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Abstract

In the present paper, we study the restricted inexact Newton-type method for solving

the generalized equation 0 ∈ f(x)+F (x), where X and Y are Banach spaces, f : X → Y is

a Fréchet differentiable function and F : X ⇉ Y is a set-valued mapping with closed graph.

We establish the convergence criteria of the restricted inexact Newton-type method, which

guarantees the existence of any sequence generated by this method and show this generated

sequence is convergent linearly and quadratically according to the particular assumptions

on the Fréchet derivative of f . Indeed, we obtain semilocal and local convergence results

of restricted inexact Newton-type method for solving the above generalized equation when

the Fréchet derivative of f is continuous and Lipschitz continuous as well as f + F is

metrically regular. An application of this method to variational inequality is given. In

addition, a numerical experiment is given which illustrates the theoretical result.
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1. Introduction

Let X and Y be Banach spaces, f : X → Y be a Fréchet differentiable function, and

F : X ⇉ Y be a set-valued mapping with closed graph. In this paper, we are intended to find

a point that satisfies the following generalized equation

0 ∈ f(x) + F (x). (1.1)

The generalized equations of the type (1.1) were introduced by Robinson [48]. This type of

generalized equation problem is an abstract model for a wide variety of variational problems

including linear and nonlinear complementarity problems, systems of nonlinear equations, sys-

tems of inequalities and variational inequalities (see [48, 50] for more details). In particular, it

may characterize optimality or equilibrium problems (see [24, 28] for more details).

The classical Newton-type method is one of the most important method for finding an

approximate solution of (1.1), which was introduced by Dontchev [16] and defined as follows:

0 ∈ f(xk) +Df(xk)(xk+1 − xk) + F (xk+1), for k = 0, 1, . . . , (1.2)
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where x0 is a given initial point and Df(x) is the derivative of f at x. When F ≡ 0, the above

method reduces to the standard Newton method for solving the equation f(x) = 0 of the form:

f(xk) +Df(xk)(xk+1 − xk) = 0, for k = 0, 1, . . . .

There is a vast biographical research on inexact Newton-type methods for solving equation

f(x) = 0 which employs different representation of inexactness; see for examples [7, 8, 54].

For solving generalized equation (1.1), Klatte and Kumer [32] generated a Newton sequence

whose Newton steps are defined by approximations f (k) of f near the current iterate xk and

the solutions xk+1 of

0 ∈ f (k)(x) + F (x),

and concentrated on local convergence analysis for Newton’s method under certain type of ap-

proximations and different regularity conditions for f + F . Moreover, the authors [32, Propo-

sition 8] have presented a Kantorovich-type statement, which is concerned on semilocal con-

vergence, under pseudo-regularity of f + F provided that all constructed Newton sequences

are valid. Moreover, Aragon Artacho et al. [4] introduced Newton’s iteration and presented

its convergence analysis under metrically regular mapping when the single-valued part of the

generalized equation (1.1) is an implicit function with a parameter. For solving generalized

equation (1.1), a survey of local and semilocal convergence results for Newton’s method can be

found in [3, 5, 9, 16, 18, 19, 24,37] and references therein.

In the case when the involved single-valued function f is not necessarily differentiable, we

say that the generalized equation (1.1) is nonsmooth. The authors in [1] introduced a mapping

H : X ⇉ L(X,Y ) and applied a selection ψ : X → L(X,Y ) for H to the following method for

solving nonsmooth generalized equation (1.1) and obtained a superlinear convergent result:

0 ∈ f(xk) +H(xk)(xk+1 − xk) + F (xk+1) for k = 0, 1, 2, . . . . (1.3)

For solving nonsmooth generalized equation (1.1), Cibulka et al. [13] studied an inexact Newton

method and obtained local convergence results for the method. Moreover, the semi-smooth

Newton-type iterative procedure, for solving (1.1), was adopted by Cibulka et al. [14] (also

see [24, Section 6F]). An extension of [33, Lemma 10.1] from equation to nonsmooth model

(1.1) is given in [32, Theorem 4] via the concept of Newton maps [33]. Relevant results, for

solving nonsmooth generalized equations (1.1), are given in [2, 6, 19, 27, 38, 39, 49,52].

A large number of new developments on Newton methods with regularity properties of set-

valued mappings for solving nonsmooth generalized equations have been studied in the last

three decades and some of which have been accumulated in the monographs [17, 31, 33, 53].

Dembo et al. [15] introduced the following inexact Newton method for solving (1.1) with

F ≡ 0, X = Y = R
n and f continuously differentiable with Jacobian ∇f in finite dimensional

case:

(f(xk) +∇f(xk)(xk+1 − xk)) ∩ B(0, ηk‖f(xk)‖) 6= ∅, (1.4)

where {ηk} ⊂ (0,∞) is a sequence of scalars and B(x, α) denotes the closed ball centered at x

with radius α.

Izmailov and Solodov [30] (see also in the monograph [31]) introduced the following inexact

Newton method for solving the generalized equation (1.1) in the case of finite dimension:

0 ∈ f(xk) +∇f(xk)(xk+1 − xk) + ek + F (xk+1), where ek ∈ R
n.
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In order to represent the inexactness for the method (1.2), Dontchev and Rockafellar [25]

associated the following inexact Newton method for solving the generalized equation (1.1) in

the Banach space setting:

(f(xk) +Df(xk)(xk+1 − xk) + F (xk+1)) ∩Rk(xk, xk+1) 6= ∅, for k = 0, 1, . . . , (1.5)

where Rk : X×X ⇉ Y is a sequence of set-valued mappings with closed graph which represents

the inexactness for the general model (1.2). When the starting point is sufficiently close to the

solution, under the metric regularity properties of the mapping f + F and Rk(·, ·), it has been
shown in [25] that every sequence generated by the method (1.5) is convergent either q-linearly,

q-superlinearly or q-quadratically according to the particular assumptions. It has also been

noted in [25] that when F ≡ 0 and Rk(xk, xk+1) = B(0, ηk‖f(xk)‖), (1.5) coincides with the

iterative method (1.4). An exact and inexact Humel-Seebeck type methods for approximating

the solution of (1.1) were proposed and studied by Burnet, Jean-Alexis and Piétrus [12]. To

solve the nonsmooth generalized equation (1.1), Cibulka et al. [13] associated the following

inexact Newton methods

(f(xk) +Ak(xk)(xk+1 − xk) + F (xk+1)) ∩Rk(xk) 6= ∅, for k = 0, 1, . . . ,

where H : X ⇉ L(X,Y ) is a generalized set-valued derivative of f with Ak ∈ H(xk) and

the mapping Rk : X ⇉ Y represents inexactness which depends on the current iteration

xk only. Under the assumptions of metric regularity properties of the mapping f + F , local

convergence results of exact and inexact Newton methods are obtained by many investigators

(see e.g. [24, Section 6 C & E] and [1, 4, 26, 32] respectively).

Let x ∈ X . The subset of X , denoted by Λ△(x), is defined by

Λ△(x) :=
{

s ∈ X : (f(x) +Df(x)s + F (x+ s)) ∩Rx(x, x+ s) 6= ∅
}

. (1.6)

Usually, for a starting point near to the solution, theorems in [13, 25, 30, 31] are focused on

the existence of one sequence, which is convergent to the solution of (1.1). In particular,

under certain conditions the convergence result, established in [25, Theorem 4], guarantees the

existence of one sequence {xk}, which is linearly convergent to the solution. Hence, from a

numerical point of view, the iteration scheme (1.5) is not convenient in practical application.

This drawback motivates us to propose the following restricted inexact Newton-type method

(see Algorithm 1.1).

Algorithm 1.1. (The Restricted Inexact Newton-type method(RINM))

Step 1. Let η ∈ [1,∞) and given x0 ∈ X , and put k := 0.

Step 2. If 0 ∈ Λ△(xk) stop; otherwise go to Step 3.

Step 3. If 0 /∈ Λ△(xk), choose sk such that sk ∈ Λ△(xk) and

‖sk‖ ≤ η d
(

0,Λ△(xk)
)

.

Step 4. Update by xk+1 := xk + sk.

Step 5. Update by k := k + 1 and go to Step 2.

Note that in comparison to the method (1.5), it sees that when η = 1 and the set Λ△(xk) is

singleton for each k = 0, 1, 2, . . ., the method (1.5) and Algorithm 1.1 are coincident; otherwise
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Algorithm 1.1 is a restricted version of the iteration scheme (1.5) because it involves a restricted

term ‖sk‖ ≤ η d
(

0,Λ△(xk)
)

on the length of sk. Moreover, in contrast with the contribution in

[25] it seems that the local convergence results of the method (1.5) are presented by the authors

in [25] while in our current paper we present the semilocal convergence of the restricted Newton-

type method. For solving (1.1), different version of exact and inexact iterative methods have

been introduced and studied their local and semilocal convergence analysis in [1,4,12,13,41–46]

and the references therein.

In this paper, we analyze semilocal convergence of restricted Newton-type method for solving

(1.1). Metrically regular property of a set-valued mapping is the key tool in our investigation.

This property has been studied by many mathematicians; see, for example, [9,17,21,22,29,44]

and the references therein. Based on the information around the initial point, our main results

are the convergence criteria, presented in Section 3, which provide some sufficient conditions

assuring the convergence to a solution of any sequence generated by Algorithm 1.1. As a result,

local convergence results of the restricted Newton-type method are obtained.

The rest of this paper is organized as follows. In the next section, we give some necessary

notations and recall some preliminary results. The main theorems are presented in Section 3,

where the semilocal and local convergence results of the sequence generated by Algorithm 1.1

for metrically regular mapping are established. In Section 4, we provide an application of RINM

to variational inequality and present a numerical experiment to illustrate the theoretical results.

