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Abstract. In this paper, we consider the numerical solutions of the semilinear Riesz
space-fractional diffusion equations (RSFDEs) with time delay, which constitute an im-
portant class of differential equations of practical significance. We develop a novel im-
plicit alternating direction method that can effectively and efficiently tackle the RSFDEs
in both two and three dimensions. The numerical method is proved to be uniquely
solvable, stable and convergent with second order accuracy in both space and time.
Numerical results are presented to verify the accuracy and efficiency of the proposed
numerical scheme.
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1 Introduction

It is widely known that mathematical models with time delay are of fundamental impor-
tance in many scientific and engineering applications, including economics, physics, pop-
ulation ecology and medicine. As a result, the theoretical analysis and numerical com-
putation of many differential equations with time delay have been studied by numerous
researchers [1, 16, 23, 24]. Fractional differential equations with delay have received a lot
of attentions [2,3,8,40,43,52,63,64] as a result of the development of fractional calculus in
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science and engineering [5, 6, 26, 27, 39, 47–49]. As a typical example, the fractional Bloch
equation with delay was proposed to depict the nuclear magnetic resonance [2]. Most
of the problems for fractional differential equations and fractional differential equations
with delay can not be solved analytically. Thereby, numerical treatment for such type
of equations becomes a hot topic in the communities of numerical mathematics. In re-
cent years, the attention on the numerical computations of fractional differential equa-
tions has been discussed by many researchers [7, 10–14, 19, 20, 22, 42, 51, 54, 55, 57, 60–62].
For example, in [59] the authors considered a class of variable order fractional advec-
tion diffusion equation with a nonlinear reaction term. The two-dimensional RSFDEs
with nonlinear reaction term was studied in [21]. Recently, the alternating direction im-
plicit Galerkin-Legendre spectral method was proposed to solve the two-dimensional
nonlinear reaction-diffusion equations with the Riesz space-fractional derivatives in [53].
In [58], the authors developed the finite element method to solve the two-dimensional
nonlinear Riesz space fractional derivatives Fisher’ s equation. In [56], a finite difference
scheme was proposed for the two-dimensional diffusion equation with the Riesz space-
fractional derivatives.

Very recently, some researchers developed methods on numerical solutions of frac-
tional PDEs with time delay. The finite difference method was developed for solving
the semi-linear space-fractional diffusion equations with time delay in [15]. In [45], the
authors studied a linearized Crank-Nicolson method for solving the nonlinear fractional
diffusing equation with multi-delay. In [41], the authors proposed the invariant subspace
approach to solve a class of time-fractional partial differential equations with time delay.
However, all of the works mentioned above focus on the one dimensional fractional PDEs
with delay. In this paper, we shall develop high order schemes for the semilinear Riesz
space-fractional diffusion equations with time delay in both two and three dimensions.

The rest of the paper is organized as follows. In Section 2, we present the numerical
methods for the two-dimensional and three-dimensional semilinear RSFDEs with time
delay. The stability and convergence of the method are proved in Section 3. Finally, we
carry out some numerical experiments to confirm the theoretical results of the proposed
method in Section 4.

2 Numerical methods for semilinear RSFDEs with time delay

In this paper, we consider the following two-dimensional and three-dimensional semi-
linear RSFDEs with time delay:

∂u(x,y,t)
∂t

=Kx
∂αu(x,y,t)

∂|x|α +Ky
∂βu(x,y,t)

∂|y|β
+ f (x,y,t,u,u(x,y,t−s)),

1<α,β≤2, (x,y,t)∈Ω×[0,T],
u(x,y,t)=0, (x,y)∈∂Ω, t∈ [0,T],
u(x,y,t)= ϕ(x,y,t), (x,y,t)∈Ω×[−s,0],

(2.1)
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and

∂u(x,y,z,t)
∂t

=Kx
∂αu(x,y,z,t)

∂|x|α +Ky
∂βu(x,y,z,t)

∂|y|β
+Kz

∂γu(x,y,z,t)
∂|z|γ

+g(x,y,z,t,u,u(x,y,z,t−s)),
1<α,β,γ≤2, (x,y,z,t)∈ (0,Lx)×(0,Ly)×(0,Lz)×[0,T],

u(0,y,z,t)=u(Lx,y,z,t)=0, u(x,0,z,t)=u(x,Ly,z,t)=0,
u(x,y,0,t)=u(x,y,Lz,t)=0,
u(x,y,z,t)= ϕ(x,y,z,t), (x,y,z,t)∈ (0,Lx)×(0,Ly)×(0,Lz)×[−s,0],

(2.2)

where Ω=(0,Lx)×(0,Ly), and Kx,Ky,Kz≥ 0 signify the dispersion coefficients, s> 0 is a
time delay.

Throughout the paper, we assume that

(A1) the solutions of the problem (2.1) and (2.2) have piecewise smooth derivatives with
respect to t in the subintervals (ns,(n+1)s), n=0,1,2,···,

(A2) the RHS function f in Eq. (2.1) has the first-order continuous partial derivatives
with respect to its fourth and fifth arguments. Moreover, the following Lipschitz
condition

| f (x,y,t,u1,u2)− f (x,y,t,ū1,ū2)|≤Ł1|u1−ū1|+Ł2|u2−ū2| (2.3)

holds for all u1, u2, ū1, ū2 over [0,Lx]×[0,Ly]×[0,T] with the Lipschitz constants β1,
β2. Similarly, the RHS function g in Eq. (2.2) has the first-order continuous partial
derivatives with respect to its fifth and sixth arguments, and the following Lipschitz
condition

|g(x,y,z,t,u1,u2)−g(x,y,z,t,ū1,ū2)|≤ L̄1|u1−ū1|+ L̄2|u2−ū2| (2.4)

holds for all u1, u2, ū1, ū2 over [0,Lx]×[0,Ly]×[0,Lz]×[0,T], where L1, L1, L̄1, L̄2 are
Lipschitz constants.

