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Abstract. In this paper we study the initial boundary value problem for the system
div(σ(u)∇ϕ) = 0, ut − ∆u = σ(u)|∇ϕ|2. This problem is known as the thermistor
problem which models the electrical heating of conductors. Our assumptions on σ(u)
leave open the possibility that lim infu→∞ σ(u) = 0, while lim supu→∞ σ(u) is large.
This means that σ(u) can oscillate wildly between 0 and a large positive number as
u→ ∞. Thus our degeneracy is fundamentally different from the one that is present in
porous medium type of equations. We obtain a weak solution (u, ϕ) with |∇ϕ|, |∇u| ∈
L∞ by first establishing a uniform upper bound for eεu for some small ε. This leads to an
inequality in ∇ϕ, from which the regularity result follows. This approach enables us
to avoid first proving the Hölder continuity of ϕ in the space variables, which would
have required that the elliptic coefficient σ(u) be an A2 weight. As it is known, the
latter implies that ln σ(u) is “nearly bounded”.
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1 Introduction

Let Ω be a bounded domain in RN with sufficiently smooth boundary ∂Ω and T any
positive number. We consider the initial boundary value problem

ut − ∆u = σ(u)|∇ϕ|2 in ΩT, (1.1a)
div(σ(u)∇ϕ) = 0 in ΩT, (1.1b)
u = u0 on ∂pΩT, (1.1c)
ϕ = ϕ0 on ΣT, (1.1d)
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where

ΩT = Ω× (0, T), (1.2a)
ΣT = ∂Ω× (0, T), the lateral boundary of ΩT, (1.2b)
∂pΩT = ΣT ∪Ω× {0}, the parabolic boundary of ΩT. (1.2c)

We are interested in the regularity properties of weak solutions when the elliptic coeffi-
cient σ(u) in the second equation may become oscillatory as u → ∞. To be precise, we
establish the following

Theorem 1.1 (Main Theorem). Assume:

(H1) the function σ is continuously differentiable on the interval [0, ∞) with

c0e−βs ≤ σ(s) ≤ c1 on [0, ∞) for some c0, c1, β ∈ (0, ∞), (1.3a)
|σ′(s)| ≤ c2eγs on [0, ∞) for some c2, γ ∈ (0, ∞), (1.3b)

(H2) u0, ϕ0 ∈ C
(
[0, T]; C1(Ω)

)
with u0|∂pΩT ≥ 0 and ∂tu0 − ∆u0 ∈ Ls(ΩT), ∆ϕ0 ∈

L∞(0, T; Ls(Ω)) for each s > 1,

(H3) ∂Ω is C1,1.

Then there is a unique weak solution (u, ϕ) to (1.1a)-(1.1d) with u ≥ 0 and

∇u,∇ϕ ∈ L∞(ΩT). (1.4)

The notion of a weak solution is defined as follows:

Definition 1.1. We say that (u, ϕ) is a weak solution to (1.1a)-(1.1d) if

(D1) u, ϕ ∈ L2(0, T; W1,2(Ω)),

(D2) u = u0, ϕ = ϕ0 on ΣT in the sense of the trace theorem and

−
∫

ΩT

uξtdxdt +
∫

ΩT

∇u∇ξdxdt

=
∫

ΩT

σ(u)|∇ϕ|2dxdt +
∫

Ω
u0(x, 0)ξ(x, 0)dx, (1.5a)∫

ΩT

σ(u)∇ϕ∇ηdxdt = 0, (1.5b)

for each pair of smooth functions ξ, η with ξ = η = 0 on ΣT and ξ(x, T) = η(x, T) = 0.
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We quickly offer another perspective on the initial condition for u in the weak solu-
tion. The weak maximum principle asserts that

‖ϕ‖∞,ΩT ≤ ‖ϕ0‖∞,ΩT . (1.6)

We can easily derive from (1.1b) that∫
ΩT

σ(u)|∇ϕ|2ξdxdt = −
∫

ΩT

σ(u)ϕ∇ϕ∇ξdxdt for each ξ with ξ|ΣT = 0. (1.7)

This together with (1.1a) implies that ut ∈ L2(0, T; W−1,2(Ω)). Thus we can conclude that
u ∈ C([0, T], L2(Ω)). The initial condition u(x, 0) = u0(x, 0) can also be understood to
hold in this space. Of course, under (1.4), we have ut ∈ Ls(ΩT) for each s > 1. Also, the
proof of the uniqueness of a weak solution under (1.4) is rather straightforward. We shall
omit it here.

