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Abstract. Calculating interacting stress intensity factors (SIFs) of multiple elliptical-
holes and cracks is very important for safety assessment, stop-hole optimization de-
sign and resource exploitation production in underground rock engineering, e.g.,
buried tunnels, deep mining, geothermal and shale oil/gas exploitation by hydraulic
fracturing technology, where both geo-stresses and surface stresses are applied on
buried tunnels, horizontal wells and natural cracks. However, current literatures are
focused mainly on study of interacting SIFs of multiple elliptical-holes (or circular-
holes) and cracks only under far-field stresses without consideration of arbitrary sur-
face stresses. Recently, our group has proposed a new integral method to calculate
interacting SIFs of multiple circular-holes and cracks subjected to far-filed and sur-
face stresses. This new method will be developed to study the problem of multiple
elliptical-hole and cracks subjected to both far-field and surface stresses. In this study,
based on Cauchy integral theorem, the exact fundamental stress solutions of single
elliptical-hole under arbitrarily concentrated surface normal and shear forces are de-
rived to establish new integral equation formulations for calculating interacting SIFs of
multiple elliptical-holes and cracks under both far-field and arbitrary surface stresses.
The new method is proved to be valid by comparing our results of interacting SIFs
with those obtained by Green’s function method, displacement discontinuity method,
singular integral equation method, pseudo-dislocations method and finite element
method. Computational examples of one elliptical-hole and one crack in an infinite
elastic body are given to analyze influence of loads and geometries on interacting SIFs.
Research results show that when σ∞

xx ≥ σ∞
yy, there appears a neutral crack orientation
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angle β0 (without elliptical-hole’s effect). Increasing σ∞
xx/σ∞

yy and b/a (close to circular-
hole) usually decreases β0 of KI and benefits to the layout of stop-holes. The surface
compressive stresses applied onto elliptical-hole (n) and crack (p) have significant in-
fluence on interacting SIFs but almost no on β0. Increasing n and p usually results
in increase of interacting SIFs and facilitates crack propagation and fracture networks.
The elliptical-hole orientation angle (α) and holed-cracked distance (t) have great in-
fluence on the interacting SIFs while have little effect on β0. The present method is
not only simple (without any singular parts), high-accurate (due to exact fundamen-
tal stress solutions) and wider applicable (under far-field stresses and arbitrarily dis-
tributed surface stress) than the common methods, but also has the potential for the
anisotropic problem involving multiple holes and cracks.

AMS subject classifications: 74A10, 78B05

Key words: Interacting stress intensity factors, multiple elliptical-holes and cracks, far-field
stresses, arbitrary surface stresses, integral equation method.

1 Introduction

In underground rock engineering such as buried tunnels, deep mining, geothermal and
shale oil/gas exploitation by hydraulic fracturing technology, both the geo-stresses and
surface stresses (e.g., seepage pressure) are applied onto the buried tunnels, horizontal
wells and natural cracks [1–4]. In addition, buried tunnels are usually designed in ellipti-
cal cross-sections for the improving stability of tunnels [5,6] and horizontal wells actually
presents the form of elliptical-holes due to the long-term action of gravity stresses [7, 8].
Under the external loads, the elliptical-holes have probability of facilitating or restraining
initiation and propagation of natural cracks existing in the rock mass, since the different
layouts of elliptical-holes can enlarge or reduce interacting stress intensity factors (SIFs).
Consequently, calculating interacting SIFs of multiple elliptical-holes and cracks under
complex loads plays an important role in safety assessment, stop-hole optimization de-
sign and resource exploitation production in underground rock engineering.

Up to now, many methods are available for calculating interacting SIFs of circular-
holes and cracks under far-field loadings. For instance, Laurent series expansion
method [9, 10] and Green’s function method [11, 12] were used for one circular-hole and
one crack, and boundary collection method [13], volume integral equation method [14],
singular integral equation method [15] and boundary integral method [16, 17] were
adopted for the problem of multiple circular-holes and cracks. Very few literatures are
reported for surface stresses applied on the circular-holes and cracks, especially for ar-
bitrary surface stresses. In addition, there are also some methods for calculating inter-
acting SIFs of elliptical-holes and cracks. For example, perturbation method [18], singu-
lar integral equation method [19] and boundary element method [20] were applied for
solving the problem of one elliptical-hole and one crack, one elliptical-hole and multi-
ple cracks, multiple elliptical-holes and one crack, respectively. For more complicated
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problem of multiple elliptical-holes and cracks under far-field loadings, Yan [21] pro-
posed a displacement discontinuity method to approximately calculate interacting SIFs
based on the displacement discontinuity elements of nonsingular constant and crack-tips.
Yang and Soh [22] presented a special finite element method with hybrid-type and semi-
analytic-type elements for calculating interacting SIFs, where the solution accuracy and
computation efficiency are difficult to be satisfied simultaneously. Han and Wang [23]
developed a pseudo-dislocations method to obtain interacting SIFs within high accu-
racy by transforming the interacting elliptical-holes and cracks to a system of algebraic
equations, in which the Fourier-series terms, applied to derive the fundamental solu-
tions, needs to be introduced in order to obtain interacting SIFs of high accuracy, but de-
creases computation efficiency [24, 25]. To sum up, these methods are difficult to satisfy
the requirements of accuracy and efficiency simultaneously in dealing with the problem
of multiple elliptical-holes and cracks. Moreover, they are only related to far-field uni-
form stress without considering surface stress on the elliptical-holes and cracks. Recently,
our research group [26] proposed a new integral equation method with simplicity, non-
singularity and high accuracy to solve the problem of multiple circular-holes and cracks
under both far-field and surface stresses. This new method is promising to be devel-
oped for dealing with the problem of multiple elliptical-holes and cracks under the same
complex loadings.

In this study, based on Cauchy integral theorem, exact fundamental stress solutions
(Section 2.1) of single elliptical-hole under arbitrarily concentrated surface normal and
shear forces are derived to establish new integral equations (Section 2.2) for calculating
interacting SIFs of multiple elliptical-holes and cracks under both far-field and arbitrary
surface stresses, which can be solved by compound trapezoidal and Chebyshev quadra-
ture rules in numerical methods (Sections 2.3 and 2.4). And then, our calculation so-
lutions of interacting SIFs, for one elliptical-hole and one crack (Section 3.1), multiple
elliptical-holes and one crack (Section 3.2) and one elliptical-hole and one oriented crack
subjected to far-field and nonuniform surface stresses (Section 3.3), are compared with
those calculated by Green’s function, displacement discontinuity, singular integral equa-
tion, pseudo-dislocations and finite element methods, in order to verify validity of this
new integral method. Finally, several example solutions are given to further investigate
effect of far-field stresses, surface stresses and geometries of elliptical-holes and cracks
on interacting SIFs of crack-tips (Section 4).

2 Integral equation method for problem of multiple
elliptical-holes and cracks

The two-dimensional in-plane problem involving H elliptical-holes and K straight cracks
in an infinite elastic body is plotted in Fig. 1. The applied loadings consist of far-field
tensile and shear stresses (σ∞

xx, σ∞
yy and τ∞

xy = τ∞
yx) and arbitrary normal and tangential

surface stresses on the elliptical-holes (nh, th) and cracks (pk, qk), in which tension is dealt
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Fig. 1. Multiple elliptical-holes and cracks in an infinite elastic body under both far-field  

and arbitrary surface stresses. 

 

2.1 Exact fundamental stress solutions 

For solving the problem involving multiple elliptical-holes and cracks, it is a necessity to obtain 

normal traction and tangential traction at any point, induced by concentrated surface forces on the 

elliptical-hole and crack, respectively. 

(1) Stresses of single elliptical-hole subjected to concentrated surface forces 

Consider one elliptical-hole (with major and minor half-lengths a, b) in an infinite elastic body 

subjected to concentrated surface forces (N, T) at arbitrary point A, as plotted in Fig. 2. Two Cartesian 

coordinate systems are set at the elliptical-center (xoy) and factitious crack-center (x ó ý )́, respectively, 

and a polar coordinate systems is set at the elliptical-center (or). Based on the elasticity theory of 

Muskhelishvili [27], the normal traction (σy'y'
e ) and tangential traction (τx'y'

e ) at arbitrary point B located 

on factitious crack LR (orientation angle α) are calculated as follows. 
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Fig. 2. Single elliptical-hole in an infinite elastic body under concentrated surface forces. 

 

Considering the far-field stresses are equal to zero, the following complex functions φ1(z), ψ1(z) in 

terms of z can be expressed as: 

Figure 1: Multiple elliptical-holes and cracks in an infinite elastic body under both far-field and arbitrary surface
stresses.

with as the positive. Besides a global Cartesian coordinate system (xoy), H local Cartesian
coordinate systems (xhohyh) and H local polar coordinate systems (ohrh) are set at each
elliptical-center oh (h = 1,··· ,H), respectively, where x axis is horizontal and xh axis is
aligned with the major axis of the h-th ellipse. Also, K local Cartesian coordinate systems
(xkokyk) are set at each crack-center (k = 1,··· ,K), where xk axis is aligned with the k-th
crack. Let ah, bh and αh represent the major and minor half-lengths of ellipse and its
orientation angle with respect to horizontal direction (ah≥ bh, 0≤ αh <π), and lk and βk
represent crack half-length and its orientation angle with respect to horizontal direction
(0≤βk <π).

