cycle.
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Fine
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Figure 4: A schematic description of the full multigrid algorithm. The algorithm proceeds from left to right and
from top (finest grid) to bottom (coarsest grid).

Algorithm 3.1. Multigrid V-cycle ~u=MG−V(µ f ,µb,L,~u,~f ).

1. for l=0 to L−2 do

2. Relax f orward(µ f ,Al,~fl ,~ul)

3. ~rl =~fl−Al~ul; ~fl+1=Rl
l+1~rl

4. Relax f orward(µ f ,AL−1,~fL−1,~uL−1)

5. for l= L−1 to 0 do

6. ~ul =~ul+Pl+1
l ~ul+1

7. Relaxbackward(µb,Al,~fl,~ul)

Remark 3.1. Here and later in this section µ f and µb are the number of sweeps of the
forward and backward relations, respectively.

Remark 3.2 (Coarsest-level solver). Note that, for simplicity, we assume that the coars-

est level L−1 contains one degree of freedom. Relax f orward(µ f ,AL−1,~fL−1,~uL−1) in Al-
gorithm 3.1 solves the coarsest-level problem exactly. The same thing happens in Algo-
rithm 3.2.

The full multigrid (FMG) usually gives the best performance in terms of computa-
tional complexity. The idea of FMG is represented in Fig. 4. Namely, we start from the
coarsest grid and solve the discrete problem on the coarsest grid. Then, we interpolate
this solution to the second-coarsest grid and perform one V-cycle. These two steps are
repeated recursively on finer and finer grids, until the finest grid possible is achieved.
The details are described in Algorithm 3.2.

Algorithm 3.2. Full Multigrid V-cycle ~u=FMG−V(µ f ,µb,L,~u,~f ).

1. init ~fl , ~ul, l=0,··· ,L−1

2. RelaxGS f orward(µ f ,AL−1,~fL−1,~uL−1)

3. for l= L−2 to 0 do

4. ~ul =Pl+1
l ~ul+1

5. ul =V−cycle(µ f ,µb,l,~ul,~fl)
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3.2 Implementation of GMG on a CPU–GPU machine

Algorithm 3.3. ~u,iter=GMGSolve(d,L,Lθ ,tol,maxit,µ f ,µb).

1. for l=0 to Lθ do init ~ul and ~fl ; resinit=‖~f0−A~u0‖

2. for l= Lθ to L−1 do init ~ul and ~fl ; res= resinit; iter=0

3. while (res> tol×resinit) and (iter<maxit) do

4. for l=0 to Lθ−1 on GPU do

5. RelaxGS f orward(µ f ,Al,~fl,~ul);~rl =~fl−Al~ul; ~fl+1=Rl
l+1~rl

6. copy ~fLθ
from DEVICE memory to HOST memory

7. ~uLθ
=MG−V(µ f ,µb,Lθ,~uLθ

,~fLθ
)

8. copy ~uLθ
from HOST memory to DEVICE memory

9. for l= Lθ−1 to 0 on GPU do

10. ~ul =~ul+Pl+1
l ~ul+1; RelaxGSbackward(µb,Al,~fl ,~ul)

11. res=‖~f −A~u0‖

12. iter= iter+1

13. copy ~u0 from DEVICE memory to HOST memory ~u

Remark 3.3. We offer some remarks about our implementation:

1. There have been many discussions on how to implement geometric multigrid meth-
ods efficiently on modern computer architectures; see, for example, [49]. We use a
four-color and an eight-color Gauss-Seidel smoother for RelaxGS in 2D and 3D,
respectively. As we are considering structured grids and the coloring is easy to ob-
tain, we prefer the GS smoother over the weighted Jacobi smoother (see Table 5 for
numerical comparison of several different smoothers). A weighted Jacobi smoother
is likely to achieve a higher peak performance and higher speedup over the corre-
sponding CPU version; however, it usually requires more iterations and wall time
compared with the colored GS smoother if both methods use same multilevel iter-
ation, like V-cycle.

