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Abstract

The method of data-driven tight frame has been shown very useful in image restoration

problems. We consider in this paper extending this important technique, by incorporating

L1 data fidelity into the original data-driven model, for removing impulsive noise which is

a very common and basic type of noise in image data. The model contains three variables

and can be solved through an efficient iterative alternating minimization algorithm in patch

implementation, where the tight frame is dynamically updated. It constructs a tight frame

system from the input corrupted image adaptively, and then removes impulsive noise by

the derived system. We also show that the sequence generated by our algorithm converges

globally to a stationary point of the optimization model. Numerical experiments and

comparisons demonstrate that our approach performs well for various kinds of images.

This benefits from its data-driven nature and the learned tight frames from input images

capture richer image structures adaptively.

Mathematics subject classification: 68U10, 94A08.
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1. Introduction

Sparse approximation and representation are very powerful for many signal processing tasks,

such as signal compression and image restoration. Sparse approximation models an image as

a linear combination of a small number of elements of some system. Such system can be

either a basis or an over-complete system, among which the wavelet tight frame [17] has been

very successfully used in image restoration [8, 15, 18, 26]. Wavelet tight frames are able to

approximate piecewise smooth signals efficiently with only few non-zero wavelet coefficients.

Computationally, tight frames benefit from their efficient decomposition and reconstruction

schemes. Numerous kinds of tight frames, including curvelets [12], ridgelts [11], framelets [17,36]

and many others have been proposed for signal and image sparse representation. However, one

certain tight frame cannot always perform well for all kinds of images. Naturally, it is better

to design specific tight frame representation for a given image. The tight frame learned from

the given image may achieve better performance for sparse approximation. Due to this nature,

this kind of techniques are adaptive to input image data and hence work well for various types

of images.

Cai et al. proposed in [9] a variational model under this idea, with an L2-norm fidelity

term and an L0-norm regularization term. It is the first paper to propose data-driven tight

* Received May 16, 2018 / Revised version received August 7, 2019 / Accepted August 5, 2020 /

Published online August 17, 2021 /
1) Corresponding author



90 Y. CHEN AND C.L. WU

frame model for image restoration, which shows comparable performance and runs much faster

than general dictionary learning methods like K-SVD [21]. Bao et al. showed the sub-sequence

convergence of the iterative algorithm in [3], and gave a new globally convergent algorithm. Soon

later, this data-driven tight frame model has been improved and applied to various problems

[13, 22, 27, 32, 33, 37, 42, 44]. However, as far as we know, these data-driven models mainly use

L2 fidelity, which is not suitable for the basic and significant impulsive noise removal problems.

Impulsive noise is usually divided into salt-and-pepper noise and random-valued noise. It is

often generated by electromagnetic interference as well as faults and defects in communication

system. It may also occur when the electrical switches and relays in the communication system

change state [7]. Unlike the additive Gaussian noise, which affects all pixels of an image, salt-

and-pepper noise (or random-valued noise) corrupts a portion of the pixels with minimal or

maximal intensities (or random-valued intensities) while keeping remaining pixels unchanged.

Hence, additive Gaussian noise removal algorithms are not suitable for impulsive noise removal.

Many impulsive noise removal algorithms have been proposed in recent decades, most of

which can be categorized into nonlinear digital filter based methods [14, 19, 24, 25, 39] and

variational regularization based approaches [2, 23, 29, 31, 40, 41, 43]. Nonlinear digital filter

based methods improve median filter through weighting and adaptive techniques. Variational

regularization approaches use total variation and some fidelity terms considering the noise

statistics. These methods can achieve good performance in most cases. However, nonlinear

digital filters are less capable of distinguishing noisy pixels from non-noisy pixels in edges or

textured regions. Variational regularization term may introduce undesirable stair-casing effects.

Considering the great successes of data-driven tight frame techniques in denoising, in this paper

we are interested in extending [9] for impulsive noise removal. This yields an L0 balanced

model [9] with L1 data fidelity, which is convenient for optimization and implementation. We

will give an efficient alternating minimization algorithm to optimize the objective function and

prove its global convergence. The iterative algorithm constructs discrete tight frames adapted to

input images, which are then applied to the noise removal step. We mention that, a very recent

paper [28], although considered data-driven tight frames for mixed Gaussian and impulsive

noise removal, actually did not formulate an optimization model for data-driven tight frame

construction in the presence of impulsive noise. Instead, their method uses directly the data-

driven tight frame construction in [9] (with L2 fidelity) as an independent package combined

with an analysis approach [10] for denoising. This combination, if iteratively performed, yields

a complicated two-loop procedure.

The rest of the paper is organized as follows. In Section 2, we briefly review the concept of

tight frame and the existing data-driven tight frame construction. We propose our optimization

model for impulsive noise removal in Section 3. It is implemented in patch space and solved by

a proximal alternating minimization procedure. In Section 4, we show that the iterates of the

proposed algorithm converge globally to a stationary point of the minimization model. Some

numerical experiments are provided in Section 5. We conclude the paper in Section 6.

2. A Brief Review of Tight Frame and Data-driven Tight Frame

Construction

In this section, we briefly introduce the tight frames and the data-driven tight frames con-

struction proposed in [9]. Interested readers are referred to [10, 38] for more details.

Suppose that H is a Hilbert space. Let 〈·, ·〉 and ‖ · ‖ denote the standard inner product, a
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norm of a Hilbert space H, respectively. A sequence {xn} ⊂ H is a tight frame for H if

‖x‖2 =
∑

n

|〈x, xn〉|2, for any x ∈ H.

That is, given a tight frame {xn}, we have x =
∑

n〈x, xn〉xn, x ∈ H. Thus, a tight frame {xn}
can be regarded as generalization of orthonormal bases.

There are two operators associated with a tight frame: the analysis operator W defined by

W : H 7→ ℓ2(N),

x 7→ {〈x, xn〉},

and its adjoint operator WT referred to the synthesis operator:

WT : ℓ2(N) 7→ H,

{an} 7→
∑

n

anxn.

The sequence Wx := {〈x, xn〉} is called the canonical tight frame coefficient sequence. Then,

the sequence {xn} ⊂ H is a tight frame if and only if WTW = I, where I is the identity operator

of H. For simplicity, we will only discuss the single-level un-decimal wavelet tight frame system,

which is generated by all integer shifts of a set of filters {ai}ri=1.

For any given filter a ∈ ℓ2(Z), define its associated convolution operator Sa : ℓ2(Z) → ℓ2(Z)

by

[Sav](n) := [a ∗ v](n) =
∑

k∈Z

a(n− k)v(k), ∀v ∈ ℓ2(Z).