Summary of the major results, presented in this paper, are mentioned in the last section.

2. Notations and Preliminary Results

In this section we recall some standard notations and notions. Let X , Y and Q be Banach

spaces. Let x ∈ X and α ∈ (0,∞). We use B(x, α) to denote the closed ball centered at x with

radius α. The set of all natural numbers is denote by N and N0 = N ∪ {0}. When a sequence

of positive scalars {wk} is convergent to zero, we write wk ց 0. Let A ⊆ X and C ⊆ X . The

distance from x to A is defined by

d(x,A) := inf
a∈A

‖x− a‖,

while the excess from the set A to the set C is defined by

e(C,A) := sup
c∈C

d(c, A).

Let Γ : X ⇉ Y be a set-valued mapping. The domain domΓ, the graph gph Γ and the inverse

Γ−1 of Γ are respectively defined by

domΓ :=
{

x ∈ X : Γ(x) 6= ∅}; gphΓ := {(x, y) ∈ X × Y : y ∈ Γ(x)
}

and Γ−1(y) := {x ∈ X : y ∈ Γ(x)}.

Recall the notions of the metric regularities for a set-valued mapping in the following definition

from [44], which have been studied extensively; see for example [23, 24, 34, 36, 46, 51].

Definition 2.1. Let T : X ⇉ Y be a set-valued mapping, and let (x̄, ȳ) ∈ gphT . Let rx̄ >

0, rȳ > 0 and κ > 0. Then T is said to be
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(i) metrically regular at (x̄, ȳ) on B(x̄, rx̄)× B(ȳ, rȳ) with constant κ if

d
(

x, T−1(y)
)

≤ κ d
(

y, T (x)
)

for all x ∈ B(x̄, rx̄), y ∈ B(ȳ, rȳ). (2.1)

(ii) metrically regular at (x̄, ȳ) if there exist constants r′x̄ > 0, r′ȳ > 0 and κ′ > 0 such that

T is metrically regular at (x̄, ȳ) on B(x̄, r′x̄)× B(ȳ, r′ȳ) with constant κ′.

The infimum of the set of values κ for which (2.1) holds with some rx̄ > 0, rȳ > 0 is called the

modulus of metric regularity, denoted by reg (T ; (x̄, ȳ)); see [23] and the references therein for

more details.

The notions of pseudo-Lipschitz and Lipschitz-like properties for set-valued mapping are ex-

tracted from [47]. These notions have been introduced by Aubin [10,11] and studied extensively.

For their connections between linear rate of openness, coderivatives, metric regularity of set-

valued mappings and applications to variational problems, one can refer to [23, 34, 36] and the

monographs [35, 51].

Definition 2.2. Let Γ : X ⇉ Y be a set-valued mapping and let (x̄, ȳ) ∈ gphΓ. Let rx̄ >

0, rȳ > 0 and M > 0. Then Γ is said to be

(i) Lipchitz-like at (x̄, ȳ) on B(x̄, rx̄)× B(ȳ, rȳ) with constant M if

e(Γ(x1) ∩ B(ȳ, rȳ),Γ(x2)) ≤M‖x1 − x2‖ for any x1, x2 ∈ B(x̄, rx̄). (2.2)

(ii) pseudo-Lipchitz around (x̄, ȳ) if there exist constants r′x̄ > 0, r′ȳ > 0 and M ′ > 0 such that

Γ is Lipschitz-like at (x̄, ȳ) on B(x̄, r′x̄)× B(ȳ, r′ȳ) with constant M ′.

Remark 2.1. Equivalently, for the property (i) in Definition 2.2, we can say that Γ is Lipschitz-

like at (x̄, ȳ) ∈ gphΓ on B(x̄, rx̄) × B(ȳ, rȳ) with constant M if for every y1, y2 ∈ B(ȳ, rȳ) and

for every y1 ∈ Γ(x1) ∩ B(ȳ, rȳ), there exists y2 ∈ Γ(x2) such that

‖y1 − y2‖ ≤M‖x1 − x2‖, for every x1, x2 ∈ B(x̄, rx̄).

We employ the following definitions of partial Lipschitz-like and partially pseudo-Lipschitz

properties for set-valued mapping of two variables from [25].

Definition 2.3. Let S : Q × X ⇉ Y be a set-valued mapping with
(

(q̄, x̄), ȳ
)

∈ gphS. Let

rq̄ > 0, rx̄ > 0, rȳ > 0 and L > 0. Then S is said to be

(i) partially Lipschitz-like at ((q̄, x̄), ȳ) with respect to x on
(

B(q̄, rp̄) × B(x̄, rx̄)
)

× B(ȳ, rȳ)

with constant L if, for any x, x′ ∈ B(x̄, rx̄) and q ∈ B(q̄, rq̄), the following condition holds

e
(

S(q, x) ∩ B(ȳ, rȳ), S(q, x
′)
)

≤ L‖x− x′‖. (2.3)

(ii) partially pseudo-Lipschitz around ((q̄, x̄), ȳ) if there exist constants r′q̄ > 0, r′x̄ > 0, r′ȳ >

0 and L′ > 0 such that S is partially Lipschitz-like at ((q̄, x̄), ȳ) with respect to x on
(

B(q̄, r′p̄)× B(x̄, r′x̄)
)

× B(ȳ, r′ȳ) with constant L′.

The proof of the following lemma is given in [44] or in [24]. This lemma establishes the connec-

tion between the metric regularity and the Lipchitz-like property, which will be useful. After

combining this lemma with [40, Remark 2.1], we state the modified form as follows:
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Lemma 2.1. Let T : X ⇉ Y be a set-valued mapping and let (x̄, ȳ) ∈ gphT . Assume that T is

metrically regular at (x̄, ȳ) on B(x̄, rx̄)×B(ȳ, rȳ) with constant κ. Then for every y, y′ ∈ B(ȳ, rȳ)

and for any x1 ∈ T−1(y) ∩ B(x̄, rx̄), there exists x2 ∈ T−1(y′) such that

‖x1 − x2‖ ≤ κ‖y − y′‖.

Recall the following statement which is a refinement of the Lyusternik-Graves theorem for

metrically regular mapping taken from [21, Theorem 3.3]. Analogue developments on this

result appear in [17, Theorem 1.4] or Section 1 in Ioffe [29]. This theorem plays an important

role in the theory of metric regularity. This theorem proves the stability of metric regularity of

a set-valued mapping for generalized equation under perturbations.

Lemma 2.2. Let T : X ⇉ Y be a set-valued mapping and let (x̄, ȳ) ∈ gphT . Let T be a

metrically regular at (x̄, ȳ) on B(x̄, rx̄) × B(ȳ, rȳ) with constant κ > 0 and gphT ∩ (B(x̄, rx̄) ×
B(ȳ, rȳ)) be closed. Suppose that g : X → Y is a Lipschitz continuous function with Lipschitz

constant λ such that λκ < 1. Then the mapping g + T is metrically regular at (x̄, ȳ + g(x̄)) on

B(x̄, rx̄)× B(ȳ + g(x̄), rȳ) with constant
κ

1− κλ
.

We finish this section with the following coincidence theorem, which is taken from [25,

Theorem 1] and it was originally proved in [20].

Lemma 2.3. Let X and Y be two metric spaces. Suppose that Φ : X ⇉ Y and θ : Y ⇉ X are

set-valued mappings. Let r ∈ (0,+∞), κ > 0, λ > 0 and x̄ ∈ X, ȳ ∈ Y be such that κλ < 1.

Assume that one of the sets gphΦ∩(B(x̄, r)×B(ȳ, r
λ
)) and gphθ∩(B(ȳ, r

λ
)×B(x̄, r)) is closed while

the other is complete, or both sets gph(Φ·θ)∩(B(ȳ, r
λ
)×B(ȳ, r

λ
)) and gph(θ·Φ)∩(B(x̄, r)×B(x̄, r))

are complete. Also, suppose that the following conditions hold:

d(ȳ,Φ(x̄)) < r(1 − κλ)/(2λ); (2.4)

d(x̄, θ(ȳ)) < r(1 − κλ)/2; (2.5)

e(Φ(x1) ∩ B(ȳ,
r

λ
),Φ(x2)) ≤ κ‖x1 − x2‖, for all x1, x2 ∈ B(x̄, r); (2.6)

and

e(θ(y1) ∩ B(x̄, r), θ(y2)) ≤ λ‖y1 − y2‖, for all y1, y2 ∈ B(ȳ,
r

λ
). (2.7)

Then there exist x̂ ∈ B(x̄, r) and ŷ ∈ B(ȳ, r
λ
) such that ŷ ∈ Φ(x̂) and x̂ ∈ θ(ŷ). Additionally, if

Φ and θ are single-valued, then ŷ = Φ(x̂) and x̂ = θ(ŷ) for x̂ ∈ B(x̄, r) and ŷ ∈ B(ȳ, r
λ
).