2. The gray boxes represent the code segments running on GPU (kernel functions).
When Lθ =0, Algorithm 3.3 runs on CPU completely, and when Lθ = L, Algo-
rithm 3.3 runs on GPU solely. However, when 0< Lθ < L, these functions run in
CPU–GPU hybrid mode. Note that we prefer this hybrid algorithm over using a
V-cycle with a coarse direct solver (sometimes referred as a U-cycle) on GPU–This
is because the matrix-free geometric multigrid is much faster than the direct solver;
Furthermore, to use a direct solver on GPU, we need to form the coarse level matri-
ces, which will cost extra time.
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3. Graphics processors provide texture memory to accelerate frequently performed
operations. As optimized data access is crucial to GPU performance, the use of tex-
ture memory can sometimes provide a considerable performance boost; see Table 11
for numerical results. We band the vectors ~ul as one dimension texture memory in

function~rl =~fl−Al~ul, l=0,1,··· ,L−2.

4 Complexity analysis of the GMG algorithm

For the geometry multigrid of the finite difference method on structured meshes, it is not
necessary to explicitly assemble the global stiffness matrix A (i.e., matrix-free). A subrou-
tine for the matrix-vector multiplication of the corresponding finite difference operator

is called whenever we need to compute~r=~f −A~u. This subroutine can be implemented
directly from the central difference scheme. One V-cycle of the GMG algorithm consists
of computing the residual, forward relaxation, backward relaxation, restriction, prolon-
gation, and the inner product. Take the 2D case as an example: we can analyze the time
and space complexity of these operations. The time complexity of one V-cycle can be
proven to be O(N) for both the 2D and 3D cases. The optimal complexity of GMG has
been analyzed by Griebel [26]. Next, we give the exact operation counts for each compo-
nent in a V-cycle for the convenience of later discussions in Section 5. To the best of our
knowledge, we cannot find an appropriate reference which can serve for this purpose.

4.1 2D case

(1) Computing residual~rl =~fl−Al~ul:

rl
i,j = f l

i,j−4ul
i,j+ul

i±1,j+ul
i,j±1, i, j=1,2,··· ,nl−1, (4.1)

where ul
i±1,j=ul

i−1,j+ul
i+1,j and in this case when i−1=0 or i+1=nl+1, then ul

i±1,j=0.

From now on, we will use the notation ± in this section. The Eq. (4.1) requires 6
floating-point operations or work units (W) per unknown in the 2D case. Hence,
the total number of floating-point operations for the residual in one V-cycle is

WResidual =6
L−2

∑
l=0

(nl)
2+6n2

0. (4.2)

(2) Pre- and post-smoothing using 4-color Gauss-Seidel relaxations:

ul
i,j=

1

4
( f l

i,j+ul
i±1,j+ul

i,j±1), i, j=1,2,··· ,nl−1. (4.3)

Eq. (4.3) shows that there are 5 floating-point operations per unknown in the 2D
case and the total number of floating-point operations in the forward and backward
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Gauss-Seidel relaxation is

WGS f orward=WGSbackward=5
L−2

∑
l=0

(nl)
2. (4.4)

(3) Restriction operator~rl+1=Rl
l+1~rl :

rl+1
i,j =

1

8
(2rl

2i,2j+rl
2i±1,2j+rl

2i,2j±1+rl
2i−1,2j−1+rl

2i+1,2j+1), i, j=1,2,··· ,nl−1. (4.5)

Eq. (4.5) requires 8 floating-point operations per unknown in the 2D case. Further-
more, we obtain the total floating-point operations of restriction for one V-cycle
as

WResitriction=8
L−1

∑
l=1

(nl)
2. (4.6)