Then, for a set of filters {ai}ri=1, its analysis operator W can be defined by

W = [ST
a1(−·),ST

a2(−·), · · · ,ST
ar(−·)]

T. (2.1)

Its corresponding synthesis operator reads

WT = [Sa1
,Sa2

, · · · ,Sar
]. (2.2)

The rows of W form a tight frame for ℓ2(Z) if and only if WTW = I.

The data-driven tight frame construction model proposed in [9] is

min
c,{ai}r

i=1

‖c−Wg‖22 + λ‖c‖0 s.t. WTW = I, (2.3)

where g denotes an input image, c is the coefficient vector which sparsely approximates the

canonical tight frame coefficients Wg, and ‖c‖0 stands for the number of non-zero elements of

c. Note that we here use W to denote the analysis operator related to tight frame generated

by filters {ai}ri=1.

It is proved in [9, Proposition 2] that (2.3) is equivalent to

min
c,{ai}r

i=1

‖g −WTc‖22 + ‖(I −WWT)c‖22 + λ‖c‖0 s.t. WTW = I, (2.4)

which is a balanced approach model assembled with L2 fidelity term.
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3. The Proposed Model and Algorithm

3.1. The proposed model

According to the Bayes formula, the L2 fidelity term in (2.4) is suitable for removing additive

Gaussian white noise. In the case of impulsive noise removal, we adopt the L1 fidelity term to

reformulate the minimization model. It is shown that the L1 fidelity term can accurately fit

undamaged pixels and perfectly regularize corrupted pixels [30], in the context of variational

regularization.

We therefore propose the following model:

min
c,{ai}r

i=1

‖g −WTc‖1 + τ‖(I −WWT)c‖22 + λ‖c‖0, s.t. WTW = I.

It gives an approximate model:

min
c,{ai}r

i=1
,f

‖f‖1 + τ‖(I −WWT)c‖22 + λ‖c‖0 + τ‖f − g + WTc‖22, s.t. WTW = I, (3.1)

which is, by the first statement in Proposition 3.1, equivalent to

min
c,{ai}r

i=1
,f

‖f‖1 + τ‖c−W (g − f)‖22 + λ‖c‖0, s.t. WTW = I. (3.2)

Thus the minimization (3.2) can be considered as a balanced approach as in (3.1). The following

proposition, especially its second statement, is essential for us to design efficient numerical

algorithm to solve our minimization model.

Proposition 3.1. Let W denote a tight frame. Then

1. ‖(I −WWT)c‖22 + ‖f − g + WTc‖22 = ‖c−W (g − f)‖22;

2. arg min
f

‖f‖1 + τ‖c−W (g − f)‖22 = arg min
f

‖f‖1 + τ‖f − (g −WTc)‖22.

Proof. Part 1 is contained in [9, Proposition 2]. For Part 2, by the fact that WTW = I, we

have
arg min

f
‖f‖1 + τ‖c−W (g − f)‖22

= arg min
f

‖f‖1 + τ(cTc + (g − f)TWTW (g − f) − 2cTW (g − f))

= arg min
f

‖f‖1 + τ(fTf − 2fT(g −WTc) + gTg + cTWWTc− 2gTWTc)

= arg min
f

‖f‖1 + τ‖f − (g −WTc)‖22,

where the second equality is due to that both W and c are constants in this minimization

problem. �

3.2. Model implementation and an iterative algorithm

The minimization problem with constraint condition WTW = I is rather challenging to

solve, if there is no special structural assumption for the tight frame filters. Thus we adopt the

same way as [9, Proposition 3]. A certain special class of filters satisfying the orthogonality
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constraints are taken into account. Hence the filters are {ai}m
2

i=1 with support on Z
2
⋂

[1,m]2

satisfying the following constraints:

〈ai, aj〉 =
∑

k∈Z2
⋂
[1,m]2

ai(k)aj(k) =
1

m2
δi−j , 1 ≤ i, j ≤ m2, (3.3)

which ensure that WTW = I. Moreover, we implement our minimization model using image

patches, like [9,21]. We partition the noisy image into patches with overlaps and then the model

(3.2) is reformulated into an image patch based problem.

Let {gl}Nl=1 ⊂ R
m2

denote the set of all image patches of size m×m regularly sampled from

the image g. Let aj be the vector form of aj by concatenating all of its columns. For each patch

vector gl, let cl denote the corresponding coefficient vector. Define four matrices as follows:


































G :=
1

m
[g1,g2, · · · ,gN ] ∈ R

m2×N ,

F :=
1

m
[f1, f2, · · · , fN ] ∈ R

m2×N ,

D := m[a1, a2, · · · , am2 ] ∈ R
m2×m2

,

C := [c1, c2, · · · , cN ] ∈ R
m2×N .

(3.4)

Similar to [9] and [3], the minimization (3.2) can be implemented as

min
D∈Rm2×m2 , C,F∈Rm2×N

‖F‖e1 + τ‖C −DT(G− F )‖2 + λ‖C‖0, s.t. DTD = I, (3.5)

where, for any matrix X , ‖X‖e1 =
∑

i,j |Xij | and ‖X‖ denotes the Frobenius norm of X .

In order to simplify the notations, we define χ = {D ∈ R
m2×m2

: DTD = Im2}, ΩCF =

R
m2×N , ΩD = R

m2×m2

, Z = (C,D, F ) and ΩZ = (ΩCF ,ΩD,ΩCF ). We also denote

r(C) = λ‖C‖0, s(D) = Iχ(D), t(F ) = ‖F‖e1 , Q(C,D, F ) = τ‖C −DT(G− F )‖2,

where Iχ(D) = 0 for D ∈ χ, and Iχ(D) = +∞ otherwise. Then, the minimization (3.5) can be

written as

min
C,F∈ΩCF ,D∈ΩD

L(C,D, F ) := r(C) + s(D) + t(F ) + Q(C,D, F ). (3.6)

Since the set χ is compact, it is not difficult to see that L(C,D, F ) in (3.6) is coercive.

Together with the lower semi-continuity of L(C,D, F ), we claim that the minimization problem

(3.6) always has a solution. As L(C,D, F ) is a non-convex function, the uniqueness of the

solution cannot be guaranteed.

Then we consider how to solve (3.6). There are three unknowns in (3.6). The first one

is the coefficient matrix C which sparsely approximates the canonical tight frame coefficient

DT(G− F ), the second one is the filters matrix D that generates a tight frame, and the third

one is a matrix F in image patch domain which can be considered as noise. A standard way to

solve the model (3.6) is an iterative alternating minimization, which updates the estimation of

C, D and F alternatively. To guarantee convergence, a proximal technique can be used.