2.1 Exact fundamental stress solutions

For solving the problem involving multiple elliptical-holes and cracks, it is a necessity
to obtain normal traction and tangential traction at any point, induced by concentrated
surface forces on the elliptical-hole and crack, respectively.

(1) Stresses of single elliptical-hole subjected to concentrated surface forces.
Consider one elliptical-hole (with major and minor half-lengths a, b) in an infinite

elastic body subjected to concentrated surface forces (N,T) at arbitrary point A, as plot-
ted in Fig. 2. Two Cartesian coordinate systems are set at the elliptical-center (xoy) and
factitious crack-center (x′o′y′), respectively, and a polar coordinate systems is set at the
elliptical-center (or). Based on the elasticity theory of Muskhelishvili [27], the normal
traction (σe

y′y′) and tangential traction (τe
x′y′) at arbitrary point B located on factitious
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and arbitrary surface stresses. 
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Figure 2: Single elliptical-hole in an infinite elastic body under concentrated surface forces.

crack LR (orientation angle α) are calculated as follows.
Considering the far-field stresses are equal to zero, the following complex functions

ϕ1(z), ψ1(z) in terms of z can be expressed as:

ϕ1(z)=−
1

2π(1+κ)
( fx+i fy)lnz+ϕ0(z), (2.1a)

ψ1(z)=
κ

2π(1+κ)
( fx−i fy)lnz+ψ0(z), (2.1b)

in which κ is the parameter of material, related to Possion’ ratio ν, κ=3−4ν under plane
stress state, κ=(3−ν)/(1+ν) under plane strain state, fx and fy are the principle vectors
of concentrated surface forces (N,T) in x- and y- directions, respectively, which can be
obtained by:

fx+i fy =−(N+iT)eiγ, (2.2a)

fx−i fy =−(N−iT)e−iγ, (2.2b)

in which γ represents the angle between the x axis and the outward normal vector of
point A on the boundary of ellipse (0≤γ≤2π).

According to conformal mapping:

z= x+iy=w(ζ)=R
(

ζ+
c
ζ

)
, (2.3a)

R=
a+b

2
, c=

a−b
a+b

, (2.3b)
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the ellipse of z-plane can be mapped to the unit circle of ξ-plane.
And thus, it is readily obtained from Eq. (2.1) that

ϕ1(ζ)=−
1

2π(1+κ)
( fx+i fy)lnζ+ϕ0(ζ), (2.4a)

ψ1(ζ)=
κ

2π(1+κ)
( fx−i fy)lnζ+ψ0(ζ), (2.4b)

ζ=


z+
√

z2−4R2c
2R

, Re(z)≥0,

z−
√

z2−4R2c
2R

, Re(z)<0,
(2.4c)

in which ϕ1(ζ) and ψ1(ζ) are complex functions in the exterior regions of unit-circle, and
they need meet the following boundary conditions of the unit circle contour:

f (σ)= i
∫
( fx+i fy)ds=−i

∫
(N+iT)eiγds, (2.5a)

f (σ)=−i
∫
( fx−i fy)ds= i

∫
(N−iT)e−iγds. (2.5b)

Based on the Cauchy integral theorem, there are

ϕ0(ζ)=−
1

2πi

∫
γ

[ f (σ)
σ−ζ

+
( fx+i fy)lnσ

2π(σ−ζ)
+

( fx−i fy)

2π(1+κ)(σ−ζ)

σ2+c
1−cσ2

]
dσ, (2.6a)

ψ0(ζ)=−
1

2πi

∫
γ

[ f (σ)
σ−ζ

−
( fx−i fy)lnσ

2π(σ−ζ)
+

( fx+i fy)

2π(1+κ)(σ−ζ)

1+cσ2

σ2−c

]
dσ

−ζ
1+cζ2

ζ2−c
ϕ′0(ζ), (2.6b)

in which the overbar denotes the conjugate of complex number.
Solving Eq. (2.6) and considering ζ=w−1(z) result in the expressions:

ϕ1(z)=
(N+iT)eiγ

2π

[
ln(σ1−ζ)− κ

1+κ
lnζ
]
, (2.7a)

ψ1(z)=
−(N−iT)e−iγ

2π

[
ln(σ1−ζ)− lnζ

1+κ

]
− (N+iT)eiγ

2π

[ 1
1+κ

1+c2

ζ2−c
− 1+cζ2

ζ2−c

(
1+

ζ

σ1−ζ

)]
, (2.7b)

in which point σ1 is located on the unit circle of ζ-plane, corresponding to point z1 located
on ellipse of z-plane.

Application of coordinate transformations [27] leads to the following normal tractions
(σe

y′y′) and tangential tractions (τe
x′y′) at arbitrary point B on factitious crack LR, caused

by the concentrated surface forces on the elliptical-hole

σe
y′y′+iτe

x′y′= ϕ′1(z)+ϕ′1(z)+e2iα[zϕ′′1 (z)+ψ′1(z)]. (2.8)
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z-plane. 

Application of coordinate transformations [27] leads to the following normal tractions (σy'y'
e ) and 

tangential tractions (τx'y'
e ) at arbitrary point B on factitious crack LR, caused by the concentrated surface 

forces on the elliptical-hole. 

 `
` 2 `` `

1' ' ' ' 1 1 1( ) ( ) [ ( ) ( )]e e i

y y x yi z z e z z z     + = + + +  （8） 

Note here that the derived fundamental stress solutions are powerfully analytical and exact. They 

have the simpler formulation and higher calculation efficiency than those solved by Fourier series 

method [27]. That is because Fourier series method is to adopt series to approximate the boundary 

conditions infinitely and larger series terms (for obtaining stress solution with higher-accuracy) leads to 

decrease of calculation efficiency. 

(2) Stresses of single crack subjected to concentrated surface forces 

Fig. 3 plots one horizontal crack (half-length l) in an infinite elastic body subjected to two pairs of 
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Fig. 3. Single crack in an infinite elastic body under concentrated surface forces. 
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in which 

Figure 3: Single crack in an infinite elastic body under concentrated surface forces.

Note here that the derived fundamental stress solutions are powerfully analytical and
exact. They have the simpler formulation and higher calculation efficiency than those
solved by Fourier series method [27]. That is because Fourier series method is to adopt
series to approximate the boundary conditions infinitely and larger series terms (for ob-
taining stress solution with higher-accuracy) leads to decrease of calculation efficiency.

(2) Stresses of single crack subjected to concentrated surface forces.
Fig. 3 plots one horizontal crack (half-length l) in an infinite elastic body subjected to

two pairs of concentrated surface forces (P,Q) at arbitrary point A(s,0). Two Cartesian
coordinate systems (xoy,x′o′y′) are set at the centers of the crack L1R1 and factitious crack
L2R2 (orientation angle α), respectively.

The normal tractions (σc
y′y′) and tangential tractions (τc

x′y′) at arbitrary point B lo-
cated on factitious crack L2R2, induced by concentrated surface forces (P,Q), can be given
by [26, 28]

σc
y′y′−iτc

x′y′=−
P−iQ

2πi

√
s2−l2[G(z)+e−2iαG(z)]

− P+iQ
2πi

√
s2−l2[G(z)(1−e−2iα)+e−2iα(z−z)G′(z)], (2.9)

in which

G(z)=
1√

z2−l2(z−s)
, G′(z)=

l2+sz−2z2

(z2−l2)3/2(z−s)2 . (2.10)
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2.2 Integral equations for determining interacting surface tractions

Consider H elliptical-holes and K straight cracks in an infinite elastic body, subjected to
far-field stresses (σ∞

xx, σ∞
yy and τ∞

xy) and arbitrary surface stresses on the elliptical-holes
(nb(θh),tl(θb)) and (pk(sk),qk(sk)) as presented in Fig. 1. The interacting surface tractions
on the elliptical-holes and cracks can be solved as follows.

From the obtained fundamental stress solutions (Eqs. (2.7)-(2.8) and Eqs. (2.9)-(2.10)),
the new integral equations for the h-th elliptical-hole can be expressed as [26]:

n∞
h (θh)+nh(θh)

=Nh(θh)+
H

∑
m=1,m 6=h

∫ Cm

0
[Nm(θm)Gnn,mh(θm,θh)+Tm(θm)Gtn,mh(θm,θh)]dcm(θm)

+
K

∑
r=1

∫ lr

−lr
[Pr(sr)Fnn,rh(sr,θh)+Qr(sr)Ftn,rh(sr,θh)]dsr, 0< θh <2π, h=1,··· ,H, (2.11a)

t∞
h (θh)+th(θh)

=Th(θh)+
H

∑
m=1,m 6=h

∫ Cm

0
[Nm(θm)Gnt,mh(θm,θh)+Tm(θm)Gtt,mh(θm,θh)]dcm(θm)

+
K

∑
r=1

∫ lr

−lr
[Pr(sr)Fnt,rh(sr,θh)+Qr(sr)Ftt,rh(sr,θh)]dsr, 0< θh <2π, h=1,··· ,H, (2.11b)

in which n∞
h (θh) and f ∞

h (θh) are the normal and tangential surface tractions on the h-th
elliptical-hole, attributed to remote stresses, respectively, which has the same magnitude
and opposite direction as the far-field stresses

n∞
h (θh)=−σ∞

xxcos2(αh+γh)−σ∞
yysin2(αh+γh)+τ∞

xy sin2(αh+γh), (2.12a)

t∞
h (θh)=(σ∞

yy−σ∞
xx)sin(αh+γh)cos(αh+γh)−τ∞

xy cos2(αh+γh), (2.12b)

in which αh is the orientation angle of the h-th elliptical-hole, and γh represents the angle
between the xh axis and the outward normal vector of point (rh,θh) on the boundary of
the h-th elliptical-hole (0≤γh≤2π).