(4) Prolongation operator~el =~el+Pl+1
l ~el+1:

el
2i,2j = el

2i,2j+el+1
i,j , el

2i+1,2j = el
2i+1,2j+

1

2
(el+1

i,j +el+1
i+1,j), (4.7a)

el
2i,2j+1= el

2i,2j+1+
1

2
(el+1

i,j +el+1
i,j+1), el

2i+1,2j+1= el
2i+1,2j+1+

1

2
(el+1

i,j +el+1
i+1,j+1), (4.7b)

with i, j = 1,··· ,nl+1−1. Eq. (4.7) shows that there are (3×3+1)/4 floating-point
operations per unknown for the 2D case. Furthermore, we can obtain that the total
number of floating-point operations of prolongation for one V-cycle is

WProlongation =2.5
L−2

∑
l=0

(nl)
2. (4.8)

(5) Computing the norm of the residual:

‖~r0‖L2 =
(n0)

2

∑
j=1

r0
j r0

j . (4.9)

We can see that the total number of floating-point operations for computing ℓ2-
norm is 2(n0)2.

By combining the above five components, we can get the total number of floating-point
operations per unknown for the 2D case in one V-cycle as

6
L−2

∑
l=0

(nl)
2+5

L−1

∑
l=0

(nl)
2+5

L−2

∑
l=0

(nl)
2+8

L−1

∑
l=1

(nl)
2+

10

4

L−2

∑
l=0

(nl)
2+(2+6)(n0)2

(n0)2
∼=36.

This means the total number of floating-point operations per unknown required by one
V-cycle in the 2D case is about 36.
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4.2 3D case

Similarly, we can count the complexity of a V-cycle in 3D:

(1) Computing residual:

WResidual =8
L−2

∑
l=0

(nl)
3+8(n0)

3.

(2) Smoothing:

WGS f orward=WGSbackward=7
L−2

∑
l=0

(nl)
3.

(3) Restriction operator:

WResitriction=16
L−1

∑
l=1

(nl)
3.

(4) Prolongation operator:

WProlongation =
23

8

L−2

∑
l=0

(nl)
3.

(5) Computing the norm of the residual:

WNorm=(n0)
3.

By combining the above estimates, we obtain the total number of floating-point oper-
ations per unknown for the 3D case in one V-cycle as

8
L−2

∑
l=0

(nl)
3+7

L−1

∑
l=0

(nl)
3+7

L−2

∑
l=0

(nl)
3+16

L−1

∑
l=1

(nl)
3+

22

8

L−2

∑
l=0

(nl)
3+(2+8)(n0)3

(n0)3
∼=41.

Hence, the total number of floating-point operations per unknown for one V-cycle is
36 and 41 for the 2D and 3D cases, respectively.

Remark 4.1 (Space complexity of V-cycle in GMG). In Algorithm 3.3, we need only keep

~ul, ~fl (l =0,1,··· ,L−1) and~rl (l=0,1,··· ,L−2) in the host or device memory. Therefore,
we obtain the memory space complexity of GMG (Algorithm 3.3) as follows:

Memory/N=
1

(n0)d

{

2
L−1

∑
l=0

(nl)
d+

L−2

∑
l=0

(nl)
d
}

∼=4. (4.10)

Eq. (4.10) shows that the memory space complexity of GMG Algorithm 3.3 has about 4
times as many unknowns in both 2D and 3D. In fact, in our numerical experiments, we
find the memory usage is about 3.7N in 2D and 3.3N in 3D.
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5 Numerical experiment

In this section, we perform several numerical experiments and analyze the performance
of GMG as proposed in Algorithm 3.3. In order to obtain relatively accurate wall times,
all reported computing times are the averages of 100 runs. In order to provide a fair
comparison, we perform experiments to compare our implementation of GMG in CUDA
with an efficient OpenMP version of GMG and a direct solver based on cuFFT. In order
to eliminate effects of implementation as much as possible, we consider the simplest test
problem, namely the Poisson equation on uniform grids:

Example 5.1 (Poisson Equation). In the model problem (2.1) for d=2,3, we take the right-
hand side

f (x)=Πd
i=1sin(πxi), x∈Ω=(0,1)d ⊂R

d.