The Riesz space fractional operators ∂αu
∂|x|α , ∂βu

∂|y|β , ∂γu
∂|z|γ are defined as (see [20])

∂αu
∂|x|α =−cα[0Dα

xu+xDα
Lx

u],

∂βu
∂|y|β

=−cβ[0Dβ
y u+yDβ

Ly
u],

∂γu
∂|z|γ =−cγ[0Dγ

z u+zDγ
Lz

u],

where
cα =

1
2cos(πα

2 )
, cβ =

1

2cos(πβ
2 )

, cγ =
1

2cos(πγ
2 )

,
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and

0Dα
xu(x,y,t)=

1
Γ(2−α)

∂2

∂x2

∫ x

0
(t−τ)1−αu(τ,y,t)dτ, (2.5a)

xDα
Lx

u(x,y,t)=
1

Γ(2−α)

∂2

∂x2

∫ Lx

x
(t−τ)1−αu(τ,y,t)dτ. (2.5b)

In a similar manner, we can define the other space Riesz fractional derivatives with re-
spect to y and z, respectively.

Next, we define τ = T/N, tn = nτ, n = 0,1,··· ,N, s = mτ. Let hx =
Lx
Mx

, xi = ihx for

i=0,1,··· ,Mx, and hy=
Ly
My

, yj= jhy for j=0,1,··· ,My, hz=
Lz
Mz

, zk=khz for k=0,1,··· ,Mz be
the space step-sizes. Define un

i,j as the numerical approximation to u(xi,yj,tn) and un
i,j,k as

the numerical approximation to u(xi,yj,zk,tn). Denote Ω̄h={(xi,yj)|0≤i≤Mx, 0≤ j≤My},
Ωh = Ω̄h∩Ω, ∂Ωh = Ω̄h∩∂Ω,

Vh ={v|v={vi,j}, 0≤ i≤Mx, 0≤ j≤My},
V̊h ={v|v={vi,j}, 0≤ i≤Mx, 0≤ j≤My, vi,j =0, if (xi,yj)∈∂Ωh}.

In addition, we define the following operators

δtvn+1/2
i,j =

1
τ
(vn+1

i,j −vn
i,j), vn+1/2

i,j =
1
2
(vn+1

i,j +vn
i,j).

In the following, we review some useful lemmas.

Lemma 2.1 ([20]). Suppose that 1<γ<2, v(x)∈C5[0,L]. If v(x)=0, ∀x∈(−∞,0]∪[L,+∞),
then

0Dγ
x v(xi)=

1
hγ

i+1

∑
k=0

ω
(k)
γ v(xi−k+1)+O(h2), (2.6a)

xDγ
L v(xi)=

1
hγ

m−i+1

∑
k=0

ω
(k)
γ v(xi+k−1)+O(h2), (2.6b)

where

ω
(0)
γ =

γ

2
g(γ)0 ,

ω
(k)
γ =

γ

2
g(γ)k +

2−γ

2
g(γ)k−1,

g(γ)0 =1,g(γ)k =(1− γ+1
k

)g(γ)k−1, k=1,2,··· .

Lemma 2.2 ([20]). Suppose that 1<γ≤2, then {g(γ)k } satisfy
g(γ)0 =1, g(γ)1 =−γ, g(γ)2 =

γ(γ−1)
2

>0,

1≥ g(γ)2 ≥ g(γ)3 ≥···≥0,
∞

∑
k=0

g(γ)k =0,
m

∑
k=0

g(γ)k <0, m≥1.
(2.7)
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Lemma 2.3 ([20]). Suppose that 1<γ≤2, then {ω(k)
γ } satisfy

ω
(0)
γ =

γ

2
, ω

(1)
γ =

2−γ−γ2

2
<0, ω

(2)
γ =

γ(γ2+γ−4)
4

,

1≥ω
(2)
γ ≥ω

(3)
γ ≥···≥0,

∞

∑
k=0

ω
(k)
γ =0,

m

∑
k=0

ω
(k)
γ <0, m≥2.

(2.8)

2.1 The two-dimensional case

Now, in order to approximate (2.1), we use

∂u(x,y,t)
∂t

∣∣∣
(xi ,yj,tn+ 1

2
)
=

un+1
i,j −un

i,j

τ
+O(τ2)=δtun+1/2

i,j +O(τ2). (2.9)

According to the method of [20], we have

∂αu(x,y,t)
∂|x|α

∣∣∣
(xi ,yj,tn+ 1

2
)

=− cα

2(hx)
α

[( i+1

∑
l=0

ω
(l)
α u(xi−l+1,yj,tn+1)+

Mx−i+1

∑
l=0

ω
(l)
α u(xi+l−1,yj,tn+1)

)
+
( i+1

∑
l=0

ω
(l)
α u(xi−l+1,yj,tn)+

Mx−i+1

∑
l=0

ω
(l)
α u(xi+l−1,yj,tn)

)]
+O(h2

x), (2.10a)

∂βu(x,y,t)
∂|y|β

∣∣∣
(xi ,yj,tn+ 1

2
)

=−
cβ

2(hy)
β

[( j+1

∑
l=0

ω
(l)
β u(xi,yj−l+1,tn+1)+

My−j+1

∑
l=0

ω
(l)
β u(xi,yj+l−1,tn+1)

)
+
( j+1

∑
l=0

ω
(l)
β u(xi,yj−l+1,tn)+

My−j+1

∑
l=0

ω
(l)
β u(xi,yj+l−1,tn)

)]
+O(h2

y). (2.10b)

For the nonlinear reaction term, by using the Taylor expansion, we can obtain the follow-
ing approximation:

f (xi,yj,tn+ 1
2
,u(xi,yj,tn+ 1

2
),u(xi,yj,tn+ 1

2
−s))