Given (Ck, Dk, Fk), the next iteration updates it via the following scheme:



















Ck+1 ∈ arg min
C

L(C,Dk, Fk) + αk‖C − Ck‖2,

Dk+1 ∈ arg min
D

L(Ck+1, D, Fk) + βk‖D −Dk‖2,

Fk+1 ∈ arg min
F

L(Ck+1, Dk+1, F ) + γk‖F − Fk‖2,
(3.7)
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where αk, βk, γk ∈ (a, b) and a, b are positive constants for proximal terms. Specifically, we need

to solve the following three sub-problems:

Ck+1 ∈ arg min
C

τ‖C −DT
k (G− Fk)‖2 + λ‖C‖0 + αk‖C − Ck‖2; (3.8a)

Dk+1 ∈ arg min
D

τ‖Ck+1 −DT(G − Fk)‖2 + βk‖D −Dk‖2, s.t. DTD = I; (3.8b)

Fk+1 ∈ arg min
F

‖F‖e1 + τ‖F − (G−Dk+1Ck+1)‖2 + γk‖F − Fk‖2, (3.8c)

where the third sub-problem is obtained according to Proposition 3.1. The first sub-problem

of Ck+1 is known to have a closed form solution via hard thresholding; the second about Dk+1

can be solved through a Singular Value Decomposition (SVD) [9]; and the third one of Fk+1

can be solved via soft thresholding. For the sake of completeness, we include some details here.

For the first sub-problem (3.8a), we let Tκ : R → R denote the hard thresholding operator

which reads:

Tκ(u) =

{

u, if |u| > κ;

0, otherwise.

When it acts on a matrix, it represents an entry by entry thresholding operation. Then (3.8a)

has the following solution

Ck+1 = T√
λ/(τ+αk)

(

τDT
k (G− Fk) + αkCk

τ + αk

)

.

By [9, Theorem 4] and [45], the second sub-problem (3.8b) also has an explicit solution

Dk+1 = UkV
T
k , where Uk and Vk are from the SVD decomposition of τ(G − Fk)CT

k+1 + βkDk,

i.e., τ(G − Fk)CT
k+1 + βkDk = UkΣkV

T
k .

As for the third sub-problem (3.8c), we let Tκ : R → R be the soft thresholding operator [20]

defined by

Tκ(u) =











u + κ, if u < −κ;

0, if |u| ≤ κ;

u− κ, if u > κ.

If Tκ acts on a matrix, it means that the soft thresholding operates entry by entry. Then the

unique solution Fk+1 of (3.8c) is given by

Fk+1 = T1/(2(τ+γk))

(

τ(G−Dk+1Ck+1) + γkFk

τ + γk

)

.

We now summarize our iterative algorithm in Algorithm 3.1 for solving (3.6).

Algorithm 3.1. Proximal alternating iteration scheme for solving (3.6)

Input: Input image g;

Output: Adaptive filter set D, and patch matrix F ;

1. Construct the patch matrix G as (3.4).

2. Set initial filter matrix D0, coefficient matrix C0 and noise matrix F0.

3. For k = 0, 1, · · ·
Set Ck+1 = T√

λ/(τ+αk)

(

τDT
k
(G−Fk)+αkCk

τ+αk

)

;

Compute the SVD of τ(G− Fk)CT
k+1 + βkDk = UkΣkV

T
k and set Dk+1 = UkV

T
k ;

Set Fk+1 = T1/(2(τ+γk))

(

τ(G−Dk+1Ck+1)+γkFk

τ+γk

)

,

until some termination conditions are satisfied.
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4. Convergence Analysis

In this section, we establish the convergence of Algorithm 3.1 by showing that the iterative

sequence is a Cauchy sequence and converges to a stationary point of (3.6). The arguments

are based on the Kurdyka- Lojasiewicz property (see the appendix) and the following abstract

theoretical framework for convergence analysis developed recently in [1].

Theorem 4.1 ([1, Theorem 2.9]). For a proper lower semi-continuous function H, the se-

quence {Xk} converges to X̄ as k goes to infinity, X̄ is a stationary point of H, and sequence

{Xk} has a finite length, i.e.
+∞
∑

k=0

‖Xk+1 −Xk‖ < +∞,

as long as it satisfies the following conditions with positive constants µ and ν:

H1 (Sufficient decrease condition). For each k ∈ N,

H(Xk+1) + µ‖Xk+1 −Xk‖2 ≤ H(Xk).

H2 (Relative error condition). For each k ∈ N, there exists ωk+1 ∈ ∂H(Xk+1) such that

‖ωk+1‖ ≤ ν‖Xk+1 −Xk‖,

where ∂H(Xk+1) is the limiting Fréchet sub-differential of H at Xk+1; see the appendix.

H3 (Continuity condition). There exists a subsequence {Xkn
} and a cluster point X̂ such

that

Xkn
→ X̂ and H(Xkn

) → H(X̂), as n → ∞.

H4 (Additional condition). H has the Kurdyka- Lojasiewicz property at X̂ specified in H3.

We now check that our Algorithm 3.1 satisfies the four conditions H1 H2 H3 H4 in Theorem

4.1. For convenience, we denote the sequence {(Ck, Dk, Fk)} generated by Algorithm 3.1 as

{Zk}.

Lemma 4.1. The sequence {Zk = (Ck, Dk, Fk)} satisfies:

1. L(Zk) − L(Zk+1) ≥ a‖Zk+1 − Zk‖2;

2.

∞
∑

k=1

‖Zk − Zk+1‖2 < ∞;

3. {Zk} is bounded.

Proof. Some arguments are similar to those in [3]. For Part 1, by (3.7), we have

L(Ck+1, Dk, Fk) + αk‖Ck+1 − Ck‖2 ≤ L(Ck, Dk, Fk),

L(Ck+1, Dk+1, Fk) + βk‖Dk+1 −Dk‖2 ≤ L(Ck+1, Dk, Fk),

L(Ck+1, Dk+1, Fk+1) + γk‖Fk+1 − Fk‖2 ≤ L(Ck+1, Dk+1, Fk),
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indicating that

L(Zk) − L(Zk+1) ≥ αk‖Ck+1 − Ck‖2 + βk‖Dk+1 −Dk‖2 + γk‖Fk+1 − Fk‖2

≥ a‖Zk+1 − Zk‖2 ≥ 0. (4.1)

For Part 2, the inequality L(Zk) − L(Zk+1) ≥ a‖Zk+1 − Zk‖2 gives the monotonicity of L(Zk)

and L(Z0)−L(Zk+1) ≥ ∑k
j=0 a‖Zj −Zj+1‖2. Together with the fact that L(Zk) ≥ 0, we know

that {L(Zk)} converges. This further indicates that
∑∞

k=1‖Zk − Zk+1‖2 < ∞. It then also

holds that limk→∞‖Zk − Zk+1‖ = 0.