Physically, problem (1.1a)-(1.1d) may be proposed as a model for the electrical heating
of a conductor, the so-called thermistor problem. In this case u is the temperature and ϕ
the electrical potential of the conductor. The heat source is the Joule heating σ(u)∇ϕ ·∇ϕ,
where σ(u) is the temperature-dependent electrical conductivity. We have taken the ther-
mal conductivity to be 1. There is a large body of literature devoted to the study of (1.1a)-
(1.1d) under various assumptions on σ(s) and the boundary conditions, and also various
generalizations of the problem. For the mathematical analysis of the associated station-
ary problem, we would like to mention [6, 7, 11]. Modeling and numerical simulations
were investigated in [2, 13, 19]. For optimal control issues, we refer the reader to [12] and
the references therein. Also see [1] and its references for obstacle thermistor problems.
Of course, there are many more papers that we have failed to mention, and it is simply
beyond the scope of this paper to give a comprehensive review of the current research in
this area.

A very important issue about the time-dependent problem is: How does one prevent
the thermal run-away from occurring? The blow-up of solutions was studied in [3]. In
applications, blow-up of solutions are not welcome in general. Thus we will focus our
attention on the boundedness of u. If σ is also bounded away from 0 below, then (1.1b)
becomes uniformly elliptic and one has

ϕ ∈ L∞(0, T; Cα(Ω)) for some α ∈ (0, 1). (1.8)

This combined with a result in [30] asserts that u is Hölder continuous in ΩT. With the
aid of this, we can conclude from [16, p. 82] that for each p > 1 there is a positive number
c depending on the continuity of σ(u) and C1,1 boundary such that

‖∇ϕ‖p,ΩT ≤ c‖∇ϕ0‖p,ΩT . (1.9)

By the proof of Lemma 3.3 below, (1.9) implies |∇u| ∈ L∞(ΩT). Now write (1.1b) in the
form

∆ϕ = −σ′(u)
σ(u)

∇u · ∇ϕ. (1.10)
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This puts us in a position to apply the classical Calderón-Zygmund estimate [5]. Upon
doing so, we establish (1.4).

Under (H1), the problem immediately becomes very delicate because we have to leave
open the possibility that u is not bounded above. The reason is simple: The term on the
right-hand of (1.1a) is only an L1 function from the usual energy estimates. Consequently,
(1.1b) could become degenerate and a priori estimates are difficult to obtain. In fact,
even an Lp, p ≥ 1, estimate for ∇ϕ is unlikely unless additional assumptions on σ are
made [20, 21]. Furthermore, assumption (H1) allows the possibility that

lim sup
s→∞

σ(s) > 0 and lim inf
s→∞

σ(s) = 0 (1.11)

hold simultaneously. This means that the function σ(s) can oscillate wildly between 0 and
a positive number as s → ∞. We can easily come up with an example of such functions.
Say,

σ(s) = c3(1 + sin eγs) + c0e−βs, c3 > 0.

By virtue of the classical regularity theory [10] for degenerate and/or singular elliptic
equations of the type (1.1b), σ(u) must be an A2-weight for (1.8) to hold. We say that
σ(u) is an A2-weight if there is a positive number c such that

∫
−

Br(y)
σ(u)dx

∫
−

Br(y)

1
σ(u)

dx ≤ c for all y ∈ Ω, r > 0 with Br(y) ⊂ Ω, (1.12)

where Br(y) denotes the open ball centered at y with radius r. A theorem in [18, p. 141]
asserts that a function f is an A2 weight if and only if ln f belongs to BMO. The latter im-
plies that over any ball, the average oscillation of ln f must be bounded. In the situation
considered here, to obtain (1.12) we have to assume σ(u) = e−cu for some c > 0 accord-
ing to a result in [23]. In general, our main theorem seems to lie outside the scope of [10].
This is the main motivation for our study. In a series of three papers [20–22], the author
obtained the boundedness of u under the assumptions that the given function σ(s) has
the properties:

(C1) σ(s) is continuous, positive, and bounded above;

(C2) lims→∞ σ(s) = 0; and

(C3) limτ→0+
σ(s+τ)

σ(s) = 1 uniformly on [0, ∞).