= f (xi,yj,tn+ 1
2
,
3
2

u(xi,yj,tn)−
1
2

u(xi,yj,tn−1),u(xi,yj,tn+ 1
2
−s))+O(τ2)

∼ f (xi,yj,tn+ 1
2
,
3
2

un
i,j−

1
2

un−1
i,j ,un+ 1

2−m
i,j )+O(τ2). (2.11)
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Therefore, the numerical method for (2.1) is determined by the following finite difference
equation

un
i,j−un−1

i,j

τ
=− Kxcα

2(hx)
α

[( i+1

∑
l=0

ω
(l)
α u(xi−l+1,yj,tn+1)+

Mx−i+1

∑
l=0

ω
(l)
α u(xi+l−1,yj,tn+1)

)
·
( i+1

∑
l=0

ω
(l)
α u(xi−l+1,yj,tn)+

Mx−i+1

∑
l=0

ω
(l)
α u(xi+l−1,yj,tn)

)]

−
Kycβ

2(hy)
β

[( j+1

∑
l=0

ω
(l)
β u(xi,yj−l+1,tn+1)+

My−j+1

∑
l=0

ω
(l)
β u(xi,yj+l−1,tn+1)

)
·
( j+1

∑
l=0

ω
(l)
β u(xi,yj−l+1,tn)+

My−j+1

∑
l=0

ω
(l)
β u(xi,yj+l−1,tn)

)]
+ f
(

xi,yj,tn+ 1
2
,
3
2

un
i,j−

1
2

un−1
i,j ,un+ 1

2−m
i,j

)
. (2.12)

Clearly, the numerical method (2.12) is consistent with order O(τ2+h2
x+h2

y).
Define the following fractional partial difference operators:

δα
x un

i,j =−
Kxcα

(hx)
α

[ i+1

∑
l=0

ω
(l)
α u(xi−l+1,yj,tn)+

Mx−i+1

∑
l=0

ω
(l)
α u(xi+l−1,yj,tn)

]
, (2.13a)

δ
β
y un

i,j =−
Kycβ

(hy)
β

[ j+1

∑
l=0

ω
(l)
β u(xi,yj−l+1,tn)+

My−j+1

∑
l=0

ω
(l)
β u(xi,yj+l−1,tn)

]
. (2.13b)

By means of these operator definitions, the numerical method (2.12) can be written as

δtun+1/2
i,j =δα

x un+1/2
i,j +δ

β
y un+1/2

i,j + f
(

xi,yj,tn+ 1
2
,
3
2

un
i,j−

1
2

un−1
i,j ,un+ 1

2−m
i,j

)
(2.14)

or (
1− τ

2
δα

x−
τ

2
δ

β
y

)
un+1

i,j

=
(

1+
τ

2
δα

x+
τ

2
δ

β
y

)
un

i,j+τ f
(

xi,yj,tn+ 1
2
,
3
2

un
i,j−

1
2

un−1
i,j ,un+ 1

2−m
i,j

)
,

1≤ i≤Mx−1, 1≤ j≤My−1. (2.15)

The boundary and initial conditions are discretized as

un
0,j =u(0,yj,tn)=0, un

Mx ,j =u(Lx,yj,tn)=0,

un
i,0=u(xi,0,tn)=0, un

i,My
=u(xi,Ly,tn)=0,

uk
i,j = ϕ(ihx, jhy,kτ), k≤0.
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The operator form (2.15) can be written in the following directional separation product
form named as alternating direction implicit methods (ADIM)(

1− τ

2
δα

x

)(
1− τ

2
δ

β
y

)
un+1

i,j

=
(

1+
τ

2
δα

x

)(
1+

τ

2
δ

β
y

)
un

i,j+τ f
(

xi,yj,tn+ 1
2
,
3
2

un
i,j−

1
2

un−1
i,j ,un+ 1

2−m
i,j

)
,

1≤ i≤Mx−1, 1≤ j≤My−1, (2.16)

which introduces an additional perturbation term C[δα
x δ

β
y ](un+1

i,j +un
i,j). Clearly, this method

is consistent with order O(τ2+h2
x+h2

y).
The method (2.16) can now be solved by the following iterative scheme:

• First, for each fixed yj, solve the problem in the x-direction to obtain an intermediate
solution ūn

i,j in the form

(
1− τ

2
δα

x

)
ūn+1

i,j

=
(

1+
τ

2
δα

x

)(
1+

τ

2
δ

β
y

)
un

i,j+τ f
(

xi,yj,tn+ 1
2
,
3
2

un
i,j−

1
2

un−1
i,j ,un+ 1

2−m
i,j

)
. (2.17)

• Second, for each fixed xi, solve the problem in the y-direction,(
1− τ

2
δ

β
y

)
un+1

i,j = ūn+1
i,j . (2.18)

The boundary and initial conditions are discretized as

un
0,j =u(0,yj,tn)=0, un

Mx ,j =u(Lx,yj,tn)=0,

un
i,0=u(xi,0,tn)=0, un

i,My
=u(xi,Ly,tn)=0,

ū0,j =0, ūMx ,j =0,

and

uk
i,j = ϕ(ihx, jhy,kτ), k≤0.

Let

rx =τ
Kxcα

2(hx)α
, ry =τ

Kycβ

2(hy)β
,

Dx =(dx
i,j)(Mx−1)×(Mx−1), Dy =(dy

i,j)(My−1)×(My−1),
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where

dx
i,j =



rxω
(i−j+1)
α for j< i−1,

rx(ω
(0)
α +ω

(2)
α ) for j= i−1,

2rxω
(1)
α for j= i,

rx(ω
(0)
α +ω

(2)
α ) for j= i+1,

rxω
(j−i+1)
α for j> i+1,

(2.19a)

dy
i,j =



ryω
(i−j+1)
β for j< i−1,

ry(ω
(0)
β +ω

(2)
β ) for j= i−1,

2ryω
(1)
β for j= i,

ry(ω
(0)
β +ω

(2)
β ) for j= i+1,

ryω
(j−i+1)
β for j> i+1.