For Part 3, from (4.1), we have L(Zk) ≤ L(Zk−1) ≤ · · · ≤ L(Z0), which implies ‖Fk‖e1 ≤ L(Z0)

and ‖Ck‖− (‖DT
kG‖+ ‖DT

k Fk‖) ≤ ‖Ck‖−‖DT
k (G−Fk)‖ ≤ ‖Ck −DT

k (G−Fk)‖F ≤
√

1
τL(Z0).

Together with the fact that Dk ∈ χ, where χ is a compact set, we have that {Zk} is bounded

and it has at least one cluster point. �

To verify the condition H2, we use the following relationship on the limiting sub-differential

of L(C,D, F ):

∂L(C,D, F )

={∂r(C) + ∇CQ(C,D, F )} × {∂s(D) + ∇DQ(C,D, F )} × {∂t(F ) + ∇FQ(C,D, F )}
=∂CL(C,D, F ) × ∂DL(C,D, F ) × ∂FL(C,D, F ), (4.2)

for all (C,D, F ) ∈ domL = domr× doms× domt. The reason of (4.2) is [35, Proposition 10.5].

Lemma 4.2. For each k ≥ 1, we define

C∗
k = −2αk−1(Ck − Ck−1) −∇CQ(Ck, Dk−1, Fk−1) + ∇CQ(Ck, Dk, Fk),

D∗
k = −2βk−1(Dk −Dk−1) −∇DQ(Ck, Dk, Fk−1) + ∇DQ(Ck, Dk, Fk),

F ∗
k = −2γk−1(Fk − Fk−1).

Then

1. (C∗
k , D

∗
k, F

∗
k ) ∈ ∂L(Ck, Dk, Fk);

2. there exists a constant ν such that ‖(C∗
k , D

∗
k, F

∗
k )‖ ≤ ν‖Zk − Zk−1‖.

Proof. For Part 1, by the definition of Ck, we know 0 ∈ 2αk−1(Ck −Ck−1) +∂CL(Ck, Dk−1,

Fk−1), ∀k ≥ 1. Similarly, 0 ∈ 2βk−1(Dk − Dk−1) + ∂DL(Ck, Dk, Fk−1), ∀k ≥ 1, and 0 ∈
2γk−1(Fk − Fk−1) + ∂FL(Ck, Dk, Fk), ∀k ≥ 1. It follows from the representation (3.6) that

∂CL(Ck, Dk−1, Fk−1) = ∂r(Ck) + ∇CQ(Ck, Dk−1, Fk−1),

∂DL(Ck, Dk, Fk−1) = ∂s(Dk) + ∇DQ(Ck, Dk, Fk−1),

∂FL(Ck, Dk, Fk) = ∂t(Fk) + ∇FQ(Ck, Dk, Fk).

Thus we have

− 2αk−1(Ck − Ck−1) −∇CQ(Ck, Dk−1, Fk−1)+∇CQ(Ck, Dk, Fk) ∈ ∂r(Ck) + ∇CQ(Ck, Dk, Fk),

− 2βk−1(Dk −Dk−1) −∇DQ(Ck, Dk, Fk−1) + ∇DQ(Ck, Dk, Fk) ∈ ∂s(Dk) + ∇DQ(Ck, Dk, Fk),

− 2γk−1(Fk − Fk−1) ∈ ∂t(Fk) + ∇FQ(Ck, Dk, Fk),
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meaning that (C∗
k , D

∗
k, F

∗
k ) ∈ ∂L(Ck, Dk, Fk) by (4.2).

For Part 2, on one hand, Q(C,D, F ) = τ‖C − DT(G − F )‖ is a smooth function, thus

∇Q(C,D, F ) is Lipschitz continuous on any bounded set. From Lemma 4.1, we know that

{Zk} is bounded. Therefore there exists a constant M such that the following two inequalities

are true:

‖ (∇CQ(Ck, Dk, Fk−1) −∇CQ(Ck, Dk, Fk),∇DQ(Ck, Dk, Fk−1) −∇DQ(Ck, Dk, Fk), 0) ‖
≤M‖Fk−1 − Fk‖ ≤ M‖Zk−1 − Zk‖, (4.3)

and

‖ (∇CQ(Ck, Dk−1, Fk−1)−∇CQ(Ck, Dk, Fk−1), 0, 0) ‖
≤M‖Dk−1 −Dk‖ ≤ M‖Zk−1 − Zk‖. (4.4)

On the other hand, there is

‖ (2αk−1(Ck − Ck−1), 2βk−1(Dk −Dk−1), 2γk−1(Fk − Fk−1)) ‖
≤2b‖Zk − Zk−1‖. (4.5)

Combining (4.3), (4.4) and (4.5), we get

‖(C∗
k , D

∗
k, F

∗
k )‖ ≤ ν‖Zk − Zk−1‖,

where ν = 2b + 2M . �

Lemma 4.3. The sequence {Zk = (Ck, Dk, Fk)} has at least one convergent sub-sequence.

Each cluster point is a stationary point of (3.6).

Proof. By Lemma 4.1, the sequence {Zk} is bounded. Hence it has at least one convergent

sub-sequence. Suppose that Ẑ := (Ĉ, D̂, F̂ ) is a cluster point of {Zk}, i.e., the limit point

of a sub-sequence {Zkn
}. limk→∞ ‖Zk − Zk+1‖ = 0 from Lemma 4.1 gives immediately both

Zkn−1 → Ẑ and Zkn+1 → Ẑ when n → ∞.