Similarly, the integral equations for the k-th crack can be expressed as:

p∞
k (sk)+pk(sk)

=Pk(sk)+
H

∑
m=1

∫ Cm

0
[Nm(θm)Gnn,mk(θm,sk)+Tm(θm)Gtn,mk(θm,sk)]dcm(θm)
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+
K

∑
r=1,r 6=k

∫ lr

−lr
[Pr(sr)Fnn,rk(sr,sk)+Qr(sr)Ftn,rk(sr,sk)]dsr, −lk < sk < lk, k=1,··· ,K, (2.13a)

q∞
k (sk)+qk(sk)

=Qk(sk)+
H

∑
m=1

∫ Cm

0
[Nm(θm)Gnt,mk(θm,sk)+Tm(θm)Gtt,mk(θm,sk)]dcm(θm)

+
K

∑
r=1,r 6=k

∫ lr

−lr
[Pr(sr)Fnt,rk(sr,sk)+Qr(sr)Ftt,rk(sr,sk)]dsr, −lk < sk < lk, k=1,··· ,K, (2.13b)

in which p∞
k (θk) and q∞

k (θk) are the known normal and tangential surface tractions on the
k-th crack, attributed to the far-field stresses, respectively, which can be given by:

p∞
k (sk)=−σ∞

xx sin2 βk−σ∞
yy cos2 βk+τ∞

xy sin2βk, (2.14a)

q∞
k (sk)=

(
σ∞

y −σ∞
xx

)
sinβk cosβk−τ∞

yy cos2βk, (2.14b)

in which βk is the orientation angle of k-th crack.
In Eqs. (2.11) and (2.13), Nh(θh), Th(θh) stand for the interacting normal and tangential

tractions to be determined on the surface of the h-th elliptical-hole, respectively. Pk(sk),
Qk(sk) stand for the interacting normal and tangential tractions to be determined on
the surface of the k-th crack, respectively. cm(θm) stands for the arc-length of the m-
th elliptical-hole, which is related to θm, and Cm stands for the perimeter of the m-th
elliptical-hole. The kernel functions G and F have a definitely physical meaning, for in-
stance, Gnn,mk(θm,sk) and Gnt,mk(θm,sk) mean the normal and tangential surface tractions
of arbitrary point (sk,0) on the k-th crack, caused by unit concentrated normal force of ar-
bitrary point zm(rm,θm) on the m-th elliptical-hole, respectively. They can be obtained by
substitution of N=1 and T=0 into the first fundamental stress solutions in Eqs. (2.7)-(2.8)
as:

Gnn,mk(θm,sk)+iGnt,mk(θm,sk)= ϕ′1(zk)+ϕ′1(zk)+e2iβk [zk ϕ′′1 (zk)+ψ′1(zk)] (2.15)

and

ϕ1(zk)=
eiγm

2π

[
ln(σ1m−ζk)−

κ

1+κ
lnζk

]
, (2.16a)

ψ1(zk)=
−e−iγm

2π

[
ln(σ1m−ζk)−

lnζk

1+κ

]
− eiγm

2π

[ 1
1+κ

1+cm
2

ζk
2−cm

− 1+cmζk
2

ζk
2−cm

(
1+

ζk

σ1m−ζk

)]
, (2.16b)

and Gtn,mh(θm,θh) and Gtt,mh(θm,θh) mean the normal and tangential surface tractions of
arbitrary point zh(rh,θh) on the h-th elliptical-hole, caused by unit concentrated tangential
force of arbitrary point zm(rm,θm) on the m-th elliptical-hole, respectively. They can be
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obtained by substitution of N=0 and T=1 into the first fundamental stress solutions in
Eqs. (2.7)-(2.8) as:

Gtn,mh(θm,θh)+iGtt,mh(θm,θh)= ϕ′1(zh)+ϕ′1(zh)−e2i(αh+γh)[zh ϕ′′1 (zh)+ψ′1(zh)] (2.17)

and

ϕ1(zh)=
ieiγm

2π

[
ln(σ1m−ζh)−

κ

1+κ
lnζh

]
, (2.18a)

ψ1( zh)=
ie−iγm

2π

[
ln(σ1m−ζh)−

lnζh

1+κ

]
− ieiγm

2π

[ 1
1+κ

1+cm
2

ζh
2−cm

− 1+cmζh
2

ζh
2−cm

(
1+

ζh

σ1m−ζh

)]
. (2.18b)

Similarly, the kernel functions Fnn,rh(sr,θh) and Fnt,rh(sr,θh) mean the normal and tangen-
tial surface tractions of arbitrary point zh(rh,θh) on the h-th elliptical-hole, caused by unit
concentrated normal force of arbitrary point (sr,0) on the r-th crack, respectively, which
can be determined by taking P=1 and Q=0 in the second fundamental stress solutions
from Eqs. (2.9)-(2.10)

Fnn,rh(sr,θh)+iFnt,rh(sr,θh)

=− 1
2πi

√
sr2−lr2[G(zh)−e−2i(αh+γh)G(zh)]

− 1
2πi

√
sr2−lr2[G(zh)(1+e−2i(αh+γh))−e−2i(αh+γh)(zh−zh)G′(zh)], (2.19a)

G(zh)=
1√

zh
2−lr2(zh−sr)

, G′(zh)=
lr2+srzh−2zh

2

(zh
2−lr2)

3/2
(zh−sr)

2
, (2.19b)

and Ftn,rk(sr,sk) and Ftt,rk(sr,sk) mean the normal and tangential surface tractions of arbi-
trary point (sk,0) on the k-th crack, caused by unit concentrated normal force of arbitrary
point (sr,0) on the r-th crack, respectively, which can be determined by taking P=0 and
Q=1 in the second fundamental stress solutions from Eqs. (2.9)-(2.10)

Ftn,rk(sr,sk)+iFtt,rk(sr,sk)

=
i

2πi

√
sr2−lr2[G(zk)+e−2iβk G(zk)]

− i
2πi

√
sr2−lr2[G(zk)(1−e−2iβk)+e−2iβk(zk−zk)G′(zk)], (2.20a)

G(zk)=
1√

zk
2−lr2(zk−sr)

, G′(zh)=
lr2+srzk−2zk

2

(zk
2−lr2)

3/2
(zk−sr)

2
. (2.20b)
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2.3 Numerical solution of integral equations

Based on compound trapezoidal rule and Chebyshev quadrature rule [29], these integral
equations (2.11) and (2.13) are readily expressed as the following linear algebraic equa-
tions:

n∞
h (θ

i
h)+nh(θ

i
h)

=Nh(θ
i
h)+

H

∑
m=1,m 6=h

M

∑
j=1

[Nm(θ
j
m)Gnn,mh(θ

j
m,θi

h)+Tm(θ
j
m)Gtn,mh(θ

j
m,θi

h)]ωm(θ
j
m)

+
K

∑
r=1

M

∑
j=1

[Pr(s
j
r)Fnn,rh(s

j
r,θi

h)+Qr(s
j
r)Ftn,rh(s

j
r,θi

h)]δ
j
r, (i, j=1,··· ,M), (2.21a)

t∞
h (θ

i
h)+th(θ

i
h)

=Th(θ
i
h)+

H

∑
m=1,m 6=h

M

∑
j=1

[Nm(θ
j
m)Gnt,mh(θ

j
m,θi

h)+Tm(θ
j
m)Gtt,mh(θ

j
m,θi

h)]ωm(θ
j
m)

+
K

∑
r=1

M

∑
j=1

[Pr(s
j
r)Fnt,rh(s

j
r,θi

h)+Qr(s
j
r)Ftt,rh(s

j
r,θi

h)]δ
j
r, (i, j=1,··· ,M), (2.21b)

and

p∞
k (s

i
k)+pk(si

k)

=Pk(si
k)+

H

∑
m=1

M

∑
j=1

[Nm(θ
j
m)Gnn,mk(θ

j
m,si

k)+Tm(θ
j
m)Gtn,mk(θ

j
m,si

k)]ωm(θ
j
m)

+
K

∑
r=1,r 6=k

M

∑
j=1

[Pr(s
j
r)Fnn,rk(s

j
r,si

k)+Qr(s
j
r)Ftn,rk(s

j
r,si

k)]δ
j
r, (i, j=1,··· ,M), (2.22a)

q∞
k (s

i
k)+qk(si

k)

=Qk(si
k)+

H

∑
m=1

M

∑
j=1

[Nm(θ
j
m)Gnt,mk(θ

j
m,si

k)+Tm(θm)Gtt,mk(θ
j
m,si

k)]ωm(θ
j
m)

+
K

∑
r=1,r 6=k

M

∑
j=1

[Pr(s
j
r)Fnt,rk(s

j
r,si

k)+Qr(s
j
r)Ftt,rk(s

j
r,si

k)]δ
j
r, (i, j=1,··· ,M), (2.22b)

with

si
k = lk cos

(2i−1)π
2M

, sj
r = lr cos

(2j−1)π
2M

, (2.23a)

θi
h =

(i−1)2π

M
, θ

j
m =

(j−1)2π

M
, i, j=1,··· ,M, (2.23b)

in which M is the number of line segments or nodes on the boundaries of elliptical-
holes and cracks; Nh(θ

i
h), Th(θ

i
h) are interacting normal and tangential surface tractions
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to be determined on the i-th arc of the h-th elliptical-hole, respectively. Ph(si
k), Qb(si

h̄)
are interacting normal and tangential surface tractions to be determined on the i-th line
segment of the k-th crack, respectively. ω∞(θ

j
m) and δ

j
r represent the j-th arc length of the

m-th elliptical-hole and the j-th line segment length of the r-th crack, respectively, which
are given by:

ωm(θ
j
m)=

∫ ϕ
j
m

ϕ
j−1
m

√
a2

msin2ϕm+b2
mcos2ϕmdϕm, (2.24a)

δ
j
r =

πlr
M

sin
(2j−1)π

2M
, j=1,··· ,M, (2.24b)

and

ϕ
j
m =



arctan
[ am

bm
tan

(2j−1)π
M

]
, −π

2
≤ (2j−1)π

M
≤ π

2
,

π+arctan
[ am

bm
tan

(2j−1)π
M

]
,

π

2
<

(2j−1)π
M

≤ 3π

2
,

2π+arctan
[ am

bm
tan

(2j−1)π
M

]
,

3π

2
<

(2j−1)π
M

<2π.