3. Convergence Analysis

Throughout this section, we suppose that X and Y are Banach spaces. Let f : X → Y be a

Fréchet differentiable function and its derivative is denoted by Df . Let Rx : X ×X ⇉ Y and

F : X ⇉ Y be set-valued mappings with closed graph. Let rx̄ > 0 and rȳ > 0. Moreover, in this

section we consider the restricted inexact Newton-type method(RINM) defined by Algorithm

1.1 for solving the generalized equation (1.1). Let x ∈ X . For the simplicity, define a set-valued

mapping Wx : X ⇉ Y by

Wx(·) := f(x) +Df(x)(· − x) + F (·). (3.1)
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Thus, by the definition of Λ△(x), we obtain that

Λ△(x) =
{

s ∈ X : Wx(x+ s) ∩Rx(x, x + s) 6= ∅
}

. (3.2)

Moreover, one can easily see that the following equivalence is trivial:

u ∈ W−1
x (w) ⇔ w ∈ f(x) +Df(x)(u − x) + F (u) for any u ∈ X and w ∈ Y. (3.3)

In particular, for every (x̄, ȳ) ∈ gph (f + F ), we have that

x̄ ∈ W−1
x̄ (ȳ). (3.4)

Now, let x, u ∈ X and w ∈ Y . Then, by the formation of Wx in (3.1) together with (3.3) we

obtain that

w ∈ Wx(u) = f(x) +Df(x)(u − x) + F (u),

which can be written as

w − f(x)−Df(x)(u − x) ∈ F (u).

This, together with the definition of Wu, implies that

Wu(u) = f(u) + F (u) ∋ f(u) + w − f(x)−Df(x)(u − x). (3.5)

Put

Z(x, u) := f(x) +Df(x)(u − x)− f(u). (3.6)

Then, (3.5) implies that

w − Z(x, u) ∈ Wu(u). (3.7)

When the approximation of f can be represented by a classical linearization, we have the

following lemma which is due to [46]:

Lemma 3.1. Let f : X → Y be a Fréchet differentiable function on B(x̄, rx̄) and suppose

that the set-valued mapping F : X ⇉ Y is metrically regular at (x̄, ȳ − f(x̄)) on B(x̄, rx̄) ×
B(ȳ − f(x̄), rȳ) with constant κ > 0, which have locally closed graph at (x̄, ȳ − f(x̄)) with

ȳ ∈ f(x̄) + F (x̄). Then the following statements are equivalent:

(i) The mapping f + F is metrically regular at (x̄, ȳ) on B(x̄, rx̄)× B(ȳ, rȳ) with constant κ.

(ii) The mapping Wx̄ is metrically regular at (x̄, ȳ) on B(x̄, rx̄)× B(ȳ, rȳ) with constant κ.

Let ε > 0 and define

b := min

{

rȳ − 2εrx̄,
rx̄(1− κε)

4κ

}

. (3.8)

Then

b > 0 ⇐⇒ ε < min

{

rȳ
2rx̄

,
1

κ

}

. (3.9)

Recall the following lemma from [46, Lemma 3.2]. This lemma plays an important role for

convergence analysis of RINM.
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Lemma 3.2. Assume that the mapping Wx̄ is metrically regular at (x̄, ȳ) on B(x̄, rx̄)×B(ȳ, rȳ)

with constant κ. Let b be defined in (3.8) so that (3.9) is satisfied. Let x ∈ B(x̄, rx̄2 ) and assume

that Df is continuous on B(x̄, rx̄2 ) with constant ε. Then Wx is metrically regular at (x̄, ȳ) on

B(x̄, rx̄2 )× B(ȳ, b) with constant
κ

1− κε
, that is, for any u1 ∈ B(x̄, rx̄2 ), v2 ∈ B(ȳ, b),

d
(

u1,W−1
x (v2)

)

≤ κ

1− κε
d
(

v2,Wx(u1)
)

. (3.10)

Before going to present our first main result, for each x ∈ X and y ∈ Y , we define a function

hx : X → Y by

hx(·) := f(x̄) +Df(x̄)(· − x̄)− f(x)−Df(x)(· − x),

set-valued mappings Ξx : X ⇉ Y by

Ξx(·) = Rx(x, ·), (3.11)

and Υ: Y ⇉ X by

Υx(·) = W−1
x (·). (3.12)

Then, for every u′, u′′ ∈ X , we have

‖hx(u′)− hx(u
′′)‖ ≤ ‖Df(x̄)−Df(x)‖‖u′ − u′′‖. (3.13)

3.1. Linear Convergence

In this subsection, we assume that Wx̄ is metrically regular at (x̄, ȳ) on B(x̄, rx̄) × B(ȳ, rȳ)

with constant κ > 0 and gphWx̄ ∩ (B(x̄, rx̄)× B(ȳ, rȳ)) is closed. Further, assume that Rx(·, ·)
is partially Lipschitz-like at ((x̄, x̄), ȳ) on

(

B(x̄, rx̄)× B(x̄, rx̄)
)

× B(ȳ, rȳ) with constant µ. We

study here the semi-local and local convergence of the sequence generated by Algorithm 1.1

with initial point x0 when Wx̄ is metrically regular at (x̄, ȳ) on B(x̄, rx̄)× B(ȳ, rȳ).

Theorem 3.1. Let η > 1 and suppose that Wx̄ is metrically regular at (x̄, ȳ) on B(x̄, rx̄) ×
B(ȳ, rȳ) with constant κ > 0 and gphWx̄ ∩ (B(x̄, rx̄) × B(ȳ, rȳ)) is closed. Let x ∈ B(x̄, rx̄2 )

and suppose that Df is continuous on B(x̄, rx̄2 ) with constant ε and let b be defined in (3.8)

so that b > 0. Let u ∈ X and assume that Rx(x, u) is partially Lipschitz-like at ((x̄, x̄), ȳ) on
(

B(x̄, rx̄2 ) × B(x̄, rx̄2 )
)

× B(ȳ, b) with constant µ > 0 so that ε(4η + 1)κ < 1 − κµ. Let δ > 0 be

such that

δ ≤ min

{

rx̄
4
,
b

3ε
, 1,

bκ

1− κε

}

and ‖ȳ‖ < εδ. (3.14)

Suppose that

lim
x→x̄

d(ȳ,Wx(x)) = 0 and d
(

ȳ,Rx(x, x̄)
)

≤ ε‖x− x̄‖. (3.15)

Then, for every k ∈ N0 and every wk ∈ B(ȳ, b) with wk ∈ Rx(x, u) satisfying

Wx(u) ∋ wk, (3.16)

there exists some δ̂ > 0 such that for any initial point x0 ∈ B(x̄, δ̂), Algorithm 1.1 generates a

sequence, which may not be unique, and any generated sequence {xk} converges linearly to a

solution x∗ ∈ B(x̄, rx̄) of (1.1).
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Proof. The mapping Wx̄ is metrically regular at (x̄, ȳ) on B(rx̄, x̄)×B(rȳ, ȳ) with constant κ.

Then through Lemma 3.2, Wx is metrically regular at (x̄, ȳ) on B(x̄, rx̄2 )×B(ȳ, b) with constant

λ :=
κ

1− κε
, that is,

d
(

u1,W−1
x (v2)

)

≤ λ d
(

v2,Wx(u1)
)

for any u1 ∈ B(x̄,
rx̄
2
), v2 ∈ B(ȳ, b). (3.17)

It is obvious that κ(µ+ε) < 1, since the condition ε(4η+1)κ < 1−κµ holds. Since λ =
κ

1− κε
,

it follows that λµ < 1. The continuity property of Df on B(x̄, rx̄2 ) with constant ε yields that

‖Df(x)−Df(x′)‖ ≤ ε, for all x, x′ ∈ B(x̄,
rx̄
2
). (3.18)

Then, we obtain, for all u′, v′ ∈ B(x̄, rx̄2 ), that

‖f(u′)− f(v′)−Df(v′)(u′ − v′)‖

=

∥

∥

∥

∥

∫ 1

0

Df(v′ + t(u′ − v′))(u′ − v′)dt−Df(v′)(u′ − v′)

∥

∥

∥

∥

≤
∫ 1

0

‖Df(v′ + t(u′ − v′))−Df(v′)‖‖u′ − v′‖dt

≤ ε‖u′ − v′
∥

∥

∥

∥

∫ 1

0

dt = ε‖u′ − v′‖. (3.19)

Moreover, the partial Lipschitz-like property of Rx(x, u) at ((x̄, x̄), ȳ) on
(

B(x̄, rx̄2 )×B(x̄, rx̄2 )
)

×
B(ȳ, b) with constant µ imply, for all x, x′, x′′ ∈ B(x̄, rx̄2 ), that

e
(

Rx(x, x
′) ∩ B(ȳ, b),Rx(x, x

′′)
)

≤ µ‖x′ − x′′‖. (3.20)

Let x0 ∈ B(δ̂, x̄) and wn ∈ B(ȳ, b) for n = 0, 1, . . .. Since the first condition in (3.15) and (3.16)

are hold, we can infer 0 < δ̂ ≤ δ for which the following inequality holds:

d(w0,Wx0
(x0)) < εδ, for each x0 ∈ B(x̄, δ̂) and w0 ∈ B(ȳ, b). (3.21)

Set

l := ηλε =
ηκε

1− κε
. (3.22)

Moreover, due to ε(4η + 1)κ < 1− κµ, we obtain that

4ηκε

1− κε
≤ 4ηκε

1− κ(ε+ µ)
< 1.

It follows, from (3.22), that

l <
1

4
. (3.23)

To complete the proof, it is sufficient to show that the Algorithm 1.1 generates at least one

sequence and any generated sequence {xn} satisfies

‖sn‖ ≤ ln+1δ (3.24)

and

(xn+1, wn) ∈ gphWxn
∩
(

B(x̄,
rx̄
2
)× B(ȳ, b)

)

(3.25)
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for each n = 0, 1, 2, . . . . The proof will be proceed by induction on n. For this connection, we

define, for each x ∈ X ,

βx :=
2λε

1− λµ
‖x− x̄‖. (3.26)

Moreover, since η > 1, the inequality ε(4η + 1)κ < 1− κµ gives that

2λε

1− λµ
=

2κε

1− κ(ε+ µ)
≤ 2ηκε

1− κ(ε+ µ)
<

1

2
.