(2.19b)

Let
(I−Dy)un

v = ũv, 1≤v≤Mx−1, (2.20)

where un
v =(un

v,1,un
v,2,··· ,un

v,My−1)
T, ũv=(ũn

v,1,ũn
v,2,··· ,ũn

v,My−1)
T. Then (2.17) can be rewrit-

ten in the matrix form

(I+Dx)ūn
w =(I−Dx)ũ∗w+τ f , 1≤w≤My−1, (2.21)

where u∗w =(ũ1,w,ũ2,w,··· ,ũMx−1,w)
T, ūn

w =(ūn
1,w,ūn

2,w,··· ,ūn
Mx−1,w)

T,

f =
(

f
(

x1,yw,tn+ 1
2
,
3
2

un
1,w−

1
2

un−1
1,w ,un+ 1

2−m
1,w

)
, f
(

x2,yw,tn+ 1
2
,
3
2

un
2,w−

1
2

un−1
2,w ,un+ 1

2−m
2,w

)
,

··· , f
(

xMx−1,yw,tn+ 1
2
,
3
2

un
Mx−1,w−

1
2

un−1
Mx−1,w,un+ 1

2−m
Mx−1,w

))T
.

Similarly, (2.18) can be written in the matrix form

(I+Dy)ûn+1
v = û∗v,1≤v≤Mx−1, (2.22)

where ûn+1
v =(un+1

v,1 ,un+1
v,2 ,··· ,un+1

v,My−1)
T, û∗v =(ūn

v,1,ūn
v,2,··· ,ūn

v,My−1)
T.

2.2 The three-dimensional case

Next, we discuss the numerical method for three-dimensional case. We can construct the
numerical method for (2.2) as follows:

δtun+1/2
i,j,k =δα

x un+1/2
i,j,k +δ

β
y un+1/2

i,j,k +δ
γ
z un+1/2

i,j,k

+g
(

xi,yj,zk,tn+ 1
2
,
3
2

un
i,j,k−

1
2

un−1
i,j,k ,un+ 1

2−m
i,j,k

)
, (2.23)
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or (
1− τ

2
δα

x−
τ

2
δ

β
y−

τ

2
δ

γ
z

)
un+1

i,j,k

=
(

1+
τ

2
δα

x+
τ

2
δ

β
y +

τ

2
δ

γ
z

)
un

i,j,k+τg
(

xi,yj,zk,tn+ 1
2
,
3
2

un
i,j,k−

1
2

un−1
i,j,k ,un+ 1

2−m
i,j,k

)
,

1≤ i≤Mx−1, 1≤ j≤My−1, 1≤ k≤Mz−1, (2.24)

where

δα
x un

i,j,k =−
Kxcα

(hx)
α

[ i+1

∑
l=0

ω
(l)
α un

i−l+1,j,k+
Mx−i+1

∑
l=0

ω
(l)
α un

i+l−1,j,k

]
, (2.25a)

δ
β
y un

i,j,k =−
Kycβ

(hy)
β

[ j+1

∑
l=0

ω
(l)
β un

i,j−l+1,k+
My−j+1

∑
l=0

ω
(l)
β un

i,j+l−1,k

]
, (2.25b)

δ
γ
z un

i,j,k =−
Kzcγ

(hz)
γ

[k+1

∑
l=0

ω
(l)
γ un

i,j,k−l+1+
Mz−k+1

∑
l=0

ω
(l)
γ un

i,j,k+l−1

]
. (2.25c)

Moreover, the operator form (2.24) can be written in the following directional separation
product form(

1− τ

2
δα

x

)(
1− τ

2
δ

β
y

)(
1− τ

2
δ

γ
z

)
un+1

i,j,k

=
(

1+
τ

2
δα

x

)(
1+

τ

2
δ

β
y

)(
1+

τ

2
δ

γ
z

)
un

i,j,k+τg
(

xi,yj,zk,tn+ 1
2
,
3
2

un
i,j,k−

1
2

un−1
i,j,k ,un+ 1

2−m
i,j,k

)
, (2.26)

which introduces an additional perturbation error equal to O(τ2). The additional per-
turbational error is not large compared to the approximation errors for the other terms
in (2.24), and this method is consistent with order O(τ2+h2

x+h2
y+h2

z). The method (2.26)
can now be solved by the following iterative scheme:

• First, for each fixed yj, zk, solve the problem in the x-direction to obtain an interme-
diate solution ūn

i,j,k in the form(
1− τ

2
δx

)
ūn

i,j,k =
(

1+
τ

2
δα

x

)(
1+

τ

2
δ

β
y

)(
1+

τ

2
δ

γ
z

)
un

i,j,k

+τg
(

xi,yj,zk,tn+ 1
2
,
3
2

un
i,j,k−

1
2

un−1
i,j,k ,un+ 1

2−m
i,j,k

)
. (2.27)

• Second, for each fixed xi, zk, solve the problem in the y-direction,

(1−τδ
β
y )ûn

i,j,k = ūn
i,j,k. (2.28)

• Finally, for each fixed xi, yj, solve the problem in the z-direction,

(1−τδ
γ
z )un+1

i,j,k = ûn
i,j,k. (2.29)
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The boundary and initial conditions are discretized as

un
0,j,k =u(0,yj,zk,tn)=0, un

Mx ,j,k =u(Lx,yj,zk,tn)=0,

un
i,0,k =u(xi,0,zk,tn)=0, un

i,My,k =u(xi,Ly,zk,tn)=0,

un
i,j,0=u(xi,yj,0,tn)=0, un

i,j,Lz
=u(xi,yj,Lz,tn)=0,

ul
i,j,k = ϕ(ihx, jhy,khz,lτ), l≤0,

and

ūn
0,j,k =0, ūn

Mx ,j,k =0,

ûn
i,0,k =0, ûn

i,My,k =0.