The tolerance for the convergence of Algorithm 3.3 is tol=10−6.

5.1 Environment for comparisons

Our focal computing environment is a HP workstation with a low-cost commodity-level
NVIDIA GPU. Details in regard to the machine are set out in Table 1. For numerical ex-
periments, we use an AMD FX(tm)-8150 Eight-Core 3.6GHz CPU (its peak performance
in double precision is 1.78GFLOPs‡) and an NVIDIA GeForce GTX 480 GPU. GTX 480
supports CUDA and it is composed of 15 multiprocessors, each of which has 32 cores
(480 cores in total). Each multiprocessor is equipped with 48KB of very fast shared mem-
ory, which stores both data and instructions. All the multiprocessors are connected to
the global memory, which is understood as an SMP architecture. The global memory is
limited to a maximum size of 1.5GB. However, there is also a read-only cache memory
called a texture cache, which is bound to a part of the global memory when a code is
initiated by the multiprocessors.

Remark 5.1 (Cost Effectiveness). From Table 1, we notice that the initial cost and the peak
energy-consumption cost of this particular system with GPU is roughly 2 to 2.5 times of
the system without GPU. These extra initial and energy costs must be considered in our
comparisons.

5.2 CPU v.s. GPU

Before we embark on comparing the GMG algorithm on CPU and GPU, we collect a few
benchmarks. The main performance parameters of GeForce GTX 480 is described in Table
2§. On this system, we test the performance of double precision matrix-vector products¶

‡Obtained experimentally using LINPACK (http://www.netlib.org/benchmark/linpackc).
§Numbers in the last four rows are obtained experimentally using the bandwidthtest of CUDA 4.1 SDK.
¶Using explicit stencil to avoid storing sparse coefficient matrices.
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Table 1: Experiment environment.

CPU Type AMD FX-8150 8-core
CPU Clock 3.6 GHz × 8 cores
CPU Energy Consumption 85 Watts (idle) ∼ 262 Watts (peak)
CPU Price 300 US Dollars
Host Memory Size 16GB
GPU Type NVIDIA GeForce GTX 480sp
GPU Clock 1.4 GHz ×15×32 cores
GPU Energy Consumption 141 Watts (idle) ∼ 440 Watts (peak)
GPU Price 485 US Dollars
Device Memory Size 1.5GB
Operating System CentOS 6.2
CUDA Driver CUDA 4.1
Host Compiler gcc 4.4.6
Device Compiler nvcc 4.1

Table 2: Theoretical peak performance of NVIDIA GeForce GTX 480.

Double precision performance [GFLOPs] 177.00
Theoretical memory bandwidth [GB/s] 177.00
Device to device memory bandwidth [GB/s] 148.39
Device to host memory bandwidth [GB/s] 4.46
Host to host memory bandwidth [GB/s] 9.44
Host to device memory bandwidth [GB/s] 3.92

Table 3: Wall times, GFLOPs (double precision), and speedups for computing the residual in 2D.

L
CPU GPU

Speedup
Wall Time (sec) GFLOPs Wall Time (sec) GFLOPs

8 1.607e-4 2.47 1.677e-5 23.63 9.57
9 6.296e-4 2.51 5.027e-5 31.41 12.51

10 3.079e-3 2.05 1.819e-4 34.66 16.91
11 1.269e-2 1.99 7.061e-4 35.68 17.93
12 5.107e-2 1.97 2.806e-3 35.89 18.22

and the results are reported in Table 3 and 4 for 2D and 3D, respectively‖. Here, since we
do not store the coefficient matrix, the performance of matrix-vector production is much
better than sparse matrix-vector products. Since (matrix-free) matrix-vector products are
responsible to most of the computation work in the geometric multigrid, we wish that our
implementation of GMG on GPUs can achieve this performance (roughly 30 GFLOPs in
double precision).