(2.25)

These linear algebraic equations in Eqs. (2.21)-(2.22) can be written as the form of matrix:

AX=


A11 ··· A1H ··· A1(H+K)
··· ··· ··· ··· ···

AH1 ··· AHH ··· AH(H+K)
··· ··· ··· ··· ···

A(H+K)1 ··· A(H+K)L ··· A(H+K)(H+K)




X1
···
XH
···

X(H+K)

=


B1
···
BH
···

B(H+K)

=B, (2.26)

in which where submatrix Aij consists of 2M×2M elements; when i= j, Aij stands for an
unit submatrix related to the elliptical-hole or crack itself; when i 6= j, Aij stands for influ-
ence of a certain elliptical-hole on the other elliptical-holes (or cracks), or a certain crack
on the elliptical-holes (or the other cracks). Xj stands for a submatrix to be undetermined,
which means the interacting surface tractions on the elliptical-holes and cracks. Bj is a
known submatrix related to far-field stresses and surface stresses on the elliptical-holes
and cracks. Obviously, the undetermined submatrix Xj can be determined uniquely by
Eq. (2.26).

2.4 Interacting stress intensity factors

In order to calculate the interacting SIFs, it is necessary to obtain the SIFs of single crack
under concentrated surface forces.

When one crack L1R1 (half-length l) in an infinite elastic body is subjected to concen-
trated surface forces (P,Q) at point A(s,0), (see Fig. 3), The SIFs KI and KI I can be written
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by [30]:

KI(±)=
P√
πl

√
l±s
l∓s

, KI I(±)=
Q√
πl

√
l±s
l∓s

, (2.27)

in which the lower and upper superscripts stand for the right and left tips of the crack,
respectively.

From Eq. (2.27), the interacting SIFs of the k-th crack are written by Pk(sk), Qk(sk) from
the integral equations in Eqs. (2.11) and (2.13) as follows:

K±I,k =
1√
πlk

∫ lk

−lk
Pk(sk)

√
lk±sk

lk∓sk
dsk, (2.28a)

K±I I,k =
1√
πlk

∫ lk

−lk
Qk(sk)

√
lk±sk

lk∓sk
dsk. (2.28b)

Based on the Chebyshev quadrature rule [27]:

∫ l

−l

f (x)√
l2−x2

dx=
π

M

M

∑
i=1

f (xi), xi = lcos
(2i−1)π

2M
, (2.29)

the interacting SIFs KI and KI I of the right and left crack-tips can be given, respectively,
by:

K±I,k =

√
πlk

M

M

∑
i=1

Pk(si
k)
(

1±
si

k
lk

)
, (2.30a)

K±I I,k =

√
πlk

M

M

∑
i=1

Qk(si
k)
(

1±
si

k
lk

)
, si

k = lk cos
(2i−1)π

2M
, (2.30b)

in which the interacting normal and tangential surface tractions Ph(si
k), Qb(si

i) can be
calculated from Eq. (2.26).

Note that the integral equation method can also be reduced to solve the problem
of multiple cracks or multiple circular-holes and cracks under complex loadings. Also,
these integral equations in Eqs. (2.11) and (2.13) are regular without any singular parts
and can be easily computed by combination of compound trapezoidal rule and Cheby-
shev quadrature rule, since the two fundamental stress solutions in Eqs. (2.7)-(2.10) have
considered boundary conditions of single circular-hole and single crack. Based on the-
oretical viewpoints, the accuracy of interacting SIFs depends on the number of nodes
M in compound trapezoidal rule and Chebyshev quadrature rule but not this method.
The solutions within high accuracy can be obtained only by a larger number of M, since
the two fundamental stress solutions are powerfully analytical and exact without any
approximations.
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3 Verification of the integral equation method

3.1 One elliptical-hole and one crack subjected to far-field tensile or shear
stress

In order to illustrate the accuracy of the integral equation method, the interacting SIFs
obtained by existing method (e.g., Green’s function, displacement discontinuity and sin-
gular integral equation methods) are given for one circular/elliptical-hole and one crack
subjected to far-field tensile stress or shear stress.

Fig. 4 depicts a horizontal elliptical-hole (major half-length a, and minor half-length b)
and a horizontal crack LR (half-length l) in an infinite elastic body under far-field tensile
(σ∞

yy) (only in y-direction) and shear (τ∞
xy) stresses, in which t stands for the distance be-

tween the elliptical-center o and the crack-center O in horizontal direction. Using Green’s
function method (with singularity), Erdogan et al. [11] obtained the interacting SIFs for
the problem of a circular-hole (a = b) and a crack (l = 0.5a) only under far-field tensile
stresses σ∞

yy (τ∞
xy = 0), and their calculation results are usually regarded as an exact so-

lutions because of their method’s analyticity [12, 15, 21]. Due to symmetry of loadings
and geometries, interacting SIFs of Mode II are always equal to zero (i.e., KI I =0). Table
1 only shows the normalized interacting SIFs FIL, FIR (FI = KI/σ∞

yy
√

πl) of crack-tips L
and R, under various distances t/a (t/a = 3.2,3.5,4,5,6,8) and the number of nodes M
(M = 32,64,96,128), calculated by our method and Green’s function method (ν= 0.25).
It is found that with the increase of t/a, the FIL and FIR values are close to the case of
single crack, indicating the influence of the circular hole on the crack becomes smaller
and smaller. It can be observed that the larger the M, the closer to Erdogan’s results our
results are. When M≥96, our results are in complete agreement with Erdogan’s results.
Therefore, numerical computation are carried out under the condition of M= 96 in the
subsequent examples in order to obtain the interacting SIFs within high accuracy.

For further showing the accuracy of our method, the interacting SIFs are calculated
and compared with displacement discontinuity method of Yan [21] for one horizontal
elliptical-hole o(a,b) and one horizontal crack LR (a/l=0.2) only under far-field tensile

Table 1: Comparison of normalized SIFs FIL, FIR between our method and Green’s function method (a=b=2l).

Our method Green’s function method
t/a M=32 M=64 M=96 M=128 FIL FIRFIL FIR FIL FIR FIL FIR FIL FIR
3.2 1.437 2.376 1.418 2.289 1.417 2.274 1.417 2.274 1.417 2.274
3.5 1.291 1.726 1.290 1.722 1.290 1.722 1.290 1.722 1.290 1.722
4 1.188 1.394 1.188 1.394 1.188 1.394 1.188 1.394 1.188 1.394
5 1.102 1.174 1.102 1.174 1.102 1.174 1.102 1.174 1.102 1.174
6 1.065 1.099 1.065 1.099 1.065 1.099 1.065 1.099 1.065 1.099
8 1.033 1.045 1.033 1.045 1.033 1.045 1.033 1.045 1.033 1.045
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Fig. 4. One elliptical-hole and one crack in an infinite elastic body subjected to far-field tensile and shear stresses 
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Table 2 Comparison of normalized SIFs FIR between our method and displacement discontinuity method (a/l=0.2) 

a/(t-l) Our method Displacement discontinuity method 

 b/a=0 b/a=0.5 b/a=1 b/a=0 b/a =0.5 b/a=1 

0.1 1.0038 1.0044 1.0041 1.0015 1.0022 1.0024 

0.2 1.0137 1.0167 1.0163 1.0112 1.0127 1.0146 

0.3 1.0299 1.0361 1.0392 1.0270 1.0305 1.0374 
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0.8 1.3466 1.4602 1.5540 1.3253 1.4483 1.5447 

0.9 1.6420 1.8191 1.9427 1.5908 1.8561 1.9143 

 

Figure 4: One elliptical-hole and one crack in an infinite elastic body subjected to far-field tensile and shear
stresses.

 

Fig. 5. Comparison of normalized SIFs FIIL, FIIR between our method and singular integral equation method 

 

3.2. Multiple elliptical-holes and one crack subjected to far-field tensile stress 

In order to show the application of the integral equation method, the interacting SIFs obtained by 

pseudo-dislocations method are considered for multiple elliptical-holes and one crack subjected to 

far-field tensile stress. 