3 Theoretical analysis

Without loss of generality, we present the proofs of stability and convergence of the pro-
posed method for solving the two dimensional semilinear Riesz space fractional diffusion
equations with time delay in this paper. The three dimensional case can be proved by fol-
lowing similar arguments. For any grid functions u,v∈ V̊h, we define the inner product
and norm as

(u,v)=hxhy

Mx−1

∑
i=1

My−1

∑
j=1

ui,jvi,j, ‖u‖=
√
(u,u).

In addition, we introduce the following useful lemmas which play important roles in the
subsequent analysis.

Lemma 3.1. Suppose that 1< α,β≤ 2, Dx, Dy are defined as (2.19a) and (2.19b) respectively.
Then Dx, Dy are strictly diagonally dominant.

Proof. Firstly, we prove that Dx is strictly diagonally dominant. Since 1<α≤2 and Kx>0,
so cα <0 and rx <0. Then dx

i,i >0, dx
i,j <0, (i 6= j). From Lemma 2.3, we have

Mx−1

∑
j=1,j 6=i

|dx
i,j|=−rx

( i

∑
j=0,j 6=1

ω
(j)
α +

Mx−i

∑
j=0,j 6=1

ω
(j)
α

)
<−rx(−ω

(1)
α −ω

(1)
α )=2rxω

(1)
α =dx

i,i. (3.1)

Then, Dx is strictly diagonally dominant. Similarly, we can prove that Dy is strictly diag-
onally dominant.

Lemma 3.2. Suppose that 1< α,β≤ 2, Dx, Dy are defined as (2.19a) and (2.19b), respectively.
Then Dx, Dy are symmetric positive definite.



66 S. Yang, Y. Liu, H. Liu and C. Wang / Adv. Appl. Math. Mech., 14 (2022), pp. 56-78

Proof. In view of (2.19a) and (2.19b), the symmetry of Dx, Dy is evident. Let λx be one
eigenvalue of Dx. According to the Gerschgorin’s circle theorem [46], we have

|λx−dx
i,i|≤

Mx−1

∑
j=1,j 6=i

|dx
i,j|.

Then

dx
i,i−

Mx−1

∑
j=1,j 6=i

|dx
i,j|≤λx≤dx

i,i+
Mx−1

∑
j=1,j 6=i

|dx
i,j|.

By using Lemma 3.1, we have λx>0, thus Dx is positive definite. Similarly, we can prove
that Dy is positive definite.

Lemma 3.3 ([50, 56]). For any u∈ V̊h, there hold (δα
x u,u)≤0, and (δ

β
y u,u)≤0.

Lemma 3.4 (Gronwall’s inequality [44]). Suppose that {kn} and {pn} are nonnegative se-
quences, and the sequence {φn} satisfies

φ0≤q0, φn≤q0+
n−1

∑
l=0

pl+
n−1

∑
l=0

plφl , n≥1,

where q0≥0. Then it holds that

{φn}≤
(

q0+
n−1

∑
l=0

pl

)
exp

(n−1

∑
l=0

kl

)
, n≥1. (3.2)

Theorem 3.1. The difference scheme (2.15) is uniquely solvable.

Proof. Consider the homogeneous form of (2.15) and taking the inner product with un+1
i,j ,

we have
(uk+1,uk+1)− τ

2
(δα

x uk+1,uk+1)− τ

2
(δ

β
y uk+1,uk+1)=0. (3.3)

It follows from Lemma 3.3 that

(uk+1,uk+1)=‖uk+1‖2≤0.

Thus, ‖uk+1‖=0 and uk+1
i,j can be solved uniquely. The proof is completed.

Theorem 3.2. The difference scheme (2.17)-(2.18) is uniquely solvable.

Proof. According to Lemma 3.2, we know that I+Dx, I+Dy are strictly diagonally dom-
inant. Then I+Dx, I+Dy are invertible respectively, which means that the difference
scheme (2.17)-(2.18) is uniquely solvable.
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Theorem 3.3. If the solution of the problem (2.1) satisfy the conditions (A1) and (A2), the method
(2.15) is convergent. Moreover,

‖εn‖≤C(h2
x+h2

y+τ2), 1≤n≤N,

where εn
i,j =u(xi,yj,tn)−un

i,j, 0≤ i≤Mx, 0≤ j≤My denotes the corresponding error, un
i,j, (0≤

i≤Mx, 0≤ j≤My) be the numerical solution of the corresponding difference scheme (2.15),
C= c1T

√
LxLy exp(8T(L1+L2)), c1 is a positive constant.

Proof. Obviously, we have

δtε
n+1/2
i,j =

1
2

δα
x(ε

n+1
i,j +εn

i,j)+
1
2

δ
β
y (ε

n+1
i,j +εn

i,j)+ f
(

xi,yj,tn+ 1
2
,
3
2

un
i,j−

1
2

un−1
i,j ,un+ 1

2−m
i,j

)
− f
(

xi,yj,tn+ 1
2
,
3
2

u(xi,yj,tn)−
1
2

u(xi,yj,tn−1),
1
2

u(xi,yj,tn+1−m)

+u(xi,yj,tn−m)
)
+Rn+1/2

i,j . (3.4)

According to (2.12)-(2.15), there exists a positive constant c1 such that

|Rn+1/2
i,j |≤ c1(h2

x+h2
y+τ2), 1≤ i≤Mx−1, 1≤ j≤My−1, 0≤ i≤N−1. (3.5)

As a result, we can show that

δtε
n+1/2=

1
2

δα
x(ε

n+1+εn)+
1
2

δ
β
y (ε

n+1+εn)+Fn+1/2+Rn+1/2, (3.6)

where

Fn+1/2=
{

Fn+1/2
i,j |Fn+1/2

i,j = f
(

xi,yj,tn+ 1
2
,
3
2

un
i,j−

1
2

un−1
i,j ,un+ 1

2−m
i,j

)
− f
(

xi,yj,tn+ 1
2
,
3
2

u(xi,yj,tn)−
1
2

u(xi,yj,tn−1),
1
2

u(xi,yj,tn+1−m)+u(xi,yj,tn−m)
)

,

1≤ i≤Mx−1, 1≤ j≤My−1
}

, 0≤n≤N−1.