It follows from (3.26), for each x ∈ B(x̄, 2δ), that

βx ≤ 4λεδ

1− λµ
< δ. (3.27)

First of all, we will prove that

Λ△(x0) 6= ∅, (3.28)

which will ensure the existence of the point x1. To do this, we consider the mappings Ξx0
and

Υx0
defined by (3.11) and (3.12) respectively. Now, we show that assumptions (2.4), (2.5),

(2.6) and (2.7) of Lemma 2.3 are hold with κ := λ, λ := µ, x̄ := x̄, ȳ := ȳ and c := βx0
.

Granting this, Lemma 2.3 is applicable to conclude that there exist fixed points x̂ ∈ B(x̄, βx0
)

and ŷ ∈ B(ȳ,
βx0

λ
) such that

ŷ ∈ Ξx0
(x̂) and x̂ ∈ Υx0

(ŷ). (3.29)

The inclusion x̂ ∈ Υx0
(ŷ) translates to ŷ ∈ Wx0

(x̂), that is, ŷ ∈ f(x0)+Df(x0)(x̂−x0)+F (x̂).

This, together with the inclusion ŷ ∈ Ξx0
(x̂) = Rx0

(x0, x̂) by (3.11) and (3.29), implies that

ŷ ∈
(

f(x0) +Df(x0)(x̂ − x0) + F (x̂)
)

∩Rx0
(x0, x̂)

and therefore, (3.28) is hold.

Let us check that assumptions (2.4), (2.5), (2.6) and (2.7) of Lemma 2.3 are hold for the

mappings Φ := Ξx0
and θ := Υx0

with κ := λ, λ := µ, x̄ := x̄, ȳ := ȳ and c := βx0
.

The second condition of (3.15) gives, for x0 ∈ B(x̄, βx0
) ⊆ B(x̄, δ) ⊆ B(x̄, rx̄2 ), that

d
(

ȳ,Rx0
(x0, x̄)

)

≤ ε‖x0 − x̄‖. (3.30)

It follows from (3.11) that

d
(

ȳ,Ξx0
(x̄)
)

= d
(

ȳ,Rx0
(x0, x̄)

)

≤ ε‖x0 − x̄‖

≤ βx0
(1 − λµ)

2λ
=:

c(1− λµ)

2λ
.

This implies that the assertion (2.4) of Lemma 2.3 is hold.

Moreover, using (3.19) and third inequality from (3.14), we obtain, for any x ∈ B(x̄, 2δ),

that

‖(ȳ − hx0
(x)) − ȳ‖

= ‖ȳ − f(x̄)−Df(x̄)(x − x̄) + f(x0) +Df(x0)(x − x0)− ȳ‖
≤ ‖f(x̄)− f(x0)−Df(x0)(x̄− x0)‖+ ‖Df(x0)−Df(x̄)‖‖x̄− x‖
≤ ε
(

‖x̄− x0‖+ ‖x̄− x‖
)

≤ 3εδ ≤ b. (3.31)
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Letting x = x̄ in (3.31) and this gives that

‖(ȳ − hx0
(x̄))− ȳ‖ ≤ ε‖x̄− x0‖ ≤ εδ ≤ b. (3.32)

The above relations show that ȳ−hx0
(x) ∈ B(ȳ, b) for all x ∈ B(x̄, 2δ). Hence from the formation

of Wx in (3.1), we have

ȳ − hx0
(x̄) ∈ Wx0

(x̄) ∩ B(ȳ, b).

Thus, by virtue of the metric regularity of Wx0
from (3.17), definition of Υ in (3.12) and

the construction of hx0
, we obtain, for x0 ∈ B(x̄, βx0

) ⊆ B(x̄, δ) ⊆ B(x̄, rx̄2 ), that

d
(

x̄,Υx0
(ȳ)
)

= d
(

x̄,W−1
x0

(ȳ)
)

≤ λ d
(

ȳ,Wx0
(x̄)
)

≤ λ‖(ȳ − hx0
(x̄))− ȳ‖. (3.33)

This together with (3.32) gives that

d
(

x̄,Υx0
(ȳ)
)

≤ λ‖(ȳ − hx0
(x̄))− ȳ‖ ≤ λε‖x̄− x0‖ =

1

2
βx0

(

1− λµ
)

:=
c

2
(1 − λµ).

Hence, assertion (2.5) of Lemma 2.3 is hold.

To show assumptions (2.6) and (2.7) of Lemma 2.3 are hold, let x′, x′′ ∈ B(x̄, βx0
). Then

by the relation 4δ ≤ rx̄ in (3.14) and (3.27), we have x′, x′′ ∈ B(x̄, βx0
) ⊆ B(x̄, δ) ⊆ B(x̄, rx̄2 ).

Moreover, by (3.27) and (3.14) we have that

βx0
≤ δ ≤ λb ⇒ βx0

λ
≤ b.

For any x′, x′′ ∈ B(x̄, βx0
), we have from (3.20) that

e(Ξx0
(x′) ∩ B(ȳ,

βx0

λ
),Ξx0

(x′′))

≤ e(Ξx0
(x′) ∩ B(ȳ, b),Ξx0

(x′′))

= e(Rx0
(x0, x

′) ∩ B(ȳ, b),Rx0
(x0, x

′′))

≤ µ‖x′ − x′′‖. (3.34)

This shows that the assertion (2.6) of Lemma 2.3 is hold.

Finally, we show that the assertion (2.7) of Lemma 2.3 is also hold. To show this, let

y, y′ ∈ B(ȳ,
βx0

λ
). Let u1 ∈ W−1

x0
(y) ∩ B(x̄, βx0

). Since Wx0
is metrically regular at (x̄, ȳ) on

B(x̄, rx̄2 )× B(ȳ, b) with constant λ, by (3.17) we have that

d
(

u1,W−1
x0

(y′)
)

≤ λ d
(

y′,Wx0
(u1)

)

≤ λ‖y − y′‖. (3.35)

By the definition of excess e, we have that

e
(

Υx0
(y) ∩ B(x̄, βx0

),Υx0
(y′)

)

≤ e

(

W−1
x0

(y) ∩ B(x̄,
rx̄
2
),W−1

x0
(y′)

)

= sup

{

d
(

u1,W−1
x0

(y′)
)

: u1 ∈ W−1
x0

(y) ∩ B(x̄,
rx̄
2
)

}

.

This, together with (3.35), gives that

e
(

Υx0
(y) ∩ B(x̄, βx0

),Υx0
(y′)
)

≤ λ‖y − y′‖. (3.36)
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It follows that assumption (2.7) of Lemma 2.3 is satisfied. Hence, (3.28) is established, and

consequently, we can choose s0 such that s0 ∈ Λ△(x0) and

‖s0‖ ≤ η d
(

0,Λ△(x0)
)

. (3.37)

Therefore, by Algorithm 1.1, x1 := x0 + s0 is defined. By the choice of s0, we have from (3.2)

that

Λ△(x0) :=
{

s0 ∈ X : Wx0
(x0 + s0) ∩Rx0

(x0, x0 + s0) 6= ∅
}

. (3.38)

Since for every w0 ∈ Rx0
(x0, x0+s0), (3.16) is satisfied, then we have that w0 ∈ Wx0

(x0+s0) ⇒
x0 + s0 ∈ W−1

x0
(w0). Thus, it follows from (3.38) that

Λ△(x0) =
{

s0 ∈ X : w0 ∈ Wx0
(x0 + s0)

}

=
{

s0 ∈ X : x0 + s0 ∈ W−1
x0

(w0)
}

. (3.39)

Moreover, taking into account (3.39), we obtain that

d(0,Λ△(x0)) = d(x0,W−1
x0

(w0)). (3.40)

Applying the metrically regular property of Wx0
from (3.17), we get, from (3.37) and (3.40),

that

‖s0‖ ≤ η d(x0,W−1
x0

(w0)) ≤ ηλ d(w0,Wx0
(x0)).

This gives, for (3.21), that

‖s0‖ ≤ ηλ d(w0,Wx0
(x0)) ≤ ηλεδ = lδ, (3.41)

which shows that (3.24) holds for n = 0. Furthermore, (3.41) gives that

‖s0‖ = ‖x1 − x0‖ ≤ lδ < δ.

Consequently, we obtain that

‖x1 − x̄‖ ≤ ‖x1 − x0‖+ ‖x0 − x̄‖ < 2δ.

This implies that x1 ∈ B(x̄, 2δ) ⊆ B(x̄, rx̄2 ). Moreover, since x1 = x0 + s0 is generated by

Algorithm 1.1, (3.39) gives that

Λ△(x0) =
{

s0 ∈ X : x0 + s0 ∈ W−1
x0

(w0)
}

=
{

s0 ∈ X : x1 ∈ W−1
x0

(w0)
}

.

This, together with x1 ∈ B(x̄, rx̄2 ) and w0 ∈ B(ȳ, b), implies that (3.25) holds for n = 0.