In particular, condition (C2) is essential to the argument there. We have managed to
remove this condition here, thereby allowing oscillation in σ. A result in [22] asserts
that (C3) implies that σ(u) is bounded below by an exponential function. Thus we have
also weaken (C3) substantially. The trade-off for us is that we have to assume that σ is
continuously differentiable.
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Recall that solutions to the initial boundary value problem for the equation ut−∆u =
σ(u) can blow up in finite time when σ(u) is superlinear, i.e.,

lim
u→∞

σ(u)
u

= ∞,
∫ ∞ 1

σ(u)
du < ∞.

See, for example, [4]. It would be interesting to know if we can allow σ(u) to be bounded
above by a linear function.

The difficult features in our problem are the possible oscillation of σ(u) and the ex-
ponential growth conditions we impose on 1

σ , σ′. They prevent us from employing the
traditional approach of going from lower regularity to higher one. Instead, we will prove
(1.4) directly. This is done by obtaining a uniform upper bound for eεu for ε sufficiently
small. The idea is motivated by a recent paper of the author [24]. Then we bound ∇u
by ∇ϕ, and vice versa, thereby establishing an inequality in ‖∇ϕ‖∞,ΩT . This enables us
to prove existence for T suitably small. Then we further show that we can extend our
solution in the time direction as far away as we want.

This work is organized as follows. Section 2 is largely preparatory. We collect some
relevant known results. The proof of the main theorem is contained in Section 3.

We follow the well-established notation convention whenever possible. Therefore,
throughout this paper, the letter c will be used to denote a positive number that depends
only on the given data unless stated otherwise. The dot product of two column vectors
F, G is denoted by F ·G. When we apply the Sobolev embedding theorem, we only deal
with the case N > 2. The case N = 2 can be handled similarly.

2 Preliminaries

In this section we collect some known results for later use. We begin with Grönwall’s
inequality.

Lemma 2.1. Suppose that a differentiable function h(t) satisfies the inequality

h′(t) ≤ ch(t) + g(t) on [0, ∞),

where c is a constant and g(t) a locally integrable function. Then

h(t) ≤ h(0)ect +
∫ t

0
g(τ)ec(t−τ)dτ.

We also need the interpolation inequality

‖u‖q ≤ ε‖u‖r + ε−µ‖u‖`, (2.1)

where 1 ≤ ` ≤ q ≤ r with µ = ( 1
` −

1
q )/(

1
q −

1
r ).

The next two lemmas deals with sequences of nonnegative numbers which satisfy
certain recursive inequalities.
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Lemma 2.2. Let {yn}, n = 0, 1, · · · , be a sequence of positive numbers satisfying the recursive
inequalities

yn+1 ≤ cbny1+α
n for some b > 1, c, α ∈ (0, ∞).

If
y0 ≤ c−

1
α b−

1
α2 ,

then limn→∞ yn = 0.

This lemma can be found in ( [8, p.12])

Lemma 2.3. Let h(τ) be a continuous non-negative function defined on [0, T0] for some T0 > 0.
Suppose that there exist three positive numbers ε, δ, b such that

h(τ) ≤ εh1+δ(τ) + b for each τ ∈ [0, T0]. (2.2)

Then h(τ) ≤ 1

[ε(1+δ)]
1
δ

for each τ ∈ [0, T0], provided that

ε ≤ δδ

(b + δ)δ(1 + δ)1+δ
and h(0) ≤ 1

[ε(1 + δ)]
1
δ

≡ s0. (2.3)

This lemma has played a key role in the proof of our main theorem. It can be viewed
as a continuous version of Lemma 3.1 in [15,17]. Its proof is elementary and can be found
in [29].