Furthermore, according to the Lipschitz condition (2.3), we can obtain∣∣∣ f(xi,yj,tn+ 1
2
,
3
2

un
i,j−

1
2

un−1
i,j ,un+ 1

2−m
i,j

)
− f
(

xi,yj,tn+ 1
2
,
3
2

u(xi,yj,tn)−
1
2

u(xi,yj,tn−1),
1
2
(u(xi,yj,tn+1−m)+u(xi,yj,tn−m))

∣∣∣
≤L1

∣∣∣3
2

εn
i,j−

1
2

εn−1
i,j

∣∣∣+L2

∣∣∣3
2

εn+1−m
i,j − 1

2
εn−m

i,j

∣∣∣
≤L1

(∣∣∣3
2

εn
i,j

∣∣∣+∣∣∣1
2

εn−1
i,j

∣∣∣)+L2

(∣∣∣3
2

εn+1−m
i,j

∣∣∣+∣∣∣1
2

εn−m
i,j

∣∣∣). (3.7)
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Making the inner products of (3.6) with εn+1/2, then we have

(δtε
n+1/2,εn+1/2)=

(1
2

δα
x(ε

n+1+εn),εn+1/2
)
+
(1

2
δ

β
y (ε

n+1+εn),εn+1/2
)

+(Fn+1/2,εn+1/2)+(Rn+1/2,εn+1/2). (3.8)

Noting that (1
2

δα
x(ε

n+1+εn),εn+1/2
)
=

1
4
(δα

x(ε
n+1+εn),εn+1+εn),(1

2
βα

y(ε
n+1+εn),εn+1/2

)
=

1
4
(δ

β
y (ε

n+1+εn),εn+1+εn),

it follows from Lemma 3.3 that(1
2

δα
x(ε

n+1+εn),εn+1/2
)
≤0,

(1
2

βα
y(ε

n+1+εn),εn+1/2
)
≤0. (3.9)

Moreover, we know that

(δtε
n+1/2,εn+1/2)=

1
2τ

(εn+1−εn,εn+1+εn)=
1

2τ
(‖εn+1‖2−‖εn‖2). (3.10)

By means of (3.7) and the Cauchy-Schwarz inequality, we have

(Fn+1/2,εn+1/2)≤‖Fn+1/2‖·‖εn+1/2‖

≤1
2
‖L1

(∣∣∣3
2

εn
i,j

∣∣∣+∣∣∣1
2

εn−1
i,j

∣∣∣)+L2

(∣∣∣3
2

εn+1−m
i,j

∣∣∣+∣∣∣1
2

εn−m
i,j

∣∣∣)∥∥∥·‖εn+1+εn‖

≤(L1+L2)(‖εn+1‖+‖εn‖)·(‖εn‖+‖εn−1‖+‖εn+1−m‖+‖εn−m‖). (3.11)

For the third term on the right side of (3.8), we can obtain

(Rn+1/2,εn+1/2)≤‖Rn+1/2‖·‖εn+1/2‖≤ 1
2
‖Rn+1/2‖·(‖εn+1‖+‖εn‖). (3.12)

Substituting (3.9)-(3.12) into (3.8), we obtain that

‖εn+1‖2−‖εn‖2

2τ
≤(L1+L2)(‖εn+1‖+‖εn‖)·(‖εn‖+‖εn−1‖+‖εn+1−m‖+‖εn−m‖)

+
1
2
‖Rn+1/2‖·(‖εn+1‖+‖εn‖), (3.13)

namely,

‖εn+1‖≤‖εn‖+2τ(L1+L2)(‖εn‖+‖εn−1‖+‖εn+1−m‖+‖εn−m‖)+τ‖Rn+1/2‖. (3.14)
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Replacing n by k and summing over k from 1 to n, and noticing εk =0 for −m≤ k≤0, we
have

‖εn+1‖≤‖ε0‖+8τ(L1+L2)
n

∑
k=1
‖εk‖+τ

n

∑
k=1
‖Rk+1/2‖

=8τ(L1+L2)
n

∑
k=1
‖εk‖+τ

n

∑
k=1
‖Rk+1/2‖. (3.15)

In view of (3.5), we obtain

‖εn+1‖≤8τ(L1+L2)
n

∑
k=1
‖εk‖+τ

n

∑
k=1

c1

√
LxLy(h2

x+h2
y+τ2)

≤‖ε0‖+8τ(L1+L2)
n

∑
k=1
‖εk‖+c1T

√
LxLy(h2

x+h2
y+τ2). (3.16)

Using the Gronwall Lemma 3.4, we have

‖εn+1‖≤c1T
√

LxLy exp(8nτ(L1+L2))(h2
x+h2

y+τ2)

≤c1T
√

LxLy exp(8T(L1+L2))(h2
x+h2

y+τ2), 0≤n≤N−1. (3.17)

Consequently,
‖εn‖≤C(h2

x+h2
y+τ2), 1≤n≤N, (3.18)

where C= c1T
√

LxLy exp(8T(L1+L2)), c1 is a positive constant satisfies (3.5). The proof
is completed.