We now show limn→∞ L(Zkn
) = L(Ẑ). By (3.7), we have

Q(Ckn+1, Dkn
, Fkn

) + αkn
‖Ckn+1 − Ckn

‖2 + r(Ckn+1)

≤Q(Ĉ,Dkn
, Fkn

) + αkn
‖Ĉ − Ckn

‖2 + r(Ĉ). (4.6)

Taking limsup in the both sides of (4.6) results in lim supn→∞ r(Ckn+1) ≤ r(Ĉ). Together

with the lower semi-continuity of r(C) = λ‖C‖0, which means lim infn→∞ r(Ckn+1) ≥ r(Ĉ), we

obtain limn→∞ r(Ckn+1) = r(Ĉ). Similarly, limn→∞ r(Ckn
) = r(Ĉ). Notice that Dk ∈ χ for

all k and χ is a compact set, thus s(Dkn
) = s(Dkn+1) = s(D̂) = 0 for all kn. As Q and t are

continuous functions, it then follows that

lim
n→∞

L(Zkn
) = lim

n→∞
L(Zkn+1) = L(Ĉ, D̂, F̂ ). (4.7)

Then we prove that Ẑ is a stationary point of (3.6). From Ck+1 ∈ arg minC L(C,Dk, Fk) +

αk‖C − Ck‖2F , we have

L(Ckn+1, Dkn
, Fkn

) + a‖Ckn+1 − Ckn
‖2 ≤ L(C,Dkn

, Fkn
) + b‖C − Ckn

‖2, ∀C ∈ ΩC .
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Letting n → ∞, with (4.1) and (4.7), we obtain

L(Ĉ, D̂, F̂ ) ≤ L(C, D̂, F̂ ) + b‖C − Ĉ‖2, ∀C ∈ ΩC ,

which means

Q(Ĉ, D̂, F̂ ) + r(Ĉ) ≤ Q(C, D̂, F̂ ) + r(C) + b‖C − Ĉ‖2, ∀C ∈ ΩC .

Thus Ĉ ∈ arg minC Q(C, D̂, F̂ ) + r(C) + b‖C − Ĉ‖2. With the first-order optimality con-

ditions, 0 ∈ ∇CQ(Ĉ, D̂, F̂ ) + ∂r(Ĉ). By similar arguments, we obtain for D and F that

0 ∈ ∇DQ(Ĉ, D̂, F̂ ) + ∂s(D̂) and 0 ∈ ∇FQ(Ĉ, D̂, F̂ ) + ∂t(F̂ ). By (4.2), we have 0 ∈ ∂L(Ẑ),

which means that Ẑ is a stationary point. �

To verify the K L property of our objective function L(C,D, F ), we show that L(C,D, F ) is

a semi-algebraic function defined below, since any such function has K L property [1, 5].

Definition 4.1 (Semi-algebraic function)[1]. A subset S of Rn is a real semi-algebraic set

if there exists a finite number of real polynomial functions Pij , Qij : Rn → R such that

S =

p
⋃

j=1

q
⋂

i=1

{x ∈ R
n : Pij(x) = 0, Qij(x) < 0}.

A function h : R
n → R

⋃{+∞} (resp. a point-to-set mapping H : R
n ⇉ R

m ) is called

semi-algebraic if its graph {(x, ρ) ∈ R
n+1 : h(x) = ρ} (resp. {x, y} ∈ R

n+m : y ∈ H(x)} is a

semi-algebraic subset of Rn+1 (resp. R
n+m).

Lemma 4.4. L(C,D, F ) in (3.6) is a semi-algebraic function.

Proof. Recall L(C,D, F ) = r(C) + s(D) + t(F ) +Q(C,D, F ). Referring to [3, Theorem 4.5],

r(C), s(D) and Q(C,D, F ) are all semi-algebraic functions. We need only show that t(F ) is

semi-algebraic, since finite sums of semi-algebraic functions are semi-algebraic [34].

For t(F ) = ‖F‖e1 =
∑N

j=1

∑m2

i=1 |Fij |, the graph of |Fij | is Sij = {(Fij , k) ∈ R
2 : |Fij | =

k} = {Fij − k = 0, −Fij < 0} ∪ {Fij + k = 0, Fij < 0} ∪ {Fij = 0}, which is a semi-algebraic

set. Thus |Fij | is a semi-algebraic function. Hence t(F ) is semi-algebraic. �

We are now ready to present our final convergence result.

Theorem 4.2. The sequence {Zk = (Ck, Dk, Fk)} generated by (3.7) converges to a stationary

point of (3.6).

Proof. It is clear that L(C,D, F ) is a proper lower semi-continuous function. Combining

Lemma 4.1, Lemma 4.2, Lemma 4.3 and Lemma 4.4, we can apply Theorem 4.1 to obtain that

the sequence {Zk = (Ck, Dk, Fk)} converges to a stationary point of (3.6). �

5. Experiments

Let g = u + n(σ%) denote some noisy observation of u, where n(σ%) is the impulsive noise

with proportion of pollution σ%. For an input noisy observation, Algorithm 3.1 generates an

adaptive tight frame W , and a matrix F which somehow denotes the noise in patches. We then
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de-noise the input image g by using the tight frame W and patch matrix F . We calculate, by

hard thresholding, the following ũ

ũ = WT(Tλ̃(W (g − f̃))), (5.1)

as our denoising result. Here f̃ represents the noise in image domain and λ̃ is a thresholding

parameter. The f̃ is computed from F in Algorithm 3.1 by a reformulation from the patch

domain to the image domain. According to the construction of the patch matrix G from the

image g, we take an inverse procedure to get f̃ from F . For those pixels appearing for multiple

times in patch domain, we average their values in the reformulation from F to f̃ .

The test platform is a Window 10 Enterprise system equipped with Intel Core i7-4790 CPU

at 3.60 GHz and 8.00GB memory. To study the performance of Algorithm 3.1 for images with

different structures, we test the proposed algorithm using some images which contain both

cartoon-type regions and texture regions. They are shown in Fig. 5.1.

(a) Chart 256 × 256 (b) Aerial 256 × 256 (c) Montage 256 × 256

(d) Baboon 512 × 512 (e) Barbara 512 × 512 (f) Airplane 512 × 512

Fig. 5.1. Six tested image selected from USC-SIPI image database.

We choose parameters according to the following basic rules, which were summarized from

lots of experiments. The patch size is fixed as 16 × 16. The termination criterion is set either

the maximum number of iterations iter = 40 or ‖Dk −Dk+1‖ ≤ 10−2. The parameters λ and

λ̃ are suggested to be 11.2σ and 3.9σ respectively in general. The parameter τ is set to 0.02

for σ = 10, 20 and 0.01 for others. The λ, λ̃, τ may be tuned with some minor adjustments for

some individual images. The proximal parameters αk, βk and γk during the iterations are all

fixed to 0.01.