First, we note that, with the given tolerance, both the GPU version and the CPU ver-
sion of GMG achieve the optimal discretization error, O(h2), in R

2 and R
3. Furthermore,

the GPU and the CPU versions take the same number of iterations as each other to reach

‖The CPU version is implemented using OpenMP to take advantage of the multicore platform.
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Table 4: Wall times, GFLOPs (double precision), and speedups for computing the residual in 3D.

L
CPU GPU

Speedup
Wall Time (sec) GFLOPs Wall Time (sec) GFLOPs

5 7.111e-5 4.04 2.067e-5 13.91 3.44
6 5.613e-4 3.91 7.293e-5 30.13 7.70
7 5.565e-3 3.09 4.547e-4 37.77 12.22
8 5.941e-2 2.29 4.536e-3 29.94 13.07

Table 5: Comparison of four different smoothers in 2D on GPU (Lθ =L). Here #It is the number of iterations,
and wall times are in seconds.

L
WJ (weight=0.667) WJ (weight=0.8) 2-Color GS 4-Color GS
#It Wall Time #It Wall Time #It Wall Time #It Wall Time

8 22 4.84e-2 18 3.97e-2 16 7.02e-3 11 6.68e-3
9 22 7.10e-2 18 5.89e-2 16 1.85e-2 11 1.46e-2

10 22 1.20e-1 19 1.01e-1 16 5.15e-2 11 3.74e-2
11 22 3.04e-1 19 2.66e-1 16 1.79e-1 11 1.28e-1
12 22 1.02e+0 19 8.88e-1 16 6.82e-1 11 4.85e-1

the given convergence tolerance, i.e., the GPU version is equivalent to the corresponding
serial version. We also notice that, in all our numerical comparisons of GMG on CPU and
on GPU, we use only one sweep of four-color Gauss–Seidel (GS) relaxation as smoother
(i.e., µ f =µb = 1) because it yields both fast convergence rate and good parallelism scal-
ability. For example, Table 5 shows a comparison of GMG with a few other widely-used
smoothers on GPU, like the Weighted Jacobi (WJ) method. From this table, we can also
see that the gap between the WJ method and the 4-color GS decreases as the problem size
increases.

Second, we compare the total wall times for the GPU version and the CPU version
(with OpenMP) of GMG. For the 2D test problem, in the best-case scenario, the GPU
version of GMG can achieve about 11.5 times speedup (see Fig. 5, Left). Moreover, the
speedup increases as L increases, but with a plateau zone when Lθ ≥ 4. This indicates
that, when problem size is large, it is more efficient to carry out all computational work
on GPU instead of sending data back and forth between GPU and CPU. For L= 12, the
implementation achieves 15.2 GFLOPs (Fig. 5, Right) in double precision, which is 8.6%
of the theoretical peak performance of GTX 480 or 42% of the performance of (finest grid)
matrix-vector product on GPU (see Table 3). Similarly, for the 3D test problem, in the best-
case scenario, we can achieve 10.3 times speedup and 15 GFLOPs in double precision,
which is 51% of the matrix-vector product operation on the finest grid (see Fig. 6 and
Table 4). Similar to the 2D case above, if the size of the problem is large enough, then we
should run it completely on GPU.

In Figs. 5 (Left) and 6 (Left), we draw two dashed lines to highlight 2.5× speedup. As
we have mentioned earlier in Remark 5.1, the energy cost of our system with the GTX 480
GPU running at full power is roughly 2.5 times the system without using it. Hence, the
speedup of the algorithm on GPU has to be at least above this dashed line to make it
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Figure 5: Speedup (left) of GMG on GPU compared with its CPU OpenMP version and performance (right) of
GMG on GPU in 2D.
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Figure 6: Speedup (left) of GMG on GPU compared with its CPU OpenMP version and performance (right) of
GMG on GPU in 3D.

economically sound. For example, for L= 5 in 3D, using GMG on GPU is not efficient
enough to justify the energy consumption. On the other hand, one should also be aware
of that, since the problem size is small for L=5 in 3D, many of the stream processors are
idle during computation and the energy consumption of the GPU card might not be as
high as the peak consumption indicated in Table 1.