Next, we will analyze the stability of the scheme (2.15). Let Un
i,j be the solution of(

1− τ

2
δα

x−
τ

2
δ

β
y

)
Un+1

i,j

=
(

1+
τ

2
δα

x+
τ

2
δ

β
y

)
Un

i,j+τ f
(

xi,yj,tn+ 1
2
,
3
2

Un
i,j−

1
2

Un−1
i,j ,Un+ 1

2−m
i,j

)
,

1≤ i≤Mx−1, 1≤ j≤My−1. (3.19)

The boundary and initial conditions are discretized as

Un
0,j =u(0,yj,tn)=0, Un

Mx ,j =u(Lx,yj,tn)=0,

Un
i,0=u(xi,0,tn)=0, Un

i,My
=u(xi,Ly,tn)=0,

Uk
i,j = ϕ(ihx, jhy,kτ)a+ψk

i,j, k≤0.

Then, we can obtain the following stability result.

Theorem 3.4. The difference scheme (2.15) is unconditionally stable.
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Proof. Let un
i,j, (0≤i≤Mx, 0≤j≤My) be the numerical solution of (2.15). And εn

i,j=Un
i,j−un

i,j,
0≤ i≤Mx, 0≤ j≤My denotes the corresponding error. Then, we have

δtε
n+1/2
i,j =

1
2

δα
x(ε

n+1
i,j +εn

i,j)+
1
2

δ
β
y (ε

n+1
i,j +εn

i,j)+ f
(

xi,yj,tn+ 1
2
,
3
2

Un
i,j−

1
2

Un−1
i,j ,Un+ 1

2−m
i,j

)
− f
(

xi,yj,tn+ 1
2
,
3
2

un
i,j−

1
2

un−1
i,j ,un+ 1

2−m
i,j

)
, (3.20a)

εn
i,j =ψn

i,j, 0≤ i≤Mx, 0≤ j≤My, −m≤n≤0, (3.20b)

εn
i,j =0, (xi,yj)∈∂Ω, 1≤n≤N. (3.20c)

Similar to the proof of Theorem 3.3, we have

‖εn+1‖≤‖ε0‖+8τ(L1+L2)
n

∑
k=1
‖εk‖+4τL2

0

∑
k=−m

‖εk‖. (3.21)

It follows from Lemma 3.4 that

‖εn+1‖≤
(
‖ε0‖+4τL2

0

∑
k=−m

‖εk‖
)

exp(8nτ(L1+L2))

≤
(
‖ε0‖+4τL2

0

∑
k=−m

‖εk‖
)

exp(8T(L1+L2))

≤(1+4sL2)
√

LxLy exp(8T(L1+L2)) max
1≤i≤Mx−1,1≤j≤My−1,

−m≤k≤0

|ψk
i,j|. (3.22)

The proof is completed.

Remark 3.1. Similar to the proofs of Theorem 3.3 and Theorem 3.4, it can be proved that
the following results hold

• If the solution of the problem (2.2) satisfy the conditions (A1) and (A2), the method
(2.24) is convergent. And the convergence order is O(h2

x+h2
y+h2

z+τ2).

• The difference scheme (2.24) is unconditionally stable.

4 Numerical examples

In order to verify and demonstrate our theoretical results, we present some numerical
examples in this section. Define the error and convergence orders as

E(hx,hy,τ)= max
1≤i≤Mx ,1≤j≤My,

1≤n≤N

|un
i,j−u(xi,yj,tn)|,
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E(hx,hy,hz,τ)= max
1≤i≤Mx ,1≤j≤My,
1≤k≤Mz,1≤n≤N

|un
i,j,k−u(xi,yj,zk,tn)|,

Order= log2

(E(2hx,2hy,2τ)

E(hx,hy,τ)

)
or Order= log2

(E(2hx,2hy,2hz,2τ)

E(hx,hy,hz,τ)

)
.

Example 4.1. Consider the following two-dimensional Riesz space fractional diffusion
equations with delay

∂u(x,y,t)
∂t

=Kx
∂αu(x,y,t)

∂|x|α +Ky
∂βu(x,y,t)

∂|y|β
+ f (x,y,t,u(x,y,t),u(x,y,t−s)), t∈ [0,T],

u(x,y,t)= x2(x−1)2y2(y−1)2e−t, t∈ [−s,0], 0≤ x≤1, 0≤y≤1,
u(0,y,t)=u(1,y,t)=0, u(x,0,t)=u(x,1,t)=0, 0≤ t≤T,

(4.1)

where T=2, s=0.5, Kx =Ky =1, 1<α,β≤2,

f (x,y,t,u(x,y,t),u(x,y,t−s))

=(u(x,y,t)u(x,y,t−s))2−u(x,y,t)−(xy)8(1−x)8(1−y)8e−4t+2s

+
Kxe−ty2(y−1)2

2cos( απ
2 )

{ 24
Γ(5−α)

[x4−α+(1−x)4−α]

− 12
Γ(4−α)

[x3−α+(1−x)3−α]+
2

Γ(3−α)
[x2−α+(1−x)2−α]

}
+

Kye−tx2(x−1)2

2cos( βπ
2 )

{ 24
Γ(5−β)

[y4−β+(1−y)4−β]− 12
Γ(4−β)

[y3−β+(1−y)3−β]

+
2

Γ(3−β)
[y2−β+(1−y)2−β]

}
,

and the exact solution is

u(x,y,t)= x2(1−x)2y2(1−y)2e−t.

One can directly verify that the RHS term satisfies the Lipschitz condition (2.3). When
α= 1.6, β= 1.6 and α= 1.5, β= 1.8, the errors and the computing orders of (2.17)-(2.18)
are shown in Table 1. The numerical results show that the error is very small, and the
convergence order is close to 2. Fig. 1 shows that numerical solutions and absolute errors
of (4.1) at t=1 for α=β=1.6 with hx=hy=τ=1/80. The corresponding results of (4.1) at
t=1 with α=1.6, β=1.8 are shown in Fig. 2. From the above tables and figures, we can
see that these numerical results are consistent with the our theoretical results in Section
3.

Example 4.2. Consider the following Riesz space fractional diffusion equations with de-
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Table 1: The errors and convergence orders of the method (2.17)-(2.18).