Fig. 6 presents one horizontal crack (l) surrounded by a square array of eight equal elliptical-holes 
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Table 2: Comparison of normalized SIFs FIR between our method and displacement discontinuity method
(a/l=0.2).

a/(t−l) Our method Displacement discontinuity method
b/a=0 b/a=0.5 b/a=1 b/a=0 b/a=0.5 b/a=1

0.1 1.0038 1.0044 1.0041 1.0015 1.0022 1.0024
0.2 1.0137 1.0167 1.0163 1.0112 1.0127 1.0146
0.3 1.0299 1.0361 1.0392 1.0270 1.0305 1.0374
0.4 1.0538 1.0666 1.0767 1.0502 1.0580 1.0747
0.5 1.0882 1.1117 1.1343 1.0834 1.0994 1.1318
0.6 1.1383 1.1792 1.2204 1.1311 1.1627 1.2167
0.7 1.2150 1.2838 1.3497 1.2034 1.2657 1.3451
0.8 1.3466 1.4602 1.5540 1.3253 1.4483 1.5447
0.9 1.6420 1.8191 1.9427 1.5908 1.8561 1.9143

stress σ∞
yy (τ∞

xy = 0 in Fig. 4). Table 2 presents the normalized SIFs FIR of the internal
crack-tip R under various distances a/(t−l) (a/(t−l)= 0.1∼ 0.9) and sizes b/a (b/a=
0,0.5,1), obtained by our method and the displacement discontinuity method (ν=0.3), in
which b/a=0,0.5,1 stand for horizontal crack, horizontal elliptical-hole and circular-hole,
respectively. It can be seen that with the decrease of a/t, the FIR value becomes smaller.
As b/a is from 0 (crack) to 0.5 (elliptical-hole) and to 1 (circular-hole), almost all of FIR
values are increased for the same a/(t−l), indicating the circular-hole has greater effect
on the crack-tip R than elliptical-hole and crack. The comparison manifests that there
exists a small differences between our results and Yan’s results due to approximation of
displacement discontinuity method.

For one horizontal elliptical-hole o (b/a=0.5) and one horizontal crack LR (2l) only
under far-field shear stress τ∞

xy (τ∞
yy =0 in Fig. 4), Tang and Wang [19] give the interacting

SIFs of crack-tips L and R by adopting singular integral equation method. Fig. 5 depicts
the normalized SIFs FI IR, FI IL (FI I =KII/τ∞

xy
√

πl) of crack-tips R and L varying with l/t
under various distances a/t (a/t = 0.3,0.5) by our method and singular integral equa-
tion method. It is found that present solutions agree very well with Tang and Wang’s
solutions.

To sum up, these method are either complicated to solve the singular integral equa-
tion or difficult to obtain high accurate SIFs. Furthermore, they are only utilized to solve
the multiple hole-crack problem under far-field stresses, and the extension to study the
case of complex loadings (e.g., nonuniform surface stresses) might encounter difficulty.
Comparatively, our method not only can avoid the trouble in calculating the singular
integral equations (without any singular parts), but also has high accuracy (due to the
exact fundamental solutions) and wider applicability (suitable for both far-field stresses
and arbitrarily distributed surface stresses).
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3.2 Multiple elliptical-holes and one crack subjected to far-field tensile stress

In order to show the application of the integral equation method, the interacting SIFs
obtained by pseudo-dislocations method are considered for multiple elliptical-holes and
one crack subjected to far-field tensile stress.

Fig. 6 presents one horizontal crack (l) surrounded by a square array of eight equal
elliptical-holes (a,b) under far-field uniaxial tensile stress σ, in which t stands for the
distance between two adjacent elliptical-centers or elliptical-center and crack-center in
horizontal and vertical directions. Due to symmetry, KIL and KIR have the same val-
ues, and KI IL and KI IR are always equal to zero. Fig. 7 only illustrates our solutions
of normalized SIFs FI (FI = KI/σ

√
πl) varying with l/(t−a), as well as the solutions

of Han and Wang [23] (pseudo-dislocations method). When two crack-tips are far from
elliptical-holes (i.e., the crack length is small), FI is smaller than 1, which indicates that
these elliptical-holes have shielding effect on the crack. When two crack-tips are near
to elliptical-holes (i.e., the crack length is large), FI is larger than 1, which indicates that
these elliptical-holes have amplification effect on the crack. It can be observed that the
present solutions are in perfect agreement with those in [23].

Compared with pseudo-dislocations method, our method has higher calculation effi-
ciency, since pseudo-dislocations method is to use the Fourier-series to infinitely approx-
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Fig. 6. One horizontal crack surrounded by a square array of eight equal elliptical-holes in an infinite elastic body 

subjected to far-field tensile stress. 
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Figure 6: One horizontal crack surrounded by a square array of eight equal elliptical-holes in an infinite elastic
body subjected to far-field tensile stress.
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Figure 7: Comparison of normalized SIF FI between present method and pseudo-dislocations method.

imate the boundary conditions in their fundamental solutions and increasing Fourier-
series terms leads to low calculation efficiency [24, 25]. In addition, the method only is
available for the multiple hole-crack problem subjected to far-field stresses.

3.3 One elliptical-hole and one oriented crack subjected to far-field tensile
and nonuniform surface stress

At present, very few studies are related to the problem of multiple elliptical-holes and
cracks under far-field and nonuniform distributed surface stresses. For further showing
the effectiveness of the integral equation method, numerical method (by ANSYS soft-
ware) is applied to determine the interacting SIFs of elliptical-hole and crack under com-
plicated stresses.

Consider an infinite elastic plane with a horizontal elliptical-hole (a=1.5b=λ) and an
oriented crack (l=1, β=45◦) under far-field biaxial tension (σ∞

xx=0.5MPa, σ∞
yy=1MPa) and

surface stress on the elliptical-hole (n=−cos2 θMPa), as presented in Fig. 8, in which t is
the distance between the elliptical-center o and the crack-center O in horizontal direction
(t= 2). In order to solve the plane problem of elliptical-hole and crack, the model size
is 50m×50m and the type of element is PLANE183. The interacting SIFs KIL, KIR, KI IL
and KI IR at crack-tips L and R can be extracted by the interaction integral method after
solving stresses and strains at the vicinity of crack-tips. Fig. 9 shows the interacting SIFs
KIL, KIR, KI IL and KI IR varying with λ, calculated by our method and ANSYS software.
It can be seen that our solutions basically coincide with finite element solutions.
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Fig. 8. One horizontal elliptical-hole and one oriented crack in an infinite elastic body subjected to  

far-field tensile stress and surface stress on the elliptical-hole. 
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Figure 8: One horizontal elliptical-hole and one oriented crack in an infinite elastic body subjected to far-field
tensile stress and surface stress on the elliptical-hole.
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Figure 9: Comparison of interacting SIFs KIL, KIR, KI IL, KI IR between our method and ANSYS finite element
method.
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Since the finite element method is to utilize shape function interpolation and Gaussian
quadrature to denote the unknown field-variables in the whole region and the descrip-
tion of the function interpolation is independent of the mesh refinement, it is suitable
for the multiply connected domain problem under complex loadings [31–34]. However,
its computation accuracy depends on not only the mesh refinement but also extraction
method of SIFs (e.g., contour integral method, displacement correlation method etc.) [35].
Moreover, mesh refinement in the whole region leads to low calculation efficiency.

4 Computational examples

Currently, there are very few literatures on the systematic study of interacting SIFs for the
problem of elliptical-hole and crack under far-field and surface stresses. In this section,
in order to further investigate influence of elliptical-hole on interacting SIFs, take one
elliptical-hole o (major half-length a, and minor half-length b) and one crack LR (half-
length l) in an infinite elastic body subjected to various far-field (σ∞

xx, σ∞
yy) and surface

normal stresses on the elliptical-hole (n) and the crack (p) as a computational example
(Fig. 10), in which tension is treated as the positive. The orientation angle of the major
axis of ellipse and crack orientation angle are denoted by α, β, respectively, and Poisson’s
ratio ν=0.25. The connecting line of center-to-center between elliptical-hole and crack is
horizontal and its distance is denoted by t. The interacting SIFs KIL, KIR, KI IL and KI IR

4. Computational examples 

Currently, there are very few literatures on the systematic study of interacting SIFs for the 

problem of elliptical-hole and crack under far-field and surface stresses. In this section, in order to 

further investigate influence of elliptical-hole on interacting SIFs, take one elliptical-hole o (major 

half-length a, and minor half-length b) and one crack LR (half-length l) in an infinite elastic body 

subjected to various far-field (σxx
∞ , σyy

∞ ) and surface normal stresses on the elliptical-hole (n) and the 

crack (p) as a computational example (Fig. 10), in which tension is treated as the positive. The 

orientation angle of the major axis of ellipse and crack orientation angle are denoted by α, β, 

respectively, and Poisson’s ratio ν=0.25. The connecting line of center-to-center between 

elliptical-hole and crack is horizontal and its distance is denoted by t. The interacting SIFs KIL, KIR, 

KIIL and KIIR at internal crack-tips L and external crack-tip R are analyzed under different loadings 

(σxx
∞ /σyy

∞ , n, p), geometries (b/a, α, β, t) for providing some practical applications in engineering. For the 

purpose of convenience, the units of stress and distance are m and MPa, respectively. The 

investigations might be of great significance for practical engineering applications, where the proper 

shapes and locations of the holes can be used to promote or restrain crack propagation.  