Remark 5.2 (Multicore effect). We note that, in all our numerical tests on CPUs, we use
all available CPU core. It is fair to say that on AMD FX8150 (8-core) the speedup of eight-
thread GMG (over one thread version when compiler optimization O2 is enabled) is, in
general, 2.0 to 3.0, depending on the algorithm and implementation.

5.3 Performance of GMG on GPUs

In this subsection, we would like to understand more about which part(s) of the GPU
implementation are the bottleneck(s). Tables 6 and 7 show the computing time and com-
munication time in 2D and 3D, respectively. In these two tables, total time = computing
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Table 6: Computing time (seconds) and communication time (seconds) in 2D.

L (Lθ =L) 8 9 10 11 12
Computing time 5.934e-3 1.064e-2 3.134e-2 1.124e-1 4.339e-1

Communication time 9.070e-4 3.491e-3 5.884e-3 1.522e-2 5.169e-2
Communication/Total 13.26% 24.70% 15.81% 11.93% 10.64%

Table 7: Computing time (seconds) and communication time (seconds) in 3D.

L(Lθ =L) 5 6 7 8
Computing time 8.544e-3 2.404e-2 9.997e-2 7.287e-1

Communication time 4.938e-4 3.716e-3 9.574e-3 5.141e-2
Communication/Total 5.46% 13.39% 8.74% 6.59%

Table 8: Floating-point operation complexity in terms of total degrees of freedom (N) and wall time percentage
of each subroutine in one V-cycle. All computations are done on CPU if Lθ =0 and done on GPU if Lθ = L.

Setting Residual Smoother Restriction Prolongation Norm

2D
Complexity 14N 13.4N 2.67N 3.34N 2N

L=12 Lθ =0 30.70% 45.02% 6.54% 15.84% 1.91%
L=12 Lθ =L 22.11% 50.40% 5.99% 9.92% 11.59%

3D
Complexity 17.2N 16.1N 2.30N 3.31N 2N

L=8 Lθ =0 28.60% 54.08% 3.90% 11.60% 1.83%
L=8 Lθ =L 25.34% 53.99% 4.38% 15.69% 2.79%

Table 9: Double precision performance (GFLOPs) of each subroutine in one V-cycle. All computations are done
on CPU if Lθ =0 and done on GPU if Lθ = L.

Setting Residual Smoother Restriction Prolongation Norm

2D
L=12 Lθ =0 2.04 1.30 1.78 0.91 4.99
L=12 Lθ =L 27.12 11.33 19.09 15.87 7.39

3D
L=8 Lθ =0 2.31 1.10 2.25 1.06 4.08
L=8 Lθ =L 24.81 10.94 25.78 19.43 7.66

time + communication time, where the communication time refers to the time for trans-
ferring data between the host and the device and the computing time means the time for
everything else. Here, since we take Lθ=L, the computing time is approximately equal to
the kernel time on GPU. The numerical results show that the CUDA kernel computation
takes 75% to 90% of the total wall time. Furthermore, as one can expect, the portion of
communication time decreases as problem size increases.

Table 8 shows the wall time percentage (ratio to the total kernel time) for each function
in one V-cycle. Table 9 shows the number of GFLOPs for each function of one V-cycle.
By comparing the numerical results on CPU (Lθ=0) and GPU (Lθ=L), we notice that the
multicolored Gauss-Seidel smoother counts for more than 50% of the total kernel time on
GPU and it yields less speedups. Furthermore, because we are using the multicolored
GS smoother, we need to launch the GS kernel several times (equal to the number of
colors)–this introduces some overhead. On the other hand, as we pointed out earlier,
using the weighted Jacobi method does not help because of the deteriorated convergence
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Table 10: Performance (GFLOPs) of major components of V-cycle on each level in 3D (L=7).