We proceed by induction. Indeed, we are going to show that every sequence generated

by Algorithm 1.1 satisfies (3.24) and (3.25) for all n. To do this, we assume that the points

x0, x1, ..., xk+1 are obtained by Algorithm 1.1 with initial point x0 such that (3.24) and (3.25)

hold for n = 0, 1, . . . , k − 1 and show that assertions (3.24) and (3.25) hold for n = k. Since

(3.24) and (3.25) are true for n = 0, 1, . . . , k− 1, by Algorithm 1.1, xk := xk−1+ sk−1 is defined

and thus xk ∈ B(x̄, 2δ) ⊆ B(x̄, rx̄2 ). In this stage, if we impose almost same arguments that

used for the case of n = 0, one can apply Lemma 2.3 to the mappings Φ := Ξxk
and θ := Υxk

with κ := λ, λ := µ, x̄ := x̄, ȳ := ȳ and c := βxk
and show that Λ△(xk) 6= ∅. Then, choose sk

such that sk ∈ Λ△(xk) and

‖sk‖ ≤ η d(0,Λ△(xk)). (3.42)
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Applying Algorithm 1.1, we have that xk+1 := xk+sk is defined. By the choice of sk, we obtain

from (3.2) that

Λ△(xk) :=
{

sk ∈ X : Wxk
(xk + sk) ∩Rxk

(xk, xk + sk) 6= ∅
}

. (3.43)

For any wk ∈ Rxk
(xk, xk+sk), we obtain, through (3.16), that wk ∈ Wxk

(xk+sk) ⇒ xk+sk ∈
W−1

xk
(wk). Since Wxk

(xk+sk)∩Rxk
(xk, xk+sk) 6= ∅ and wk ∈ Wxk

(xk+sk)∩Rxk
(xk, xk+sk),

it follows from (3.43) that

Λ△(xk) =
{

sk ∈ X : wk ∈ Wxk
(xk + sk)

}

=
{

sk ∈ X : xk + sk ∈ W−1
xk

(wk)
}

. (3.44)

From (3.44), we get

d(0,Λ△(xk)) = d(xk,W−1
xk

(wk)).

Moreover, for xk−1, xk ∈ B(x̄, 2δ) ⊆ B(x̄, rx̄2 ) and wk ∈ B(ȳ, b), we have, from (3.6) and (3.7),

that

wk − Z(xk−1, xk) ∈ Wxk
(xk)).

Again, applying the metrically regular property of the mapping Wxk
, we get from (3.42) that

‖sk‖ ≤ η d(xk,W−1
xk

(wk)) ≤ ηλ d(wk,Wxk
(xk))

≤ ηλ‖wk − (wk − Z(xk−1, xk))‖
≤ ηλ‖f(xk)− f(xk−1)−Df(xk−1)(xk − xk−1)‖
≤ ηλε‖xk − xk−1‖ ≤ l · lkδ = lk+1δ. (3.45)

Hence, (3.24) holds for each n = k. Using (3.45), we obtain

‖xk+1 − x̄‖ ≤
k
∑

i=0

‖si‖+ ‖x0 − x̄‖ ≤ δ

k
∑

i=0

li+1 + δ ≤ lδ

1− l
+ δ ≤ 2δ, (3.46)

which shows that xk+1 ∈ B(x̄, 2δ) ⊆ B(x̄, rx̄2 ). On the other hand, Algorithm 1.1 generates the

point xk+1 such that xk+1 = xk + sk is defined. Therefore, (3.44) yields that

Λ△(xk) =
{

sk ∈ X : xk + sk ∈ W−1
xk

(wk)
}

=
{

sk ∈ X : xk+1 ∈ W−1
xk

(wk)
}

.

This, together with xk+1 ∈ B(x̄, rx̄2 ) and wk ∈ B(ȳ, b), reflects that (3.25) holds for n = k.

Therefore, (3.25) and (3.24) hold for every n. This shows that {xk} is a Cauchy sequence and

hence there exists x∗ ∈ B(x̄, βx∗) such that limk→∞ xk := x∗. Since (xk+1, wk) ∈ gphWxk
∩

(B(x̄, rx̄2 )×B(ȳ, b)) and the fact that gphWxk
∩(B(x̄, rx̄2 )×B(ȳ, b)) is closed for each k = 0, 1, . . .,

taking limit k → ∞ to (3.25). This gives that 0 ∈ Rx∗(x∗, x∗) and thus 0 ∈ Wx∗(x∗), that is,

0 ∈ f(x∗) + F (x∗). This completes the proof. �

The following corollary, which is reduced from Theorem 3.1, provides the local convergence

of the sequence generated by Algorithm 1.1 in the case when x̄ is a solution of (1.1) (i.e. ȳ = 0).

Corollary 3.1. Let η > 1, u ∈ X and x̄ be a solution of (1.1). Let Wx̄ be a metrically regular

at (x̄, 0) with a positive constant κ, which have locally closed graph at (x̄, 0). Let x ∈ B(x̄, rx̄2 )
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and Rx(x, u) be partially pseudo-Lipschitz around ((x̄, x̄), 0) with a constant µ > 0. Suppose

that Df is continuous at x̄ with a positive constant ε such that ε(4η + 1)κ < 1− κµ and that

lim
x→x̄

d(0,Wx(x)) = 0 and d
(

0,Rx(x, x̄)
)

≤ ε‖x− x̄‖. (3.47)

Then, for every k ∈ N0, wk ∈ B(ȳ, b) with wk ∈ Rx(x, u) satisfying

Wx(u) ∋ wk, (3.48)

there exists δ̂ > 0 such that for any sequence {xk} generated by Algorithm 1.1 with initial point

x0 ∈ B(δ̂, x̄) converges linearly to a solution x̄ of (1.1), that is, 0 ∈ f(x̄) + F (x̄).

Proof. By virtue of the metrically regular property of Wx̄ at (x̄, 0), we have that there exists

constants r̂x̄ > 0, r0 > 0 and κ > 0 such that

d(x,W−1
x̄ (y) ≤ κ d(y,Wx̄(x)) for all x(x, y) ∈

(

B(x̄, r̂x̄)× B(0, r0)
)

and gphWx̄ ∩
(

B(x̄, r̂x̄)× B(0, r0)
)

is closed. Then, for each 0 < rx̄ ≤ r̂x̄, one has that

d(x,W−1
x̄ (y) ≤ κ d(y,Wx̄(x)) for all (x, y) ∈

(

B(x̄, rx̄)× B(0, r0)
)

,

that is, Wx̄ is metrically regular at (x̄, 0) on B(x̄, rx̄)× B(0, r0) with constant κ.

Because Df is continuous at x̄ with constant ε, we can choose rx̄ ∈ (0, r̂x̄) such that

r0 − 2εrx̄ > 0 and

‖Df(x)−Df(x′)‖ ≤ ε for all x, x′ ∈ B(
rx̄
2
, x̄).

Then, define

b := min

{

r0 − 2εrx̄,
rx̄(1− κε)

4κ

}

.

Moreover, the partial pseudo-Lipschitz property ofRx(x, u) at ((x̄, x̄), 0) implies that there exist

constants rx̄ > 0, b > 0 and µ > 0 such that Rx(x, u) is partially Lipschitz-like at ((x̄, x̄), 0) on
(

B(x̄, rx̄2 )× B(x̄, rx̄2 )
)

× B(0, b) with constant µ imply, for all x, x′, x′′ ∈ B(x̄, rx̄2 ), that

e
(

Rx(x, x
′) ∩ B(0, b),Rx(x, x

′′)
)

≤ µ‖x′ − x′′‖.

Let ε ∈ (0, 1) be so chosen that ε(4η + 1)κ ≤ 1− κµ and

min

{

rx̄
2
,
b

3ε
, 1,

bκ

1− κε

}

> 0.

Thus we can choose δ ∈ (0, 1] such that

δ ≤ min

{

rx̄
2
,
b

3ε
,

bκ

1− κε

}

.

Let x0 ∈ B(δ̂, x̄) and wk ∈ B(ȳ, b) with wk ∈ Rx(x, u) such that (3.48) holds. Since (3.47)

holds, we can choose δ̂ ∈ (0, δ] for which the following inequalities hold:

d(w0,Wx0
(x0)) < εδ and d

(

0,Rx0
(x0, x̄)

)

≤ ε‖x0 − x̄‖. (3.49)

Now, one can easily check that all the requirements of Theorem 3.1 are satisfied. Therefore,

Theorem 3.1 is applicable to conclude that any sequence {xk} generated by Algorithm 1.1 with

starting point x0 ∈ B(δ̂, x̄) converges to a solution x̄ of (1.1). �
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3.2. Quadratic Convergence

In this subsection, we are devoted to present that if the derivative of f is Lipschitz continuous

around x̄, then any sequence generated by Algorithm 1.1 converges quadratically.

Theorem 3.2. Suppose that Wx̄ is metrically regular at (x̄, ȳ) on B(rx̄, x̄)×B(rȳ , ȳ) with con-

stant κ > 0, gphWx̄ ∩ (B(rx̄, x̄)×B(rȳ, ȳ)) is closed and Df is Lipschitz continuous on B( rx̄2 , x̄)

with constant ℓ. Let η > 1 and R > 0 be such that

R := min

{

rȳ − 2ℓr2x̄,
rx̄(1 − κℓrx̄)

4κ

}

.

For every u ∈ X, assume that Rx(x, u) is partially Lipschitz-like at ((x̄, x̄), ȳ) on
(

B(x̄, rx̄2 ) ×
B(x̄, rx̄2 )

)

× B(ȳ, R) with constant µ > 0 so that κ(µ+ ℓrx̄) < 1. Let δ > 0 be such that

δ ≤ min

{

rx̄
4
,

√

R

6ℓ
,

κR

1− κℓrx̄
, 1

}

; (3.50a)

(κ+ 1)ℓ(9ηδ + 2rx̄) ≤ 2(1− κµ); 2‖ȳ‖ < ℓδ2. (3.50b)

Suppose that

lim
x→x̄

d(ȳ,Wx(x)) = 0 and d
(

ȳ,Rx(x, x̄)
)

≤ ℓ

2
‖x− x̄‖2. (3.51)

Then, for every k ∈ N0, tk ∈ B(ȳ, R) with tk ∈ Rx(x, u) satisfying

Wx(u) ∋ tk, (3.52)

there exists some δ̂ > 0 with an initial point in B(δ̂, x̄), Algorithm 1.1 generates a sequence,

which may not be unique, and any generated sequence {xn} converges quadratically to a solution

x∗ of (1.1).