2l

t

L

R

O

σyy
∞

σyy
∞

σxx
∞

σxx
∞

β

o

n

a
b α

θ

p

 

Fig. 10. One elliptical-hole and one crack in an infinite elastic body subjected to far-field tensile stress and surface 

normal stresses on the elliptical-hole and crack. 
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Figure 10: One elliptical-hole and one crack in an infinite elastic body subjected to far-field tensile stress and
surface normal stresses on the elliptical-hole and crack.
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at internal crack-tips L and external crack-tip R are analyzed under different loadings
(σ∞

xx/σ∞
yy, n, p), geometries (b/a, α, β, t) for providing some practical applications in en-

gineering. For the purpose of convenience, the units of stress and distance are m and
MPa, respectively. The investigations might be of great significance for practical engi-
neering applications, where the proper shapes and locations of the holes can be used to
promote or restrain crack propagation.

4.1 Effect of far-field stress ratio σ∞
xx/σ∞

yy

Fig. 11 plots interacting SIFs KIR, KI IR (solid line) and KIL, KI IL (dotted line) versus crack
orientation angle β for various values of σ∞

xx/σ∞
yy (σ∞

xx/σ∞
yy = 0,1,2) and t (t= 3.4,4,5,∞),

under σ∞
yy = 1, n = p = 0 (without any surface stresses), a = 2, b = 1.6, l = 1, α = 0◦. It is

worth noting that t=∞ stands for the case of single crack (i.e., without elliptical-hole’s
effect). It is found from Fig. 11 that the curves of interacting SIFs versus crack orientation
angle β at right crack-tip R (KIR−β, KI IR−β) have greater fluctuation than those at left
crack-tip L (KIL−β, KI IL−β), since the elliptical-hole has stronger interference effect on
the crack-tip nearby itself. It can be seen from KIR−β, KIL−β, curves (Figs. 11a), (c), (e))
that the locations of maximum KIR, KIL values are the same as the maximum KI of single
crack (i.e., t = ∞), differently from KI IR, KI IL (Figs. 11(b), (d), (f)). For example, when
σ∞

xx/σ∞
yy=0, the maximum values of KIR and KIL always appear at β=0◦ for all of t, while

the locations of maximum KI IR, KI IL are dependent of t. Decreasing t usually results in
KIR, KI IR, KIL, KI IL values away from those of single crack, since the closer to the crack
the elliptical-hole, the stronger the interference influence (caused by elliptical-hole) is.

When σ∞
xx/σ∞

yy = 0 (Figs. 11(a)-(b)), interacting SIFs (except KI IL) have greater values
than the case of single crack for almost all of β, suggesting that crack is subjected to
amplifying effect from the elliptical-hole. The amplifying effect increases when β and t
decrease. As σ∞

xx/σ∞
yy becomes larger (σ∞

xx/σ∞
yy≥1, Figs. 11(c)-(f)), there appears an inter-

section point between KIR−β, KIL−β curves and KI−β curves (single crack), between
KI IR−β curves and KI I−β curves (single crack). Correspondingly, the orientation angle
of crack is called as neutral orientation angle β0, in which the elliptical-hole has no in-
fluence on SIFs of crack-tips. When 0◦≤ β< β0 or β0 < β≤ 90◦, the KIR, KI IR, KIL have
greater or smaller values than the case of single crack, manifesting that crack is subjected
to amplifying or shielding effect from the elliptical-hole. In general, the shielding degree
increases when β increases and t decreases. It can be also observed that increasing σ∞

xx/σ∞
yy

leads to decrease of β0 of KIR, KIL and increase of shielding angle range (β0 < β≤ 90◦),
which benefits to the layout of stop-holes. Increasing t has significant influence on the
degree of amplifying or shielding effect, but almost no influence on β0.

4.2 Effect of surface stresses n, p

Fig. 12 illustrates interacting SIFs KIR, KI IR (solid line) and KIL, KI IL (dotted line) versus
crack orientation angle β for various values of n, p (n= p= 0, n=−1, p= 0, and n= 0,
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case of single crack, manifesting that crack is subjected to amplifying or shielding effect from the 
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interference effect on the crack-tip nearby itself. It can be seen from KIR-β, KIL-β curves (Figs. 11a, c, e) 

that the locations of maximum KIR, KIL values are the same as the maximum KI of single crack (i.e., 

t=∞), differently from KIIR, KIIL (Figs. 11b, d, f). For example, when σxx
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KIR and KIL always appear at β=0° for all of t, while the locations of maximum KIIR, KIIL are dependent 

of t. Decreasing t usually results in KIR, KIIR, KIL, KIIL values away from those of single crack, since the 

closer to the crack the elliptical-hole, the stronger the interference influence (caused by elliptical-hole) 

is. 

When σxx
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∞ =0 (Figs. 11a-b), interacting SIFs (except KIIL) have greater values than the case of 

single crack for almost all of β, suggesting that crack is subjected to amplifying effect from the 
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also observed that increasing σxx
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interference effect on the crack-tip nearby itself. It can be seen from KIR-β, KIL-β curves (Figs. 11a, c, e) 

that the locations of maximum KIR, KIL values are the same as the maximum KI of single crack (i.e., 
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is. 
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elliptical-hole. The amplifying effect increases when β and t decrease. As σxx
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SIFs of crack-tips. When 0°≤β<β0 or β0<β≤90°, the KIR, KIIR, KIL have greater or smaller values than the 

case of single crack, manifesting that crack is subjected to amplifying or shielding effect from the 

elliptical-hole. In general, the shielding degree increases when β increases and t decreases. It can be 

also observed that increasing σxx
∞ /σyy

∞  leads to decrease of β0 of KIR, KIL and increase of shielding angle 

range (β0<β≤90°), which benefits to the layout of stop-holes. Increasing t has significant influence on 

the degree of amplifying or shielding effect, but almost no influence on β0. 
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SIFs of crack-tips. When 0°≤β<β0 or β0<β≤90°, the KIR, KIIR, KIL have greater or smaller values than the 

case of single crack, manifesting that crack is subjected to amplifying or shielding effect from the 

elliptical-hole. In general, the shielding degree increases when β increases and t decreases. It can be 

also observed that increasing σxx
∞ /σyy

∞  leads to decrease of β0 of KIR, KIL and increase of shielding angle 

range (β0<β≤90°), which benefits to the layout of stop-holes. Increasing t has significant influence on 

the degree of amplifying or shielding effect, but almost no influence on β0. 
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4.2. Effect of surface stresses n, p 

Fig. 12 illustrates interacting SIFs KIR, KIIR (solid line) and KIL, KIIL (dotted line) versus crack 

orientation angle β for various values of n, p (n=p=0, n=-1, p=0, and n=0, p=-1) and t (t=3.4, 4, 5, ∞), 

under σxx
∞ =2, σyy

∞ =1 (i.e., σxx
∞ /σyy

∞ =2, for obtaining the smaller β0), a=2, b=1.6, l=1, α=0°. For clarity, 

Figs. 11e-f (i.e., n=p=0) are again plotted in Figs. 12a-b. As n changes from zero (Figs. 12a-b) to 

compressive stresses (n=-1, expanding the elliptical-hole, see Figs. 12c-d), almost all of maximum 

values of KIR, KIIR, KIL, KIIL are increased, suggesting that surface compressive stress on the 

elliptical-hole is helpful for crack initiation and propagation. Interestingly, the locations of maximum 

KIR, KIL values are changed from 90° to 0° for smaller t (t=3.4, 4) with increasing n, differently from 

the case of far-filed stresses (see Fig. 11). As p is varied from zero (Figs. 12a-b) to compressive stresses 

(p=-1, opening the crack, Figs. 12e-f), all of maximum values of KIR, KIL increase greatly, while the 

maximum KIIR, KIIL values have hardly change, since p mainly affect KI but not KII. 

The neutral angle β0 are also found between KIR-β, KIL-β curves and KI-β curves (single crack), 

between KIIR-β curves and KII-β curves (single crack). Differently from the case of far-filed stresses, n 

and p have almost no influence on β0. In addition, the holed-cracked distance have hardly influence on 

β0 of KIR, KIL, KIIR with the change in n, while increasing t results in the small increase of β0 of KIR, KIL 

for all of p. 
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the case of far-filed stresses (see Fig. 11). As p is varied from zero (Figs. 12a-b) to compressive stresses 

(p=-1, opening the crack, Figs. 12e-f), all of maximum values of KIR, KIL increase greatly, while the 

maximum KIIR, KIIL values have hardly change, since p mainly affect KI but not KII. 

The neutral angle β0 are also found between KIR-β, KIL-β curves and KI-β curves (single crack), 

between KIIR-β curves and KII-β curves (single crack). Differently from the case of far-filed stresses, n 
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for all of p. 
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Fig. 12. Interacting SIFs KIR, KIIR (solid line) and KIL, KIIL (dotted line) versus β for various values of n, p and t  

(σxx
∞ =2, σyy

∞ =1, a=2, b=1.6, l=1, α=0°). 

 

4.3. Effect of elliptical-hole size b/a 

Fig. 13 shows interacting SIFs KIR, KIIR (solid line) and KIL, KIIL (dotted line) versus crack 

orientation angle β for various values of b/a (b/a=0.5, 0.8, 1) and t (t=3.4, 4, 5, ∞), under σxx
∞ =2, σyy

∞ =1, 

n=p=0, l=1, α=0°. Note here that Figs. 13 c-d are the same as Figs. 11e-f. It can be seen that the KIR-β, 

KIIR-β, KIL-β, KIIL-β curves is deviated from those of single crack as b/a is varied from 0.5 to 1 (i.e., 

circular-hole), indicating that the circular-hole has stronger interference influence on the crack than 

elliptical-hole. With the increase in b/a, the maximum KIR, KIL values decrease while the maximum KIIR, 

KIIL increase. Similar to surface stress applied on the elliptical-hole (Figs. 12c-d), the locations of 

maximum KIR, KIL values are changed from 90° to 0° for smaller t (t=3.4) with increasing b/a. 