Level Wall Time (s) Percentage (%) Overall Residual Smoother
0 4.88e-03 74.60 16.20 36.94 11.50
1 4.95e-04 7.57 14.91 26.26 11.52
2 2.02e-04 3.09 4.780 9.66 3.91
3 1.46e-04 2.24 0.906 2.31 0.79
4 2.16e-04 3.31 0.091 0.43 0.08
5 5.64e-04 8.63 0.006 0.08 0.01

Table 11: Wall times (second) on GPU (Lθ=L) with or without using texture memory, where the ”Improvement”
column shows the improvement by using texture-caching.

2D 3D
L No Texture Texture Improvement L No Texture Texture Improvement
9 1.12e-2 1.03e-2 7.62% 5 7.80e-3 8.76e-3 -12.38%
10 3.60e-2 3.10e-2 13.90% 6 2.37e-2 2.36e-2 0.46%
11 1.32e-1 1.12e-1 15.10% 7 1.10e-1 9.92e-2 9.53%
12 5.09e-1 4.33e-1 14.98% 8 8.25e-1 7.26e-1 12.01%

rate, although it results in better parallelism. Another observation is that computing
the Euclidean norm of the residual gets very low efficiency on GPU due to it requires a
summation of large amount of floating-point numbers.

In Section 4, we analyzed the operation counts of each component in a V-cycle of
GMG. Number of memory accesses is roughly equal to the number of floating-point op-
erations in these functions. However, in Tables 8 and 9, we observe that, for the modern
desktop environments (multicore CPUs or GPUs), operation and memory access counts
alone can no longer provide good measurements of practical efficiency of the algorithm.
For example, in 2D, computing residual and the GS relaxation require similar amount
of floating-point operations and have almost identical memory access pattern; however,
due to the multicolor GS smoother has less build-in parallelism and introduces bigger
overhead, it costs much more time than computing residuals, especially on GPU. This
also suggests that one would prefer a more scalable smoother (like weight Jacobi) than a
more effective smoother (like multicolored GS) when problem size becomes very large∗∗.

Moreover, visiting coarser levels in the hierarchy also poses an additional difficult for
efficient implementation of multilevel iterative methods on GPUs. As an example, we
show a typical profile of GMG (3D Poisson with 2M unknowns) in Table 10. On the finest
levels (0-th and 1st), computing residual and smoothing can achieve relatively high per-
formance. But, when reaches coarse levels, the performance of GMG drops dramatically
due to less active threads are used there. As we mentioned before, we note that replacing
the coarse level V-cycle with a direct solver on GPU (like [38]) is not an option as this will
slow down the method even more.

Finally, there is another type of read-only memory that is available for use in CUDA
C–Texture memory is cached on chip, so in some situations it will provide higher effective

∗∗This trend has already been observed in Table 5.
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bandwidth by reducing memory requests to off-chip DRAM. More specifically, texture
caches are designed for applications where memory access patterns exhibit a great deal
of spatial locality. In a computing application, this roughly implies that a thread is likely
to read from an address ”near” the address that nearby threads read. Now we compare
an implementation without using the texture memory on GPU with the implementation
using texture memory. From Table 11, we can see that, by using texture, one can save
about 15% of the computing time if L is large enough.

5.4 FMG vs. FFT

Now we compare the FFT method with the geometric multigrid method as fast Poisson
solution methods. FFT is a direct solver, and multigrid is an iterative solver. Therefore,
making a fair comparison between the two is not an easy task. We set up our compari-
son in the following way: we tested a sequence of FMG methods, each of which had a
different number of pre- and post-relaxation sweeps. Then we compared FFT with the
most efficient FMG scheme in order to determine which gives the optimal approxima-
tion error. As FFT and FMG require the same amount of data to be transmitted, we only
compare the respective kernel times here.