α=1.6, β=1.6 α=1.5, β=1.8
τ=hx =hy E(hx,hy,τ) Order τ=hx =hy E(hx,hy,τ) Order

1
20 3.4911E-05 1

20 3.5631E-05
1

40 8.5541E-06 2.0290 1
40 8.7483E-06 2.0261

1
80 2.0944E-06 2.0321 1

80 2.1493E-06 2.0251
1

160 5.1331E-07 2.0286 1
160 5.2789E-07 2.0256

0
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0.4
0.6

0.8
1

0
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xy 0
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Figure 1: Numerical solutions and absolute errors of (4.1) by using the method (2.17)-(2.18) at t = 1 with
α=1.6, β=1.6, hx =hy =τ=1/80, (a) numerical solutions, (b) absolute errors.
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Figure 2: Numerical solutions and absolute errors of (4.1) by using the method (2.17)-(2.18) at t = 1 with
α=1.5, β=1.8, hx =hy =τ=1/80, (a) numerical solutions, (b) absolute errors.

lay 

∂u(x,y,z,t)
∂t

=Kx
∂αu(x,y,z,t)

∂|x|α +Ky
∂βu(x,y,z,t)

∂|y|β
+Kz

∂γu(x,y,z,t)
∂|z|γ

+ f (x,y,z,t,u(x,y,z,t),u(x,y,z,t−s)), t∈ [0,T],
u(x,y,z,t)= x2(x−1)2y2(y−1)2z2(z−1)2e−t, t∈ [−s,0],

0≤ x≤1, 0≤y≤1, 0≤ z≤1,
u(0,y,z,t)=u(1,y,z,t)=0, u(x,0,z,t)=u(x,1,z,t)=0,
u(x,y,0,t)=u(x,y,1,t)=0, 0≤ t≤T,

(4.2)
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Table 2: The errors and convergence orders of the method (2.27)-(2.29).

α=1.2, β=1.2, γ=1.2
τ=hx =hy =hz E(hx,hy,hz,τ) Order

1
10 6.3469E-06
1
20 1.5913E-06 1.9958
1
40 3.9605E-07 2.0065
1
80 9.8278E-07 2.0107

α=1.7, β=1.8, γ=1.9
τ=hx =hy =hz E(hx,hy,hz,τ) Order

1
10 3.4262E-06
1
20 1.1281E-06 1.6027
1
40 3.0127E-07 1.9048
1
80 7.4678E-08 2.0123

where T=2, s=0.5, Kx =Ky =Kz =1, 1<α,β,γ≤2,

f (x,y,z,t,u(x,y,z,t),u(x,y,z,t−s))

=u(x,y,z,t)u(x,y,z,t−s)−u(x,y,z,t)−(xyz)4(1−x)4(1−y)4(1−z)4e−2t+s

+
Kxe−ty2(y−1)2z2(z−1)2

2cos( απ
2 )

{ 24
Γ(5−α)

[x4−α+(1−x)4−α]

− 12
Γ(4−α)

[x3−α+(1−x)3−α]+
2

Γ(3−α)
[x2−α+(1−x)2−α]

}
+

Kye−tx2(x−1)2z2(z−1)2

2cos( βπ
2 )

{ 24
Γ(5−β)

[y4−β+(1−y)4−β]

− 12
Γ(4−β)

[y3−β+(1−y)3−β]+
2

Γ(3−β)
[y2−β+(1−y)2−β]

}
+

Kze−tx2(x−1)2y2(y−1)2

2cos(γπ
2 )

{ 24
Γ(5−γ)

[z4−γ+(1−z)4−γ]

− 12
Γ(4−γ)

[z3−γ+(1−z)3−γ]+
2

Γ(3−γ)
[z2−γ+(1−z)2−γ]

}
,

and the exact solution is

u(x,y,z,t)= x2(1−x)2y2(1−y)2z2(1−z)2e−t.

Similarly, one can verify that the RHS term satisfies the Lipschitz condition (2.4). We
list the errors and convergence orders of (2.27)-(2.29) in Table 2 with respect to hx = hy =
hz=τ. The presented results clearly indicate that the method (2.27)-(2.29) is almost second
order accuracy. Fig. 3 shows that the numerical solutions and absolute errors of (4.2) at
t = 1, z = 0.5 for α = β = γ = 1.2. The corresponding numerical results for (2.27)-(2.29)
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Figure 3: Numerical solutions and absolute errors of (4.2) by using the method (2.27)-(2.29) at t=1, z=0.5
with α=β=γ=1.2, hx =hy =hz =τ=1/40, (a) numerical solutions, (b) absolute errors.
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Figure 4: Numerical solutions and absolute errors of (4.2) by using the method (2.27)-(2.29) at t=1, z=0.5
with α=1.7, β=1.8, γ=1.9, hx =hy =hz =τ=1/40, (a) numerical solutions, (b) absolute errors.

with α = 1.7, β = 1.8, γ = 1.9 are shown in Fig. 4. As we all known, it is very difficult
to solve the three-dimensional fractional differential equations. From the above tables
and figures, we can see that the proposed methods is efficient and accurate to solve the
three-dimensional semilinear Riesz space fractional diffusion equations with time delay.

5 Conclusions

In this paper, second order implicit alternating direction methods have been constructed
for solving a class of two/three-dimensional semilinear Riesz space fractional diffusion
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equations with time delay subject to homogeneous Dirichlet boundary conditions. We
established the sharp stability and convergence estimates for the proposed numerical
methods. The benchmarking numerical examples verify the effectiveness and efficiency
of our numerical scheme. For the future study, we plan to apply the newly derived
numerical methods to some inverse problems in the fractional setting, say in particu-
lar the Schiffer problem, which is a longstanding problem in the inverse scattering the-
ory [4,9,17,18,25,28–38], but was recently solved in the fractional setting associated with
the fractional Helmholtz equation [5].
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