Moreover, when b/a is smaller (b/a=0.5, Fig. 13a), t has almost no influence on the maximum KIR, KIL 

values. As b/a becomes larger (Figs. 13c-f), decreasing t usually leads to decrease of KIR, KIL and 

increase of KIIR, KIIL. 

Similar to the case of far-field stresses, almost all of KIR, KIIR, KIL, KIIL are greater than those of 

single crack when b/a=0.5 (Figs. 13a-b), indicating that the elliptical-hole has amplifying effect on 

crack, and amplifying effect decreases with increasing β and t. As b/a become larger, there appears an 

neutral crack orientation angle β0 between KI-β curves of crack-tips R, L and single crack, between 

KII-β curves of crack-tips R and single crack. Increasing b/a leads to smaller β0 of KIR, KIL and larger 

shielding angle range (β0<β≤90°), while the β0 of KIIR, KIIL is almost independent of b/a. Increasing t 
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Figure 12: Interacting SIFs KIR, KI IR (solid line) and KIL, KI IL (dotted line) versus β for various values of n,
p and t (σ∞

xx =2, σ∞
yy =1, a=2, b=1.6, l=1, α=0◦).
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p =−1) and t (t = 3.4,4,5,∞), under σ∞
xx = 2, σ∞

yy = 1 (i.e., σ∞
xx/σ∞

yy = 2, for obtaining the
smaller β0), a=2, b=1.6, l=1, α=0◦. For clarity, Figs. 11(e)-(f) (i.e., n= p=0) are again
plotted in Figs. 12(a)-(b). As n changes from zero (Figs. 12(a)-(b)) to compressive stresses
(n=−1, expanding the elliptical-hole, see Figs. 12(c)-(d)), almost all of maximum values
of KIR, KI IR, KIL, KI IL are increased, suggesting that surface compressive stress on the
elliptical-hole is helpful for crack initiation and propagation. Interestingly, the locations
of maximum KIR, KIL values are changed from 90◦ to 0◦ for smaller t (t = 3.4,4) with
increasing n, differently from the case of far-filed stresses (see Fig. 11). As p is varied
from zero (Figs. 12(a)-(b)) to compressive stresses (p=−1, opening the crack, Figs. 12(e)-
(f)), all of maximum values of KIR, KIL increase greatly, while the maximum KI IR, KI IL
values have hardly change, since p mainly affect KI but not KI I .

The neutral angle β0 are also found between KIR−β, KIL−β curves and KI−β curves
(single crack), between KI IR−β curves and KI I−β curves (single crack). Differently from
the case of far-filed stresses, n and p have almost no influence on β0. In addition, the
holed-cracked distance have hardly influence on β0 of KIR, KIL, KI IR with the change in
n, while increasing t results in the small increase of β0 of KIR, KIL for all of p.

4.3 Effect of elliptical-hole size b/a

Fig. 13 shows interacting SIFs KIR, KI IR (solid line) and KIL, KI IL (dotted line) versus
crack orientation angle β for various values of b/a (b/a=0.5,0.8,1) and t (t=3.4,4,5,∞),
under σ∞

xx =2, σ∞
yy=1, n= p=0, l=1, α=0◦. Note here that Figs. 13(c)-(d) are the same as

Figs. 11(e)-(f). It can be seen that the KIR−β, KI IR−β, KIL−β, KI IL−β curves is deviated
from those of single crack as b/a is varied from 0.5 to 1 (i.e., circular-hole), indicating
that the circular-hole has stronger interference influence on the crack than elliptical-hole.
With the increase in b/a, the maximum KIR, KIL values decrease while the maximum
KI IR, KI IL increase. Similar to surface stress applied on the elliptical-hole (Figs. 12(c)-(d)),
the locations of maximum KIR, KIL values are changed from 90◦ to 0◦ for smaller t (t=3.4)
with increasing b/a. Moreover, when b/a is smaller (b/a= 0.5, Fig. 13(a)), t has almost
no influence on the maximum KIR, KIL values. As b/a becomes larger (Figs. 13(c)-(f)),
decreasing t usually leads to decrease of KIR, KIL and increase of KI IR, KI IL.

Similar to the case of far-field stresses, almost all of KIR, KI IR, KIL, KI IL are greater
than those of single crack when b/a= 0.5 (Figs. 13(a)-(b)), indicating that the elliptical-
hole has amplifying effect on crack, and amplifying effect decreases with increasing β
and t. As b/a become larger, there appears an neutral crack orientation angle β0 between
KI−β curves of crack-tips R, L and single crack, between KI I−β curves of crack-tips R
and single crack. Increasing b/a leads to smaller β0 of KIR, KIL and larger shielding angle
range (β0 < β≤90◦), while the β0 of KI IR, KI IL is almost independent of b/a. Increasing
t has significant influence on amplifying and shielding degree of KIR, KI IR, KIL, KI IL but
almost no effect β0 on and shielding angle range.
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has significant influence on amplifying and shielding degree of KIR, KIIR, KIL, KIIL, but almost no effect 

on their β0 and shielding angle range. 
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has significant influence on amplifying and shielding degree of KIR, KIIR, KIL, KIIL, but almost no effect 

on their β0 and shielding angle range. 

 

 

 

Fig. 13. Interacting SIFs KIR, KIIR (solid line) and KIL, KIIL (dotted line) versus β for various values of b/a and t  

(σxx
∞ =2, σyy

∞ =1, n=p=0, l=1, α=0°). 

 

4.4. Effect of elliptical-hole orientation angle α  

Fig. 14 presents interacting SIFs KIR, KIIR (solid line) and KIL, KIIL (dotted line) versus crack 

orientation angle β for various values of α (α=0°, 45°, 90°) and t (t=3.4, 4, 5, ∞), under σxx
∞ =2, σyy

∞ =1, 

n=p=0, a=2, b=1.6, l=1. Figs. 11e-f (i.e., α=0°) are again presented in Figs. 14a-b for clarity. It can be 

found that as α is increased, the varying tendencies of KIR-β, KIIR-β, KIL-β, KIIL-β curves have almost no 

change, and the maximum values of KIR, KIL have a slight decrease while the maximum values of KIIR, 

0 15 30 45 60 75 90

1.5

2.0

2.5

3.0

3.5

4.0

a

 K
I

 

 t=3.4

 t=4

 t=5

 t=∞

b/a=0.5

°

0 15 30 45 60 75 90

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

b

 K
II

 

 t=3.4

 t=4

 t=5

 t=∞

b /a=0.5

°

0 15 30 45 60 75 90

1.5

2.0

2.5

3.0

3.5

4.0

b /a=0.8

K
I

c  t=3.4

 t=4

 t=5

 t=∞

°

0 15 30 45 60 75 90

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

b /a=0.8
K

II

d  t=3.4

 t=4

 t=5

 t=∞

°

0 15 30 45 60 75 90

1.5

2.0

2.5

3.0

3.5

4.0

e

  K
I

b/a=1
 t=3.4

 t=4

 t=5

 t=∞

°

0 15 30 45 60 75 90

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

b/a=1

 

  

f

K
II

°

 t=3.4

 t=4

 t=5

 t=∞

(e) (f)

Figure 13: Interacting SIFs KIR, KI IR (solid line) and KIL, KI IL (dotted line) versus β for various values of b/a
and t (σ∞

xx =2, σ∞
yy =1, n= p=0, l=1, α=0◦).
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4.4 Effect of elliptical-hole orientation angle α

Fig. 14 presents interacting SIFs KIR, KI IR (solid line) and KIL, KI IL (dotted line) versus
crack orientation angle β for various values of α (α = 0◦,45◦,90◦) and t (t = 3.4,4,5,∞),
under σ∞

xx = 2, σ∞
yy = 1, n= p= 0, l = 1, Figs. 11(e)-(f) (i.e., α= 0◦) are again presented in

Figs. 14(a)-(b) for clarity. It can be found that as α is increased, the varying tendencies of
KIR−β, KI IR−β, KIL−β, KI IL−β curves have almost no change, and the maximum values
of KIR, KIL have a slight decrease while the maximum values of KI IR, KI IL is gradually in-
creased. As t is increased, the locations of maximum KIR, KIL values are changed from 0◦

to 90◦ for almost all of α. In addition, it can be observed that when α=45◦ (Figs. 14(c)), the
KIR and KIL of β=90◦ have different values, which is different from the above examples.
This is because that the two crack-tips L and R are non-symmetric with the elliptical-hole.

For all of α, the neutral angle β0 can be also found on the KIR−β, KI IR−β, KIL−
β curves. Increasing ξ causes a little decrease of β0 of KIR, KIL and amplifying angle
range (0◦ ≤ β < β0), while α has almost no influence on the β0 of KI IR (except α = 45◦,
Fig. 14d). Interestingly, there appear two neutral angles on the KI IR−β curve when α=45◦

(Fig. 14(d)), which is different from the above examples. In addition, it can be observed
that when β> 45◦, the elliptical-hole always shields the KIR, KIL of crack-tips, which is
basically irrelative to α.