We consider cases with 16 million unknowns in 2D (L=12) and 3D (L=8). For the 2D
case, from Tables 12 and 13, we notice that FMG(1,2) is enough to guarantee the optimal
convergence of the approximation error in L2(Ω). On the other hand, for the 3D case,
we need to use at least FMG(3,3) in order to obtain the optimal convergence rate (see

Table 12: Approximation error ‖u−uh‖ in 2D.

L FFT FMG(1,1) FMG(1,2) FMG(2,2) FMG(2,3) FMG(3,3)
9 1.563e-6 1.001e-5 1.242e-6 1.004e-6 7.028e-7 7.145e-7
10 3.914e-7 2.618e-6 3.113e-7 2.518e-7 1.762e-7 1.790e-7
11 9.797e-8 6.766e-7 7.791e-8 6.304e-8 4.411e-8 4.479e-8
12 2.450e-8 1.735e-7 1.948e-8 1.577e-8 1.103e-8 1.120e-8

Table 13: Kernel time (seconds) of FFT and FMG in 2D.

L FFT FMG(1,1) FMG(1,2) FMG(2,2) FMG(2,3) FMG(3,3)
9 3.739e-3 3.611e-3 4.260e-3 4.980e-3 5.617e-3 6.348e-3
10 1.102e-2 7.434e-3 8.770e-3 1.008e-2 1.144e-2 1.282e-2
11 4.077e-2 2.203e-2 2.571e-2 2.945e-2 3.317e-2 3.701e-2
12 1.364e-1 7.860e-2 9.167e-2 1.049e-1 1.180e-1 1.310e-1

Table 14: Approximation error ‖u−uh‖2 in 3D.

L FFT FMG(1,1) FMG(1,2) FMG(2,2) FMG(2,3) FMG(3,3)
5 2.841e-4 6.509e-3 2.733e-3 1.246e-3 7.873e-4 5.296e-4
6 7.100e-5 2.685e-3 9.469e-4 3.930e-4 2.426e-4 1.608e-4
7 1.774e-5 1.032e-3 2.988e-4 1.125e-4 6.751e-5 4.394e-5
8 4.437e-6 3.803e-4 8.880e-5 3.049e-5 1.784e-5 1.145e-5
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Table 15: Kernel time (seconds) of FFT and FMG in 3D.

L FFT FMG(1,1) FMG(1,2) FMG(2,2) FMG(2,3) FMG(3,3)
5 5.102e-4 1.611e-3 1.932e-3 2.382e-3 2.738e-3 3.186e-3
6 1.890e-3 3.711e-3 4.474e-3 5.335e-3 6.098e-3 6.986e-3
7 5.884e-2 1.342e-2 1.586e-2 1.846e-2 2.094e-2 2.352e-2
8 1.893e-1 8.566e-2 1.007e-1 1.155e-1 1.302e-1 1.456e-1

Tables 14 and 15). Moreover, the optimal FMG is 33% and 23% faster than FFT in 2D and
3D, respectively.

6 Conclusions

In this work, we studied the performance of GMG on CPU–GPU heterogeneous com-
puters. Our numerical results suggest that in the best-case scenario the GPU version of
GMG can achieve 11 times speed-up in 2D and 10 times speed-up in 3D compared with
an efficient OpenMP implementation of multigrid methods on CPUs. When the problem
is relatively small we found that the heterogeneous algorithm (0< Lθ < L) usually gives
the best computational performance. On the other hand, when the problem size is large
enough, then it is generally preferable to do the computation on GPUs. We observed
lacking of parallelism and frequently visiting coarse levels account for the relatively low
floating-point performance of GMG on GPUs. Furthermore, we compared our method
with the Fast Fourier Transform in the state-of-the-art cuFFT library. For the test cases
with 16 million unknowns (L = 12 in 2D and L = 8 in 3D), we showed that our FMG
method is 33% and 23% faster than FFT in 2D and 3D, respectively. Of at least equal
importance is that GPU is more cost-effective (in terms of initial cost and daily energy
consumption) than modern multicore CPUs for geometric multigrid methods.
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