In order to show the influence of the initialization of tight frame, local discrete cosine trans-

form (DCT) and un-decimal Haar wavelets [16] are selected as the initialization, respectively,
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tested on the image “Montage” corrupted by random-valued noise and the image “Barbara”

corrupted by salt-and-pepper noise. Results are listed in Table 5.1, which shows that the per-

formances of two different initializations are very close in terms of PSNR value. In the following

experiments, we simply choose local DCT as the initialization.

Table 5.1: Comparison of the PSNR values (dB) of the de-noising results by Algorithm 3.1 with different

initializations on the tight frame.

Image Noise Level Local DCT Haar Wavelet

Montage

10% 31.32 31.15

20% 27.22 27.31

30% 25.87 25.69

40% 23.45 23.38

50% 21.52 21.43

60% 20.18 19.97

Barbara

10% 33.37 33.26

20% 30.02 29.91

30% 26.54 26.62

40% 23.93 23.75

50% 21.86 21.83

60% 20.33 20.21

We now verify the convergence of our algorithm and study the influence of iteration numbers

on de-noising results, by applying our Algorithm 3.1 to the image “Barbara” corrupted by 20%

salt-and-pepper noise. We calculated the de-noising results by using the tight frame filters

generated in Algorithm 3.1 at different iterations. Fig. 5.2(a) shows the PSNR values of these

results along the iteration. As can be seen, the curve increases almost monotonically, indicating

the progressive improvements of the de-noising effectiveness of our iterative algorithm. The

convergence behavior of Algorithm 3.1 is shown in Fig. 5.2(b) by the Frobenius norm of

Dk −Dk−1 along iteration. In Fig. 5.3, we illustrate the computed filters at the 1st, 3th, 15th

and 30th iterations.

0 5 10 15 20 25 30 35 40 45 50 55 60
10

15

20

25

30

35

Iterations

(a) PSNR value (dB) of de-noising result vs

the iteration number.

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Iterations

(b) ‖Dk −Dk−1‖ vs the iteration number.

Fig. 5.2. PSNR and convergence behavior along the iteration of Algorithm 3.1 on the image “Barbara”.

Next, we compare the performance of Algorithm 3.1 with other methods including DWM

filter [19], AK-SPR Algorithm [6] and ALM TV-L1 Algorithm [40], all of which ran on the same

platform as mentioned before. For these three compared methods, we choose their suggested
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(a) k = 1 (b) k = 3 (c) k = 15 (d) k = 30

Fig. 5.3. Tight frame filters by Algorithm 3.1 after k iterations when restoring the image “Barbara”.

(a) original image (b) noisy image; 10.50 dB (c) result of DWM; 24.25 dB

(d) result of AK-SPR; 23.65 dB (e) result of TV-L1; 23.47 dB (f) result of Alg. 1; 26.54 dB

Fig. 5.4. De-noising results for the image “Barbara” corrupted with salt-and-pepper noise.
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parameter settings and also make minor adjustments to achieve good results. Fig. 5.4 and

Fig. 5.5 show the noise removal results for image “Barbara” corrupted with 30% salt-and-

pepper noise and image “Montage” with 20% random-valued noise by different methods. More

quantitative comparisons are summarized in Table 5.3 and Table 5.4, which list the PSNR

values (dB) of the restoration results by four algorithms for salt-and-pepper noise removal

and random-valued noise removal problems, respectively. From these experiments, all of these

methods work quite well in most cases. However, DWM erases slim structures like texts; see

Fig. 5.5. AK-SPR keeps noise in textured regions. TV-L1 works well for cartoon-like images,

but smoothes textures. Overall speaking, our Algorithm 3.1 seems to generate good results for

different images with different structures. This is reasonable, because it learns tight frames for

sparse regularization from input images adaptively and hence captures richer image structures.

This advantage is particularly obvious in the “Montage” example; see Fig. 5.5. When the noise

level is low, the proposed algorithm works especially well. We should admit that, this data

adaptive advantage of our method weakens for high level noise removal problems, because in

these problems the structure information of the input image is corrupted too much and the

tight frame construction becomes inaccurate.

(a) original image (b) noisy image; 8.33 dB (c) result of DWM; 23.05 dB

(d) result of AK-SPR; 25.30 dB (e) result of TV-L1; 20.64 dB (f) result of Alg. 1; 27.22 dB

Fig. 5.5. De-noising results for the image “Montage” corrupted with random-valued noise.

Table 5.2 lists the averaged CPU costs (in second) of different methods for salt-pepper

noise removal problems with six noise levels. It can be seen that the proposed algorithm is

considerably faster than DWM and AK-SPR but slower than TV-L1.
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Table 5.2: Averaged CPU costs (in second) of different methods for salt-pepper noise removal problems

with six noise levels.

Method

Image
Chart Aerial Montage Baboon Barbara Airplane

DWM 29.52 29.67 28.35 116.36 117.26 114.88

AK-SPR 390.86 102.32 275.45 425.41 540.21 413.24

TV-L1 1.87 2.25 2.07 8.12 8.23 7.76

Alg. 1 14.15 13.85 14.28 54.05 53.35 53.72

Table 5.3: PSNR values (dB) of the de-noising results by DWM, AK-SPR, TV-L1 and Algorithm 3.1

for salt-and-pepper noise removal problems.

Image Noise Level DWM AK-SPR TV-L1 Alg. 1

Chart

10% 23.25 21.33 20.12 24.29

20% 21.58 20.35 18.61 22.90

30% 18.54 19.03 17.28 20.39

40% 16.39 17.06 15.35 18.57

50% 15.02 14.93 14.14 16.23

60% 13.53 13.43 13.47 15.11

Aerial

10% 28.91 25.72 23.45 29.09

20% 25.17 24.67 22.14 25.35

30% 24.25 23.84 21.63 22.97

40% 22.47 22.16 20.67 21.32

50% 20.50 20.65 19.49 18.98

60% 17.20 17.55 18.84 16.12

Montage

10% 23.58 26.57 23.03 30.73

20% 22.85 26.17 21.54 26.30

30% 21.12 23.83 20.76 24.05

40% 20.91 22.24 19.98 22.87

50% 19.89 20.07 19.44 21.05

60% 18.79 18.41 18.05 19.24

Baboon

10% 26.06 24.46 24.12 26.15

20% 24.03 23.55 22.61 24.12

30% 22.87 22.01 21.57 22.13

40% 21.29 21.10 20.33 20.65

50% 19.99 20.28 20.02 19.87

60% 19.13 19.01 19.53 18.48

Barbara

10% 28.88 27.45 26.95 33.37

20% 25.96 26.09 24.93 30.02

30% 24.25 23.65 23.47 26.54

40% 23.38 23.31 23.36 23.93

50% 22.25 21.73 22.60 21.86

60% 20.80 20.02 22.13 20.33

Airplane

10% 31.91 33.12 32.52 33.43

20% 29.94 31.02 29.84 30.19

30% 28.54 27.50 27.53 28.01

40% 26.45 25.02 25.80 25.97

50% 24.22 23.34 24.51 23.45

60% 21.85 21.03 22.65 21.33
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Table 5.4: PSNR values (dB) of the de-noising results by DWM, AK-SPR, TV-L1 and Algorithm 3.1

for random-valued noise removal problems.