3 Proof of the main result

The proof of the main theorem is divided into several lemmas. We assume that (1.1a)-
(1.1d) has a weak solution (u, ϕ) with u ∈ L∞(ΩT). By our discussion in the introduction,
this actually implies (1.4) and more. We will indicate how we obtain such an (approxi-
mate) solution via the Leray-Schauder fixed point theorem near the end of the section.
We shall begin with the exponential integrability of u [28].

Lemma 3.1. For each m ∈ (0, 1
c1‖ϕ0‖∞,Ω

) there is a positive number c such that

sup
0≤t≤T

∫
Ω

emudx +
∫

ΩT

(
emu|∇u|2 + σ(u)emu|∇ϕ|2

)
dxdt ≤ c. (3.1)

Proof. The weak maximum principle asserts that

‖ϕ‖∞,Ω ≤ ‖ϕ0‖∞,Ω.

We use ϕ− ϕ0 as a test function in (1.1b) to obtain∫
Ω

σ(u)|∇ϕ|2dx ≤
∫

Ω
σ(u)|∇ϕ0|2dx ≤ c. (3.2)
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On the other hand, use u− u0 as a test function in (1.1a) to derive

1
2

d
dt

∫
Ω
(u− u0)

2dx +
∫

Ω
|∇(u− u0)|2dx

=
∫

Ω
σ(u)|∇ϕ|2dx +

∫
Ω
(−∂tu0 + ∆u0)(u− u0)dx

=−
∫

Ω
σ(u)ϕ∇ϕ∇(u− u0)dx−

∫
Ω
∇u0∇(u− u0)dx−

∫
Ω

∂tu0(u− u0)dx

≤1
2

∫
Ω
|∇(u− u0)|2dx +

1
2

∫
Ω
(u− u0)

2dx + c + c
∫

Ω

(
(∂tu0)

2 + |∇u0|2
)

dx. (3.3)

Use Grönwall’s inequality to yield

sup
0≤t≤T

∫
Ω

u2dx +
∫

ΩT

|∇u|2dxdτ ≤ ceT + cT + c. (3.4)

Fix
K ≥ ‖u0‖∞,ΩT .

For any C1 function f on R with

f > 0 and f ′ > 0,

we use ( f (u)− f (K))+ as a test function in (1.1a) to obtain

d
dt

∫
Ω

∫ u

0
( f (s)− f (K))+dsdx +

∫
{u≥K}

(
f ′(u)|∇u|2 + σ(u)ϕ∇ϕ f ′(u)∇u

)
dx = 0.

On the other hand, use ( f (u)− f (K))+ϕ as a test function in (1.1a) to yield∫
{u≥K}

(
f (u)σ(u)|∇ϕ|2 + σ(u)ϕ∇ϕ f ′(u)∇u

)
dx

= f (K)
∫
{u≥K}

σ(u)|∇ϕ|2dx ≤ c f (K).

Combing the preceding two equations, we arrive at

d
dt

∫
Ω

∫ u

0
( f (s)− f (K))+dsdx + ε

∫
{u≥K}

(
f ′(u)|∇u|2 + f (u)σ(u)|∇ϕ|2

)
dx

+
∫
{u≥K}

(
(1− ε) f ′(u)|∇u|2 + 2σ(u)ϕ∇ϕ f ′(u)∇u + (1− ε) f (u)σ(u)|∇ϕ|2

)
dx

≤c f (K), (3.5)

where ε ∈ (0, 1). The last integrand in the above inequality is non-negative if f is so
chosen that

f ′(u)
f (u)

≤ (1− ε)2

c1‖ϕ0‖2
∞,Ω
≤ (1− ε)2

σ(u)ϕ2 . (3.6)
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We take
f (s) = emu.

For (3.6)to hold for ε sufficiently small, it is enough to take

m <
1

c1‖ϕ0‖2
∞,Ω

.