Proof. According to our assumption, the mapping Wx̄ is metrically regular at (x̄, ȳ) on

B(rx̄, x̄) × B(rȳ , ȳ) with constant κ and Df is Lipschitz continuous on B(x̄, rx̄2 ) with constant

ℓ. The Lipschitz continuity property of Df gives, for all x, x′ ∈ B(x̄, rx̄2 ), that

‖Df(x)−Df(x′)‖ ≤ ℓ‖x− x′‖ ≤ ℓrx̄. (3.53)

Thus, Lemma 3.2 is applicable with ε := ℓrx̄. Then, applying Lemma 3.2 we obtain, for

every x ∈ B(x̄, rx̄2 ) and R defined in the statement, that Wx is metrically regular at (x̄, ȳ) on

B(x̄, rx̄2 )× B(ȳ, R) with constant γ :=
κ

1− κℓrx̄
, that is,

d
(

u2,W−1
x (v2)

)

≤ γ d
(

v2,Wx(u2)
)

for any u2 ∈ B(x̄,
rx̄
2
), v2 ∈ B(ȳ, R). (3.54)

Now, using (3.53) we obtain, for all u1, v1 ∈ B(x̄, rx̄2 ), that

‖f(u1)− f(v1)−Df(v1)(u1 − v1)‖

=

∥

∥

∥

∥

∫ 1

0

Df(v1 + τ(u1 − v1))(u1 − v1)dτ −Df(v1)(u1 − v1)

∥

∥

∥

∥

≤
∫ 1

0

‖Df(v1 + τ(u1 − v1))−Df(v)‖‖u− v‖dτ

≤ ℓ‖u1 − v1‖2
∫ 1

0

τdτ =
ℓ

2
‖u1 − v1‖2. (3.55)
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Furthermore, it is given in the statement of the theorem that Rx(x, u) is partial Lipschitz-

like at ((x̄, x̄), ȳ) on
(

B(x̄, rx̄2 ) × B(x̄, rx̄2 )
)

× B(ȳ, R) with constant µ. This implies, for all

x, x1, x2 ∈ B(x̄, rx̄2 ), that

e
(

Rx(x, x1) ∩ B(ȳ, R),Rx(x, x2)
)

≤ µ‖x1 − x2‖. (3.56)

Moreover, the inequality κ(µ+ ℓrx̄) < 1, together with γ :=
κ

1− κℓrx̄
, gives that γµ < 1. Set

ζ :=
ηℓκδ

1− κℓrx̄
⇒ ζ = ηℓγδ. (3.57)

By (3.50b), one sees that

κℓ(9ηδ + 2rx̄) ≤ (κ+ 1)ℓ(9ηδ + 2rx̄) ≤ 2(1− κµ) < 2. (3.58)

It follows from (3.57) that

ζ ≤ 2

9
.

On the other hand, with the help of (3.58) and η > 1 we obtain

γℓδ

1− γµ
=

κℓδ

1− κ(µ+ ℓrx̄)
≤ ηκℓδ

1− κ(µ+ ℓrx̄)
<

2

9
. (3.59)

Let tk ∈ B(ȳ, R) with tk ∈ Rx(x, u) so that (3.52) holds and tk ց 0. Select δ̂ ∈ (0, δ] and let

x0 ∈ B(x̄, δ̂). Then, for second condition of (3.50b) and first condition of (3.51), we infer that

the following conditions hold:

d(t0,Wx0
(x0)) ≤

ℓδ2

2
and d

(

ȳ,Rx0
(x0, x̄)

)

≤ ℓ

2
‖x0 − x̄‖2 x for each x0 ∈ B(δ̂, x̄). (3.60)

As in the proof for Theorem 3.1, we use induction to show that Algorithm 1.1 generates at

least one sequence and any sequence {xk} generated by Algorithm 1.1 satisfies the following

assertions:

‖sk‖ ≤ ζ

(

1

2

)2k

δ (3.61)

and

(xk+1, tk) ∈ gphWxk
∩
(

B(x̄,
rx̄
2
)× B(ȳ, R)

)

(3.62)

for each k = 0, 1, .... Define

αx :=
γℓ

1− γµ
‖x− x̄‖2 for each x ∈ X.

For each x ∈ B(x̄, 2δ), it follows from (3.59) that

αx <
4γℓδ2

1− γµ
=

4γℓδ

1− γµ
· δ < δ. (3.63)

Firstly, we want to show that the point x1 exists which satisfy (3.61) and (3.62) for k = 0. To

do this, it is enough to show, by applying Lemma 2.3 to the mappings Ξx0
and Υx0

, defined by

(3.11) and (3.12) respectively, with x̄ := x̄ and ȳ := ȳ, that

Λ△(x0) 6= ∅. (3.64)
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Now, we check that all assumptions of (2.4)–(2.7) of Lemma 2.3 are hold for the mappings

Φ := Ξx0
and θ := Υx0

with κ := γ, λ := µ, x̄ := x̄, ȳ := ȳ and c := αx0
.

For x0 ∈ B(x̄, αx0
) ⊆ B(x̄, δ) ⊆ B(x̄, rx̄2 ), we have from the second condition of (3.60) that

d
(

ȳ,Rx0
(x0, x̄)

)

≤ ℓ

2
‖x0 − x̄‖2. (3.65)

This gives, together with (3.11), that

d
(

ȳ,Ξx0
(x̄)
)

= d
(

ȳ,Rx0
(x0, x̄)

)

≤ ℓ

2
‖x0 − x̄‖2

≤ αx0
(1− γµ)

2γ
:=

c(1 − γµ)

2γ
.

This yields that the assumption (2.4) of Lemma 2.3 is hold. Furthermore, for any x ∈ B(x̄, 2δ),

we obtain, from (3.50a) and (3.55), that

‖(ȳ − hx0
(x)) − ȳ‖

= ‖ȳ − f(x̄)−Df(x̄)(x − x̄) + f(x0) +Df(x0)(x − x0)− ȳ‖
≤ ‖f(x̄)− f(x0)−Df(x0)(x̄− x0)‖+ ‖Df(x0)−Df(x̄)‖‖x̄− x‖

≤ ℓ

2
‖x̄− x0‖2 + ℓ‖x0 − x̄‖‖x̄− x‖ ≤ 5ℓδ2

2
≤ R. (3.66)

Setting x = x̄ in (3.66), which gives that

‖(ȳ − hx0
(x̄))− ȳ‖ ≤ ℓ

2
‖x̄− x0‖2 ≤ ℓδ2

2
≤ R. (3.67)

Therefore, for all x ∈ B(x̄, 2δ), the above inequalities show that ȳ − hx0
(x) ∈ B(ȳ, R). By the

construction of Wx in (3.1), we get that

ȳ − hx0
(x̄) ∈ Wx0

(x̄) ∩ B(ȳ, R).

Thus, by the metric regularity property of Wx0
from (3.17), definition of Υx0

in (3.12) and

the construction of hx0
, we obtain, for x0 ∈ B(x̄, βx0

) ⊆ B(x̄, δ) ⊆ B(x̄, rx̄2 ), that

d
(

x̄,Υx0
(ȳ)
)

= d
(

x̄,W−1
x0

(ȳ)
)

≤ γ d
(

ȳ,Wx0
(x̄)
)

≤ γ‖(ȳ − hx0
(x̄))− ȳ‖. (3.68)

It follows from (3.67) that

d
(

x̄,Υx0
(ȳ)
)

≤ γ‖(ȳ − hx0
(x̄))− ȳ‖ ≤ γℓ

2
‖x̄− x0‖2

=
αx0

(

1− γµ
)

2
:=

c(1− γµ)

2
.

Hence, assertion (2.5) of Lemma 2.3 is hold.

To verify assumptions (2.6) and (2.7) of Lemma 2.3 are hold, let x′, x′′ ∈ B(x̄, αx0
). Then

by the relation 4δ ≤ rx̄ in (3.50a) and (3.63), we have x′, x′′ ∈ B(x̄, αx0
) ⊆ B(x̄, δ) ⊆ B(x̄, rx̄2 ).

Moreover, by (3.63) and (3.50a) we have that

αx0
≤ δ ≤ κR

1− κℓrx̄
⇒ αx0

γ
≤ R.
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For any x′, x′′ ∈ B(x̄, αx0
), we have from (3.56) that

e(Ξx0
(x′) ∩ B(ȳ,

αx0

γ
),Ξx0

(x′′))

≤ e(Ξx0
(x′) ∩ B(ȳ, R),Ξx0

(x′′))

= e(Rx0
(x0, x

′) ∩ B(ȳ, R),Rx0
(x0, x

′′))

≤ µ‖x′ − x′′‖,

which shows that the assertion (2.6) of Lemma 2.3 is satisfied.

Finally, we need to verify that the assertion (2.7) of Lemma 2.3 is also true. To prove this,

let y, y′ ∈ B(ȳ,
αx0

γ
). Let u1 ∈ W−1

x0
(y) ∩ B(x̄, αx0

). As Wx0
is metrically regular at (x̄, ȳ) on

B(x̄, rx̄2 )× B(ȳ, R) with constant γ, by (3.54) we have that

d
(

u1,W−1
x0

(y′)
)

≤ γ d
(

y′,Wx0
(u1)

)

≤ γ‖y − y′‖.