Image Noise Level DWM AK-SPR TV-L1 Alg. 1

Chart

10% 21.38 21.41 19.63 25.96

20% 19.54 20.15 17.22 23.14

30% 18.55 17.29 15.94 20.86

40% 17.80 15.97 14.65 19.07

50% 16.75 13.81 13.73 17.63

60% 14.75 11.93 13.21 15.89

Aerial

10% 28.04 25.23 23.22 29.57

20% 25.55 24.33 22.01 25.72

30% 24.11 23.11 21.63 23.58

40% 22.72 21.62 20.54 21.57

50% 21.43 20.10 19.12 19.79

60% 20.03 18.56 18.78 18.82

Montage

10% 23.97 26.52 23.12 31.32

20% 23.05 25.30 20.64 27.22

30% 22.77 23.24 20.15 25.87

40% 22.48 20.86 19.34 23.45

50% 21.67 18.14 19.25 21.52

60% 20.23 17.98 18.30 20.18

Baboon

10% 27.02 24.62 24.41 27.38

20% 23.92 23.81 22.49 24.80

30% 22.70 22.53 21.31 22.97

40% 21.51 21.53 20.42 21.45

50% 20.77 20.45 19.87 20.54

60% 20.02 19.72 19.18 19.74

Barbara

10% 29.26 27.02 26.77 34.47

20% 26.71 26.64 25.09 30.02

30% 24.50 23.79 23.47 26.60

40% 23.61 22.50 22.38 25.55

50% 22.25 21.50 21.32 22.04

60% 21.76 19.54 18.98 21.67

Airplane

10% 32.75 33.42 32.54 34.36

20% 29.83 31.10 29.74 29.90

30% 28.29 27.19 27.31 27.74

40% 26.42 24.52 24.84 25.38

50% 25.42 21.82 21.25 23.41

60% 23.64 19.01 17.22 22.33

6. Conclusion

Most of the existing data-driven tight frame denosing methods use L2 fidelity, which does not

fit the statistics of the very basic and widespread impulsive noise. In this paper we extended

data-driven tight frame methods to impulsive noise removal problems by incorporating L1

fidelity into the previous L0 balanced type model. The proposed model inherits the convenience

of optimization and implementation of the original data-driven approach. It is efficiently solved

through an alternating iteration after partitioning the noisy image and variables into patches.

We also showed that the sequence generated by our algorithm globally converges to a stationary
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point of the energy function. Once an adaptive tight frame system is constructed from the

input noisy image, it is used to remove impulsive noise. With the comparisons in the numerical

experiments, advantages of our approach, especially for low level noise problems, were shown

clearly for various images with diverse structures. This is due to the data-driven nature of our

approach, which generates tight frames adaptive to varied structures of input images. In the

future, we plan to design more powerful data-driven models for deblurring problems.

A. Sub-differential and Kurdyka- Lojasiewicz Property

Definition A.1 (Limiting Fréchet sub-differential)[35]. A vector z is a Fréchet subgra-

dient of a lower semi-continuous function h : Rn → R
⋃{+∞} at x ∈ dom(h) if

lim inf
y→x,y 6=x

h(y) − h(x) − 〈z, y − x〉
‖y − x‖ ≥ 0.

The set of Fréchet sub-gradient of h at x is called Fréchet sub-differential and denoted as ∂̂h(x).

If x /∈ dom(h), then ∂̂h(x) = ∅. The limiting Fréchet sub-differential is denoted by ∂h(x) and

defined as

∂h(x) = {z : there is xm → x, h(xm) → h(x) and zm ∈ ∂̂h(xm) such that zm → z}.

An x ∈ dom(h) is called a stationary point of h if 0 ∈ ∂h(x).

Definition A.2 (Kurdyka- Lojasiewicz property)[34]. The function h : Rn → R
⋃{+∞}

is said to have the Kurdyka- Lojasiewicz property at x∗ ∈ dom(∂h) if there exist η ∈ (0,∞], a

neighborhood U of x∗ and a continuous concave function ϕ : [0, η) → R+ such that:

1. ϕ(0) = 0,

2. ϕ is C1 on (0, η),

3. for all ζ ∈ (0, η), ϕ′(ζ) > 0,

4. for all x in U
⋂{x : h(x∗) < h(x) < h(x∗) + η}, the Kurdyka- Lojasiewicz inequality holds

in the sense that

ϕ′(h(x) − h(x∗))dist(0, ∂h(x)) ≥ 1.

A proper lower semi-continuous function which satisfies the Kurdyka- Lojasiewicz inequality at

each point of dom(∂h) is called a K L function.

Acknowledgments. The authors would like to thank the supports from NSF of China grants

11531013 and 11871035.

References

[1] H. Attouch, J. Bolte, and B.F. Svaiter, Convergence of descent methods for semi-algebraic and

tame problems: Proximal algorithms, forwardCbackward splitting, and regularized gauss-seidel

methods, Math. Program., 137:1–2 (2013), 91–129.

[2] M. Bai, X. Zhang, and Q. Shao, Adaptive correction procedure for TVL1 image deblurring under

impulse noise, Inverse Probl., 32:8 (2016), 085004.



106 Y. CHEN AND C.L. WU

[3] C. Bao, H. Ji, and Z. Shen, Convergence analysis for iterative data-driven tight frame construction

scheme, Appl. Comput. Harmon. Anal., 38:3 (2015), 510–523.

[4] J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for nonconvex

and nonsmooth problems, Math. Program., 146:1–2 (2014), 459–494.

[5] J. Bolte, A. Daniilidis, A. Lewis, and M. Shiota, Clarke subgradients of stratifiable functions,

SIAM J. Optim., 18:2 (2007), 556–572.

[6] P. Bouboulis, K. Slavakis, and S. Theodoridis, Adaptive kernel-based image denoising employing

semi-parametric regularization, IEEE Trans. Image Process., 19:6 (2010), 1465–1479.

[7] A.C. Bovik, Handbook of Image and Video Processing, Academic press, 2010.