Use this in (3.5), integrate, and keep in mind (3.4) to derive the desired result. The proof
is completed.

We would like to remark that if
T ≤ 1, (3.7)

then the constant c in (3.1) can be made independent of T. This can be easily seen from
(3.4). For this purpose only, we will assume (3.7) from here on.

Now let
w = eεu, ε ∈ (0, 1).

Then w satisfies the problem

wt − ∆w = εσ(u)|∇ϕ|2w− ε2eεu|∇u|2 ≤ εσ(u)|∇ϕ|2w in ΩT, (3.8a)
w = eεu0 on ∂pΩT. (3.8b)

Lemma 3.2. Let w be given as above. For each N+2
N > ` > 1 and 0 < ε < min{1, 1

2c1`‖ϕ0‖2
∞,Ω
},

there is a positive number c such that

‖w‖∞,ΩT = ‖eεu‖∞,ΩT ≤ cT
1
2` ‖∇ϕ‖

N+2
N+2−N`
2`
`−1 ,ΩT

+ c. (3.9)

Proof. Let
k
2
≥ max{1, ‖eu0‖∞,ΩT} (3.10)

be selected as below. Set
kn = k− k

2n+1 , n = 0, 1, · · · .

Then we have

(w− kn)
+|∂pΩT = 0. (3.11)

Use (w− kn+1)
+ as a test function in (3.8a) to obtain

1
2

d
dt

∫
Ω

[
(w− kn+1)

+
]2 dx +

∫
Ω
|∇(w− kn+1)

+|2dx

=
∫

Ω
εσ(u)|∇ϕ|2w(w− kn+1)

+dx ≤ c
∫

Ω
∇ϕ|2w(w− kn+1)

+dx. (3.12)
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Integrate to get

max
0≤t≤T

∫
Ω

[
(w− kn+1)

+
]2 dx +

∫
ΩT

|∇(w− kn+1)
+|2dxdt

≤c‖∇ϕ‖2
2`
`−1 ,ΩT

(∫
ΩT

(
w(w− kn+1)

+
)` dxdt

) 1
`

, (3.13)

where

1 < ` <
2
N

+ 1.

Let

yn =

(∫
ΩT

[
(w− kn)

+
]2` dxdt

) 1
`

.

Assume N > 2. We estimate from the Sobolev embedding theorem that

∫ T

0

∫
Ω

[
(w− kn+1)

+
] 4

N +2 dxdt

≤
∫ T

0

(∫
Ω

[
(w− kn+1)

+
]2 dx

) 2
N
(∫

Ω

[
(w− kn+1)

+
] 2N

N−2 dx
) N−2

N

dt

≤c
(

max
0≤t≤T

∫
Ω

[
(w− kn+1)

+
]2 dx

) 2
N ∫ T

0

∫
Ω

[
∇(w− kn+1)

+
]2 dxdt

≤c‖σ(u)|∇ϕ|2‖1+ 2
N

`
`−1 ,ΩT

(∫
ΩT

(
w(w− kn+1)

+
)` dxdt

) N+2
N`

. (3.14)

Set

An+1 = {w ≥ kn+1}.

This combined with (3.12) gives

yn+1 =

(∫
ΩT

[
(w− kn+1)

+
]2` dxdt

) 1
`

≤
(∫

ΩT

[
(w− kn+1)

+
]2 N+2

N dxdt
) N

N+2

|An+1|
1
`−

N
N+2

≤c‖σ(u)|∇ϕ|2‖ `
`−1 ,ΩT

(∫
ΩT

(
w(w− kn+1)

+
)` dxdt

) 1
`

|An+1|
1
`−

N
N+2 . (3.15)
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On the other hand, we have

yn ≥
(∫

An+1

[
(w− kn)

+
]2` dxdt

) 1
`

=

(∫
An+1

w`
[
(w− kn)

+
]` (1− kn

w

)`

dxdt

) 1
`

≥
(∫

An+1

w`
[
(w− kn)

+
]` (1− kn

kn+1

)`

dxdt

) 1
`

≥ 1
2(n+2)

(∫
An+1

w`
[
(w− kn)

+
]` dxdt

) 1
`

. (3.16)

Furthermore,

yn ≥ (kn+1 − kn)
2|An+1|

1
` =

k2

22(n+2)
|An+1|

1
` .