Taking supremum at u1 ∈ W−1
x0

(y) ∩ B(x̄, rx̄2 ) on both sides, we obtain

sup
u1∈W−1

x0
(y)∩B(x̄, rx̄

2
)

d
(

u1,W−1
x0

(y′)
)

≤ γ‖y − y′‖. (3.69)

Combining the definition of excess e and (3.69), it follows that

e
(

Υx0
(y) ∩ B(x̄, βx0

),Υx0
(y′)

)

≤ e
(

W−1
x0

(y) ∩ B(x̄,
rx̄
2
),W−1

x0
(y′)
)

= sup
u1∈W−1

x0
(y)∩B(x̄, rx̄

2
)

d
(

u1,W−1
x0

(y′)
)

≤ γ‖y − y′‖.

This shows that assertion (2.7) of Lemma 2.3 is verified. Since all assumptions (2.4)–(2.7)

of Lemma 2.3 are satisfied, Lemma 2.3 is applicable to conclude the existence of fixed points

x̂ ∈ B(x̄, αx0
) and ŷ ∈ B(ȳ,

αx0

γ
) such that

ŷ ∈ Ξx0
(x̂) and x̂ ∈ Υx0

(ŷ). (3.70)

The second inclusion in (3.70) translates to ŷ ∈ Wx0
(x̂), that is, ŷ ∈ f(x0) +Df(x0)(x̂− x0) +

F (x̂). This, together with the inclusion ŷ ∈ Ξx0
(x̂) = Rx0

(x0, x̂) by (3.11) and (3.70), implies

that

ŷ ∈ f(x0) +Df(x0)(x̂ − x0) + F (x̂) ∩Rx0
(x0, x̂)

and therefore, (3.64) is hold. Thus, we can choose s0 such that s0 ∈ Λ△(x0) and

‖s0‖ ≤ η d
(

0,Λ△(x0)
)

. (3.71)

Thus, Algorithm 1.1 ensure that x1 := x0 + s0 is defined. For such s0, we obtain from (3.2)

that

Λ△(x0) :=
{

s0 ∈ X : Wx0
(x0 + s0) ∩Rx0

(x0, x0 + s0) 6= ∅
}

. (3.72)

Since (3.52) holds for every tk ∈ B(ȳ, R) with tk ∈ Rx(x, u), we have that t0 ∈ Wx0
(x0 + s0) ⇒

x0 + s0 ∈ W−1
x0

(t0). This gives from (3.72) that

Λ△(x0) =
{

s0 ∈ X : x0 + s0 ∈ W−1
x0

(t0)
}

. (3.73)
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Combining (3.72) and (3.73), we obtain that

d(0,Λ△(x0)) = d(x0,W−1
x0

(t0)). (3.74)

Linking the metrically regular property of Wx0
from (3.54) with constant γ, we get, from (3.71)

and (3.74), that

‖s0‖ ≤ η d(x0,W−1
x0

(t0)) ≤ ηγ d(t0,Wx0
(x0)).

This gives, for first inequality in (3.60), that

‖s0‖ ≤ ηγ d(t0,Wx0
(x0)) ≤

ηγℓ

2
δ2 =

ζδ

2
, (3.75)

which implies that (3.61) holds for k = 0.

Since ζ ≤ 2
9 , (3.75) gives that

‖x1 − x0‖ = ‖s0‖ ≤ ζδ

2
< δ.

Consequently, we obtain, for x0 ∈ B(x̄, δ), that

‖x1 − x̄‖ ≤ ‖x1 − x0‖+ ‖x0 − x̄‖ < 2δ.

This yields that x1 ∈ B(x̄, 2δ) ⊆ B(x̄, rx̄2 ). Because of x1 := x0 + s0 is defined, from (3.73) we

get that

Λ△(x0) =
{

s0 ∈ X : x1 ∈ W−1
x0

(t0)
}

.

This shows that (3.62) holds for k = 0 with x1 ∈ B(x̄, rx̄2 ) and t0 ∈ B(ȳ, R).

We proceed by induction. Actually, we are going to show that Algorithm 1.1 generates at

least one sequence, which satisfies (3.61) and (3.62) for all n. To finish this, we assume that the

points x0, x1, ..., xk+1 are constructed by Algorithm 1.1 with initial point x0 such that (3.61)

and (3.62) hold for n = 0, 1, . . . , k− 1 and verify that (3.61) and (3.62) are also hold for k = n.

Since (3.61) and (3.62) are true for k = 0, 1, . . . , n − 1, by Algorithm 1.1, xn := xn−1 + sn−1

is defined and thus xn ∈ B(x̄, 2δ) ⊆ B(x̄, rx̄2 ). Now, if we use almost same arguments that we

did for the case when k = 0, one can easily apply Lemma 2.3 to the mappings Φ := Ξxn
and

θ := Υxn
with κ := γ, λ := µ, x̄ := x̄, ȳ := ȳ and c := αxn

and show that Λ△(xn) 6= ∅. Then,

choose sn such that sn ∈ Λ△(xn) and

‖sn‖ ≤ η d(0,Λ△(xn)). (3.76)

By Algorithm 1.1, xn+1 := xn + sn is defined. By the choice of sn, we have from (3.2) that

Λ△(xn) :=
{

sn ∈ X : Wxn
(xn + sn) ∩Rxn

(xn, xn + sn) 6= ∅
}

. (3.77)

It is given that, for every tk ∈ B(ȳ, R) with tk ∈ Rx(x, u), (3.52) holds. Therefore, we conclude

that tn ∈ Wxn
(xn + sn) ⇒ xn + sn ∈ W−1

xn
(tn). It follows from (3.77) that

Λ△(xn) =
{

sn ∈ X : xn + sn ∈ W−1
xn

(tn)
}

. (3.78)

Thus, (3.78) gives that

d(0,Λ△(xn)) = d(xn,W−1
xn

(tn)).
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On the other hand, since xn−1, xn ∈ B(x̄, 2δ) ⊆ B(x̄, rx̄2 ) and tn ∈ B(ȳ, R), we get, from (3.6)

and (3.7), that

tn − Z(xn−1, xn) ∈ Wxn
(xn)).

Now, we will use the metrically regular property of Wxn
from (3.54) with constant γ. Thus,

from (3.76) we obtain that

‖sn‖ ≤ η d(xn,W−1
xn

(tn)) ≤ ηγ d(tn,Wxn
(xn))

≤ ηγ‖tn − (tn − Z(xn−1, xn))‖
≤ ηγ‖f(xn)− f(xn−1)−Df(xn−1)(xn − xn−1)‖

≤ ηγℓ

2
‖xn − xn−1‖2 ≤ ηγℓ

2

(

ζ
(1

2

)2n−1

δ

)2

=
ηγℓδ

2

(

ζ2
(1

2

)2n
)

δ ≤ ζ

(

1

2

)2n

δ. (3.79)

This implies that (3.61) holds for each k = n. Moreover, since ζ ≤ 2

9
, using (3.79) we obtain

that

‖xn+1 − x̄‖ ≤
n
∑

i=0

‖si‖+ ‖x0 − x̄‖ ≤ δ

n
∑

i=0

(

1

2

)2i

+ δ ≤ 2δ,

which shows that xn+1 ∈ B(x̄, 2δ) ⊆ B(x̄, rx̄2 ). Furthermore, we obtain from (3.77) that

Λ△(xn) =
{

sn ∈ X : xn+1 ∈ W−1
xn

(tn)
}

.

This, together with xn+1 ∈ B(x̄, rx̄2 ) and tn ∈ B(ȳ, R), gives that (3.62) holds for k = n.

Therefore, (3.61) and (3.62) hold for every k. Therefore, {xk} is a Cauchy sequence and hence

there exists x∗ ∈ B(x̄, αxk
) such that limk→∞ xk := x∗. Since (xk+1, tk) ∈ gphWxk

∩(B(x̄, rx̄2 )×
B(ȳ, R)) and the fact that gphWxk

∩ (B(x̄, rx̄2 )×B(ȳ, R)) is closed for each k = 0, 1, . . ., taking

limit k → ∞ to (3.62) which gives that 0 ∈ Rx∗(x∗, x∗) and thus 0 ∈ Wx∗(x∗), that is,

0 ∈ f(x∗) + F (x∗). This completes the proof. �

If x̄ is a solution of (1.1) (i.e. ȳ = 0), Theorem 3.2 is reduced to the following corollary

which provides the local quadratic convergence of the sequence generated by restricted inexact

Newton-type method. The proof of this corollary is similar to the proof of Corollary 3.1 and so

we omitted its proof here.

Corollary 3.2. Suppose that η > 1 and x̄ is a solution of (1.1). Assume that Wx̄ is metrically

regular at (x̄, 0) with constant κ > 0 and gphWx̄ is locally closed. Let Df be Lipschitz continuous

around x̄ with constant ℓ. Let x ∈ B(x̄, rx̄2 ) and assume that, for every u ∈ X, Rx(x, u) is

partially Lipschitz-like at ((x̄, x̄), 0) with constant µ > 0 so that κ(µ+ ℓrx̄) < 1. Suppose that

lim
x→x̄

d(0,Wx(x)) = 0 and d
(

0,Rx(x, x̄)
)

≤ ℓ

2
‖x− x̄‖2.

Then, for every k ∈ N0, tk ∈ B(ȳ, R) with tk ∈ Rx(x, u) satisfying

Wx(u) ∋ tk,

there exists some δ̂ > 0 such that any sequence {xn} generated by Algorithm 1.1 with an initial

point in B(δ̂, x̄) converges quadratically to a solution x̄ of (1.1).
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4. Application and Numerical Experiment

In this section, we will provide an application of restricted inexact Newton-type method to

variational inequality and a numerical example which illustrates the theoretical result.