[8] J.F. Cai, B. Dong, and Z. Shen, Image restoration: A wavelet frame based model for piecewise

smooth functions and beyond, Appl. Comput. Harmon. Anal., 41:1 (2015), 94–138.

[9] J.F. Cai, H. Ji, Z. Shen, and G.B. Ye, Data-driven tight frame construction and image denoising,

Appl. Comput. Harmon. Anal., 37:1 (2014), 89–105.

[10] J.F. Cai and Z. Shen, Image restoration: Total variation, wavelet frames, and beyond, J. Am.

Math. Soc., 25:4 (2012), 1033–1089.

[11] E.J. Cands, Ridgelets: Estimating with ridge functions, Ann. Stat., 31:5 (2003), 1561–1599.

[12] E.J. Cands and D.L. Donoho, Recovering edges in ill-posed inverse problems: Optimality of

curvelet frames, Ann. Stat., 30:3 (2002), 784–842.

[13] D.Q. Chen, Data-driven tight frame learning scheme based on local and non-local sparsity with

application to image recovery, J. Sci. Comput., 69:2 (2016), 461–486.

[14] T. Chen and H.R. Wu, Adaptive impulse detection using center-weighted median filters, IEEE

Signal Process. Lett., 8:1 (2001), 1–3.

[15] J.K. Choi, B. Dong, and X. Zhang, Limited tomography reconstruction via tight frame and

simultaneous sinogram extrapolation, J. Comput. Math., 34:6 (2016), 575–589.

[16] I. Daubechies, Ten Lectures on Wavelets, volume 61, SIAM, 1992.

[17] I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets: MRA-based constructions of wavelet

frames, Appl. Comput. Harmon. Anal., 14:1 (2003), 1–46.

[18] B. Dong, H. Ji, J. Li, Z. Shen, and Y. Xu, Wavelet frame based blind image inpainting, Appl.

Comput. Harmon. Anal., 32:2 (2012), 268–279.

[19] Y. Dong and S. Xu, A new directional weighted median filter for removal of random-valued

impulse noise, IEEE Signal Process. Lett., 14:3 (2007), 193–196.

[20] D.L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inf. Theory, 41:3 (1995), 613–627.

[21] M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned

dictionaries, IEEE Trans. Image Process., 15:12 (2006), 3736–3745.

[22] X. Fan, Q. Lian, and B. Shi, Compressed-sensing MRI based on adaptive tight frame in gradient

domain, Appl. Magn. Reson., 49:5 (2018), 465–477.

[23] G. Gu, S. Jiang, and J. Yang, A tvscad approach for image deblurring with impulsive noise,

Inverse Probl., 33:12 (2017), 125008.

[24] H. Hwang and R.A. Haddad, Adaptive median filters: New algorithms and results, IEEE Trans.

Image Process., 4:4 (1995), 499–502.

[25] S.J. Ko and H.L. Yong, Center weighted median filters and their applications to image enhance-

ment, IEEE Trans. Circuits Syst., 38:9 (1991), 984–993.

[26] J. Liang, J. Li, Z. Shen, and X. Zhang, Wavelet frame based color image demosaicing, Inverse

Probl. Imaging, 7:3 (2013), 777–794.

[27] J. Liang, J. Ma, and X. Zhang, Seismic data restoration via data-driven tight frame, Geophysics,

79:3 (2014), 65–74.

[28] D. Ma and W. Cong, Removal of mixed Gaussian and impulse noise using data-driven tight

frames, J. Eng. Sci. Tech. Rev., 11:2 (2018), 26–31.

[29] L. Ma, J. Yu, M.K. Ng and T. Zeng, Efficient box-constrained TV-TYPE-l1 algorithms for

restoring images with impulsive noise, J. Comput. Math., 31:3 (2013), 249–270.



Data-driven Tight Frame Construction for Impulsive Noise Removal 107

[30] M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application

to the processing of outliers. SIAM J. Numer. Anal., 40:3 (2002), 965–994.

[31] M. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vis.,

20:1–2 (2004), 99–120.

[32] T. Pang, Q. Li, Z. Wen, and Z. Shen, Phase retrieval: A data-driven wavelet frame based approach,

Appl. Comput. Harmon. Anal., 49:3 (2020), 971-1000.

[33] Y. Quan, H. Ji, and Z. Shen, Data-driven multi-scale non-local wavelet frame construction and

image recovery, J. Sci. Comput., 63:2 (2015), 307–329.

[34] P. Redont and A. Soubeyran, Proximal alternating minimization and projection methods for

nonconvex problems: An approach based on the Kurdyka- Lojasiewicz inequality, Math. Oper.

Res., 35:2 (2008), 438–457.

[35] R.T. Rockafellar and R.J.B. Wets, Variational Analysis, Springer, 2009.

[36] A. Ron and Z. Shen, Affine systems in l2(rd): The analysis of the analysis operator, J. Funct.

Anal., 148:2 (1995), 408–447.

[37] Y. Shen, B. Han, and E. Braverman. Adaptive frame-based color image denoising. Appl. Comput.

Harmon. Anal., 41:1 (2016), 54–74.

[38] Z. Shen, Wavelet frames and image restorations, in The International Congress of Mathematicians,

India, (2010), 2834–2863.

[39] T. Sun and Y. Neuvo, Detail-preserving median based filters in image processing, Pattern Recognit.

Lett., 15:4 (1994), 341–347.

[40] C. Wu, J. Zhang, and X.C. Tai, Augmented lagrangian method for total variation restoration

with non-quadratic fidelity, Inverse Probl. Imaging, 5:1 (2011), 237–261.

[41] J. Yang, Y. Zhang, and W. Yin. An efficient TVL1 algorithm for deblurring multichannel images

corrupted by impulsive noise, SIAM J. Sci. Comput., 31:4 (2009), 2842–2865.

[42] R. Zhan and B. Dong, CT image reconstruction by spatial-radon domain data-driven tight frame

regularization, SIAM J. Imaging Sci., 9:3 (2016), 1063–1083.

[43] X. Zhang, M. Bai and M. K. Ng, Nonconvex-TV based image restoration with impulse noise

removal, SIAM J. Imaging Sci., 10:3 (2017), 1627–1667.

[44] Y. Zhang and X. Zhang, Variational bimodal image fusion with data-driven tight frame, Inf.

Fusion, 55 (2020), 164–172.

[45] H. Zou, T. Hastie, and R. Tibshirani, Sparse principal component analysis, J. Comput. Graph.

Stat., 15:2 (2006), 265–286.