Finally, we arrive at

yn+1 ≤c2(n+2)‖σ(u)|∇ϕ|2‖ `
`−1 ,ΩT

yn|An+1|
1
`−

N
N+2

≤ cbn

k2 N+2−N`
N+2
‖σ(u)|∇ϕ|2‖ `

`−1 ,ΩT
y

1+ N+2−N`
N+2

n , (3.17)

where b > 1. Thus by Lemma 2.2, if we take k so that

y0 ≤ c

(
k2 N+2−N`

N+2

‖σ(u)|∇ϕ|2‖ `
`−1 ,ΩT

) N+2
N+2−N`

,

then
w ≤ k.

Taking into account of (3.10), it is enough for us to take

k = cy
1
2
0 ‖σ(u)|∇ϕ|2‖

N+2
2(N+2−N`)
`

`−1 ,ΩT
+ 2e‖u0‖∞,ΩT . (3.18)

Choose ε suitably small so that

2`ε <
1

c1‖ϕ0‖2
∞,Ω

.

By Lemma 3.1, we have

y0 ≤
(∫

ΩT

e2`εudxdt
) 1

`

≤ cT
1
` .

Plug this into (3.18) to get the desired result.
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Lemma 3.3. For each r ∈ (N, N + 1) there is a positive number c such that

‖∇u‖∞,ΩT ≤ cT
r
2−

N
2 ‖∇ϕ‖2

∞,ΩT
+ c.

Proof. Consider the function

G =
1

(4π)
N
2

∫ t

0

1

(t− τ)
N
2

∫
RN

exp
(
− |x− y|2

4(t− τ)

)
σ(u)|∇ϕ|2χΩdydτ.

We see from ( [14], Chapter IV) that G satisfies

Gt − ∆G = σ(u)|∇ϕ|2χΩ in RN × (0, T),

G(x, 0) = 0 on RN .

Furthermore, for each p > 1 there is a positive number c such that

‖Gt‖p,ΩT + ‖G‖Lp(0,T;W2,p(Ω)) ≤ c‖σ(u)|∇ϕ|2‖p,ΩT . (3.19)

Set

s =
|x− y|

2
√

t− τ
.

Let r be given as in the lemma. Then we have

sr exp
(
−s2) ≤ c(r) on [0, ∞).

With this in mind, we estimate

|∇G| =
∣∣∣∣∣ 1

2(4π)
N
2

∫ t

0

1

(t− τ)
N
2

∫
RN

(x− y) exp
(
−s2) σ(u)|∇ϕ|2χΩdydτ

∣∣∣∣∣
≤c

∫ t

0

1

(t− τ)1+ N
2

∫
RN

(
2
√

t− τ
)r

|x− y|r−1 sr exp
(
−s2) |σ(u)|∇ϕ|2χΩdydτ

≤c‖∇ϕ‖2
∞,ΩT

∫ t

0

1

(t− τ)1+ N
2 −

r
2

∫
RN

χΩ

|x− y|r−1 dydτ

≤ct
r
2−

N
2 ‖∇ϕ‖2

∞,ΩT
. (3.20)

Obviously, F ≡ u− G satisfies the problem

Ft − ∆F = 0 in ΩT, (3.21a)
F = u0 − G on ∂pΩT. (3.21b)

We can easily conclude from (3.19) and the classical regularity theory for the heat equa-
tion [14, Chapter IV], that for p large enough there holds

‖∇F‖∞,ΩT ≤c‖∇u0 −∇G‖∞,ΩT + c‖∂tu0 − ∆u0 − ∂tG + G|‖p,ΩT

≤cT
r
2−

N
2 ‖∇ϕ‖2

∞,ΩT
+ c. (3.22)
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Here we have used (H2). It easily follows that

‖∇u‖∞,ΩT ≤ cT
r
2−

N
2 ‖∇ϕ‖2

∞,ΩT
+ c.