From the above calculations and comparative analyses, it is verified that the new in-
tegral method has the advantages of simple form (without singularity), high accuracy
and flexible loading conditions over current theoretical methods (e.g., Green’s function
method, displacement discontinuity method, singular integral equation method, pseudo-
dislocations method) in calculating Mode I and Mode II SIFs of multiple elliptical-holes
and cracks under both far-field and arbitrarily surface stresses. This new method can
be further extended to calculate Mode III SIFs of multiple elliptical-holes and cracks un-
der anti-plane stresses. Considering the elastic fundamental solutions and superposition
principle, it is limited to linear elastic problem.

5 Conclusions

(1) The exact fundamental stress solutions of single elliptical-hole under arbitrarily
concentrated surface forces are derived based on Cauchy integral theorem to es-
tablish new integral equation formulations, which has the simpler formulation and
higher calculation efficiency than those solved by Fourier series method. Accord-
ingly, the new integral equation for the problem of multiple circular-holes and
cracks can be developed for treating the more complicated problem of multiple
elliptical-holes and cracks. No limitations are required on the sizes, number, loca-
tions and orientations of the elliptical-holes and cracks.

(2) The new integral equation method is proved to be valid by comparing our solu-
tions of interacting SIFs with those obtained by current theoretical and numerical
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KIIL is gradually increased. As t is increased, the locations of maximum KIR, KIL values are changed 

from 0° to 90° for almost all of α. In addition, it can be observed that when α=45° (Figs. 14c), the KIR 

and KIL of β=90° have different values, which is different from the above examples. This is because 

that the two crack-tips L and R are non-symmetric with the elliptical-hole.  

For all of α, the neutral angle β0 can be also found on the KIR-β, KIIR-β, KIL-β curves. Increasing α 

causes a little decrease of β0 of KIR, KIL and amplifying angle range (0°≤β<β0), while α has almost no 

influence on the β0 of KIIR (except α=45°, Fig. 14d). Interestingly, there appear two neutral angles on 

the KIIR-β curve when α=45° (Fig. 14d), which is different from the above examples. In addition, it can 

be observed that when β＞45°, the elliptical-hole always shields the KIR, KIL of crack-tips, which is 

basically irrelative to α. 
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KIIL is gradually increased. As t is increased, the locations of maximum KIR, KIL values are changed 

from 0° to 90° for almost all of α. In addition, it can be observed that when α=45° (Figs. 14c), the KIR 

and KIL of β=90° have different values, which is different from the above examples. This is because 

that the two crack-tips L and R are non-symmetric with the elliptical-hole.  

For all of α, the neutral angle β0 can be also found on the KIR-β, KIIR-β, KIL-β curves. Increasing α 

causes a little decrease of β0 of KIR, KIL and amplifying angle range (0°≤β<β0), while α has almost no 

influence on the β0 of KIIR (except α=45°, Fig. 14d). Interestingly, there appear two neutral angles on 

the KIIR-β curve when α=45° (Fig. 14d), which is different from the above examples. In addition, it can 

be observed that when β＞45°, the elliptical-hole always shields the KIR, KIL of crack-tips, which is 

basically irrelative to α. 

 

 

Fig. 14. Interacting SIFs KIR, KIIR (solid line) and KIL, KIIL (dotted line) versus β for various values of α and t  

0 15 30 45 60 75 90

1.5

2.0

2.5

3.0

3.5

4.0

 =0°
K

I
a  t=3.4

 t=4

 t=5

 t=∞

°

0 15 30 45 60 75 90

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 =0°

K
II

b  t=3.4

 t=4

 t=5

 t=∞

°

0 15 30 45 60 75 90

1.5

2.0

2.5

3.0

3.5

4.0

c

 K
I

 =45°
 t=3.4

 t=4

 t=5

 t=∞

°

0 15 30 45 60 75 90

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

d

 K
II

 t=3.4

 t=4

 t=5

 t=∞

 =45°

°

0 15 30 45 60 75 90

1.0

1.5

2.0

2.5

3.0

3.5

4.0

e

  

 

K
I

 t=3.4

 t=4

 t=5

 t=∞

 =90°

°

0 15 30 45 60 75 90

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 

  

f

K
II

°

 t=3.4

 t=4

 t=5

 t=∞

 =90°

(a) (b)

KIIL is gradually increased. As t is increased, the locations of maximum KIR, KIL values are changed 

from 0° to 90° for almost all of α. In addition, it can be observed that when α=45° (Figs. 14c), the KIR 

and KIL of β=90° have different values, which is different from the above examples. This is because 

that the two crack-tips L and R are non-symmetric with the elliptical-hole.  

For all of α, the neutral angle β0 can be also found on the KIR-β, KIIR-β, KIL-β curves. Increasing α 

causes a little decrease of β0 of KIR, KIL and amplifying angle range (0°≤β<β0), while α has almost no 

influence on the β0 of KIIR (except α=45°, Fig. 14d). Interestingly, there appear two neutral angles on 

the KIIR-β curve when α=45° (Fig. 14d), which is different from the above examples. In addition, it can 

be observed that when β＞45°, the elliptical-hole always shields the KIR, KIL of crack-tips, which is 

basically irrelative to α. 
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KIIL is gradually increased. As t is increased, the locations of maximum KIR, KIL values are changed 

from 0° to 90° for almost all of α. In addition, it can be observed that when α=45° (Figs. 14c), the KIR 

and KIL of β=90° have different values, which is different from the above examples. This is because 

that the two crack-tips L and R are non-symmetric with the elliptical-hole.  

For all of α, the neutral angle β0 can be also found on the KIR-β, KIIR-β, KIL-β curves. Increasing α 

causes a little decrease of β0 of KIR, KIL and amplifying angle range (0°≤β<β0), while α has almost no 

influence on the β0 of KIIR (except α=45°, Fig. 14d). Interestingly, there appear two neutral angles on 

the KIIR-β curve when α=45° (Fig. 14d), which is different from the above examples. In addition, it can 

be observed that when β＞45°, the elliptical-hole always shields the KIR, KIL of crack-tips, which is 

basically irrelative to α. 
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KIIL is gradually increased. As t is increased, the locations of maximum KIR, KIL values are changed 

from 0° to 90° for almost all of α. In addition, it can be observed that when α=45° (Figs. 14c), the KIR 

and KIL of β=90° have different values, which is different from the above examples. This is because 

that the two crack-tips L and R are non-symmetric with the elliptical-hole.  

For all of α, the neutral angle β0 can be also found on the KIR-β, KIIR-β, KIL-β curves. Increasing α 

causes a little decrease of β0 of KIR, KIL and amplifying angle range (0°≤β<β0), while α has almost no 

influence on the β0 of KIIR (except α=45°, Fig. 14d). Interestingly, there appear two neutral angles on 

the KIIR-β curve when α=45° (Fig. 14d), which is different from the above examples. In addition, it can 

be observed that when β＞45°, the elliptical-hole always shields the KIR, KIL of crack-tips, which is 

basically irrelative to α. 
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KIIL is gradually increased. As t is increased, the locations of maximum KIR, KIL values are changed 

from 0° to 90° for almost all of α. In addition, it can be observed that when α=45° (Figs. 14c), the KIR 

and KIL of β=90° have different values, which is different from the above examples. This is because 

that the two crack-tips L and R are non-symmetric with the elliptical-hole.  

For all of α, the neutral angle β0 can be also found on the KIR-β, KIIR-β, KIL-β curves. Increasing α 

causes a little decrease of β0 of KIR, KIL and amplifying angle range (0°≤β<β0), while α has almost no 

influence on the β0 of KIIR (except α=45°, Fig. 14d). Interestingly, there appear two neutral angles on 

the KIIR-β curve when α=45° (Fig. 14d), which is different from the above examples. In addition, it can 

be observed that when β＞45°, the elliptical-hole always shields the KIR, KIL of crack-tips, which is 

basically irrelative to α. 
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Figure 14: Interacting SIFs KIR, KI IR (solid line) and KIL, KI IL (dotted line) versus β for various values of α
and t (σ∞

xx =2, σ∞
yy =1, n= p=0, a=2, b=1.6, l=1).
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methods. It has simpler form (without singularity), higher accuracy (owing to exact
fundamental stress solutions) and wider application (under both far-field stresses
and arbitrary surface stresses) than the common methods. It can be further devel-
oped for the anisotropic problem of multiple holes and cracks.

(3) For an infinite elastic body of one elliptical-hole and one crack under far-field bi-
axial stresses (σ∞

xx≥ σ∞
yy), there appears a neutral crack orientation angle β0 (with-

out elliptical-hole’s effect) and the interacting SIFs of the crack-tip is amplified at
0≤ β< β0 or shielded at β0 < β<90◦ by the elliptical-hole. The far-field stress ratio
(σ∞

xx/σ∞
yy) and elliptical-hole size (b/a≤ 1) have significant influence on β0 of KI .

Increasing σ∞
xx/σ∞

yy and b/a (closer to 1, i.e., circular-hole) usually decreases β0 of KI
and enlarges shielding angle range, which benefits to the layout of stop-holes.

(4) The surface compressive stresses applied onto elliptical-hole (n) and crack (p) have
great influence on interacting SIFs but not on β0. Increasing n and p usually re-
sults in increase of interacting SIFs and facilitates crack propagation and fracture
networks. The elliptical-hole orientation angle (α) and holed-cracked distance (t)
have great influence on the interacting SIFs while have little effect on β0. Increasing
α usually leads to decrease of interacting SIFs and facilitates the crack-arrest. The
smaller the t, the larger the effect of amplifying or shielding of interacting SIFs is.
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