4.1. Application to Variational Inequality

Let f : Rn → R
n be a continuously differentiable function and C be a nonempty, closed

and convex subset of Rn. We consider the following variational inequality problem of finding a

point x ∈ C satisfying

〈f(x), u− x〉 ≤ 0 for all u ∈ C. (4.1)

Let NC : Rn ⇉ R
n be a normal cone mapping to the convex set C defined by

NC(x) =

{ {v : 〈v, u− x〉 ≤ 0, ∀ u ∈ C} for x ∈ C;

∅, otherwise.

We then observe that the classical variational inequality problem (4.1) for f and C is equivalent

to the generalized equation to having x ∈ X such that

f(x) +NC(x) ∋ 0. (4.2)

Let PC : Rn ⇉ C be a projection mapping which is a continuous function. It is very well known

that the following simple connection between the normal cone mapping NC and the projection

mapping PC :

v ∈ NC(x) ⇐⇒ PC(x+ v) = x.

LetM(x) = PC

(

x−f(x)
)

−x = 0. Then the variational inequality (4.2) can actually be written

as an equation of the following form:

f(x) +NC(x) ∋ 0 ⇐⇒ M(x) = 0. (4.3)

DenoteW ′
x(·) = f(x)+Df(x)(·−x)+NC(·). Let ηk be scalars and setRx(x, ·) = B(0, ηk‖M(x)‖),

where ηk ց 0 and ‖M(x)‖ is the residual d
(

0,W ′
x(·)
)

. Therefore, we obtain, for u ∈ R
n, that

d
(

0,W ′
x(u)

)

≤ ηk‖M(x)‖
=⇒

(

f(x) +Df(x)(u − x) +NC(u)
)

∩ B(0, ηk‖M(x)‖) 6= ∅.

Assume that

lim
x→x̄

d
(

ȳ,W ′
x(x)

)

= 0. (4.4)

Suppose that (3.16) holds with W ′
x(·). By the continuity property of Df with constant ε, we

obtain

d
(

ȳ,B(0, ηk‖M(x)‖)
)

= min
y∈B(0,ηk‖M(x)‖)

‖ȳ − y‖ = min
y∈W′

x
(x̄)

‖ȳ − y‖ = d
(

ȳ,W ′
x(x̄)

)

≤ ‖f(x̄)− f(x)−Df(x)(x̄ − x)‖ ≤ ε‖x− x̄‖. (4.5)

For variational inequality problem (4.2), we can thus rewrite (1.6) as follows:

S(x) :=
{

d ∈ R
n :
(

f(x) +Df(x)d+NC(x+ d)
)

∩ B(0, ηx‖M(x)‖) 6= ∅
}

.

Then we obtain the following Algorithm 4.1, which is the restricted inexact Newton-type method

for solving (4.2):
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Algorithm 4.1. (RINM for Variational Inequality)

Step 1. Let η ∈ [1,∞) and given x0 ∈ X , and put k := 0.

Step 2. If 0 ∈ S(x), that is,
(

f(xk) +NC(xk)
)

∩ B(0, ηxk
‖M(xk)‖) 6= ∅, then stop;

otherwise go to Step 3.

Step 3. If 0 /∈ S(xk), choose dk such that dk ∈ S(xk) and

‖dk‖ ≤ η d
(

0, S(xk)
)

.

Step 4. Update by xk+1 := xk + dk.

Step 5. Update by k := k + 1 and go to Step 2.

Let f in (4.2) be Lipschitz continuous in B(x̄, rx̄2 ) with Lipschitz constant ℓ. Then by the

nonexpensiveness of the projection mapping PC on C, we have that M is Lipschitz continuous

with Lipschitz constant µ > ℓ+2. It is obvious that (4.4) together with (4.5) imply the condition

(3.15). Now, it is our routine to check that all the cases described in Theorem 3.1 are fulfiled

and hence we obtain from Theorem 3.1 that Algorithm 4.1 guarantees to generate at least one

sequence with starting point close to the initial point which is linearly convergent to the the

solution of (4.2).

4.2. Numerical Experiment

In order to illustrate the theoretical result of RINM, we consider the following example.

Example 4.1. Let X = Y = R, x0 = 1.1, η = 3, κ = 0.318, ε = 0.67, w = 0.00001, and λ =

0.404. Let f : R → R, F : R ⇉ R and a sequence of set-valued mappings Rx : R× R ⇉ R be

defined, respectively, by, for all x, u ∈ R,

f(x) = x2 − x− 4; F (x) = {−2x,−3} and

Rx(x, u) = {x2 − x− 2(2 + u) + (2x− 1)(u− x), x2 − x− 7 + (2x− 1)(u− x)}.

Then Algorithm 1.1 generates a sequence which converges linearly to x∗ = −1 and x∗ = 3.1926

with initial point at x0 = 1.1.

Solution: Note that

(f + F )(x) = {x2 − 3x− 4, x2 − x− 7} for x ∈ R.

Then, it is evident that

(f + F )−1(y) = {(3±
√

4y + 25)/2, (1±
√

4y + 29)/2}.

Taking positive sign and then we obtain that

d(x, (f + F )−1(y)) = inf{| x− (3 +
√

4y + 25)/2 |, | x− (1 +
√

4y + 29)/2 |}

and

d(y, (f + F )(x)) = inf{| x2 − 3x− 4− y |, | x2 − x− 7− y |}.
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Table 4.1: Numerical Results for Example 1.

Iterations
(f + F )(x) = x2

− 3x− 4 (f + F )(x) = x2
− x− 7

xk (f + F )(xk) xk (f + F )(xk)

1 1.1000 -6.0900 1.1000 -6.8900

2 -6.5125 57.9504 6.8417 32.9668

3 -2.8963 13.0772 4.2425 6.7560

4 -1.4090 2.2121 3.3398 0.8147

5 -1.0287 0.1446 3.1964 0.0206

6 -1.0002 0.0008 3.1926 0.0000

7 -1.0000 0.0000 – –

Take x = c and y = 1 + c. Then

d(x, (f + F )−1(y))

d(y, (f + F )(x))

=

inf

{

∣

∣

∣

∣

2c− (3 +
√
4c+ 29)

2

∣

∣

∣

∣

,

∣

∣

∣

∣

2c− (1 +
√
4c+ 33)

2

∣

∣

∣

∣

}

inf{| c2 − 4c− 5 |, | c2 − 2c− 8 |}

≤ 2.251

8
= 0.318, as c→ 1.

This implies that f + F is metrically regular around (1, 2) with constant κ = 0.318. First, we

consider the set-valued mapping (f + F )(x) = {x2 − 3x− 4} and corresponding this, we have

that Rx(x, u) = {x2 − x− 2(2 + u) + (2x− 1)(u− x)}. Observe that f + F has a closed graph

at (x̄, ȳ) with x̄ = 1 and ȳ = 2. Thus, (1,−6) ∈ gph(f + F ). Suppose that Df is continuous

around x̄ = 1 with constant ε = 0.67. Then, by Lemma 3.2, Wx is metrically regular around

(1, 2) with constant λ = κ
1−κε

= 0.404. Also, suppose that Rx(x, ·) is partially Lipschitz-like at

((1, 2), 2) with constant µ = 0.42 so that κ(µ+ ε) < 1. Therefore, the assumptions of Theorem

3.1 are hold. Since w ∈ Rx(x, u) satisfies w ∈ Wx(u), from (3.44) we have that

Λ△(xk) =

{

sk ∈ R : sk =
w − x2k + 3xk + 4

2xk − 3

}

.

On the other hand, if Λ△(xk) 6= ∅ and sk = xk+1 − xk, we obtain that

xk+1 =
x2k + w + 4

2xk − 3
.

Moreover, from (3.45), we have that ‖sk‖ ≤ ηλε‖sk−1‖.
Hence, for the given values of η, ε, λ, w and κ, one sees that Algorithm 1.1 generates a linearly

convergent sequence with initial point x0 = 1.1 in a neighborhood of x̄ = 1 which converges

to x∗ = −1. Now if we consider the set-valued mapping (f + F )(x) = {x2 − x − 7} and its

corresponding inexactness set-valued mapping Rx(x, u) = {x2 − x − 7 + (2x − 1)(u − x)} and

apply the same procedure that we did for above, we can show that Algorithm 1.1 generates

a linearly convergent sequence with initial point x0 = 1.1 in a neighborhood of x̄ = 1 which

converges to x∗ = 3.1926. The numerical results are shown in Table 4.1 which are obtained by

using Mat lab program and this indicates that the generalized equation f(x) + F (x) ∋ 0 has

two solutions: x∗ = −1 and x∗ = 3.1926. The graphs of f + F are plotted in Fig. 4.1.
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Fig. 4.1. Linear rate of convergence of Algorithm 1 at -1 and 3.1926.

5. Concluding Remarks

For solving generalized equation (1.1), semilocal and local convergence results for restricted

inexact Newton-type method are presented when η > 1. Under the assumptions that when

Wx̄ is metrically regular and Df is continuous, we have shown that the sequence generated by

Algorithm 1.1 converges linearly. On the other hand, if Df is Lipschitz continuous, we have pre-

sented the quadratic convergence of the sequence generated by restricted inexact Newton-type

method. An application to variational inequality for generalized equation (1.1) is presented.

Finally, we have provided a numerical experiment that illustrates the theoretical results. In

the framework of generalized equation (1.1), it seems that the restricted inexact Newton-type

method and the established convergence results are new contributions and consequently, this

study improves and extends the result corresponding to [25].
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