Thus, we complete the proof.

By (H1), we have ∣∣∣∣σ′(u)σ(u)

∣∣∣∣ ≤ ce(β+γ)u. (3.23)

Use ϕ− ϕ0 as a test function in (1.10) to derive∫
Ω
|∇ϕ|2dx ≤

∫
Ω

(
e(β+γ)u|∇u|

)2
dx + c. (3.24)

On account of the classical Calderón-Zygmund estimate, for each p > 0 there is a positive
number c such that

‖ϕ‖W2,p(Ω) ≤ c
∥∥∥e(β+γ)u∇u · ∇ϕ

∥∥∥
p,Ω

+ c‖ϕ0‖W2,p(Ω). (3.25)

Take p > N. Then we derive from the Sobolev embedding theorem and (2.1) that

‖∇ϕ‖∞,Ω ≤c‖ϕ‖W2,p(Ω)

≤c
∥∥∥e(β+γ)u∇u

∥∥∥
∞,Ω
‖∇ϕ‖p,Ω + c

≤c
∥∥∥e(β+γ)u∇u

∥∥∥
∞,Ω

(
ε ‖∇ϕ‖∞,Ω +

1

ε
p−2

2

‖∇ϕ‖2,Ω

)
+ c

=
1
2
‖∇ϕ‖∞,Ω + c

∥∥∥e(β+γ)u∇u
∥∥∥ p−2

2

∞,Ω

(∥∥∥e(β+γ)u∇u
∥∥∥

2,Ω
+ c
)
+ c. (3.26)

Consequently,

‖∇ϕ‖∞,Ω ≤ c
∥∥∥e(β+γ)u∇u

∥∥∥ p
2

∞,Ω
+ c. (3.27)

By Lemmas 3.2 and 3.3,

‖∇ϕ‖∞,ΩT ≤c
∥∥∥e(β+γ)u∇u

∥∥∥ p
2

∞,ΩT
+ c

≤
(

cT
1
2` ‖∇ϕ‖

N+2
N+2−N`
2`
`−1 ,ΩT

+ c
) p(β+γ)

2ε (
cT

r
2−

N
2 ‖∇ϕ‖2

∞,ΩT
+ c
) p

2
+ c

≤cTa‖∇ϕ‖b
∞,ΩT

+ c, (3.28)

where a, b are two positive numbers. Obviously, we can take

b =
(N + 2)(β + γ)p
2ε(N + 2− N`)

+ p > 1. (3.29)
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In view of (3.7), a is the smallest power of T that appear in the product in (3.28). We
will first show ϕ ∈ L∞(ΩT) for T suitably small [26]. This is achieved via Lemma 2.3.
Then extend the solution in the time direction. To this end, remember that c in (3.28) is
independent of T. Set

ε = cTa.

Consider the function g(τ) = ετb − τ + c on [0, ∞) and h(s) = ‖∇ϕ‖∞,Ω×[0,s] on [0, T].
Then (3.28) implies

g (h(s)) ≥ 0 for each s ∈ [0, T]. (3.30)

Obviously, the function g achieves its minimum value at s0 = 1

(εb)
1

b−1
. The minimum

value

g(s0) =
ε

(εb)
b

b−1
− 1

(εb)
1

b−1
+ c

=c− ε(b− 1)

(εb)
b

b−1
≤ −(b− 1),

provided that

(c + b− 1)ε
1

b−1 ≤ b− 1

b
b

b−1
. (3.31)

Recall that ϕ(x, 0) satisfies the boundary value problem

∆ϕ(x, 0) = −σ′(u0(x, 0))
σ(u0(x, 0))

∇u0(x, 0) · ∇ϕ(x, 0) in Ω, (3.32a)

ϕ(x, 0) = ϕ0(x, 0) on ∂Ω. (3.32b)

Our assumptions on u0, ϕ0, σ(s) imply that the coefficient on the right-hand side of (3.32a)
are bounded. We can conclude from (3.26) that |∇ϕ(x, 0)| is bounded. Thus we can find
the largest T such that (3.7), (3.31), and

h(0) = ‖∇ϕ(·, 0)‖∞,Ω ≤ s0 (3.33)

all hold. Denote it by T0. Then Lemma 2.3 says that if h is continuous on [0, T0] we have

‖∇ϕ‖∞,Ω×[0,T0] ≤ s0. (3.34)

Later we will indicate how we can construct a sequence of approximate solutions (uε, ϕε)
with |∇ϕε| being bounded. Here we wish to show that if |∇ϕ| is bounded then h is
continuous, and hence (3.34) holds. To see this, we differentiate (1.1a) with respect to
xi, i = 1, · · · , N, respectively. We can conclude from the resulting equations that ∇u is
Hölder continuous. Pick a sequence {tn} ⊂ [0, T] with limn→∞ tn = t0. Define

ϕn = ϕ(x, tn), (3.35a)

θ(x, t) = −σ′(u(x, t))
σ(u(x, t))

∇u(x, t). (3.35b)
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Then we have

∆ϕn = θ(x, tn) · ∇ϕn in Ω, (3.36a)
ϕn = ϕ0(x, tn) on ∂Ω. (3.36b)

By a calculation similar to (3.26), we obtain that {ϕn} is precompact in C1(Ω). We can
extract a subsequence of {ϕn}, still denoted by {ϕn}, such that

ϕn → ϕ∗ strongly in C1(Ω).

Pass to the limit in (3.36a)-(3.36b) to get

∆ϕ∗ = θ(x, t0) · ∇ϕ∗ in Ω, (3.37a)
ϕ∗ = ϕ0(x, t0) on ∂Ω. (3.37b)

By the uniqueness of a solution to the above problem, we have

ϕ∗ = ϕ(x, t0). (3.38)

Consequently, the whole sequence {ϕn} converges to ϕ(x, t0) in C1(Ω). This completes
the proof of (3.34).

We consider (u(x, t + T0), ϕ(x, t + T0)) on Ω× [0, T0]. Conditions (3.31) and (3.33) still
hold, and so does (3.34). Therefore, we can extend the solution in the time direction as
far away as we want.

Existence of a solution can be established via the Leray-Schauder theorem [9, p. 280].
To this end, we define an operator B from C(ΩT) into C(ΩT) as follows: We say u = B(v)
if v ∈ C(ΩT) and u is the solution of the problem

∂tu− ∆u = σ(v)|∇ϕ|2 in ΩT, (3.39a)
u = u0 on ∂pΩT, (3.39b)

where ϕ solves the boundary value problem

− div (σ(v)∇ϕ) = 0 in ΩT, (3.40a)
ϕ = ϕ0 on ΣT. (3.40b)

To see that B is well-defined, we conclude from (1.9) for each p > 1 there is a positive
number c depending on the continuity of σ(v) and ∂Ω such that

‖∇ϕ‖p,Ω ≤ c‖∇ϕ0‖p,Ω. (3.41)

This is more than enough to guarantee that u is Hölder continuous in ΩT. Since the two
problems in the definition of B are both linear, we can conclude that B is continuous and
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maps bounded sets into precompact ones. We still need to show that there is a positive
number c such that

‖u‖C(ΩT)
≤ c (3.42)

for all u ∈ B and ε ∈ (0, 1) satisfying u = εB(u). This equation is equivalent to

∂tu− ∆u = εσ(u)|∇ϕ|2 in ΩT, (3.43a)
− div (σ(u)∇ϕ) = 0 in ΩT, (3.43b)
u = εu0 on ∂pΩT, (3.43c)
ϕ = ϕ0 on ΣT. (3.43d)

To obtain (3.42), we have to apply our early proof to this problem. We only mention
that by the calculations in (3.20), (3.41) implies that |∇u| ∈ L∞(ΩT), and thus (3.26)
remains valid. Note that (3.41) is only used to justify the regularity of the solution. In
particular, the constant c in (3.41) does not appear elsewhere in our proof. We have all
the ingredients necessary to conclude (3.42). This finishes the proof of the main theorem.
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